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Non-hyperbolicity of holomorphic symplectic varieties
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Abstract. We prove the non-hyperbolicity of primitive symplectic varieties with b2 ≥ 5 that satisfy
the rational SYZ conjecture. If in addition b2 ≥ 7, we establish that the Kobayashi pseudometric
vanishes identically. This in particular applies to all currently known examples of irreducible
symplectic manifolds and thereby completes the results by Kamenova–Lu–Verbitsky. The key
new contribution is that a projective primitive symplectic variety with a Lagrangian fibration has
vanishing Kobayashi pseudometric. The proof uses ergodicity, birational contractions, and cycle
spaces.
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1. Introduction

The Kobayashi pseudometric on a complex variety is the maximal pseudometric such that any holomorphic
map from the Poincaré disk to the variety is distance decreasing. It is a fundamental object and of great
interest in complex geometry. A variety is called Kobayashi hyperbolic if this pseudometric is a genuine metric,
i.e., if it is non-degenerate. Kobayashi’s conjectures [Kob76, Section 13(F), Problem F.2, p. 405] predict that
for Calabi–Yau varieties, the opposite is the case: This pseudometric vanishes identically.

In this article, we study non-hyperbolicity and vanishing of the Kobayashi pseudometric of compact
Kähler holomorphic symplectic varieties. While Verbitsky [Ver15, Ver17] has shown that any irreducible
symplectic manifold with second Betti number b2 ≥ 5 is non-hyperbolic (building on Campana’s result that
any twistor family of irreducible symplectic manifolds contains at least one non-hyperbolic member, see
[Cam92, Theorem 1]), a stronger statement has been shown by Kamenova–Lu–Verbitsky [KLV14] under some
additional geometric assumptions. More precisely, they prove that irreducible symplectic manifolds with
second Betti number at least 13 satisfying the hyperkähler version of the SYZ conjecture (see Conjecture 2.16)
have vanishing Kobayashi pseudometric; see [KLV13, Theorem 1.2]. Their strategy is to deform to a variety
admitting two transversal Lagrangian fibrations and then use ergodicity and the upper semi-continuity of
the Kobayashi diameter, see [KLV14, Corollary 1.23], to transport the result to any other manifold of the
same deformation type.

The purpose of this article is to improve the Kamenova–Lu–Verbitsky bound on the second Betti number
in order to obtain the vanishing of the Kobayashi pseudometric for all known examples of irreducible
symplectic manifolds. Our key discovery is that for the pseudometric to vanish it is already enough to have
one Lagrangian fibration instead of two; see Theorem 5.4 for a precise statement. With this at hand, we can
prove our main result (see Theorem 5.3 for a slightly stronger statement).

Theorem 1.1. Let X be a primitive symplectic variety. Suppose that every primitive symplectic variety which is a
locally trivial deformation of X satisfies the rational SYZ conjecture. Then the following hold:

(1) If b2(X) ≥ 5, then X is non-hyperbolic.
(2) If b2(X) ≥ 7, then the Kobayashi pseudometric dX vanishes identically.

Notice that our results are valid for singular holomorphic symplectic varieties as well; see Section 2 for
the precise definitions. In fact, singular varieties are the natural context for our arguments. The proof of
Theorem 5.4 for example crucially needs to pass through the singular world, even if you start with a smooth
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variety. For smooth varieties, the main result, Theorem 1.1, could be proven by modifying the arguments
slightly so as to (mostly) avoid singularities, but formulating and proving it for primitive symplectic varieties
leads to greater clarity.

In view of the decomposition theorem [BGL22, Theorem A], see also [HP19, Theorem 1.5], it is natural
to ask whether the vanishing of the Kobayashi pseudometric holds for any compact Kähler holomorphic
symplectic variety. The following result is an easy consequence of the decomposition theorem and also
justifies why we may restrict our attention to primitive (or even irreducible) symplectic varieties.

Proposition 1.2. If the Kobayashi pseudometric vanishes for every irreducible symplectic variety, then the same
holds true for any compact Kähler holomorphic symplectic variety.

This result is proven as Proposition 5.7. As every irreducible symplectic variety is primitive symplectic, it
would in particular be sufficient to get rid of the assumptions on b2 and on the validity of the SYZ conjecture
in Theorem 1.1. Removing these hypotheses would however require a new idea.

1.1. Outline of the argument

As in [KLV14], the idea is to first prove the vanishing of the Kobayashi pseudometric for a special class of
primitive symplectic varieties and then, after having obtained this “initial” vanishing statement, deduce the
Kobayashi conjecture for all primitive symplectic varieties of the same (locally trivial) deformation type.

While Kamenova–Lu–Verbitsky used irreducible symplectic varieties admitting two transversal Lagrangian
fibrations, we show that a single Lagrangian fibration is already sufficient. Given two transversal fibrations,
the vanishing statement is an obvious consequence of the triangle inequality for the Kobayashi pseudometric.
The drawback is that assuring the existence of two fibrations increases the second Betti number (although
we suspect that the approach in [KLV14] can be pushed to get better bounds). Improving their result to just
one fibration is the main new contribution of this work and occupies the largest part of the article. We will
elaborate on this part below, but let us first explain how to conclude the proof of the main result.

Assuming the SYZ conjecture, the existence of Lagrangian fibrations reduces to a lattice-theoretic question,
which by Meyer’s theorem has a positive answer for a lattice of rank at least 5. Incidentally, the ergodicity
properties of periods also require the hypothesis b2 ≥ 5. From there we follow the argument of Kamenova–
Lu–Verbitsky with some minor modifications due to the presence of singularities. Ergodicity is then used
to transport the vanishing of the Kobayashi metric from varieties admitting Lagrangian fibrations to all
varieties of the same locally trivial deformation type, using the aforementioned upper semi-continuity of the
Kobayashi diameter; see [KLV14, Corollary 1.23]. The semi-continuity was proven for families of smooth
varieties, so at this point the existence of simultaneous resolutions in locally trivial families proven in [BGL22,
Corollary 2.27] comes in handy.

Coming back to the “initial” vanishing statement for varieties admitting a Lagrangian fibration, let us
illustrate our strategy with the following simple example.

Example 1.3. Let f : S → P
1 be an elliptic K3 surface with a section E ⊂ S . Then S is chain connected

by subvarieties with vanishing Kobayashi metric; hence dS ≡ 0. We are however looking for a different
interpretation of this argument as, in higher dimensions, we do not want to assume our fibrations to have
sections. Instead, we divide the problem in two. First, we will contract E and thus obtain a birational map
π : S → S̄ . Let us observe that now all (images of) fibers of f meet in a single point. Hence, S̄ is chain
connected by an irreducible family of cycles with vanishing Kobayashi pseudometric; in particular, dS̄ ≡ 0.
As a second step, we remark that, in this situation, the problem is invariant under birational maps, and thus
also conclude dS ≡ 0. This point of view generalizes to higher dimensions.

Even though the above example is very simple, the general strategy is rather similar to the one illustrated
in the example. First, we show that given a (rational) Lagrangian fibration, either there is a second one that
is distinct from it, or our variety has non-trivial divisorial contractions. In the latter case, the ultimate goal
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is to show that the given fibration ceases to be almost holomorphic (see Definition 4.2) on some birational
model. Then we use cycle spaces and Campana’s theorem on almost holomorphic maps to conclude that the
resulting rational Lagrangian fibration on the contracted variety is chain connected by its fibers (as is the
singular K3 surface S̄ in Example 1.3). As the Kobayashi pseudometric vanishes when restricted to the fibers,
we infer the vanishing of the Kobayashi pseudometric of our holomorphic symplectic variety.

1.2. Organization of the article

In Section 2, we recall definitions of (singular) holomorphic symplectic varieties, the Beauville–Bogomolov–
Fujiki (or BBF for short) form on the second cohomology and its properties, as well as some background on
Lagrangian fibrations. None of the material is new; we however carefully compile the results that lead to the
proof of Matushita’s theorem for primitive symplectic varieties, see Theorem 2.10, and we discuss the relation
between the different versions of the SYZ conjecture in Section 2.4. Section 3 is of preliminary nature as
well and provides basic notions concerning hyperbolicity and properties of the Kobayashi pseudometric.
The purpose of Section 4 is to explain Campana’s theorem on almost holomorphic maps and to adapt
a result from [GLR13] on almost holomorphic Lagrangian fibrations to primitive symplectic varieties; see
Theorem 4.6.

The new contributions of this article are contained in Section 5. Here, our main result, Theorem 5.3, is
proven. As explained before, we assume the second Betti number to be at least 7. Unlike in the smooth case,
there are examples of singular primitive symplectic varieties (even Q-factorial, terminal ones) with b2(X)
strictly smaller than 7. We illustrate some of these in Section 6.

Conventions

A variety will be a reduced complex Hausdorff space which is countable at infinity.(1) An algebraic variety
over a field k is a reduced scheme that is separated and of finite type over k. A resolution of singularities
of a variety X is a proper, bimeromorphic morphism π : Y → X such that Y is a smooth variety. We

denote by Ω
p
X the sheaf of holomorphic p-forms on X and by Ω

[p]
X its double dual, the sheaf of reflexive

(holomorphic) p-forms. A complex variety X is called Q-factorial if for every reflexive sheaf L on X of
rank 1, there is a positive integer n such that the double dual (L⊗n)∨∨ is invertible.

Acknowledgments.

