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Real plane separating (M − 2)-curves of degree d and totally
real pencils of degree d − 3
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Abstract. A non-singular real plane projective curve of degree 5 with five connected components
is separating if and only if its ovals are in non-convex position. In this article, this property is set
into a different context and generalised to all real plane separating (M − 2)-curves.
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1. Introduction

Let C be any smooth complex compact algebraic curve equipped with an anti-holomorphic involution
σ : C→ C, i.e. a smooth real algebraic compact curve. If the real points C(R) of C separate its complex
points C(C), i.e. C(C) \C(R) is disconnected, we say that C is of type I or separating.

By Harnack–Klein’s inequality, see [Har76, Kle73], the number l of connected components of C(R) is
bounded by the genus g of C plus 1. For any fixed 0 ≤ i ≤ g + 1, if l equals g + 1 − i, we say that C is
an (M − i)-curve. The number l is related to the separateness property of the curve. For example, if C is
separating, then l has parity g +1. Or, if C is an M-curve, then C is separating. In this article, we focus on
non-singular real algebraic plane projective separating (M − 2)-curves; see Theorem 1.9.

First of all, let us present some general features of separating curves. If C is of type I, the two halves of
C(C) \C(R) induce two opposite orientations on C(R) called complex orientations; see [Rok74]. Looking at
complex orientations of separating real curves embedded in some ambient surface has lead to remarkable
progress in the study of their topology and a refinement of their classifications. One of the first results
relating topology, complex orientations and properties of separating plane curves is Rokhlin’s complex
orientations formula, see [Rok74, Mis75], and one of the more recent is [Ore21, Theorem 1.1], where Orevkov
shows that there are finer relations for the numbers which intervene in the complex orientations formula. An
important role in [Ore21] is played by separating morphisms.

Definition 1.1. We say that a real morphism f from a smooth real algebraic compact curve C to the complex
projective line P

1
C

is separating if f −1(P1(R)) = C(R).

According to Ahlfors [Ahl50, Section 4.2], there exists a separating morphism f : C→ P
1
C

if and only
if C is of type I. We call separating gonality of C, and we denote by sepgon(C), the minimal possible value
for the degree of a separating morphism of C. Observe that the separating gonality always has the number
of real connected components of C(R) as lower bound.

Actually, there is a more general definition of separating morphisms which includes real morphisms
between any real algebraic varieties of the same dimension. We direct the interested reader to [KS20a] and
[KLTM23]. In the current paper, we need Definition 1.1 only.

The study of smooth real curves of type I and their separating morphisms has been carried out mainly
from two points of view: on the one hand, from that of abstract curves and, on the other hand, from that of
curves embedded in some ambient surface; see e.g. [Hui01, Gab06, CH13, Cop13, Cop14, KS20b, Ore21].

Let C be a real separating curve of genus g . If C is an M-curve, then it admits a separating morphism
of degree g +1, because of the Riemann–Roch theorem; for details see [KS20b, Proof of Theorem 1.7]. In
general, for some fixed integers i,k such that 1 ≤ i ≤ g +1 and k ≥ g +1− i, if C is an (M − i)-curve, it is
not evident, a priori, if there exists and how to construct a separating morphism f : C→ P

1
C

of degree k.
A remarkable result, due to Gabard, see [Gab06, Theorem 7.1], states that a genus g real separating

curve C with l real connected components admits a separating morphism of degree at most g+l+1
2 . If C is

an (M − 2)-curve, Gabard’s result tells us that sepgon(C) equals g or g − 1.
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From now on, unless otherwise stated, we call real plane (separating ) curve any real algebraic plane
projective (separating) curve.

The real locus of a non-singular real plane curve is homeomorphic to a disjoint union of circles embedded
in P

2(R). One can embed a circle in P
2(R) in two different ways: as an oval, i.e. realising the trivial class

in H1(P2(R);Z/2Z), or as a pseudo-line. A non-singular real plane curve of even degree has only ovals
(possibly none); if the curve is of odd degree, it has exactly one pseudo-line and ovals (possibly none).

The real projective plane is separated by an oval in two disjoint non-homeomorphic connected components:
a disk, called the interior of the oval, and a Möbius band, called the exterior of the oval.

