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Abstract. We show the existence of Bridgeland stability conditions on all Fano threefolds,
by proving a modified version of a conjecture by Bayer, Toda, and the second author. The
key technical ingredient is a strong Bogomolov inequality, proved recently by Chunyi Li.
Additionally, we prove the original conjecture for some toric threefolds by using the toric
Frobenius morphism.
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Résumé. Nous établissons l’existence de conditions de stabilité de Bridgeland sur toute
variété de Fano de dimension 3 en montrant une version modifiée d’une conjecture de Bayer,
Toda et du deuxième auteur. L’ingrédient technique essentiel est une inégalité forte de
Bogomolov, démontrée récemment par Chunyi Li. En outre, nous montrons la conjecture
originale pour certaines variétés toriques de dimension 3 via l’utilisation du morphisme de
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1. Introduction

In the recent article [Li15], Chunyi Li proved the existence of Bridgeland stability conditions on Fano
threefolds of Picard number 1. The purpose of this paper is to extend Li’s method to any Fano
threefold, when we choose the polarization to be the anti-canonical divisor.

Tilt stability was introduced in [BMT14] as an intermediate notion to define Bridgeland stability
on threefolds. Its definition mimics Bridgeland’s original construction in the surface case [Bri08,
AB13]. Let X be a smooth projective complex threefold, and let H be a polarization on X. Also,
let α, β ∈ R, α > 0. The usual notion of slope stability (with respect to H) induces a family of
torsion pairs on the category of coherent sheaves Coh(X), parameterized by β, roughly obtained by
truncating Harder-Narasimhan filtrations at the slope β. We denote the corresponding family of tilted
abelian categories by Cohβ(X). Tilt stability is the (weak) stability condition defined on Cohβ(X)
with respect to the slope

να,β :=
H · chβ2 −α2

2 H
3 · chβ0

H2 · chβ1
,

where, as usual, dividing by 0 equals to +∞. Here chβ denotes the twisted Chern character ch ·e−βH .
We will review all of this in Section 2..

The intuition is that tilt stability on threefolds should play the role of usual slope stability of
sheaves on surfaces. By keeping this idea in mind, we should look for a generalization of the classical
Bogomolov inequality for slope stable sheaves on surfaces to tilt stability. This is exactly the content
of our main theorem. An analogous result, with a similar proof, appears independently in [Piy16,
Theorem 1.3].

Theorem 1.1. Let X be a smooth projective Fano threefold of index iX and let H = −KX
iX

. There
exists a cycle Γ ∈ A1(X)R such that Γ ·H ≥ 0 and, for any να,β-stable object E with να,β(E) = 0, we
have

chβ3 (E)− Γ · chβ1 (E)− α2

6
H2 · chβ1 (E) ≤ 0.

In [BMT14] (see also [BMS16]) a version of Theorem 1.1 was conjectured without the class Γ.
That original conjecture turned out to be imprecise in the case of the blow-up of P3 at a point
[Sch16]. Therefore, modifying the conjecture in [BMT14] by adding Γ seems like a necessary step
to understand Bridgeland stability on threefolds. In fact, Theorem 1.1 does still imply existence of
Bridgeland stability conditions [Bri07] on all Fano threefolds exactly as in [BMT14]. Indeed, similarly
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to what was done in [BMS16], we get the following quadratic inequality (see Proposition 2.8):

Qα,β(E) =α2

(
∆H(E) + 3

Γ ·H
H3

(H3 · chβ0 (E))2

)
+ 2 (H · chβ2 (E))(2H · chβ2 (E)− 3 Γ ·H · chβ0 (E))

− 6(H2 · chβ1 (E))(chβ3 (E)− Γ · chβ1 (E)) ≥ 0,

for any να,β-stable object E, where

∆H(E) = (H2 · chβ1 (E))2 − 2(H3 · chβ0 (E))(H · chβ2 (E)).

When the Picard rank of X is 1, Theorem 1.1 was proved in [Li15] with Γ = 0 (the cases of
P3 and of the quadric threefold were proved earlier, with a completely different proof, in [Mac14b]
and [Sch14]). The idea of the proof of Theorem 1.1 follows along the same lines as in [Li15], by
using an Euler characteristic estimate. This will be carried out in Section 4.. The key result is a
slight generalization of [Li15, Proposition 3.2] to the higher Picard rank case. This is the content of
Theorem 3.1, whose proof will take the whole Section 3..

There are examples in which the class Γ is indeed 0, even if the Picard number is greater than
1 (see Theorem 1.2). More generally, it would be interesting to know what the optimal class Γ is.
For example, all known counter-examples ([Sch16, Mar16]) to the original conjecture from [BMT14]
on Fano threefolds do satisfy a stronger inequality for some choice of Γ with Γ · H = 0 (see also
Section 6.). It is interesting to observe that when such a strong version of the conjecture holds, then
all possible applications of such an inequality either to the birational geometry of threefolds or to
counting invariants (pointed out in a sequence of papers; e.g., [BBMT14, Tod12, Tod14]) would hold
unchanged. Finally, we remark that the original conjecture is also proved for abelian threefolds (and
their étale quotients) in [MP15, MP16, BMS16].

In the case of P1 × P2 (and partly in the case of the blow-up of P3 in a line) we are able to prove
the original conjecture with Γ = 0 by using the toric Frobenius morphism. The proof in these two
cases will then follow a similar “limit” argument of Euler characteristics as in [BMS16].