We would like to thank Ben Bakker for helpful conversations around the Kobayashi pseudometric, Stéphane
Druel and Daniel Greb for helpful discussions improving Section 2, Ariyan Javanpeykar for pointing out
Example 3.5 to us, Giovanni Mongardi for Example 6.2, Steven Lu for the reference on length functions on
complex spaces, and Claire Voisin for pointing out a confusion in one of the arguments. We are grateful to
the referee for their thorough reading and for drawing our attention to a few inaccuracies in the original
manuscript.

2. Holomorphic symplectic varieties

This section provides a brief recollection of holomorphic symplectic varieties. Let us begin by recalling
the notion of an irreducible symplectic manifold.

Definition 2.1. An irreducible symplectic manifold is a connected compact complex Kähler manifold M
satisfying π1(M) = 0 and H2,0(M) =Cσ , where σ is a holomorphic symplectic form.

(1)That is, it is a countable union of compact subspaces. This property is also known as σ -compactness.



Non-hyperbolicity of holomorphic symplectic varieties 5Non-hyperbolicity of holomorphic symplectic varieties 5

These manifolds are sometimes referred to as compact hyperkähler manifolds, which is an equivalent
concept. Indeed, in every Kähler class on an irreducible symplectic manifold, there is a unique hyperkähler
metric (i.e., with holonomy equal to Sp(n)) by Yau’s theorem. Conversely, a compact hyperkähler manifold is
irreducible symplectic for a P

1 family of complex structures.
Let us now come to singular holomorphic symplectic varieties.

Definition 2.2. A primitive symplectic variety is a normal compact Kähler variety X with rational singularities

such that H1(X,OX) = 0 and H0(X,Ω[2]
X ) =Cσ for a holomorphic symplectic(2) form σ .

An irreducible symplectic variety is a normal compact Kähler variety X with rational singularities such that

for each finite, quasi-étale(3) cover π : X ′→ X, the algebra Γ (X ′ ,Ω[•]
X ′ ) of global reflexive holomorphic forms

is generated by a symplectic form σ ′ ∈ Γ (X ′ ,Ω[2]
X ′ ).

The notion of an irreducible symplectic variety is due to Greb–Kebekus–Peternell; see [GKP16, Defini-
tion 8.16], where we just replaced the projectivity assumption by the requirement for X to be compact Kähler.
Irreducible symplectic is more restrictive than primitive symplectic and serves a different purpose: Irreducible
symplectic varieties are one of the three fundamental building blocks in the decomposition theorem (see
[HP19, BGL22] and references therein), whereas for primitive symplectic varieties, moduli theory essentially
works as in the smooth case (see [BL21, BL22]).

2.1. Deformations of holomorphic symplectic varieties

We briefly discuss locally trivial deformations, especially for primitive symplectic varieties. For details and
further references, we refer to [BL22, Section 4].

Definition 2.3. Let f : X → S be a deformation of a compact complex space X, that is, a flat and
proper morphism of complex spaces with target a connected complex space S such that X = f −1(0) for
a distinguished point 0 ∈ S . Such a deformation is locally trivial if for every x ∈ X there exist open
neighborhoods U ⊂X of x and V ⊂ S of 0 such that U � (U ∩X)×V over S .

Note that every deformation of a compact complex manifold is locally trivial. Moreover, locally trivial
deformations X → S are globally trivial in the real analytic category after shrinking the base S ; see [AV21,
Proposition 5.1]. In particular, they are topologically trivial.

Let X →Def(X) be the miniversal deformation of X (in the sense of space germs). The base Def(X) of
this deformation is referred to as the Kuranishi space of X. By [FK87, (0.3) Corollary], there is a maximal
closed subspace Deflt(X) ⊂ Def(X) parametrizing locally trivial deformations and the restriction of the
miniversal family to this subspace is miniversal for locally trivial deformations of X. Further recall that the
tangent space to Deflt(X) at the distinguished point 0 is isomorphic to H1(X,TX) and that every miniversal
locally trivial deformation of X is universal if H0(X,TX) = 0. For primitive symplectic varieties, the following
result summarizes some fundamental properties of locally trivial deformations.

Theorem 2.4. Let X be a primitive symplectic variety. Then X admits a universal locally trivial deformation
X → Deflt(X). Moreover, Deflt(X) is smooth of dimension h1,1(X), all fibers are again primitive symplectic
(after possibly shrinking Deflt(X)), and the universal deformation remains universal for any of its fibers.

Proof. This is Lemma 4.6, Theorem 4.7, and Corollary 4.11 of [BL22]. □

2.2. The Bogomolov–Beauville–Fujiki form

Given a primitive symplectic variety X, there is the Beauville–Bogomolov–Fujiki (BBF ) form

qX : H
2(X,Z) −→Z,

(2)A reflexive 2-form is called symplectic if its restriction to the regular part is.
(3)Recall that quasi-étale means étale in codimension 1.
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which is a quadratic form that generalizes the intersection pairing for K3 surfaces. As in the smooth case,
it carries a lot of information about the variety in question. We refer to [BL22, Section 5] for the explicit
formula defining it, several basic results (such as the proof that it is actually an integral quadratic form), and
for references to many earlier partial results about this form. Here, we content ourselves with listing its most
important properties.

Lemma 2.5. The BBF form qX on a primitive symplectic variety X has the following properties:

(1) It is invariant under locally trivial deformation.
(2) It is non-degenerate of signature (3,b2(X)− 3).
(3) On the real space underlying H2,0(X)⊕H0,2(X), the form is positive definite.
(4) The orthogonal complement of (H2,0(X)⊕H0,2(X)) equals H1,1(X).
(5) The Fujiki relation holds; i.e., there is a constant c ∈Z, which is invariant under locally trivial deformation,

such that ∫
X
α2n = c · qX(α)n

for any α ∈H2(X,Z).

Proof. We again refer to [BL22, Section 5] and the references therein, in particular, Lemmas 5.3 and 5.7. □

Notice that the restriction of the form qX to H1,1(X,R) has signature (1,b2(X)− 3) because of Lemma 2.5(3).
Therefore, the cone

{α ∈H1,1(X,R) | qX(α) > 0}
has two connected components.

Definition 2.6. The positive cone CX ⊂ H1,1(X,R) of a primitive symplectic variety X is the connected
component of the cone {α ∈H1,1(X,R) | qX(α) > 0} containing the Kähler cone KX of X.

Definition 2.7. For a primitive symplectic variety X, let Pic(X)
R

be the real Picard group Pic(X) ⊗R.
Inside Pic(X)

R
, we consider the following cones:

• The ample cone Amp(X) of X is the cone generated by all ample (integral) Cartier divisors on X.
• The nef cone Nef(X) of X is the intersection of the closure of the Kähler cone KX with the real Picard

group Pic(X)
R

.
• The movable cone Mov(X) of X is the cone generated by all movable line bundles (i.e., whose linear

system is non-empty and has no fixed part) in Pic(X)
R

. We denote its closure by Mov(X).

Note that, in general, the movable cone is neither open nor closed. Also, our definition of the nef cone
is slightly non-standard, for usually it is defined as the closure of the ample cone. If X is projective, both
definitions coincide. If however the ample cone is zero, there can still be non-trivial nef line bundles. As an
example, take a primitive symplectic variety of Picard rank 1 admitting a Lagrangian fibration.

Definition 2.8. Let N1(X)R denote the space of 1-cycles (with real coefficients) modulo numerical equiva-
lence. We furthermore define the cone NE(X) ⊂N1(X)R to be the cone generated by the classes of effective
1-cycles and let NE(X) denote its closure. The cone NE(X) is called the Mori cone of X.

2.3. Lagrangian fibrations

A subvariety Y of a holomorphic symplectic manifold (X,σ ) is Lagrangian if dimY = 1
2 dimX and the

restriction of σ to the regular locus Y reg vanishes. This is equivalent to saying that the pullback of σ to a
resolution of singularities of Y vanishes. For singular X, one can extend this notion in an obvious way to
subvarieties not contained in the singular locus Xsing. However, as by definition all our symplectic varieties
have rational singularities, we can do better. Thanks to [KS21, Theorem 1.10], there is a functorial pullback
for reflexive differentials. Hence, we can define Lagrangian subvarieties in full generality.
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Definition 2.9. Let (X,σ ) be a holomorphic symplectic variety. A subvariety Y ⊂ X is called Lagrangian if
dimY = 1

2 dimX and the Kebekus–Schnell pullback of σ to a resolution of singularities of Y vanishes.

The following theorem is due to Matsushita in the smooth case; see [Mat99, Mat01, Mat00, Mat03],
and Hwang [Hwa08] for the last statement. Subsequently, results for singular varieties were obtained by
Matsushita [Mat15] and Schwald [Sch20]. We summarize their results and include a sketch of a proof, in part
because some of the results hold in greater generality than originally stated.

Theorem 2.10. Let X be a primitive symplectic variety of dimension 2n, and let f : X → B be a surjective
holomorphic map with connected fibers to a normal Kähler variety B with 0 < dimB < 2n. Then the following
hold:

(1) The base B is a projective variety with Picard rank ϱ(B) = 1; in particular, B is projective and has
Q-factorial, log terminal singularities. Furthermore, dimB = n.

(2) The morphism f is equidimensional, and each irreducible component of each fiber of f endowed with the
reduced structure is a Lagrangian subvariety. The singular locus Xsing does not surject onto B.

(3) All smooth fibers are abelian varieties.
(4) If, in addition, X is irreducible symplectic, then B is Fano. Moreover, if B is smooth, then B � P

n.