Even if the following lemma is a well-known result in the study of the topology of real plane curves, we
could not find Theorem 1.2 in the literature. So, we include its statement and proof here.

The proof of Theorem 1.2 is revealing for two reasons:

• On the one hand, it contains the germ of the main theorem of this article, Theorem 1.9, which is a
generalisation of Theorem 1.2 to higher-degree real plane separating curves.
• On the other hand, its skeleton would be quite hard to follow to prove most of its generalisations to

higher-degree curves; therefore, the proof of Theorem 1.2 marks the distance between the real plane
quintic case and Theorem 1.9.

Lemma 1.2. A non-singular real plane curve C5 of degree 5 with five connected components is separating if and
only if its ovals are in non-convex position (see Definition 1.3 ).

Figure 1. Arrangement of a triplet (P2(R),C(R),S1 ∪ S2 ∪ S3) as in Definition 1.3, where the Si are
the three segments.

The interested reader can find one of the possible constructions of a real plane separating quintic with
five connected components in [Vir07, Section 2, Figure 19, p. 36].

Definition 1.3. Let C be a non-singular real plane curve of degree 5 with five connected components. We
say that its ovals are in non-convex position if three of the ovals of C(R) are such that, having chosen a point
in the interior of each of them, once one traces three segments S1,S2,S3 containing the points pairwise and
such that every segment does not cross the pseudo-line of C(R), the fourth oval is contained inside the
triangle cut out by these segments; see Figure 3.

In order to prove Theorem 1.2, we first recall Definitions 1.4 and 1.6. Then, we state Lemmas 1.7 and 1.8,
which are, respectively, a reformulation of [Fie83, Lemma 3] and a restriction to a special case of the complex
orientations formula of [Mis75]. We present Fiedler and Mishachev’s results in this form for the reader’s
convenience and in order to avoid introducing more notation than necessary to understand the rest of the
paper.

Definition 1.4. Let C be a non-singular real algebraic plane projective curve of type I. We say that C admits
a totally real pencil of curves of degree k if there exists an integer k such that there are f ,g ∈ R[x,y,z]k
such that V (λf +µg)∩C consists of only real points for all λ,µ ∈R that are not both zero.
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Remark 1.5. Let us consider a non-singular real algebraic curve C admitting a real pencil of degree k as
in Definition 1.4. Set B as the base locus of the pencil on the curve C, i.e. the intersection points of V (f ),
V (g) and C. Note that B consists of a finite number of points. Then, one can define a separating morphism
from C to the projective line as follows. First, one defines a degree k − |B| morphism h̃ : C \B→ P

1
C

sending
a point x to [λ : µ], where λf +µg is the defining polynomial of the curve of the pencil passing through x.
Finally, such a morphism h̃ can always be uniquely extended to a degree k − |B| morphism h : C→ P

1
C
, in

this case a separating morphism.

Definition 1.6.

• Let O and J be, respectively, an oval and the pseudo-line of an odd-degree non-singular real plane
separating curve equipped with one of its complex orientations. The orientation of the curve induces
orientations on O and on J . Then, the oval is called positive if [O] = −2[J] in H1(N ;Z), where N is
the closure of the non-orientable component of P2(R) \O; otherwise, O is called negative. Note that
an oval is either positive or negative independently of the chosen complex orientation.
• The total number of positive (resp. negative) ovals of an odd-degree non-singular real plane separating

curve is denoted by Λ+ (resp. Λ−).

Lemma 1.7 (cf. [Fie83, Lemma 3]). Let C be a non-singular real plane separating curve of odd degree d = 2k +1.
If there exist two real distinct lines L0 and L1 such that

(1) each Li intersects C in d − 1 real points of which exactly one point pi has multiplicity two (a tangency
point) and the others have multiplicity one;

(2) the points pi , for i = 1,2, belong to two distinct ovals O1 and O2;
(3) the intersection point of L0 and L1 is not contained in C;

and if there exist two real numbers a,b such that all the lines {Lt}t∈[a,b] of the pencil of lines with base point s are
such that La = L0, Lb = L1 and each Lt intersects C(R) transversally in exactly d −2 real points, for all t ∈ (a,b);
then one of the ovals O1 and O2 is positive, and the other is negative (see Definition 1.6 ).