Theorem 1.2. Let X be a P2-bundle over P1. Let H be an ample divisor such that, for all effective
divisors D on X, we have H ·D2 ≥ 0. Then, for any να,β-stable object E ∈ Cohβ(X) with να,β(E) = 0,
we have

chβ3 (E)− α2

6
H2 · chβ1 (E) ≤ 0.

The assumption on the polarization H is quite strong. It holds for all polarizations on P1 × P2.
On the blow-up of P3 in a line, it holds for some polarizations, but not for the anti-canonical bundle.
In fact, we will prove Theorem 1.2 under a slightly more general technical assumption. The precise
statement is Theorem 5.1. In particular, it will hold for all polarizations H on P1 × P1 × P1 as well.
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Notation

X smooth projective threefold over C
H fixed ample divisor on X

Db(X) bounded derived category of coherent
sheaves on X

ch(E) Chern character of an object E ∈ Db(X)
ch≤l(E) (ch0(E), . . . , chl(E))

H · ch(E) (H3 · ch0(E), H2 · ch1(E), H · ch2(E) ch3(E))
H · ch≤l(E) (H3 · ch0(E), . . . ,H3−l · chl(E))

chβ(E) e−βH · ch(E)
exti(E,F ) dim Exti(E,F ) for E,F ∈ Db(X) and i ∈ Z
hom(E,F ) dim Hom(E,F ) for E,F ∈ Db(X)

2. Background on tilt stability

In [BMT14] the notion of tilt stability was introduced as an auxiliary notion in between slope stability
and Bridgeland stability on threefolds. Let X be a smooth projective threefold over the complex
numbers and H be a fixed ample divisor on X. The classical slope for a coherent sheaf E ∈ Coh(X)
is defined as

µ(E) :=
H2 · ch1(E)

H3 · ch0(E)
,

where division by zero is interpreted as +∞. As usual a coherent sheaf E is called slope-(semi)stable
if for any non trivial proper subsheaf F ⊂ E the inequality µ(F ) < (≤)µ(E/F ) holds.

Let β be an arbitrary real number. Then the twisted Chern character chβ is defined to be e−βH ·ch.
Explicitly:

chβ0 = ch0,

chβ1 = ch1−βH · ch0,

chβ2 = ch2−βH · ch1 +
β2

2
H2 · ch0,

chβ3 = ch3−βH · ch2 +
β2

2
H2 · ch1−

β3

6
H3 · ch0 .

The process of tilting is used to construct a new heart of a bounded t-structure. For more
information on the general theory of tilting we refer to [HRS96] and [BVdB03]. A torsion pair is
defined by

Tβ := {E ∈ Coh(X) : any quotient E � G satisfies µ(G) > β},
Fβ := {E ∈ Coh(X) : any subsheaf F ⊂ E satisfies µ(F ) ≤ β}.

The heart of a bounded t-structure is given as the extension closure Cohβ(X) := 〈Fβ[1], Tβ〉. Let
α > 0 be a positive real number. The tilt slope is defined as

να,β :=
H · chβ2 −α2

2 H
3 · chβ0

H2 · chβ1
.

As before, an object E ∈ Cohβ(X) is called tilt-(semi)stable (or να,β-(semi)stable) if for any non
trivial proper subobject F ⊂ E the inequality να,β(F ) < (≤)να,β(E/F ) holds.
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Theorem 2.1. (Bogomolov Inequality for Tilt Stability, [BMT14, Corollary 7.3.2]) Any
να,β-semistable object E ∈ Cohβ(X) satisfies

∆H(E) = (H2 · chβ1 (E))2 − 2(H3 · chβ0 (E))(H · chβ2 (E))

= (H2 · ch1(E))2 − 2(H3 · ch0(E))(H · ch2(E)) ≥ 0.

Let Λ = Z⊕Z⊕ 1
2Z be the image of the map H · ch≤2. Notice that να,β factors through H · ch≤2.

Varying (α, β) changes the set of stable objects. A numerical wall in tilt stability with respect to a
class v ∈ Λ is a non trivial proper subset W of the upper half plane given by an equation of the form
να,β(v) = να,β(w) for another class w ∈ Λ. A subset S of a numerical wall W is called an actual wall
if the set of semistable objects with class v changes at S. The structure of walls in tilt stability is
rather simple. Part (1) - (5) is usually called Bertram’s Nested Wall Theorem and appeared first in
[Mac14a], while part (6), (7), and (8) are in Lemma 2.7 and Appendix A of [BMS16]. The last part
of (8) about reflexivity is to be found in [LM16, Proposition 3.1].

Theorem 2.2. (Structure Theorem for Tilt Stability) Let v ∈ Λ be a fixed class. All numerical
walls in the following statements are with respect to v.

1. Numerical walls in tilt stability are either semicircles with center on the β-axis or rays parallel
to the α-axis.

2. If two numerical walls given by classes w, u ∈ Λ intersect, then v, w and u are linearly dependent.
In particular, the two walls are completely identical.

3. The curve να,β(v) = 0 is given by a hyperbola. Moreover, this hyperbola intersects all semicir-
cular walls at their top point.

4. If v0 6= 0, there is exactly one numerical vertical wall given by β = v1/v0. If v0 = 0, there is no
actual vertical wall.

5. If a numerical wall has a single point at which it is an actual wall, then all of it is an actual
wall.

6. If there is an actual wall numerically defined by an exact sequence of tilt semistable objects
0→ F → E → G→ 0 such that H · ch≤2(E) = v, then

∆H(F ) + ∆H(G) ≤ ∆H(E).

Moreover, equality holds if and only if either H · ch≤2(F ) = 0, H · ch≤2(G) = 0, or both
∆H(E) = 0 and H · ch≤2(F ), H · ch≤2(G), and H · ch≤2(E) are all proportional.

7. If ∆H(E) = 0 for a tilt semistable object E, then E can only be destabilized at the unique
numerical vertical wall.

8. If E is a tilt stable object for fixed β ∈ R and all α� 0, then E is one of the following.

• If ch0(E) ≥ 0, then E is a slope semistable sheaf.

• If ch0(E) < 0, then H0(E) is a torsion sheaf supported in dimension smaller than or equal
to 1 and H−1(E) is a reflexive slope semistable sheaf with positive rank.