Proof. The argument in [Mat03] shows that B is actually projective by first showing that it has log terminal,
hence rational, singularities, and then that it is Moishezon. As in [Mat01], one shows that the general fiber
of f is Lagrangian (and hence a complex torus of dimension n) so that dimB = n. With the argument of
[Mat99], one deduces that B is Q-factorial of Picard rank 1.

For (2), let ρ : Y → X be a resolution of singularities. By [Kol86, Theorem 2.1], and [Sai90, Theorem 2.3,
Remark 2.9] in the analytic case, the derived direct images Ri(f ◦ρ)∗ωY are torsion-free for i ≥ 0. As X has
rational singularities, we have Rρ∗ωY = ωX , so the Rif∗ωX are also torsion-free. From there, the proof of
equidimensionality and Lagrangeness is essentially the same as [Mat00, Theorem 1].

To see that Xsing does not dominate the base, we adapt the proof of Matsushita’s “Theorem of Matreshka”;
see [Mat15, Theorem 3.1]. The crucial point is that the singular locus of a holomorphic symplectic variety is a
Poisson subvariety (for the Poisson structure induced on X by the symplectic form); see [Kal06, Theorem 2.3]
and also [BL22, Theorem 3.4] for an adaption to the complex analytic setting. We consider the diagram

X1
//

f1
��

X

f
��

B1 // B,

where we denote by X1 the normalization of Xsing and by B1 the normalization of f (Xsing). Then f being
Lagrangian implies that pullbacks of functions in OB Poisson commute. As X1 is a Poisson subvariety,
the Poisson structure is compatible with restriction, so the f1-pullbacks of functions in OB1

also Poisson
commute. Hence, coordinate functions around a smooth point of B1 give dimB1 linearly independent
Hamiltonian vector fields whose action preserves the fibers of f1. Therefore, the fibers of f1 have dimension
at least dimB1. In particular, dimB1 < dimB, which implies the claim.

From the classical theory of integrable systems, it follows that the smooth fibers are complex tori. The
projectivity statement in (3) follows as in the smooth case by Voisin’s argument; see [Cam06, Proposition 2.1].

(4) The proof of this part is essentially identical to the proof of [Mat03, Lemma 2.2]. For the existence
of a singular Kähler–Einstein metric on X that is smooth on the regular part Xreg, we refer to [EGZ09,
Theorem A] and [Pău08, Corollary 1.1]. The last statement has been proven by Hwang [Hwa08] if the total
space X is smooth and projective, building on work of Matsushita [Mat05]. For singular projective X, this is
due to Matsushita [Mat15]; see also [Sch20]. Finally, Greb and the second-named author treated the case of a
smooth Kähler total space X in [GL14]. Their argument, however, works literally the same if X is singular
and Kähler. □
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Definition 2.11. Let X be a primitive symplectic variety. A map f : X→ B as in Theorem 2.10 is called a
(holomorphic ) Lagrangian fibration. A rational Lagrangian fibration is a meromorphic map f : Xd B to a
normal Kähler variety B such that f has connected fibers(4) and its general fiber is a Lagrangian subvariety
of X. For a movable line bundle L, we say that a (rational) Lagrangian fibration f is induced by L if f is the
map associated to the linear system of L⊗n for all n≫ 0.

Remark 2.12. It is convenient to use the term “induced rational map of L” to refer to the map defined by
the linear system of a high enough multiple of L. Then, however, it becomes crucial to require L to be
movable. Consider for example an elliptic K3 surface f : S → P

1 with a section, as in Example 1.3. We
denote by ℓ the class of a fiber and by σ the class of a section. Then the linear system of ℓ + σ has σ as
a fixed component. According to Definition 2.11, the fibration f is however not induced by ℓ + σ as this is
actually a big line bundle. Note that 2ℓ + σ is big and nef.

Clearly, a holomorphic Lagrangian fibration is always induced by a line bundle, more precisely, by the
pullback of any ample bundle on the base. Let us recall that the pullback of a line bundle M on B along a
rational map f : Xd B is defined by taking a resolution of indeterminacy

X̃
π
yy

f̃

%%
X

f
// B

and putting

(2.1) f ∗M :=
(
π∗f̃

∗M
)∨∨

.

In general, f ∗M is only a reflexive rank 1 sheaf. If X is Q-factorial, taking a (reflexive) tensor power of this
construction gives a line bundle on X. Still, the question whether a rational Lagrangian fibration is induced
by a line bundle is a bit subtle, as the following example shows.

Example 2.13. Assume X is Q-factorial, and let the line bundle L on X be given by the pullback of an ample
A ∈ Pic(B) along f : Xd B as in (2.1). Then this need not induce the fibration in the sense of Definition 2.11.
By reflexivity, it is clear that f is the map associated to the linear system f ∗|A| = |L| (this last equality follows
from f having connected fibers), but multiples of L might define a different map. Consider for example the
singular elliptic K3 surface S̄d P

1 from Example 1.3. We discussed that f ∗O(1) is ample in that case.
Another potential obstruction for a rational Lagrangian fibration f : X d B to be induced by a line

bundle is non-Q-factoriality. It would be interesting to have an explicit example f where non-Q-factoriality
of X obstructs the pullback of an ample line bundle on B from being a (Q-)line bundle.

Observe that for a holomorphic Lagrangian fibration f : X→ B, the pullback of an ample line bundle A
on B satisfies qX(f ∗A) = 0. This is a direct consequence of the Fujiki relation from Lemma 2.5(5). It turns
out that (in the projective case) rational Lagrangian fibrations are not that far apart from holomorphic ones.

Lemma 2.14. Let X be a projective primitive symplectic variety with b2(X) ≥ 5. Let L be a (movable ) line
bundle on X inducing a rational Lagrangian fibration and satisfying qX(L) = 0. Then there exist a birational
map φ : Xd X ′ to a primitive symplectic variety X ′ with Q-factorial terminal singularities and a holomorphic
Lagrangian fibration f ′ : X ′→ B such that the birational transform of L is the pullback of an ample line bundle
on B.

Proof. By taking a Q-factorial terminalization of X, see [BCHM10, Corollary 1.4.3], and pulling back the
line bundle, we may assume that X itself has Q-factorial terminal singularities. By [LMP24, Theorem 1.2],
there is a rational polyhedral fundamental domain for the action of the group of birational automorphisms

(4)Recall that a fiber of a meromorphic map f : Xd B is the Zariski closure of a fiber of the restriction of f to its domain of
definition. In particular, fibers are always compact if X is.
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of X on Mov+(X). Here, Mov+(X) is defined as the convex hull of Mov(X)∩ Pic(X)
Q

. From the proof,
we deduce that there is a rational polyhedral cone C+ ⊂Mov+(X) containing L and being contained in
the nef cone of a birational model X ′ of X. As both X ′ and X have Q-factorial terminal singularities, they
are isomorphic in codimension 1, and the pullback L′ of L to X ′ is still isotropic for the BBF form on X ′ .
By assumption, the Kodaira–Iitaka dimension κ(L) of L is n := dimX/2, hence so is κ(L′). Since L′ is
qX ′ -isotropic, its the numerical Kodaira dimension is also equal to n, so L′ is nef and abundant, and the
claim follows from Kawamata’s theorem [Kaw85, Theorem 6.1]; see also [Fuj11, Theorem 1.1]. □

Remark 2.15. If we have the MMP (that is, termination of flips) at our disposal, we can argue differently in
the first part of Lemma 2.14. Indeed, if f is induced by a linear system |D | of a Cartier divisor D on X, one
can obtain X ′ as in the definition by running a log-MMP for (X,∆), where ∆ is a general element in |D |.
Note that flips terminate if X is smooth by [LP16] or more generally if X has hyperquotient singularities
by [LMP25]. In these cases, we can in particular drop the assumption b2(X) ≥ 5.

It is also likely that we can drop the projectivity assumption in Lemma 2.14. For Kähler irreducible
symplectic manifolds, for example, it also follows from the fact that the birational Kähler cone coincides
with the (closure of the) fundamental exceptional chamber; see [Mar11, Theorem 1.5].

2.4. The SYZ conjecture

The SYZ conjecture is one of the most important conjectures about primitive symplectic varieties and is
wide open in general. Note, however, that it is known in all known smooth examples; see Remark 2.17 below.
Before we state it, let us recall that given a Lagrangian fibration f : X→ B, the pullback of an ample class A
on B satisfies qX(f ∗A) = 0 and induces f in the sense of Definition 2.11.

Conjecture 2.16 (SYZ). If L is a non-trivial nef line bundle on a primitive symplectic variety X with
qX(L) = 0, then L induces a holomorphic Lagrangian fibration.

Remark 2.17. In the smooth case, this conjecture is known for deformations of K3[n] (Bayer–Macrì [BM14,
Theorem 1.5]; Markman [Mar14, Theorems 1.3 and 6.3]), for deformations of Kn(A) (Yoshioka [Yos16,
Proposition 3.38]), and for deformations of the O’Grady examples OG6 (Mongardi–Rapagnetta [MR21,
Corollary 1.3 and 7.3]) and OG10 (Mongardi–Onorati [MO22, Theorem 2.2]).

We will also need a rational version of the SYZ conjecture.

Conjecture 2.18 (Rational SYZ). If L is a non-trivial line bundle on a primitive symplectic variety X with
L ∈Mov(X) and qX(L) = 0, then L is movable and induces a rational Lagrangian fibration.

Lemma 2.19. Let X be a primitive symplectic variety. If M is a Q-line bundle on X with qX(M) > 0, then
either M or M∨ is big.