Lemma 1.8 (Special case of the complex orientations formula of [Mis75]). Let C be a non-singular real plane
separating curve of odd degree d = 2k +1 and with l real connected components. Assume that all ovals of C are
empty, i.e. the interior of each oval does not contain any other oval of C. Then, the following formula holds:

(1.1) Λ+ −Λ− = l − 1− k(k +1);

see the notation in Definition 1.6.

Figure 2. (P2(R) \ J,C5(R),L0(R)∪L1(R)). The arrows denote the fixed complex orientation of the
ovals of C(R), and the dots • denote the points of tangency and the intersection point of the fixed
lines L0 and L1, which are in bold.
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Proof of Theorem 1.2. Assume that C5 is separating and, for the sake of contradiction, suppose that the ovals
are not in non-convex position, in the sense of Definition 1.3. On one hand, applying Theorem 1.7, one can
show that two ovals must be negative and two positive (see Theorem 1.6, where the pseudo-line of C5 is
depicted at infinity and the dashed triangle is just a reminder of the ovals’ position assumption), as follows.
Pick two real lines L0,L1 intersecting in the interior of one of the ovals of C5 as in the picture on the left of
Figure 2; then, one can apply Theorem 1.7, finding two ovals, one positive and one negative; afterwards, one
can fix a complex orientation of C5. Therefore, in order to find out the complex orientation of the remaining
two ovals, one iterates and uses Theorem 1.7 two more times; see the last two pictures in Figure 2, reading it
from left to right.

On the other hand, the complex orientations formula in Theorem 1.8 implies that three ovals must be
negative and one positive. We get a contradiction. Therefore, the ovals must be in non-convex position.

Now, assume that the ovals are in non-convex position. In order to prove that C5 is separating, it is enough
to prove that C5 admits a totally real pencil; see Theorem 1.4 and Theorem 1.5. Let us use the notation
of Definition 1.3 and set ∆ as the union of the segments S1,S2,S3. Consider any real pencil P of conics
with base locus the vertices p1,p2,p3 of ∆ plus another point p contained in the oval not intersecting ∆. By
construction any real conic of the pencil intersects each oval of C5(R) in two points. Therefore, in order to
show that P is totally real and end the proof, it is enough to show that any real conic of P also intersects
the pseudo-line of C5(R).

Now, take a point q in the connected component of P2(R) \∆ not containing p. Let us consider the
projection π : P2(R) \ {q} →R

2. Since any real conic C of the pencil P is such that π(C(R)) is convex, any
side Si of ∆, deprived of its extremities, must be either contained in π(C(R)) or not. Moreover, remark that

• for the line Li containing Si , either Si is contained in C(R), or Li \ Si is contained in C(R);
• if at least one among S1,S2,S3 is not contained in π(C(R)), then C must intersect the pseudo-line.

On the other hand, it is not possible that all sides of ∆ are contained in π(C(R)), by the convexity of the
affine conic and the fact that all the points p1,p2,p3,p belong to π(C(R)). It follows that all real conics of P
intersect all real connected components of C5 for a total of ten real intersection points for each conic, and
the pencil is indeed totally real with respect to C5. □

A priori, Lemma 1.2 is uniquely an observation concerning separating plane quintics with four ovals. It is
not clear that one may expect to have some generalisation of it to other real plane separating curves. On the
other hand, a remarkable fact, from the proof of Theorem 1.2, is that any non-singular real plane projective
separating curve of degree 5 with five connected components admits a totally real pencil of conics. Surprisingly,
this property can be generalised to all real plane separating (M − 2)-curves; see Theorem 1.9. Indeed, the
generalisation of Theorem 1.2 to separating plane (M − 2)-curves Cd of degree d is that every curve Cd

admits totally real pencils of curves of degree d − 3.
Since the separating gonality of a smooth real (M − 2)-curve of genus g and of type I is either g − 1 or g ,

the main result of this paper is as follows.

Theorem 1.9. Let C be a non-singular real plane separating (M − 2)-curve of degree d ≥ 4 and of separating
gonality g − 1 or g , where g = (d−1)(d−2)

2 denotes the genus of C. Then, the curve C admits infinitely many totally
real pencils of degree d − 3 with g − 1, respectively g − 2, base points on C.