A generalized Bogomolov type inequality involving third Chern characters for tilt semistable
objects with να,β = 0 has been conjectured in [BMT14]. Its main goal was the construction of
Bridgeland stability conditions on arbitrary threefolds.
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Conjecture 2.3. ([BMT14, Conjecture 1.3.1]) For any να,β-stable object E ∈ Cohβ(X) with
να,β(E) = 0 the inequality

chβ3 (E) ≤ α2

6
H2 · chβ1 (E)

holds.

The conjecture has been proved for P3 in [Mac14b] and for the smooth quadric hypersurface
Q ⊂ P4 in [Sch14]. All other Fano threefolds of Picard rank one were handled in [Li15]. Finally, it
is known to hold for abelian threefolds with independent proofs in [BMS16] and [MP15, MP16]. It
turns out that the conjecture fails on the blow up of P3 in a single point as shown in [Sch16]. In this
article we give an affirmative answer to the following natural follow up question in case X is a Fano
threefold and the polarization H is given by the anticanonical divisor.

Question 2.4. Is there a cycle Γ ∈ A1(X)R depending at most on H such that Γ · H ≥ 0 and for
any να,β-stable object E with να,β(E) = 0, we have

chβ3 (E) ≤ Γ · chβ1 (E) +
α2

6
H2 · chβ1 (E)?

The condition Γ ·H ≥ 0 is crucial for the reduction to the case α = 0. In order to state it precisely,
we first need the notion of β-stability.

Definition 2.5. For any object E ∈ Cohβ(X), we define

β(E) =

H2·ch1(E)−
√

∆H(E)
H3·ch0(E)

ch0(E) 6= 0,
H·ch2(E)
H2·ch1(E)

ch0(E) = 0.

Moreover, we say that E is β-(semi)stable, if it is (semi)stable in a neighborhood of (0, β(E)).

By this definition we have H · chβ(E)
2 (E) = 0.

Proposition 2.6. ([BMT14, Proposition 5.1.3]) Assume E ∈ Cohβ(X) is να,β-semistable with
να,β(E) 6= ∞. Then there is a να,−β-semistable object Ẽ ∈ Coh−β(X) and a sheaf T supported in
dimension 0 together with a triangle

Ẽ → RHom(E,OX)[1]→ T [−1]→ Ẽ[1].

The following lemma was first proved for the original conjecture in [BMS16], but it works out in
our case as well without any change in the proof.

Lemma 2.7. Let Γ ∈ A1(X)R be a cycle such that Γ ·H ≥ 0. Assume that for any β-stable object
E ∈ Cohβ(X) with β(E) ∈ [0, 1) and ch0(E) ≥ 0 the inequality

chβ3 (E) ≤ Γ · chβ1 (E)

holds. Then Question 2.4 has an affirmative answer with this cycle Γ.

Proof. By Proposition 2.6 we can use the derived dual to reduce to the case ch0(E) ≥ 0. Tensoring
with lines bundles O(aH) for a ∈ Z makes it possible to further reduce to β(E) ∈ [0, 1).

A straightforward computation shows that

Γ · chβ1 (E) +
α2

6
H2 · chβ1 (E)− chβ3 (E)
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is decreasing along the hyperbola να,β(E) = 0 as α decreases, because Γ ·H ≥ 0 and ch0(E) ≥ 0. By
using Theorem 2.2, (6), we can then proceed by induction on ∆H(E) to show that it is enough to
prove the inequality for β-stable objects.

Indeed, if ∆H(E) = 0, then E is β-stable implying the claim. Assume ∆H(E) > 0. If E is
β-stable, we are done. Otherwise, E is destabilized along a wall between (α, β) and (0, β(E)). Let
F1, . . . , Fn be the stable factors of E along this wall. By induction, the inequality holds for F1, . . . , Fn
and so it does for E by linearity of the Chern character. �

As in [BMS16], we get a quadratic inequality for any tilt semistable object. This still implies the
support property for Bridgeland stability conditions, as in [BMS16, Section 8].

Proposition 2.8. Assume that Question 2.4 has an affirmative answer. Then any να,β-stable object
E satisfies

Qα,β(E) =α2

(
∆H(E) + 3

Γ ·H
H3

(H3 · chβ0 (E))2

)
+ 2 (H · chβ2 (E))(2H · chβ2 (E)− 3 Γ ·H · chβ0 (E))

− 6(H2 · chβ1 (E))(chβ3 (E)− Γ · chβ1 (E)) ≥ 0.

Proof. Observe that if να,β(E) = 0, then Qα,β(E) ≥ 0 is equivalent to chβ3 (E) ≤ Γ · chβ1 (E) + α2

6 H
2 ·

chβ1 (E). Let E ∈ Cohβ(X) be a να,β-stable object with ch(E) = v. If (α, β) is on the unique numerical

vertical wall for v, then H2 · chβ1 (E) = 0, H · chβ2 (E) ≥ 0, and chβ0 (E) ≤ 0. Therefore, since Γ ·H ≥ 0,
we have Qα,β(E) ≥ 0.

As a consequence, (α, β) lies on a unique numerical semicircular wall W with respect to v. One
computes that there are x, y ∈ R, δ ∈ R≥0 such that

Qα,β(E) ≥ 0⇔ δα2 + δβ2 + xβ + yα ≥ 0.

Moreover, the equality Qα,β(E) = 0 holds if and only if

να,β(E) = να,β
(
H2 · ch1(E), 2H · ch2(E)− 3H · Γ · ch0(E), 3 ch3(E)− 3Γ · ch1(E), 0

)
.

In particular, the equation Qα,β(E) ≥ 0 defines either the complement of a semi-disc with center on
the β-axis or a quadrant to one side of a vertical line. Moreover, Qα,β(E) = 0 is a numerical wall
with respect to v. Since numerical walls do not intersect, the inequality holds on either any or no
point of W . Computing it at the top point of W concludes the proof. �

3. Li’s Bogomolov inequality

Let X be a Fano threefold of index iX . Consider tilt stability with respect to the polarization
H = −KX

iX
. For any tilt semistable object E with ch0(E) 6= 0, we define

β−(E) = µ(E)−

√
∆H(E)

(H3 · ch0(E))2

β+(E) = µ(E) +

√
∆H(E)

(H3 · ch0(E))2
.