Proof. By taking a suitable multiple, we may assume that M is a line bundle. Then the proof is contained in
that of [BL22, Theorem 6.9]. Notice that in the notation of loc. cit., the assertion that L is big is incorrect(5)

and should be replaced by saying that L or L∨ is big. The hypothesis qX(L) > 0 only implies that c1(L) or its
negative lies in the positive cone. On p. 251 in the proof of [BL22, Theorem 6.9], it is tacitly assumed that
this is the case for c1(L) itself. □

With the corrections to [BL22, Theorem 6.9] made above, the claim of Lemma 2.19 can alternatively be
reduced to the statement of loc. cit., as was done in [LMP24, Lemma 4.7].

We prove the following variation of [LMP24, Proposition 5.6].

Proposition 2.20. Let X be a projective Q-factorial primitive symplectic variety and D ≥ 0 a big Q-divisor on X.
If D = P (D) +N (D) denotes its Boucksom–Zariski decomposition in the sense of [KMPP19, Theorem 1.1], then
P (D) is movable.

(5)We thank the referee for bringing this inaccuracy to our attention.
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Proof. The proof is essentially that of [LMP24, Proposition 5.6]: In loc. cit., the assumption is that D ∈ CX ,
which is only used to ensure that D is big. Hence, the argument remains valid in our situation. Note that
the Q-factoriality assumption is missing in [LMP24, Proposition 5.6] but is needed when using [BCHM10,
Corollary 1.4.2]. □

In the context of the rational SYZ conjecture, the following lemma will be useful.

Lemma 2.21. Let X be a primitive symplectic variety, and let L be a line bundle on X with Kodaira dimension
κ(L) > 0. Then, L ∈Mov(X) if and only if L is movable.

Proof. For the non-trivial direction, we distinguish two cases.

Case 1: L is big.
In this case, X has to be projective by [Nam02, Theorem 1.6]. By [BCHM10, Corollary 1.4.3], we can

assume that X is Q-factorial. Since L is a limit of movable line bundles, it is qX-nef in the sense of [KMPP19,
Definition 3.2]. Together with the uniqueness statement in [KMPP19, Theorem 1.1], this implies that L is equal
to the positive part in its Boucksom–Zariski decomposition. Therefore, since L is big, it is also movable by
Proposition 2.20.
Case 2: L is not big.
Up to replacing L by a multiple, we may write |L| = |M |+F, where M is the movable part, dim |M | ≥ 1

(or, equivalently, M , 0), and F is the fixed part. Since M , 0, we may assume that M and F are not
proportional, for otherwise there is nothing to prove. We will proceed in several steps.
Step 1: We observe that qX(L) = 0.
Indeed, as L ∈ Mov(X), we have qX(L) ≥ 0. If qX(L) > 0, then L would be big by Lemma 2.19,

contradicting the assumption of Case 2. Note that the dual of the non-trivial effective line bundle L cannot
be big.
Step 2: We show that qX(M) = 0.
As M is movable, we have qX(M) ≥ 0. If qX(M) > 0, then, again by Lemma 2.19, the line bundle M

would be big. Since F is effective, we have κ(M) ≤ κ(L). But L is not big, so we have a contradiction.
Step 3: We show that qX(M,F) = 0.
Since M is movable and F is effective, qX(M,F) ≥ 0. Suppose qX(M,F) > 0. Thus, qX(L +M) =

2qX(M,L) = 2qX(M,F) > 0, so L+M is big by Lemma 2.19 and the fact that L+M is effective. But then,
L+M+F = 2L would also be big, as it is the sum of a big and an effective line bundle. This again contradicts
the fact that L is not big.
Step 4: We show that F = 0, thereby completing the proof.

By Steps 2 and 3, we have qX(F) = qX(M+F) = qX(L) = 0 and consequently qX(F,L) = qX(F)+qX(F,M) = 0
so that H1,1(X,R) would contain the isotropic plane spanned by L and F. This is a contradiction to the
signature of qX on H1,1(X,R) being equal to (1,h1,1(X)− 1) by Lemma 2.5. □

We note that for line bundles L ∈ Mov(X), bigness is actually equivalent to qX(L) > 0 (and hence to
having positive top self-intersection, just as for nef line bundles).

Lemma 2.22. Let X be a primitive symplectic variety with Q-factorial terminal singularities, and let L be a line
bundle on X with qX(L) = 0. If L ∈Mov(X), then L is not big.

Proof. Suppose that L is big. Then, as before, X has to be projective by [Nam02, Theorem 1.6]. Arguing as in
the proof of [LMP24, Proposition 5.6] (cf. Proposition 2.20 and its proof, which explain why this is possible
as soon as L is big), we obtain a birational map φ : Xd X ′ to a normal projective variety X ′ such that

• the variety X ′ has Q-factorial terminal singularities;
• the map φ is an isomorphism in codimension 1; in particular, X ′ is again primitive symplectic;
• the pushforward φ∗L is nef.
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In particular, qX ′ (φ∗L) > 0. But φ∗ is a Hodge isometry by [LMP24, Theorem 4.2]. This contradicts the
hypothesis qX(L) = 0. □

We will need the following result on non-algebraic primitive symplectic varieties.

Lemma 2.23. Let X be a primitive symplectic variety of dimension 2n which is not projective. Then any line
bundle L on X has κ(L) ≤ n.

Proof. The proof is essentially the same as that of [COP10, Theorem 3.6]. Suppose f : Xd B is a dominant
meromorphic map to a normal projective variety B associated to the linear system of a line bundle L on X.
We assume that dimB > n.

Note that dimB < 2n, as X is not projective. By subtracting the fixed part, we may assume that L is
movable, in particular, qX(L) ≥ 0. Since X is non-projective, L cannot be big; cf. the proof of Lemma 2.21,
Case 1. Hence, we must have qX(L) = 0 by Lemma 2.19.

Let us choose a resolution of indeterminacy by a compact Kähler manifold Y and obtain a diagram

Y
π

ww

g

''
X

f
// B.

Since L is movable, we have that π∗L = g∗A+E, where A is an ample bundle on B and E is effective and
π-exceptional. Let κ be a Kähler class on X. We will show that for non-negative integers 0 ≤ a ≤ c with
n < c ≤ 2n, we have

(2.2) (g∗A)a · (π∗L)c−a · (π∗κ)2n−c = 0.

The proof proceeds by induction on a. The base case is equivalent to Lc · κ2n−c = 0. This follows from
Lc = 0, which in turn is a consequence of qX(L) = 0 and [BL22, Proposition 5.11]. Suppose the statement is
proven for a < c. Then

0 = (g∗A)a · (π∗L)c−a · (π∗κ)2n−c

= (g∗A)a+1 · (π∗L)c−(a+1) · (π∗κ)2n−c +E · (g∗A)a · (π∗L)c−(a+1) · (π∗κ)2n−c.

Since the classes g∗A, π∗L, and π∗κ are nef and E is effective, both terms have to vanish individually, and
(2.2) follows. We specialize to a = c = dimB. Then, (g∗A)a is a positive multiple of the class F of a general
fiber of g , and we obtain F · (π∗κ)2n−c = 0. By the projection formula, we find (π∗F) ·κ2n−c = 0, which is
absurd because κ is Kähler and π∗F is a non-trivial effective cycle of codimension c. □

Lemma 2.23 also shows that the algebraic dimension of X is at most n; cf. [COP10, Theorem 3.6].
It seems worthwhile clarifying the relation between the rational and the holomorphic version of the SYZ

conjecture.

Lemma 2.24. Let X be a primitive symplectic variety of dimension 2n with Q-factorial terminal singularities. If
b2(X) ≥ 5 or X is smooth, then the following statements are equivalent:

(1) All primitive symplectic varieties locally trivially deformation equivalent to X satisfy the SYZ conjecture.
(2) All primitive symplectic varieties locally trivially deformation equivalent to X satisfy the rational SYZ

conjecture.

Proof. Assume that (2) holds, and let L be a non-trivial nef line bundle on X with qX(L) = 0. As X is
arbitrary, it suffices to prove the existence of a Lagrangian fibration on X itself. By assumption, global
sections of L give rise to a rational Lagrangian fibration f : X d B. By a standard argument, the Fujiki
relation (Lemma 2.5(5)) implies that Ln+1 = 0 in cohomology while Ln , 0. If X is projective, it follows from
Kawamata’s semi-ampleness theorem [Kaw85, Theorem 6.1] that f is regular (as L is nef and abundant). For
non-projective X, we use [Nak87, Theorem 5.5] instead.
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Now suppose that (1) holds, and let L ∈Mov(X) be a non-trivial line bundle with qX(L) = 0. As above, it
suffices to show that L is movable and induces a rational Lagrangian fibration. By Lemma 2.21, it suffices to
prove that κ(L) = n. To this end, we will first show that some locally trivial deformation (Xt ,Lt) of the pair
(X,L) admits a regular Lagrangian fibration.

We will first deal with the case b2(X) ≥ 5. Choose (Xt ,Lt) such that Xt is projective. By [BL22,
Corollary 6.11], such pairs are dense in the local Kuranishi space of (X,L). Let us first assume that
Lt ∈ Mov+(Xt). Recall that Mov+(Xt) was defined as the convex hull of Mov(Xt) ∩ Pic(Xt)Q, so this
condition is equivalent to Lt ∈Mov(Xt). Now one argues as in the proof of Lemma 2.14 to see that there is a
birational model X ′t of Xt such that the line bundle L′t on X ′t corresponding to Lt is nef. By our assumption,
X ′t satisfies the SYZ conjecture; hence Lt induces a rational Lagrangian fibration on Xt .