In Theorem 1.9, the difference in the number of possible base points of the totally real pencils admitted
by the curve C only depends on the fixed separating gonality of C; see Theorem 1.5. Also, the proof of
Theorem 1.9 is slightly different with respect to the fixed separating gonality; therefore, in Section 2, we split
it into the proofs of, respectively, Propositions 2.2 and 2.3.

Remark 1.10. In [FLT13], there have been constructed totally real pencils of rational cubics for real plane
separating (M − 2)-sextics realising two particular topological arrangements in the real projective plane. On
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the other hand, the points of the base locus of such totally real pencils do not belong to the curves; therefore,
the obtained separating morphisms of such sextics have degree 18.

Acknowledgements
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2. Proofs and examples

In order to prove Theorem 1.9, it is enough to prove Propositions 2.2 and 2.3, which each deal with one of
the two admissible separating gonalities. First, we state [Ore21, Theorem 3.2], restricted to the case of real
plane curves, which is used to prove both propositions.

Theorem 2.1 (cf. [Ore21, Theorem 3.2]). Let C be a non-singular real plane separating curve. Let D be a real
divisor belonging to the linear system |C +K

P
2
C

|. Assume that D does not have C as a component. We may always
write D = 2D0 +D1 with D1 a reduced curve and D0 an effective divisor. Let us fix a complex orientation on
C(R) and an orientation on P

2(R) \ (C(R)∪D1(R)) which changes each time we cross C(R)∪D1(R) at its
smooth points. The latter orientation induces a boundary orientation on C(R) \ (C(R)∩D1). Let f : C→ P

1
C
be

a separating morphism. Then it is impossible that, for some p ∈ P1(R), the set f −1(p) \ supp(D) is non-empty
and the two orientations coincide at each point of the set.

Proposition 2.2. Let C be a non-singular real plane (M − 2)-curve of degree d ≥ 4 and of type I. Assume that
sepgon(C) = g −1, where g = (d−1)(d−2)

2 is the genus of C. Then, the curve C admits infinitely many totally real
pencils of degree d − 3 with g − 1 base points on C.

Proof. An important role in the following proof is played by Bézout’s theorem; therefore, it is useful to note
that an oval in the real projective plane always intersects any other real component in an even number of
points (which may be zero).

Since sepgon(C) = g − 1, there exists a separating morphism f : C→ P
1
C

of degree g − 1. Therefore, for
any fixed p ∈ P1(R), every point pi in f −1(p) belongs to a distinct connected component Ci of C(R), where
1 ≤ i ≤ g − 1.

In the following, firstly, we show that every real curve of any real pencil of curves of degree d − 3 passing
through g − 2 points of f −1(p) contains all g − 1 points of f −1(p). In particular, this would imply that any
such pencil must be totally real for the curve C.

For (d−1)(d−2)
2 − 1 = g − 1 fixed real points, there always exists at least one real curve of degree d − 3

passing through such a configuration, because the projective space of plane curves of degree d − 3 has

dimension d(d−3)
2 = g − 1. Note that a configuration of g − 2 points chosen among f −1(p) is not necessarily

generic. But there always exists at least one real pencil of curves of degree d − 3 passing through such a
configuration, and this fact is enough for the following.

For any fixed p ∈ P1(R), pick any configuration P of g −2 distinct points p1, . . . ,pg−2 belonging to f −1(p).
Applying the notation in Theorem 2.1, take D1 as some degree d − 3 curve containing P and an additional
real point q, different from pg−1. Note that D1 must be reduced; otherwise, D1 can be written as 2A+B,

where A and B are two real curves and have degree respectively s and d − 3− 2s, with 1 ≤ s ≤ ⌊d−32 ⌋. But,
this leads to a contradiction as follows. Because of the choice of the points p1, . . . ,pg−2, the curve C must
intersect A∪ B in at least 2(g − 3) + 1 points, because C has at least g − 2 ovals and, therefore, A∪ B
intersects at least g − 3 such ovals plus another point pi , for some 1 ≤ i ≤ g − 2. Bézout’s theorem implies
that (d − 3− s)d, the number of intersection points between A∪B and C, must be greater than or equal to
2(g − 3) + 1. Hence sd ≤ 3, which is not possible, because s is at least 1 and d is greater than or equal to 4.