If ch0(E) > 0, we have β−(E) = β. If ch0(E) < 0, then β+(E) = β. Note that β−(E) ≤ β+(E) are
the two solutions to the equation ν0,β(E) = 0. The main result of this section is a slight modification
of [Li15, Proposition 3.2] beyond Picard rank one.
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Theorem 3.1. Let E be a tilt stable object other than a shift of OX or an ideal sheaf of points. If
additionally ch0(E) 6= 0 and 0 ≤ β−(E) ≤ β+(E) < 1, then the inequality

∆H(E)

(H3 · ch0(E))2
≥ min

{
1

(H3)2
,

3

2iXH3

}
holds.

Remark 3.2. Note, that when X has index 1 or 2 and its Picard rank is at least 2, then H3 ≥ 2,
and

min

{
1

(H3)2
,

3

2iXH3

}
=

1

(H3)2
.

That turns out to be the only case in which we use this theorem in the following sections.

The idea of the proof is as follows. Assuming there exists an object E contradicting the theorem,
we will show that E can be chosen such that either E or E[1] is tilt stable for all α > 0 and β ∈ R.
The conditions on β±(E) will then allow to prove ext2(E,E) = 0. A contradiction can be obtained
from estimating the Euler characteristic χ(E,E) ≤ 1. We will fill the details in a series of lemmas.

Lemma 3.3. If E is a tilt stable object with rank ±1, 0 ≤ β−(E) ≤ β+(E) < 1, and ∆H(E) = 0,
then E is a shift of OX or an ideal sheaf of points. That means β(E) = 0. In particular, Theorem
3.1 holds for rank ±1 objects.

Proof. The Hodge Index Theorem implies

H · (ch1(E)2 − 2 ch0(E) ch2(E)) ≤ ∆H(E)

H3
= 0

with equality if and only if ch1(E) is numerically equivalent to a multiple of H. Part (7) of the
Structure Theorem for Tilt Stability shows that E is stable for α� 0, and therefore, part (8) applies.
In any of the two cases, E satisfies the classical Bogomolov inequality and we get H · (ch1(E)2 −
2 ch2(E)) = 0. In particular, ch1(E) is numerically equivalent to a multiple of H.

If ch0(E) = −1, then H−1(E) is reflexive of rank one, i.e., a line bundle. Since line bundles have
no extensions with skyscraper sheaves, we must have H0(E) = 0. The hypotheses on β±(E) directly
imply E ∼= OX [1].

Assume ch0(E) = 1. Then E⊗O(− ch1(E)) is an ideal sheaf of a subscheme of dimension smaller
than or equal to one. Its second Chern character equals

ch1(E)2

2
− ch2(E).

Since H is ample and it intersects this curve class as zero, we must have that E ⊗O(− ch1(E)) is an
ideal sheaf of a finite number of points. Again, the hypotheses on β±(E) directly imply the claim. �

Lemma 3.4. Let E ∈ Db(X) such that ch0(E) 6= 0. Then the derivative of α by β along the hyperbola
να,β(E) = 0 is given by

dα

dβ
=
β − µ(E)

α
.

Proof. Basic calculus shows

0 =
d

dβ

(
H3 · ch0(E)

2
α2 − H3 · ch0(E)

2
β2 +H2 · ch1(E)β −H · ch2(E)

)
= H3 · ch0(E)α

dα

dβ
−H3 · ch0(E)β +H2 · ch1(E). �
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Lemma 3.5. Let E be a tilt semistable object with ch0(E) > 0. Then there is a stable factor F in
the Jordan-Hölder filtration of E satisfying µ(F ) ≤ µ(E) and ch0(F ) > 0. If instead ch0(E) < 0,
then we get µ(F ) ≥ µ(E) and ch0(F ) < 0.

In particular, let E be a tilt stable object with ch0(E) > 0 that destabilizes at a semicircular wall
W . Then there is a stable factor F in the Jordan-Hölder filtration of E at W satisfying µ(F ) < µ(E)
and ch0(F ) > 0. If instead ch0(E) < 0, then we get µ(F ) > µ(E) and ch0(F ) < 0.

Proof. We will only do the case ch0(E) > 0, and leave ch0(E) < 0 to the reader. The proof is by
induction on the number of stable factors n in a Jordan-Hölder filtration of E. If n = 1, then we can
simply choose E = F .

Assume the statement holds for some n ∈ N and that E has a Jordan-Hölder filtration of length
n + 1. Let F ↪→ E be a stable subobject in such a Jordan-Hölder filtration of E, and let G be the
quotient F/E. Because of ch0(E) > 0, we can divide the argument into the following three cases.

• Assume that ch0(F ) ≥ ch0(E) > 0 holds. That means we have

0 ≤ H2 · ch1(F )− βH3 · ch0(F ) ≤ H2 · ch1(E)− βH3 · ch0(E).

This implies

µ(F )− β ≤ H2 · ch1(E)− βH3 · ch0(E)

H3 · ch0(F )
≤ µ(E)− β.

• If ch0(G) ≥ ch0(E) > 0 holds, then we get µ(G) ≤ µ(E), but G is only semistable. By the
inductive hypothesis G has a stable factor with the desired properties.

• Assume that both ch0(E) > ch0(F ) > 0 and ch0(E) > ch0(G) > 0. The vectors v1 = (−H2 ·
ch1(F ), H3 ·ch0(F )) and v2 = (−H2 ·ch1(G), H3 ·ch0(G)) lie in the upper half plane and add up
to v = (−H2 · ch1(E), H3 · ch0(E)). It follows that exactly one of the slopes µ(F ) and µ(G) is
larger than or equal to µ(E). If µ(F ) ≤ µ(E), we have proved the statement. If µ(G) ≤ µ(E),
then we can use the inductive hypothesis on G to obtain an object with the desired properties.