Let us now consider the case where Lt is not in the closure of the movable cone. Then, by [LMP24,
Proposition 5.8 and Theorem 5.12], the group generated by reflections in prime exceptional divisors contains
an element that maps Lt to some Mt ∈ Mov+(Xt). By [LMP24, Theorem 3.10], the pair (Xt ,Mt) is a
deformation of (Xt ,Lt), so we are back in the previous case.

Now we use that Lagrangian fibrations locally deform over their Hodge locus by [EFG+25, Theorem A.2]
and infer from the semi-continuity of h0(Xt ,L

⊗n
t ) that L has Kodaira dimension at least n. If X is non-

projective, we conclude by Lemma 2.23. If X is projective, we argue as for Xt above and deduce that there is
a birational model X ′ of X such that the isotropic line bundle L′ on X ′ corresponding to L is nef. In this
case, κ(L) = κ(L′). The Kodaira dimension is always bounded above by the numerical dimension of a nef
line bundle, so κ(L′) ≤ ν(L′). Moreover, as shown in the proof of (2)⇒(1), the condition qX(L′) = qX(L) = 0
implies ν(L′) = n. In either case, we have κ(L) = n, and this completes the argument for b2(X) ≥ 5.

The proof for smooth X is similar. At a very general point (Xt ,Lt) of the Kuranishi space of (X,L), the
Picard group of Xt is generated by Lt . We deduce that such an Lt is nef by [GHJ03, Proposition 28.2]. Recall
that the nef cone is by definition the closure of the Kähler cone so that this statement is non-trivial. By our
assumption, Lt induces a Lagrangian fibration on Xt , and we argue by semi-continuity as before. □

Note that the proof of (2)⇒(1) had no assumptions on b2 or singularities and did not resort to deformations.
The smoothness hypothesis can be relaxed to having quotient singularities with codimXX

sing ≥ 4 by [Men20,
Corollary 5.6]. We believe that the codimension assumption can be dropped if one copies Menet’s argument,
replacing arbitrary deformations by locally trivial ones.

3. Hyperbolicity

Here, we recall some classical hyperbolicity notions that can be found in [Kob76] and [Bro78].

Definition 3.1. Let X be a complex variety. The Kobayashi pseudometric on X is the maximal pseudometric
dX such that all holomorphic maps f : (D,ρ)→ (X,dX) are distance decreasing, where (D,ρ) is the disk
with the Poincaré metric. A variety X is Kobayashi hyperbolic if dX is a metric.

One immediately sees that the complex line C is not Kobayashi hyperbolic. In fact, the Kobayashi
pseudometric of C vanishes identically. Therefore, the existence of an entire curve (that is, a non-constant
holomorphic map from the complex line) implies Kobayashi non-hyperbolicity. The converse holds for
compact manifolds.

Theorem 3.2 (Brody).

(1) Let X be a compact complex space. Then X is Kobayashi non-hyperbolic if and only is there exists an entire
curve C→ X.

(2) The Kobayashi non-hyperbolicity property is preserved on taking limits.
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Proof. The first statement is due to Brody for smooth X, see [Bro78, Theorem 4.1], and the argument
essentially goes through in the singular case, see e.g. Lang’s book [Lan87, Theorem III.2.1]. The second
statement is [Bro78, Theorem 3.1] in the smooth case. In the singular case, all that is needed is the notion of
a length function on a complex space as in [Lan87, Chapter 0]. Using compactness, one can argue that a
limit of disks with increasing radii gives a Brody curve; see e.g. [BKV20, Lemma 2.8]. □

A variety admitting no entire curve is sometimes called Brody hyperbolic. Brody’s theorem thus says that
for compact complex varieties, Brody hyperbolicity coincides with Kobayashi hyperbolicity.

Remark 3.3.

(1) Note that Kobayashi hyperbolicity always implies Brody hyperbolicity, even without the hypothesis of
compactness. Indeed, as soon as there is an entire curve, the Kobayashi distance between points in
its image has to be zero.

(2) While Brody’s theorem tells us that the limit of non-hyperbolic compact manifolds is non-hyperbolic,
the limit of hyperbolic compact manifolds can be either hyperbolic or non-hyperbolic. For an example
of hyperbolic manifolds specializing to a non-hyperbolic one, we consider a generic family of degree d
hypersurfaces in P

n. For big enough d, these are hyperbolic by the main theorem of [Bro17]. They
specialize, however, to the Fermat hypersurface given by the polynomial xd0 + x

d
1 + · · · + xdn , which

contains a line as soon as n ≥ 3.
(3) If we allow singular fibers, it is even easier to obtain a (Brody, hence also Kobayashi) non-hyperbolic

variety as the limit of hyperbolic ones. Take for example a family of genus 2 curves that degenerate
to a nodal elliptic curve. There, the general fiber is hyperbolic, while the special fiber is not.

(4) If we drop the compactness requirement, then Brody’s theorem fails; see [Kob98, Example 3.6.6] for
an example of a Kobayashi non-hyperbolic manifold with no entire curves.

(5) Non-hyperbolicity is closed (with respect to the Euclidean topology) in families of singular varieties
by Theorem 3.2(2).

Lemma 3.4. All varieties are assumed to be compact. Let P be one of the properties “is non-hyperbolic” or “satisfies
dX = 0,” where dX is the Kobayashi pseudometric. Then, the following hold:

(1) Holomorphic maps f : X→ Y are distance decreasing for the Kobayashi metric.
(2) If f : X→ Y is finite, then Y has property P if X does. For finite étale morphisms, the converse holds.
(3) Let X,Y be compact varieties and f : Xd Y a dominant meromorphic map. If dX = 0, then dY = 0 as

well.
(4) If X = X1 × · · · ×Xn and Xi has property P for all i = 1, . . . ,n, then X has property P .
(5) If f : Y → X is a bimeromorphic morphism onto a smooth variety X with dX ≤ ε for some ε ≥ 0, then

dY ≤ ε as well.

Proof. The first four items are standard. For the last item, we use that for a Zariski closed subset V ⊂ X of
codimension at least 2, we have

(3.1) (dX) |X\V = dX\V ;

see [Kob98, Theorem 3.2.19]. □

Note that if in (4) the product X has vanishing Kobayashi metric, then so does every single Xi . However,
the product of a hyperbolic and a non-hyperbolic compact manifold is non-hyperbolic, and therefore the
statement of Lemma 3.4(3) is not “if and only if.”

Example 3.5. Given a surjective morphism f : X→ B of complex varieties such that dX vanishes, dB and the
Kobayashi pseudometric of the fibers also vanish. The converse, however, is false due to the presence of
multiple fibers, as the following example shows. Let C be a genus 2 curve and E an elliptic curve. Consider
the µ2-action on C × E given by the hyperelliptic involution ι on C and translation by a 2-torsion point



14 L. Kamenova and C. Lehn14 L. Kamenova and C. Lehn

on E. As the action is free, its quotient X := C ×E/µ2 is smooth and the quotient morphism π : C ×E→ X
is finite étale. In particular, dX does not identically vanish by Lemma 3.4. However, the base and the fibers
of the morphism X→ C/ι � P

1 have vanishing Kobayashi distance. Indeed, if Σ ⊂ C/ι is the ramification
locus, the fiber over a point in the complement of Σ is an elliptic curve (namely E) and the fibers over points
of Σ are isomorphic to P

1 with multiplicity 2.

Example 3.6. Let C ⊂ P
2 ⊂ P

3 be a curve of genus at least 2, and let X ⊂ P
3 be the cone over C with vertex

v < P2. Let π : Y → X be the blowup in v. Then, π is a resolution of singularities, and the exceptional
divisor E is a section of a P

1-bundle f : Y → C. As f is distance decreasing, we see that dY cannot vanish
identically. On the other hand, X is rationally chain connected; hence dX ≡ 0. This example shows that
the vanishing of the Kobayashi pseudometric is not a birational invariant. Moreover, the quasi-projective
variety Y \ E � X \ {v} cannot have vanishing Kobayashi pseudometric. This is in stark contrast with the
situation for smooth varieties, where the Kobayashi pseudometric is determined by its restriction outside a
codimension 2 subset; see [Kob98, Theorem 3.2.19].

One can still wonder whether the Kobayashi pseudometric is determined by its restriction outside a
codimension 2 subset under some assumptions on the singularities. In concrete terms, consider the following.

Question 3.7. Let X be a complex variety with log-terminal (or, more generally, rational) singularities.

(1) Let V ⊂ X be a Zariski closed subset of codimension at least 2. Is it true that (3.1) still holds?
(2) Is it true that if π : Y → X is a resolution of singularities, then the vanishing of dX implies the

vanishing of dY ?

Note that a positive answer to (1) implies (2). A positive answer to (2) in full generality would simplify
our argument. In our main result, we actually make heavy use of birational modifications; see Section 5.
However, we are not affected by the above questions as we will have some stronger geometric input.

4. Almost holomorphic maps and Campana’s theorem

This section surveys basic notions and results on almost holomorphic maps, the most important of which
is undoubtedly Campana’s theorem which allows us to produce almost holomorphic maps out of covering
families of cycles; see Theorem 4.4. There are no new results, only Theorem 4.6 is a slight adaption from
a result of [GLR13] on irreducible symplectic manifolds to the singular case. We begin by collecting basic
results about cycle spaces.

4.1. Cycle spaces

Let X be a compact complex space. We denote by B (X) Barlet’s space of cycles on X; see [Bar75]. For a
subspace F ⊂B (X), we denote by (Ft)t∈F the analytic family of cycles parametrized by F . Here, Ft is the
cycle corresponding to t ∈ F . If F is a cycle on X, we denote its support by |F| ⊂ X. We will usually drop the
word analytic and just speak of a family of cycles.