Let us fix an orientation on P
2(R) \ (C(R)∪D1(R)) which changes each time we cross C(R)∪D1(R) at

its smooth points. This orientation induces a boundary orientation O on C(R) \ (C(R)∩D1).
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Suppose, for the sake of contradiction, that pg−1 does not belong to D1. Then, the set f −1(p)\supp(D1) =
{pg−1} is non-empty, and, up to fixing one of the two complex orientations on C(R), such a complex
orientation and the orientation O coincide at pg−1. But this contradicts Theorem 2.1.

Therefore, any real curve of degree d − 3 passing through the points of P must also contain pg−1. In
particular, the configuration P defines a totally real pencil of curves of degree d − 3. It may be that one has
more than one such pencils; in that case, we just pick one.

Moreover, such a totally real pencil has exactly g − 1 base points on C. Indeed Bp ∩C = f −1(p), where
Bp denotes the base locus of the pencil. The fact that Bp ∩C contains f −1(p) comes from the construction.
In order to show that the equality holds, it is enough to note that the degree of the separating morphism
of C defined by the pencil (see Remark 1.5) equals d(d − 3) minus the cardinality of Bp and, therefore, there
cannot be other base points in addition to p1, . . . ,pg−1, or this would imply that the degree should be lower
than g − 1 = sepgon(C), which contradicts the hypotheses. □

Proposition 2.3. Let C be a non-singular real plane (M − 2)-curve of degree d ≥ 4 and of type I. Assume that
sepgon(C) = g , where g = g(C) = (d−1)(d−2)

2 is the genus of C. Then, the curve C admits infinitely many totally
real pencils of degree d − 3 with g − 2 base points on C.

Proof. Since sepgon(C) = g , there exists a separating morphism f : C → P
1 of degree g . Therefore, for

any fixed p ∈ P1(R), the points p1, . . . ,pg−2 of f −1(p) belong to distinct connected components Ci of C(R),
where 1 ≤ i ≤ g − 2, and the remaining points pg−1,pg belong to the same connected component Cg−1. In
order to construct a totally real pencil for C, firstly, we are going to prove that any real plane curve of degree
d − 3 passing through p1, . . . ,pg−2 intersects all real connected components of C and, in particular, passes
through at least two points of Cg−1. Note that the latter would imply that any such curve intersects C in real
points only.

Let us apply the notation in Theorem 2.1 and take D1 as some degree d−3 real curve containing P and an
additional real point q. The choice may be not unique; in that case, we just pick one such real curve D1. Via
a similar argument to the one used in the proof of Proposition 2.2, one can show that D1 must be reduced.
Note that either both points pg ,pg−1 belong to Cg−1 ∩D1, or two other distinct points r1, r2 must belong
to Cg−1 ∩D1 such that pg ,pg−1 are contained in different connected components of Cg−1 \ {r1, r2}. Indeed,
let us fix an orientation on P

2(R) \ (C(R)∪D1(R)) which changes each time we cross C(R)∪D1(R) at its
smooth points. This orientation induces a boundary orientation O on C(R) \ (C(R)∩D1). Suppose firstly,
for the sake of contradiction, that D1 intersects pg (resp. pg−1) and does not intersect pg−1 (resp. pg ). Then,
analogously to the argument used in the proof of Proposition 2.2, one finds a contradiction with Theorem 2.1.
Suppose, secondly, for the sake of contradiction, that D1 does not intersect Cg−1 (resp. intersects Cg−1 in
only one point z different from pg ,pg−1). Then the set f −1(p) \ supp(D1) = {pg−1,pg } is non-empty, and, up
to fixing one of the two complex orientations on C(R), such a complex orientation and the orientation O

coincide at pg−1 and pg , because the points are contained in the same connected component Cg−1 (resp.
Cg−1 \ {z}). But, once again, this contradicts Theorem 2.1. It follows that D1 must intersect Cg−1 at least
twice in order to separate the points pg and pg−1; i.e. these points must belong to two distinct connected
components of Cg−1 \D1 so that O and the fixed complex orientation of C(R) do not agree at both points.
Hence D1 intersects all real connected components of C(R). Therefore, any real pencil of curves of degree
d − 3 passing through p1, . . . ,pg−2 is totally real. Finally, let us prove that Bp, the base locus of the pencil
on C, equals f −1(p)\{pg ,pg−1}, i.e. the pencil has exactly g−2 base points on C. By construction p1, . . . ,pg−2
are contained in Bp. In order to show that the equality holds, it is enough to note that the degree of the
separating morphism of C defined by the pencil (see Remark 1.5) equals d(d −3) minus the cardinality of Bp