For the last part observe that since the wall is not vertical, we get µ(F ) 6= µ(E) for all stable
factors F . �

Lemma 3.6. Assume there is an object E contradicting Theorem 3.1 such that ∆H(E) ≥ 0 is minimal
among all such objects. Then E can only be destabilized at the unique numerical vertical wall.

Proof. By Lemma 3.3, such an object E must satisfy | ch0(E)| ≥ 2. We will give the proof in the case
ch0(E) ≥ 2. The negative rank case is almost identical. 1

Assume E is destabilized at some semicircular wall W . We will show that there is a stable factor
F of E at W that also contradicts Theorem 3.1. Then, part (6) of the Structure Theorem for Walls
in Tilt Stability (Theorem 2.2) creates a contradiction to the minimality of ∆H(E).

By Lemma 3.5 there is a stable factor F of E such that µ(F ) < µ(E) and ch0(F ) > 0. Since the
ranks of both E and F are positive, the wall W is to the left of the vertical numerical walls of both E
and F . In particular, the hyperbolas να,β(E) = 0 and να,β(F ) = 0 are both decreasing. Let (α0, β0)
be the top point on the semicircle W . By Lemma 3.4 the derivative of α by β at (α0, β0) along the
hyperbola να,β(E) = 0 is smaller than along the hyperbola να,β(F ) = 0 (see Figure 1). This proves
β−(E) < β−(F ) ≤ µ(F ) < µ(E). Therefore,

∆H(F )

(H3 · ch0(F ))2
<

∆H(E)

(H3 · ch0(E))2

holds. From here we see that F also contradicts the theorem. �
1Mirror Figure 1 at the line β = µ(E) in that case.
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µ(E)µ(F )β−(F )β−(E)

Figure 1: Visualization of β−(E) < β−(F ) ≤ µ(F ) < µ(E). (Figure created with [SAGE].)

Lemma 3.7. Assume that E is a tilt stable object for some α > 0 and β ∈ R with ∆H(E) = 0,
β(E) = 0, and | ch0(E)| ≥ 2. Then there is an object E′ with ∆H(E′) = 0, β(E′) = 0, and ch0(E′) ≥ 2
such that for all α > 0 and β ∈ R either E′ or E′[1] is tilt stable.

Proof. By hypothesis we know H · ch≤2(E) = (r, 0, 0), for r = ch0(E). Theorem 2.6 implies that
we can use the derived dual to reduce to r ≥ 2. By Theorem 2.2 (7), E can only destabilize at the
vertical wall β = 0. Moreover, by part (8) of the same Theorem, E is a torsion free slope semistable
sheaf.

Let E[1] � G be a stable quotient in a Jordan-Hölder filtration of E[1] at the numerical vertical
wall. By Theorem 2.2 (6), we have H · ch≤2(G) = (r′, 0, 0), for r′ = ch0(G) ≤ 0. Since E is a sheaf,
G cannot be a torsion sheaf, i.e., r′ 6= 0. If r′ ≤ −2, then we can choose E′ = G[−1]. If r′ = −1, then
by Lemma 3.3, G ∼= OX [1]. Consider the map E → OX . Since ∆H(E) = 0, we must have that both
kernel and image are also slope semistable sheaves with ∆H = 0 and slope zero. In particular, they
all have the same tilt slope independent of α and β. Since r ≥ 2, both have also non-zero ranks, and
therefore, E is strictly tilt semistable, a contradiction. �

Lemma 3.8. Assume there is an object E contradicting Theorem 3.1. Then E can be chosen such
that for all α > 0 and β ∈ R either E or E[1] is tilt stable and ch0(E) ≥ 2.

Proof. Assume E′ contradicts the theorem such that ∆H(E′) ≥ 0 is minimal among all such objects.
By Lemma 3.3 the inequality | ch0(E)| ≥ 2 is automatic. If E′ or E′[1] is tilt stable for all (α, β),
we can set E = E′ and be done. If E′ or E′[−1] is tilt stable for all (α, β), we can set E = E′[−1]
and be done. Otherwise, we can use Lemma 3.6 to show that E′ destabilizes at the vertical wall. Let
F1, . . . , Fn be all the stable factors of E′ that satisfy H · ch≤2(Fi) 6= 0 for i = 1, . . . , n.

The shape of the wall implies either β = µ(Fi) = µ(E′) or (H3 · ch0(Fi), H
2 · ch1(Fi)) = (0, 0).

By definition of Cohβ(X) the rank of an object at the vertical wall can never be positive, and rank 0

objects have to be torsion sheaves. Therefore, the vectors vi = (−H ·chβ2 (Fi),−H3·chβ0 (Fi)) lie either in

the upper half plane or on the negative real line. They also add up to v = (−H ·chβ2 (E′),−H3·chβ0 (E′)).
This is only possible if at least one of the slopes

− H · chβ2 (Fi)

H3 · chβ0 (Fi)
=

∆H(Fi)

(H3 · ch0(Fi))2

is smaller than or equal to the slope

− H · chβ2 (E′)

H3 · chβ0 (E′)
=

∆H(E′)

(H3 · ch0(E′))2
.
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If µ(E) = 0, then the condition β−(E) ≥ 0 implies ∆H(E) = 0 and β(E) = 0, and we are done by
Lemma 3.7. In all other cases, Fi cannot be OX [1]. By part (6) of Theorem 2.2, ∆H(Fi) is minimal
again. In particular, the object E = Fi[−1] also contradicts the theorem. �

Proof of Theorem 3.1. Assume the theorem does not hold, and choose E contradicting it as in Lemma
3.8. Then ch0(E) ≥ 2. Stability of E implies hom(E,E) = 1. By assumption the inequality

β(E(−iXH)[1]) = β+(E)− iX < β−(E) = β(E)

holds. Due to the fact that E(−iXH)[1] and E are both stable at β(E), we get ext2(E,E) =
hom(E,E(−iXH)[1]) = 0. The Hirzebruch-Riemann-Roch Theorem together with the Hodge-Index
Theorem implies

1 ≥ χ(E,E) = ch0(E)2 − iXH · (ch1(E)2 − 2 ch0(E) · ch2(E))

2

≥ ch0(E)2 − iX∆H(E)

2H3
.