If (Ft)t∈F is a family of cycles, we denote by

ΓF := {(t,x) ∈ F ×X | x ∈ |Ft |} ⊂ F ×X

its graph, which is an analytic subset in F ×X by [GPR94, Theorem VIII.2.7]. We say that F is a covering
family of cycles if ⋃

t∈F
|Ft | = X.

The actual definition of an analytic family of cycles is a bit involved; see [Bar75, définition fondamentale,
p. 33], but we will not need it here. The Barlet space is the universal object classifying analytic families of
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cycles in the sense that every such family is obtained by pullback along a uniquely determined classifying
map from the universal family of cycles. A very useful tool for obtaining families of cycles is the following
proposition taken from [GPR94, Proposition VIII.2.20].

Proposition 4.1. Let X and S be irreducible compact complex spaces. Then, there is a one-to-one correspondence
between

(1) meromorphic maps SdB (X) and
(2) pure-dimensional, S-proper cycles F on S ×X.

4.2. Almost holomorphic maps

Definition 4.2. For a meromorphic map f : Xd B and a subset U ⊂ B, we denote by f −1(U ) the set of
points from the domain of definition of f that map to U . The fiber of f over b ∈ B is the closure of f −1(b).
A dominant meromorphic map f : Xd B between compact complex varieties is called almost holomorphic if
there is a dense open subset U ⊂ B such that f |f −1(U ) : f −1(U )→U is holomorphic and proper.

Note that being almost holomorphic can also be phrased by saying that the fibers of f are pairwise
disjoint over a dense open set in the target.

An important theorem due to Campana allows us to produce many almost holomorphic maps out of
(covering) families of cycles. We need to introduce some terminology in order to formulate it. Let X be a
compact Kähler space,(6) and suppose we are given a family {Ft}t∈F of cycles, where F ⊂B (X) is a closed
subspace of the Barlet space. Then, one can define an equivalence relation on X as follows.

Definition 4.3. Two points x,y ∈ X are F -equivalent (or simply equivalent if the family F is clear from
the context) if they can be connected by a chain of cycles in F or if x = y. By definition, being connected
by a chain of cycles in F = {Ft}t∈F means that there exist finitely many points x = x1,x2, . . . ,xn+1 = y and
t1, . . . , tn ∈ F such that xi ,xi+1 ∈

∣∣∣Fti ∣∣∣ for all i = 1, . . . ,n. We write x ∼F y (or simply x ∼ y) to express that x
and y are equivalent.

It is clear that F -equivalence is an equivalence relation. Observe that every x ∈ X can be connected to
itself by a chain of cycles in F if and only if the family is covering. We are now able to state Campana’s
theorem; see [Cam81, Théorème 1].

Theorem 4.4 (Campana). Let X be a compact complex space which is globally and locally irreducible. Let
F ⊂B (X) be a closed subspace, let (Ft)t∈F be the corresponding family of cycles, and assume that for a general
point t ∈ F , the cycle Ft is integral. Then there is an almost holomorphic map f : Xd B such that general fibers
of f are equivalence classes for the relation of F -equivalence.

Note that the statement of the theorem is trivial in case F is not a covering family of cycles. In Campana’s
original result, the subspace F was assumed to be irreducible, but this assumption can be removed; see
[Cam04, Theorem 1.1]. An algebraic version of Campana’s theorem has been obtained by Kollár [Kol87,
Theorem 2.6]; see also [Deb01, Chapter 5].

Remark 4.5. The space B from Theorem 4.4 is constructed in [Cam81] as a subspace of the Barlet space.
Therefore, it can be chosen Kähler (respectively, of Fujiki class) if X is Kähler (respectively, of Fujiki class);
see [Var86, Théorème 2] or [Var89, Theorem 4’] in the Kähler case and [Cam80, Corollaire 3] for spaces of
Fujiki class.

(6)Actually, of Fujiki class is sufficient here.
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4.3. Almost holomorphic Lagrangian fibrations

The following theorem is a slight adaption of [GLR13, Lemma 6.6] for primitive symplectic varieties. Some
special attention has to be paid to Q-factoriality and to “horizontal” singularities. We include a sketch of the
argument for convenience.

Theorem 4.6. Let X be a projective primitive symplectic variety, B a projective variety, and let f : Xd B be a
dominant almost holomorphic map with 0 < dimB < dimX = 2n. Then there is a diagram

X
φ
//

f
��

X ′

f ′

��
B

ψ
// B′ ,

where X ′ is a primitive symplectic variety, B′ is a normal projective variety, f ′ : X ′ → B′ is a (holomorphic )
Lagrangian fibration, φ and ψ are birational, and φ is holomorphic in a neighborhood of the general fiber of f . In
particular, dimB = n and f is a rational Lagrangian fibration.

Proof. Replacing X by a Q-factorialization, see [BCHM10, Corollary 1.4.3], we may assume that X itself has
only Q-factorial singularities. In this case, we may define D := f ∗A for some very ample Cartier divisor A
on B. We choose a rational number δ > 0 small enough such that the pair (X,∆) with ∆ := δD is klt.
Note that this is always possible, as a primitive symplectic variety has canonical singularities. We choose
a dense open U ⊂ B such that f |f −1(U ) : f −1(U )→ U is holomorphic and proper. Then we resolve the
indeterminacy of the linear series |d∆|, where d is such that d∆ is Cartier, see [Laz04, Definition 9.1.11], by a
proper modification p : X̃→ X. This implies that

p∗|d∆| = |M |+G,

where M is free and G is a fixed component. We can choose d big enough so that the above equality
holds for all multiples of d∆, i.e. G becomes the stable base locus of p∗|d∆|. This is parallel to [GLR13,
Section 6.3.1], but note that unlike there, p is not necessarily an isomorphism over f −1(U ) due to the
singularities of X. Nevertheless, the proof of [GLR13, Lemma 6.6] goes through with minor changes. We will
comment on where we deviate from that proof.

First, we define B′ as the target of the map f̃ : X̃→ B′ given by the linear system of mM for big enough m.
Hence, B′ is a normal projective variety, and we obtain a commutative diagram

X

f
��

X̃
p

oo

f̃
��

B
ψ
// B′ ,

where ψ birational and an isomorphism on U ⊂ B by construction. As ψ ◦ f is also almost holomorphic, we
may assume B = B′ . Next, one considers the canonical bundle formula for the pair:

KX̃ + p−1∗ ∆ = p∗(KX +∆) +F −E,

where F,E are effective divisors supported on the exceptional locus of p. Moreover, ⌊E⌋ = 0 as (X,∆) is klt.
As X has canonical singularities, E does not dominate B. We set ∆̃ := ∆+E, and, after possibly shrinking δ
further, we may assume that the pair (X̃, ∆̃) is klt.

By adjunction (and up to shrinking U if necessary), a fiber of f over a point in U has trivial canonical
bundle and thus canonical singularities. Since E does not meet the general fiber, the restriction of KX̃ + ∆̃ to
the general fiber of f ◦ p is semi-ample, so in particular the pair (X̃, ∆̃)×BU has a good minimal model
over U (namely (f −1(U ),∆|f −1(U ))). By [HX13, Theorem 1.1], the pair (X̃, ∆̃) has a good minimal model
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(X ′ ,∆′) over B. Note that unlike in [GLR13, Section 6.3.2], the pair (X̃, ∆̃)×BU is not necessarily itself a
good minimal model, but the result of Hacon–Xu still applies. Let χ : X̃d X ′ denote the corresponding
birational map for which ∆′ = χ∗∆̃. As in [Lai11, Theorem 4.4] and [GLR13, Section 6.3.3], one shows that
(X ′ ,∆′) is actually a minimal model of (X̃, ∆̃) (i.e., not only over B), that X ′ has trivial canonical bundle (see
[GLR13, Claim 6.9]) and hence is primitive symplectic, and that ∆′ is semi-ample and induces the morphism
f ′ : X ′→ B.

It remains to show that the birational map φ := χ ◦ p−1 : Xd X ′ is an isomorphism in a neighborhood
of the general fiber of f . Let us point out that this was automatic in [GLR13]. By Theorem 2.10, f ′ is a
smooth morphism with abelian fibers over a dense open set V ⊂ Breg in the regular locus of the base. Let us
consider a resolution of indeterminacy of φ : X ′ ×B V d X ×B V over V as in the diagram below. This can
for example be obtained as a resolution of the closure of the graph of φ.

W
q′

##

q

{{
X ×B V

φ
//

f ##

X ′ ×B V

f ′{{
V

Then every curve that is contracted by q is mapped to a fiber of f ′ under q′ . But X has canonical
singularities; hence the fibers of q are rationally chain connected by [HM07, Corollary 1.5]. Thus, they have
to be contracted by q′ as well, and this makes φ holomorphic on X ×B V . Since X and X ′ have trivial
canonical divisor and X ′ ×B V is smooth, the morphism φ : X ×B V → X ′ ×B V is an isomorphism, as
claimed. □

Combining Theorems 4.4 and 4.6, we immediately obtain an almost holomorphic version of Matsushita’s
theorem.