and, therefore, there cannot be other base points in addition to p1, . . . ,pg−2, or this would imply that the
degree should be lower than g = sepgon(C), which contradicts the hypotheses. □
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Let us consider a non-singular real plane separating curve C5 of degree 5 with five connected components.
As proved in [Man24, Example 2.2], applying Theorem 2.1, one can show that C5 cannot have separating
gonality equal to 5. Therefore, sepgon(C5) = 6. Moreover, applying Theorem 2.1 once again, we observe
the following.

Example 2.4. First, recall that C5 must have three negative and one positive ovals (see Theorem 1.8). Let us
prove that all separating morphisms of degree 6 of C5 must have odd degree on the three negative ovals and
degree 2 either on the pseudo-line or on the positive oval; see Definition 1.6. For the sake of contradiction,

Figure 3. (P2(R),C(R),L(R)) of Example 2.4. Double arrows denote O, simple arrows the fixed
complex orientation of C(R) and • the points in f −1(p).

let us suppose that there exists a separating morphism f : C→ P
1
C

of degree 6 such that f has degree 2
when restricted to a negative oval of C(R). Then, fix some p ∈ P1(R) and apply Theorem 2.1, taking as D0
the line passing through the two points of f −1(p) belonging to the positive oval and the pseudo-line. Up to a
choice of the orientation O (double arrows in Figure 3), we get a contradiction with Theorem 2.1; therefore,
such an f cannot exist. On the other hand, sepgon(C) = 6. This means that all separating morphisms of C
must have odd degree on the three negative ovals.

Remark/Question 2.5. Let C be a non-singular real plane separating curve of odd degree d with l real
connected components. The inequalities of [Ore21, Theorem 1.1] give an upper bound for the sum of
refinements of the quantities Λ+ and Λ− (see Theorem 1.6) of C with respect to a number depending on d
and l only. To be more precise, we need to introduce some notation. We say that an oval is even (resp. odd ) if
it is encircled by an even (resp. odd) number of other ovals. By convention the number of even (resp. odd)
ovals is denoted by p (resp. n). Using the notation in [Ore21], let

Λ
p
+ be the number of positive even ovals,

Λp
− be the number of negative even ovals,

Λn
+ be the number of positive odd ovals,

Λn
− be the number of negative odd ovals.

Theorem 1.1 of [Ore21], restricted to the case of real separating plane (M − 2)-curves of genus g and odd
degree 2k +1, with k > 0, states that the following inequalities hold:

(2.1) Λ
p
+ +Λn

− +1 ≥ k2 + k
2
− 1, Λn

+ +Λp
− ≥

k2 + k
2
− 1.

For real plane quintics as in Example 2.4, one has Λn
± = 0, Λp

− = 3, Λ
p
+ = 1; therefore, the bound on the left

of (2.1) is sharp. More in general, any odd-degree real separating plane (M − 2)-curve of genus g for which
one of the two bounds in (2.1) is sharp must have separating gonality equal to g (in fact, one can apply the
same argument as in Theorem 2.4). From this observation, two questions directly follow:

• For any integer k ≥ 2, is there a non-singular real plane separating (M − 2)-curves of degree 4k +1
for which the bound on the left of (2.1) is sharp?
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Observe that, because of [Ore21, Remark 1.8], for all k ≥ 1, such bounds can never be sharp for
real separating plane (M − 2)-curves of degree 4k +3. Moreover, for any real plane separating curve
of odd degree, the bound on the right of (2.1) can never be sharp.

• Do there exist two real plane (M − 2)-curves of degree d which have the same arrangement in the
real projective plane, up to homeomorphism of P2(R), but with different separating gonality?

In [KS20b], the separating morphisms of real separating curves are studied as follows. Let a smooth real
separating algebraic compact curve C consist of l real connected components C1, . . . ,Cl . Let f : C→ P

1
C

be
any separating morphism of C. Let di(f ) ∈N be the degree of the covering map f |Ci

: Ci → P
1(R), and

set d(f ) := (d1(f ), . . . ,dl(f )). The set Sep(C) of all such degree partitions forms a semigroup, called the
separating semigroup.