By rearranging the terms one gets the contradiction

∆H(E)

(H3 · ch0(E))2
≥ 2(ch0(E)2 − 1)

iXH3 · ch0(E)2
≥ 3

2iXH3
. �

4. The main theorem

Let X be a Fano threefold of index iX with polarization H = −KX
iX

and consider tilt-stability with
respect to it. In this section we prove Theorem 1.1. Chunyi Li already showed that the theorem
holds with Γ = 0 for Picard rank 1 in [Li15]. Therefore, we only have to deal with the case where the
Picard rank is at least two.

The idea of the proof is similar to Li’s approach. As reviewed in Lemma 2.7, we will assume we
have an object E which is β-stable with 0 ≤ β(E) < 1 and ch0(E) ≥ 0. Then stability is used to
bound the Euler characteristic χ(E(−H)). Finally, Theorem 3.1 and the Hirzebruch-Riemann-Roch
Theorem allow us to deduce the bound on the Chern character. To simplify notation, we will often
write β(E) = β.

4.A. The index two case

First of all, recall that there are only three Fano threefolds with index two and large Picard number.

Theorem 4.1. ([Fuj82, Theorem 1]) A Fano threefold X of index two and Picard rank greater
than or equal to two is given by either

1. the blow up of P3 in a point, or

2. P1 × P1 × P1, or

3. the projective bundle P(TP2), where TP2 is the tangent bundle of P2.

In this section, we will prove Theorem 1.1 in the latter two cases. For P1×P1×P1 we will actually
prove the statement for all polarizations in Section 5. with a different method. The following lemma
holds for all three cases.
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Lemma 4.2. Let E be a β-stable object with 0 ≤ β(E) < 1. Then

Hom(O(H), E) = Ext2(O(H), E) = 0.

In particular,

0 ≥ χ(O(H), E) = ch3(E)− ch2(TX)

12
· ch1(E) +

H · ch2(TX)− 2H3 + 12

12
ch0(E)

= chβ3 (E)− ch2(TX)

12
· chβ1 (E) +

β
2

2
H2 · chβ1 (E)

+
2β

3
H3 + (1− β)H · ch2(TX)− 2H3 + 12

12
chβ0 (E).

Proof. Since β(E) < 1, we get Hom(O(H), E) = 0 and β(E) ≥ 0 shows Hom(E,O(−H)[1]) = 0.
Together with Serre duality, we have

χ(O(H), E) ≤ hom(O(H), E) + ext2(O(H), E) = 0.

Since χ(OX ,OX) = 1, together with the Hirzebruch-Riemann-Roch Theorem, we get

td(TX) = (1, H, td2(TX), 1) =

(
1, H,−ch2(TX)

12
+
H2

2
, 1

)
.

Another application of the Hirzebruch-Riemann-Roch Theorem leads to

χ(O(H), E) = ch3(E)− ch2(TX)

12
· ch1(E) +

H · ch2(TX)− 2H3 + 12

12
ch0(E).

Finally, the last equality in the lemma is a straightforward computation using H · chβ2 (E) = 0. �

Throughout the rest of this section we will assume that X is either P1 × P1 × P1 or P(TP2). In
fact, we will choose Γ = 0 and prove the original Conjecture 2.3. This does not work for the blow up
of P3 in a point due to the counterexample in [Sch16]. We will handle this case later individually.

Lemma 4.3. Let X be either P1 × P1 × P1 or P(TP2). The equalities ch2(TX) = 0 and H3 = 6 hold.

Proof. These are standard calculations based on Chow-Künneth formulas for the first case and the
Euler sequence on P2 for the second case. �

We are now in position to prove Theorem 1.1 for both P1×P1×P1 and P(TP2) with Γ = 0. Assume
we have an object E which is β-stable with 0 ≤ β(E) < 1 and ch0(E) ≥ 0. Then Lemma 4.2 and
Lemma 4.3 imply

chβ3 (E) ≤ −β
2

2
H2 · chβ1 (E)− β3

chβ0 (E) ≤ 0.

4.B. Exceptional case of index two: the blow-up of P3 in a point

Let X be the blow-up of P3 in a point. In this case, X has index 2, and H3 = 7. Denoting the
exceptional divisor of the blow-up by e and the pull-back of the hyperplane section of P3 to X by h,
we have H = 2h− e. Moreover, e3 = h3 = 1, and h · e = 0 as a cycle in A1(X). Finally, a calculation
of ch2(TX) yields

ch2(TX) = 2h2 + 2e2.
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For any 0 < β < 1√
7

and C ≥ 0 let

fC(β) := 7

(
β2

2
+ C

)
1− β

2
+
β

6
(7β2 − 1),

gC(β) :=

(
β2

2
+ C

)
+
β

6
(7β2 − 1).

We define C0 to be the minimal real number such that gC0(β) ≥ 0 for all 0 < β < 1√
7
. Note that in

this range we have fC0(β) ≥ gC0(β).
We will prove Theorem 1.1 in this case with

Γ =
h2 + e2

6
+ C0H

2.

Remark 4.4. It is not hard to compute

C0 =
10
√

30

1323
− 3

98
.