Theorem 4.7. Let X be a projective primitive symplectic variety and F ⊂B (X) be a closed subspace whose general
point corresponds to an integral cycle. Let f : Xd B be an almost holomorphic map whose general fibers are
F -equivalence classes. If dimB < {0,dimX}, then f is a rational Lagrangian fibration. □

5. Non-hyperbolicity of holomorphic symplectic varieties

The purpose of this section is to prove our main result, Theorem 1.1, which is concerned with the
non-hyperbolicity of holomorphic symplectic varieties and vanishing of the Kobayashi pseudometric. We will
indeed prove a slightly stronger version, see Theorem 5.3, and in order to formulate it, we recall the notion
of the rational rank of a period. Let Λ be a lattice of signature (3,n), and consider the period domain

(5.1) ΩΛ := {[x] ∈ P(Λ⊗C) | (x,x) = 0, (x, x̄) > 0}.

It parametrizes Hodge structures of weight 2 of primitive symplectic varieties with (H2(X,Z),qX) � Λ. For
p ∈ΩΛ, we will denote the corresponding Hodge decomposition by

Λ⊗C =H2,0
p ⊕H1,1

p ⊕H0,2
p .

Definition 5.1. The rational rank of a period p ∈ΩΛ is defined as

rrk(p) := dim
Q

((
H2,0
p ⊕H0,2

p

)
∩Λ⊗Q

)
∈ {0,1,2}.

We define the rational rank of a primitive symplectic variety X, denoted by rrk(X), to be the rational rank
of its period µ

C
(H2,0(X)) after having chosen some marking, that is, an isometry µ : H2(X,Z)→Λ. Note

that the rational rank of X does not depend on the choice of marking.
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In [Ver15, Theorem 4.8] and [Ver17, Theorem 2.5], Verbitsky classified the possible orbits under the action
of any arithmetic group; see also [BL21, Proposition 3.11].

Theorem 5.2 (Verbitsky). Assume rk(Λ) ≥ 5. For p ∈ΩΛ, there are three types of orbits of p under the action of
Γ := O(Λ), depending on the rational rank:

(1) If rrk(p) = 0, then the orbit is dense, i.e., Γ · p =ΩΛ.
(2) If rrk(p) = 1, then Γ · p is a (countable) union of totally real submanifolds of ΩΛ of real dimension equal

to dim
C
ΩΛ.

(3) If rrk(p) = 2, then the orbit is closed, i.e., Γ · p is countable.

Clearly, a general period has rational rank 0. Periods of rational rank 2 are said to have maximal Picard
rank.

Theorem 5.3. Let X be a primitive symplectic variety. Suppose that every primitive symplectic variety which is a
locally trivial deformation of X satisfies the rational SYZ conjecture. Then the following hold:

(1) If b2(X) ≥ 5, then X is non-hyperbolic.
(2) If b2(X) ≥ 5+ rrk(X), then dX ≡ 0.

The proof of this theorem will occupy the rest of the section. The main geometric ingredient for the proof
of Theorem 5.3 is the following result.

Theorem 5.4. Let X be a projective primitive symplectic variety with b2(X) ≥ 5, and let L ∈ Mov(X) be a
non-trivial line bundle on X with qX(L) = 0. If X satisfies the rational SYZ conjecture, then dZ ≡ 0 for every
compact variety Z birational to X.

Proof. We denote by f : Xd B the rational Lagrangian fibration induced by L. The class [L] ∈ Pic(X) is
isotropic, so taking a rational plane containing it and passing through the interior of the positive cone, one
finds a non-proportional isotropic class [L′] ∈ Pic(X) whose sign we choose in such a way that [L′] lies on
the boundary of the positive cone. Note that X has Picard rank at least 2.

We make a case distinction, depending on whether L′ ∈Mov(X). If this is the case, L′ gives rise to a
rational Lagrangian fibration f ′ : Xd B′ . As the classes of L and L′ are not proportional, the maps f and f ′

are distinct rational maps. Hence, X is covered by families F ,F ′ of cycles such that the generic member of
either family is birational to an abelian variety by Theorem 2.10 and Lemma 2.14. Moreover, these families
are distinct. So if we consider the family F ∪ F ′ of analytic cycles, we obtain an almost holomorphic map
g : Xd S by Campana’s Theorem 4.4. Clearly, the fibers of g have dimension strictly greater than dimX/2.
Hence, by Theorem 4.7, the base S must be a point. In particular, X is chain connected by cycles in F ∪ F ′ .
Since dX |F ≡ 0 for every F ∈ F ∪ F ′ , the claim follows.

It remains to treat the case where L′ <Mov(X). We will argue by induction on the Picard rank of X.
For the inductive argument, we need X to be Q-factorial, which we may assume by replacing it by a
Q-factorialization; see [BCHM10, Corollary 1.4.3]. This may increase the Picard number once, but during
the inductive process, we will always remain Q-factorial.

First of all, let us observe that in case f is not almost holomorphic, a similar argument as above shows
that dX ≡ 0. Indeed, Campana’s theorem applied to the family F of analytic cycles given by the fibers of f
will result in an almost holomorphic map with fiber dimension strictly greater than dimX/2. Thus, from
now on, whenever a Lagrangian fibration appears, we may assume it to be almost holomorphic.

As L′ < Mov(X), by [LMP24, Proposition 5.8], there exists a prime exceptional divisor E on X and
qX(E,L) ≥ 0 as L ∈Mov(X). By the argument of [Dru11, Théorème 3.3], the divisor E can be contracted
after a sequence of flips. In particular, there exist a birational map φ : Xd X ′ and a contraction π : X ′→ X̄
of E such that φ is an isomorphism in codimension 1 and π is an isomorphism outside E. In particular, the
Picard rank of X ′ coincides with that of X. We conclude that E is uniruled. Both X ′ and X̄ are Q-factorial
primitive symplectic varieties.



Non-hyperbolicity of holomorphic symplectic varieties 19Non-hyperbolicity of holomorphic symplectic varieties 19

Let us first assume that qX(E,L) > 0. From [LMP24, Remark 3.11], we infer that L has positive degree on
the general ruling curve R of E, so R cannot be contracted by f . As above, we apply Campana’s theorem to
the family of fibers of f together with the ruling curves of E.

We are left with the case qX(E,L) = 0. Then E is vertical with respect to the almost holomorphic
Lagrangian fibration f . We replace X by the target of the contraction π : X→ X̄ of E and L by the Q-line
bundle L̄ := π∗φ∗L. If f̄ := π ◦φ ◦ f is almost holomorphic, then L̄ still has BBF square zero (it cannot be
positive as it intersects a general curve in the fibers of f̄ trivially). Now, the Picard rank of X̄ is strictly
smaller than that of X, and we proceed inductively. Note that if rkPic(X) = 2, the Q-line bundle L̄ becomes
ample on X̄, so the fibration f̄ : X̄d B cannot be almost holomorphic.

We will explain next how to deduce dX ≡ 0. Note that for singular varieties, the vanishing of the Kobayashi
pseudometric is not a birational invariant in general. The inductive argument above produces a diagram

Y
π

��

π′

  
X

ψ
// X ′′ ,

where X ′′ is primitive symplectic, ψ is birational, Y is a resolution of indeterminacy of ψ, and X ′′ is chain
connected by a family G of analytic cycles satisfying the following two properties. For every G ∈G, we have
dX ′′ |G ≡ 0, and for every irreducible component G0 ⊂G, the locus covered by cycles in G0 has codimension
at most 1 (as they come either from fibers of rational fibrations or from rulings of uniruled divisors). Hence,
the family G lifts to Y . There we add the π′-exceptional rational curves and obtain a family of cycles for
which Y is chain connected. Note that fibers of π′ are rationally chain connected by [HM07, Corollary 1.5].
We deduce dY ≡ 0 and thus also dX ≡ 0. As we could have replaced Y by a further blowup, the claim about
the vanishing of the Kobayashi metric on a birational model of X follows. □

Now that we have established the vanishing of the Kobayashi pseudometric for primitive symplectic
varieties admitting Lagrangian fibrations, we use an ergodicity argument to transport this property to
all varieties in the same component of the moduli space. For this, we need the following preliminary
consideration.

Let X be a primitive symplectic variety, and let µ be a marking on X. Associated to the pair (X,µ), there is
the monodromy group Mon ⊂O(Λ). It is defined to be the image under the morphism O(H2(X,Z))→O(Λ)
induced by the marking µ of the group of automorphisms of H2(X,Z) that arise by parallel transport in
locally trivial families. This group only depends on the connected component of the marked moduli space
containing (X,µ); we refer to [BL22, Section 8] for more details.

Let X ′ be a primitive symplectic variety which is equivalent to X by locally trivial deformations. We
endow X ′ with a marking µ′ that is obtained from the one of X by parallel transport. Let us denote by
p := µ(H2,0(X)), p′ := µ′(H2,0(X ′)) ∈ΩΛ the periods of X,X ′ thus obtained. Here, Λ is a lattice isometric
to (H2(X,Z),qX).

Definition 5.5. We say that X is in the Mon-orbit closure of X ′ if p ∈Mon · p′ .

Note that this definition does not depend on the choice of µ as long as µ′ is chosen as explained above.
The following is the analog of [KLV14, Theorem 2.1] in the smooth case. The idea of the proof is essentially
the same, but for convenience, we spell out the details.