Here, we report a remark on the separating semigroup of real separating (M − 2)-curves.

Lemma 2.6. Let C be a smooth real compact separating (M − 2)-curve of genus g ≥ 2. Then Sep(C) ⊇
(4,3, . . . ,3) +N

g−1. Moreover,

(1) Sep(C) ⊇ (3, . . . ,3) +N
g−1 if sepgon(C) = g − 1;

(2) Sep(C) ⊇ (4,2, . . . ,2) +N
g−1 if sepgon(C) = g .

Proof. In the proof, the following criterion is used to show that certain divisors D on C are non-special,
i.e. the index of speciality dim(L(K −D)) of D is zero, where K is the canonical divisor on C. If D has
positive degree and the degree of K −D = 2g − 2−deg(D) is negative, the index of speciality of D is zero;
see, for example, [Har77, Remark IV.1.3.2 ]. There exists a real divisor D̃ on C associated to a separating
morphism f : C→ P

1 with deg(f ) = sepgon(C), which is either g or g − 1; see [Gab06, Theorem 7.1]. If
deg(f ) = g − 1, this means that (1, . . . ,1) ∈ Sep(C). Moreover, since Sep(C) is a semigroup, see [KS20b,
Proposition 2.1], there exists a separating morphism f̃ of C of degree 3g − 3 with partition degree (3, . . . ,3).
Therefore, since g ≥ 2, the non-speciality criterion implies that the associated divisor D̃ is non-special, and,
by [KS20b, Proposition 3.2 and Remark 3.3], the separating semigroup of C contains (3, . . . ,3) +N

g−1.
Otherwise, if deg(f ) = g , we have that (2,1, . . . ,1) ∈ Sep(C) and, analogously, there exists a separating

morphism f̃ of C of degree 2g with partition degree (4,2, . . . ,2). Therefore, thanks to the same argument
as in the previous paragraph, the associated divisor D̃ is non-special, and the separating semigroup of C
contains (4,2, . . . ,2) +N

g−1. □

Remark 2.7. In [KS20b, Example 2.8] it is observed, via an example, that the separating semigroup of real
separating curves is not symmetric in general. Here we give another example. Pick a real plane separating
quintic C with five connected components. A linear system of rank 2 on a curve of genus greater than
or equal to 3 is unique; see [ACGH5, A.18]. So, one can label the pseudo-line, the positive oval and the
negative ovals of C(R), respectively, as X1, . . . ,X5. The element (2,1,1,1,1) has been constructed in proof
of Theorem 1.2. But, because of Theorem 2.4, not all permutations of (2,1,1,1,1) belong to Sep(C). In fact,
only (1,2,1,1,1) may also exist.

Remark 2.8. The interested reader can investigate, analogously to the case of plane curves, further con-
structions and applications of Theorem 2.1 to real curves embedded in other ambient surfaces; see
e.g. [DK00, GS80, Mik98, Man21, Man22, Ore03].

References

[Ahl50] L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math.
Helv. 24 (1950), 100–134, doi:10.1007/BF02567028.

https://doi.org/10.1007/BF02567028


10 M. Manzaroli10 M. Manzaroli

[ACGH5] E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of Algebraic Curves. Vol. I,
Grundlehren math. Wiss., vol. 267, Springer-Verlag, New York, 1985, doi:10.1007/978-1-
4757-5323-3.

[Cop13] M. Coppens, The separating gonality of a separating real curve, Monatsh. Math. 170 (2013), no. 1,
1–10, doi:10.1007/s00605-012-0413-x.

[Cop14] , Pencils on separating (M-2)-curves, Ann. Mat. Pura Appl. (4) 193 (2014), no. 4, 961–973,
doi:10.1007/s10231-012-0309-3.

[CH13] M. Coppens and J. Huisman, Pencils on real curves, Math. Nachr. 286 (2013), no. 8-9, 799–816,
doi:10.1002/mana.201100196.

[DK00] A. I. Degtyarev and V. M. Kharlamov, Topological properties of real algebraic varieties: Rokhlin’s way,
Russian Math. Surveys 55 (2000), no. 4, 735–814, doi:10.1070/rm2000v055n04ABEH000315.