Proof of Theorem 1.1 for X. Assume we have an object E which is β-stable with 0 ≤ β(E) < 1 and
ch0(E) ≥ 0. Then Lemma 4.2 implies

chβ3 (E)− Γ · chβ1 (E) ≤ −

(
β

2

2
+ C0

)
H2 · chβ1 (E)− β

6
(7β

2 − 1) chβ0 (E)

= −

(
7

(
β

2

2
+ C0

)√
∆H(E)

(H3 · ch0(E))2 +
β

6
(7β

2 − 1)

)
chβ0 (E),

where the second expression is only valid for ch0(E) 6= 0 and follows from the definition of β. Since

both H2 · chβ1 (E) ≥ 0 and chβ0 (E) ≥ 0, we are done if β = 0, β ≥ 1√
7
, or chβ0 (E) = 0. Assume

0 < β < 1√
7

and chβ0 (E) 6= 0. Then if β+(E) ≥ 1, we get

chβ3 (E)− Γ · chβ1 (E) ≤ −fC0(β) chβ0 (E) ≤ 0.

If β+(E) < 1, we can use Theorem 3.1 to obtain

chβ3 (E)− Γ · chβ1 (E) ≤ −gC0(β) chβ0 (E) ≤ 0. �

4.C. The index one case

In this section we prove Theorem 1.1 when X is a Fano threefold of index 1. Let H = −KX and
consider tilt stability with respect to it. The approach is exactly as in the index two case, but we
have to distinguish two cases according to whether 0 < β(E) < 1 or β(E) = 0.

We have to define a 1-cycle Γ. For 0 ≤ β ≤ 1 and C ∈ R we define

fX,C(β) :=
β2

2
− β

2
+ C,

gX(β) :=
β3

6
− β2

4
+ β

(
1

12
+

2

H3

)
− 1

H3
,

hX,C(β) := fX,C(β)
1− β

2
+ gX(β),

lX,C(β) :=
fX,C(β)

H3
+ gX(β).

We have gX(0) = − 1
H3 < 0 and gX(1) = 1

H3 > 0. Therefore, we can define β0 to be the largest
zero of gX(β) in the interval [0, 1]. Hence, gX(β) ≥ 0, for all β ∈ [β0, 1].
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Remark 4.5. If H3 ≤ 48, one gets β0 = 1
2 . We refer to [IP99, Table 12.3-6] for the fact that there

are only seven types of Fano threefolds of degree strictly greater than 48:

1. the blow up of P3 in a point, also given as P(OP2 ⊕ OP2(1)), which has degree d = 56, Picard
number ρ = 2, and index i = 2,

2. the product P1 × P2, which has degree d = 54, Picard number ρ = 2, and index i = 1,

3. the blow up of P3 along a line, also given as P(O⊕2
P2 ⊕OP2(1)), which has degree d = 54, Picard

number ρ = 2, and index i = 1,

4. the projective bundle P(OP2 ⊕ OP2(2)), which has degree d = 62, Picard number ρ = 2, and
index i = 1,

5. the double blow up of P3 first in a point and then in a line contained in the exceptional divisor,
which has degree d = 50, Picard number ρ = 3, and index i = 1,

6. the double blow up of P3 first in a point x and then in the strict transform of a line through x,
which has degree d = 50, Picard number ρ = 3, and index i = 1,

7. the projective bundle P(OP1×P1⊕OP1×P1(1, 1)), which has degree d = 52, Picard number ρ = 3,
and index i = 1.

Let C0 ≥ 0 be the minimal positive real number such that C0H
3 ≥ H · td2(X) = H3

12 + 2 and

fX,C0(β) ≥ 0, for all β ∈ [0, 1]

lX,C0(β) ≥ 0, for all β ∈ [0, β0] .

By the classification of Fano threefolds, we have H3 ≥ 4. Therefore, we have hX,C0(β) ≥ lX,C0(β)
in the interval [0, β0]. We choose Γ = C0H

2 − td2(X).

Lemma 4.6. Let E be a β-stable object with 0 < β(E) < 1. Then

Hom(OX(H), E) = Ext2(OX(H), E) = 0.

In particular,

0 ≥ χ(O(H), E) = ch3(E)− 1

2
H · ch2(E) + td2(X) · ch1(E)− ch0(E)

= chβ3 (E)− Γ · chβ1 (E) + fX,C0(β)H2 · chβ1 (E) + gX(β)H3 · chβ0 (E).

Proof. This proof is the same as for Lemma 4.2. �

We are now in position to prove Theorem 1.1 when E is a β-stable object with 0 < β(E) < 1 and
ch0(E) ≥ 0. In this situation Lemma 4.6 implies

chβ3 (E)− Γ · chβ1 (E) ≤ −fX,C0(β)H2 · chβ1 (E)− gX(β)H3 · chβ0 (E)

= −

(
fX,C0(β)

√
∆H(E)

(H3 · ch0(E))2 + gX(β)

)
H3 · chβ0 (E),

where the second expression is only valid for ch0(E) 6= 0 and follows from the definition of β. As in

the index two case, we will show that the right hand side is non-positive. Since both H2 · chβ1 (E) ≥ 0
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and chβ0 (E) ≥ 0 we are done if β ≥ β0, or chβ0 (E) = 0. If 0 < β < β0 and chβ0 (E) 6= 0 we will split the
two cases β+(E) ≥ 1 and β+(E) < 1.

If β+(E) ≥ 1, we get

chβ3 (E)− Γ · chβ1 (E) ≤ −hX,C0(β)H3 · chβ0 (E) ≤ 0.

If β+(E) < 1, we can use Theorem 3.1 to obtain

chβ3 (E)− Γ · chβ1 (E) ≤ −lX,C0(β)H3 · chβ0 (E) ≤ 0.

We are left to deal with the case of a β-stable object E with ch0(E) ≥ 0 and β(E) = 0. If
∆H(E) = 0 then, by Theorem 3.1, E is a shift of OX or an ideal of points. In those cases, Theorem
1.1 is obvious.

Lemma 4.7. Assume that there is a β-stable object E satisfying ch0(E) ≥ 0, β(E) = 0, and
ch3(E) > Γ · ch1(E), i.e., E contradicts Theorem 1.1. Then E can be chosen such that addition-
ally Ext1(E,OX) = 0.