Proposition 5.6. Let X be a projective primitive symplectic variety with a rational Lagrangian fibration induced
by a line bundle. Assume that b2(X) ≥ 5 and that the rational SYZ conjecture holds. Then every primitive
symplectic variety X ′ locally trivially deformation equivalent to X such that X is in the Mon-orbit closure of X ′

satisfies dX ′ ≡ 0.
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Proof. Let X → Deflt(X) =: S be the universal deformation of X, and let π : Y → X be a simultaneous
resolution of singularities, which exists by [BGL22, Corollary 2.27]. Let us denote by π0 : Y :=Y0→ X the
central fiber and consider the diameter function

diam: S −→R≥0, s 7−→ diam(Ys)

for the Kobayashi pseudometric. It was shown in [KLV14, Theorem 2.1] that diam is upper semi-continuous
for families of smooth varieties. Hence, for all ε > 0, the sets

Uε := {s ∈ S | diam(Ys) < ε}

are open (and non-empty, as 0 ∈Uε by Theorem 5.4). By the local Torelli theorem, see [BL22, Proposition 5.5],
we can identify S with a small open set in the period domain ΩΛ, where Λ � (H2(X,Z),qX). Let us consider
the action of the monodromy group Mon ⊂ Γ of X on ΩΛ. Let X ′ be as in the statement of the proposition,
and let us adopt the notation of Definition 5.5. Then the Mon-orbit of the period p′ ∈ΩΛ of X ′ has the
period p ∈ΩΛ ∩ S of X in its closure.

The sets Uε are saturated for the Mon-action in the sense that (Mon.Uε)∩ S =Uε. In particular, the set
Mon · p′ ∩ S is contained in Uε for every ε > 0. It follows that diam(Ys) = 0 for all s ∈Mon · p′ ∩ S . For
each such s, the global Torelli theorem, see [BL22, Theorem 1.1], implies that X ′ and Ys are bimeromorphic.
Let us choose a bimeromorphism Ysd X ′ and a resolution of indeterminacies, i.e., a diagram

W
p

��

q

��
Ys // X,

where p,q are bimeromorphic morphisms and W is a smooth and compact variety. By item (5) of Lemma 3.4,
the variety W also has Kobayashi diameter 0. But p is distance decreasing and surjective, so the same holds
for X and the claim follows. □

Proof of Theorem 5.3. We start by proving (2). In view of Proposition 5.6, we need to find a small locally
trivial deformation Y of X which is projective, admits a rational Lagrangian fibration, and is contained in
the Mon-orbit closure of X. Note that the subgroup Mon ⊂ Γ has finite index by [BL22, Theorem 1.1], so the
analogous trichotomy to Theorem 5.2 holds for orbit closures of Mon.

Let us choose a marking µ on X, and let us fix a lattice Λ that is isometric to (H2(X,Z),qX). The
assumption b2(X) ≥ 5+ rrk(X), together with Meyer’s theorem, shows that there is an isotropic class

α ∈Λ∩µ
(
H2(X,Q)∩

(
H2,0(X)⊕H0,2(X)

))⊥
.

If rrk(X) = 2, the class α is of type (1,1) on X itself, and the rational SYZ conjecture allows us to conclude.
If rrk(X) = 0, we first choose a period in α⊥ of rational rank at most 1 and hence find a primitive symplectic
variety Y in the same component of the marked moduli space realizing that period, by [BL22, Theorem 1.1].
We may assume Y to be projective by [BL22, Corollary 6.10] and the assumption on b2(X). It remains to
treat the case where rrk(X) = 1. Let λ be a generator of H2(X,Q)∩ (H2,0(X)⊕H0,2(X)). As λ ∈ α⊥, we
just need to choose any other µ ∈ Λ

R
∩α⊥ for which

〈
λ,µ

〉
is a positive 2-space and not rational. This

2-space defines a period of rational rank 1 that is in the orbit closure of X. The sought-for variety Y is
again obtained from [BL22, Theorem 1.1], and hence (2) follows.

Finally, (1) follows from (2), as the property of being non-hyperbolic is closed in families; see Theorem 3.2.
□

While primitive symplectic varieties form a large class of singular holomorphic symplectic varieties, one
may wonder whether assuming primitivity is really necessary. The following observation shows that it is
indeed superfluous. By a holomorphic symplectic variety, we mean a variety with rational singularities having a
holomorphic symplectic form on the regular part.
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Proposition 5.7. If the Kobayashi pseudometric vanishes for every irreducible symplectic variety, then the same
holds true for any compact Kähler holomorphic symplectic variety.

Proof. Let X be a compact Kähler holomorphic symplectic variety. By the decomposition theorem [BGL22,
Theorem A], we know that, up to a finite quasi-étale cover, X is a product of irreducible symplectic varieties
and complex tori of even dimension. The finite cover is distance decreasing, so we are reduced to showing
the claim separately for tori and irreducible symplectic varieties; see Lemma 3.4. For tori, the claim is
obvious, and for irreducible symplectic factors, the claim holds by assumption. □

6. Applications and examples

Here, we discuss some examples of (orbifold) primitive symplectic varieties with small second Betti
numbers b2. Still, it is possible to show the vanishing of their Kobayashi pseudometrics as they are quotients
of primitive symplectic varieties with b2 ≥ 7 so that our result applies to the covering variety (if the covering
variety has b2 ≥ 13, one can of course also use [KLV14]). We also discuss some crepant partial resolutions of
these quotients.

Example 6.1. Fu and Menet [FM21, Example 5.2] construct the following quotients based on Mongardi’s
Ph.D. thesis work [Mon13, Section 4.5]: M i

11 = Xi/σi , where Xi is a K3[2]-type manifold endowed with a
special symplectic automorphism σi of order 11, for i = 1,2. Both primitive symplectic orbifolds M i

11 have
second Betti number b2(M

i
11) = 3. Since the Kobayashi pseudometric of Xi vanishes by [KLV14, Remark 1.2,

Theorem 1.3], the Kobayashi pseudometric of the quotients M i
11 also vanishes by Lemma 3.4.

Similarly, based on Mongardi’s Ph.D. thesis work [Mon13, Section 4.4], Fu and Menet [FM21, Example 5.3]
construct a quotient M7 = X/σ , where X is a K3[2]-type manifold endowed with a symplectic automor-
phism σ of order 7. In this case, b2(M7) = 5. As above, one concludes that the Kobayashi pseudometric
of M7 vanishes.

Example 6.2. We learned the following example from Giovanni Mongardi. Let S be Fermat’s quartic K3
surface, and let us consider the symmetries coming from the symmetries of its defining equation. The
automorphism group of S as a projective variety in P

3 can be computed as Aut(S) = (Z/4Z)3 ⋊ S4, where
S4 is the symmetric group. Not all of these automorphisms preserve the symplectic form of S . The group of
symplectic automorphisms of S is the kernel of the natural homomorphism Aut(S) = (Z/4Z)3 ⋊ S4→C

∗,
which is denoted by F384, and it is a subgroup of order 384 of the Mathieu group M24; see [Muk88].
Let n ≥ 2, let G be the induced group of symplectic automorphisms of S[n] preserving the degree 4
polarization, and let X := S[n]/G. Then, b2(X) = 4 by [Has12]; see in particular Section 10.3 there (F384 is
the group number 80 in the list). Since the Kobayashi pseudometric of S[n] vanishes by [KLV14, Remark 1.2,
Theorem 1.3], the Kobayashi pseudometric of the quotient X also vanishes by Lemma 3.4.

Example 6.3. Let T be a complex 2-torus equipped with a symplectic automorphism σ4 of order 4 as
constructed by Fu and Menet [FM21, Example 5.4]. Let K2(T ) be the generalized Kummer variety associated

to T , and let σ [2]
4 be the automorphism extending σ4 on K2(T ). Fu and Menet construct a proper birational

map K ′4→ K2(T )/σ
[2]
4 , where K ′4 is a crepant resolution in codimension 2. The primitive symplectic

orbifold K ′4 has second Betti number b2(K ′4) = 6 and by construction is dominated by a blowup of K2(T ) so
that its Kobayashi pseudometric vanishes by Lemma 3.4. We use that the Kobayashi pseudometric of K2(T )
vanishes by Theorem 5.3.

The question remains whether the Kobayashi pseudometric also vanishes on all locally trivial deformations
of K ′4 as the generic such deformation will no longer be birational to a quotient of a generalized Kummer
variety. We do not know whether the SYZ conjecture holds for deformations of K ′4. However, instead of
Lagrangian fibered varieties, we can use quotients as an input and then argue as in Proposition 5.6. With
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this modification, the argument of our main result Theorem 5.3 implies that all deformations of K ′4 are
non-hyperbolic and that all of them except for maybe those with maximal Picard rank have vanishing
Kobayashi pseudometric.

Example 6.4. Let X be a projective fourfold of K3[2]-type admitting a symplectic involution ι. The moduli
space of such pairs of objects (X,ι) is described in [CGKK24, Sections 2 and 3]. The fixed loci of symplectic
involutions of K3[2]-type manifolds are classified in [Mon12, Theorem 4.1], and, more generally, the fixed loci
of symplectic involutions of K3[n]-type manifolds are classified in [KMO22, Theorem 1.1]. The irreducible
symplectic orbifolds Y → X/ι, obtained as a partial resolution of X/ι for certain fourfolds X of K3[2]-type
and for certain symplectic involutions ι, are called Nikulin orbifolds; see e.g. [CGKK24, Definition 3.1]. Menet
[Men15, Theorem 2.5] has computed their integral second cohomology, and b2(Y ) = 16. Since the Kobayashi
pseudometric of X vanishes by [KLV14, Remark 1.2, Theorem 1.3], the Kobayashi pseudometric of the
quotients X/ι and the partial resolutions Y also vanishes by Lemma 3.4.

Note that a general deformation of Y is no longer a partial resolution of the quotient X/ι, so [KLV14] no
longer applies. Our main result Theorem 5.3 would guarantee the vanishing of the Kobayashi pseudometric
if the rational SYZ conjecture were satisfied. Verifying the (rational) SYZ conjecture for this class of examples
seems to be a interesting and valuable task.
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