[Fie83] T. Fiedler, Pencils of lines and the topology of real algebraic curves, Math. USSR-Izv. 21 (1083), no. 1,
161–170.

[FLT13] S. Fiedler-Le Touzé, Totally real pencils of cubics with respect to sextics, preprint arXiv:1303.4341
(2013).

[Gab06] A. Gabard, Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des
courbes séparantes, Comment. Math. Helv. 81 (2006), no. 4, 945–964, doi:10.4171/CMH/82.

[GS80] D. A. Gudkov and E. I. Shustin, Classification of nonsingular eighth-order curves on an ellipsoid, in:
Methods of the qualitative theory of differential equations, pp. 104–107, Gor’kov. Gos. Univ., Gorki,
1980.

[Har76] A. Harnack, Über die Vieltheiligkeit der ebenen algebraischen Curven, Math. Ann. 10 (1876), no. 2,
189–198, doi:10.1007/BF01442458.

[Har77] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., vol. 52, Springer-Verlag, New York-
Heidelberg, 1977.

[Hui01] J. Huisman, On the geometry of algebraic curves having many real components, Rev. Mat. Complut.
14 (2001), no. 1, 83–92, doi:10.5209/rev_REMA.2001.v14.n1.17041.

[Kle73] F. Klein, Ueber Flächen dritter Ordnung, Math. Ann. 6 (1873), no. 4, 551–581, doi:10.1007/
BF01443196.

[KS20a] M. Kummer and E. Shamovich, Real fibered morphisms and Ulrich sheaves, J. Algebraic Geom. 29
(2020), no. 1, 167–198, doi:10.1090/jag/735.

[KS20b] M. Kummer and K. Shaw, The separating semigroup of a real curve, Ann. Fac. Sci. Toulouse
Math. (6) 29 (2020), no. 1, 79–96, doi:10.5802/afst.1624.

[KLTM23] M. Kummer, C. Le Texier and M. Manzaroli, Real-Fibered Morphisms of del Pezzo Surfaces and
Conic Bundles, Discrete Comput. Geom. 69 (2023), no. 3, 849–872, doi:10.1007/s00454-022-
00427-3.

[Man21] M. Manzaroli, Real algebraic curves of bidegree (5,5) on the quadric ellipsoid, St. Petersburg Math. J.
32 (2021), no. 2, 279–306, doi:10.1090/spmj/1648.

[Man22] , Real algebraic curves on real del Pezzo surfaces, Int. Math. Res. Not. IMRN 2022 (2022),
no. 2, 1350–1413, doi:10.1093/imrn/rnaa169

[Man24] , Obstructions for the existence of separating morphisms and totally real pencils, Ann. Fac. Sci.
Toulouse Math. (6) 33 (2024), no. 5, 1233–1250, doi:10.5802/afst.1798.

https://doi.org/10.1007/978-1-4757-5323-3
https://doi.org/10.1007/978-1-4757-5323-3
https://doi.org/10.1007/s00605-012-0413-x
https://doi.org/10.1007/s10231-012-0309-3
https://doi.org/10.1002/mana.201100196
https://doi.org/10.1070/rm2000v055n04ABEH000315
https://arxiv.org/abs/1303.4341
https://doi.org/10.4171/CMH/82
https://doi.org/10.1007/BF01442458
https://doi.org/10.5209/rev_REMA.2001.v14.n1.17041
https://doi.org/10.1007/BF01443196
https://doi.org/10.1007/BF01443196
https://doi.org/10.1090/jag/735
https://doi.org/10.5802/afst.1624
https://doi.org/10.1007/s00454-022-00427-3
https://doi.org/10.1007/s00454-022-00427-3
https://doi.org/10.1090/spmj/1648
https://doi.org/10.1093/imrn/rnaa169
https://doi.org/10.5802/afst.1798


Real plane separating (M − 2)-curves of degree d and totally real pencils of degree d − 3 11Real plane separating (M − 2)-curves of degree d and totally real pencils of degree d − 3 11

[Mik98] G. Mikhalkin, Topology of curves of degree 6 on cubic surfaces in RP3, J. Algebraic Geom. 7 (1998),
no. 2, 219–237.
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