Proof. Pick a β-stable object E such that H2 · ch1(E) is minimal with the properties ch0(E) ≥ 0,
β(E) = 0, and ch3(E) − Γ · ch1(E) > 0. Then ∆H(E) 6= 0, and equivalently H2 · ch1(E) 6= 0. If E
could be chosen with ch0(E) arbitrarily large, the conditions of Theorem 3.1 would be fulfilled. This
would imply (

H2 · ch1(E)

H3 · ch0(E)

)2

=
∆H(E)

(H3 · ch0(E))2
≥ 1

(H3)2

even in the limit ch0(E) → ∞, a contradiction. Therefore, we can additionally choose E such that
ch0(E) is maximal for objects with these properties.

If Ext1(E,OX) 6= 0, we can get a non trivial triangle

E′ → E → OX [1]→ E′[1].

We want to show that E′ is in Coh0(X), i.e., that the morphism E → OX [1] is surjective. Let T be
the cokernel of this map in Coh0(X). Since OX [1] is semistable, we get ν0,α(T ) =∞. Since it is even
stable, this means T a sheaf supported on points (this is because those are the only objects that are
mapped to the origin by Z0,α). But then Hom(OX [1], T ) = 0, a contradiction unless T = 0.

We will show that E′ is also β-stable to get a contradiction to the maximality of ch0(E). Let

0 = E0 ↪→ E1 ↪→ . . . ↪→ En = E′

be the Harder-Narasimhan filtration of E′ for β = 0 and α� 1. The fact that E is β-stable and that
E′ → E is injective in Coh0(X) implies

ν0,α(E′) ≤ ν0,α(Ei) ≤ ν0,α(E).

Taking the limit α → 0 implies H · ch2(Ei) = 0 for all i. For every semistable factor Ei/Ei−1 we
choose a Jordan Hölder filtration and call the stable factors of all those filtrations F1, . . . , Fm. Then
H · ch2(Fi) = 0 for all i = 1, . . . ,m. The values ch3(Fi)−Γ · ch1(Fi) add up to ch3(E′)−Γ · ch1(E′) =
ch3(E)−Γ · ch1(E) > 0. Choose j such that ch3(Fj) > Γ · ch1(Fj). By definition of Coh0(X) we have
H2 · ch1(Fi) ≤ H2 · ch1(E′) = H2 · ch1(E) for all i = 1, . . . ,m.

Assume H2 · ch1(Fj) < H2 · ch1(E). If ch0(Fj) ≥ 0, then this contradicts the minimality of
E. If ch0(Fj) < 0, then we can use the derived dual via Proposition 2.6 to reduce to the positive
rank case. Hence, we must have H2 · ch1(Fj) = H2 · ch1(E) and H2 · ch1(Fi) = 0 for i 6= j. Since
H2 · ch1(E) 6= 0, the existence of the morphism F1 ↪→ E shows that j = 1. But the slopes of the
factors in the Harder-Narasimhan filtration are strictly decreasing. Therefore, we must have m = 1
and E′ is indeed β-stable. �
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We can now finish the proof of Theorem 1.1 in the case of a β-stable object E with ch0(E) ≥ 0
and β(E) = 0. Assume there is E as in Lemma 4.7 contradicting the theorem, i.e.,

ext2(O(H), E) = ext1(E,O) = 0.

By stability we have hom(O(H), E) = 0 and we get χ(O(H), E) ≤ 0. From here, the proof is finished
with Theorem 3.1 as before.

5. Toric threefolds

In this section, we use a variant of the method in [BMS16] to prove Conjecture 2.3 in some toric (not
necessarily Fano) cases, with respect to certain polarizations. The results presented here arose from
discussions together with Arend Bayer and Paolo Stellari.

Theorem 5.1. Let X be a smooth projective complex toric threefold. Let H be an ample divisor such
that, for all effective divisors D on X, we have H · D2 ≥ 0, and H · D2 = 0 implies that D is an
extremal ray of the effective cone. Then, for any να,β-stable object E ∈ Cohβ(X) with να,β(E) = 0,
we have

chβ3 (E)− α2

6
H2 · chβ1 (E) ≤ 0.

Since the statement of Theorem 5.1 is independent of scaling H, we will assume throughout this
section that H is primitive. The extra condition on the extremality of divisors with H · D2 = 0 is
probably not necessary. It is trivially satisfied by P2-bundles over P1. For us, it will simplify the
proof, since it directly implies (see e.g., [CLS11, Lemma 15.1.8]) that a primitive such D is the class
of an irreducible torus-invariant divisor. Also, since X is a threefold, there cannot be more than 3
such irreducible torus-invariant divisors with the same class. Indeed, if D is not movable, then there
is only one irreducible divisor with that class. If D is movable, then since it is extremal in the effective
cone, it cannot be big and so it induces a rational morphism on a lower dimensional toric variety of
Picard rank 1, namely P1 or P2.

The positivity condition H · D2 ≥ 0 is instead necessary in the proof. As proved in [BMS16,
Corollary 3.11], this implies that all (shifts of) line bundles in X are να,β-stable, for all α, β ∈ R,
α > 0.

The assumptions are satisfied for any polarization on P1×P2 and on P1×P1×P1. In the blow-up
of P3 in a line, if we denote the pull-back of OP3(1) by h and the pull-back of OP1(1) by f , then the
assumption is satisfied by any polarization of the form ah+ bf , with a, b > 0 and a ≤ b. The class of
the anticanonical bundle is 3h+ f , and so it is not covered by the above result.

In order to prove Theorem 5.1, we use the toric Frobenius and the formula from Theorem 5.2 below
as follows. First, as in the previous sections, we can work only with β-stable objects. In the case
where β(E) = 0, assuming ch3(E) > 0, the Euler characteristic χ(OX ,m∗E) grows as a polynomial in
m of degree 3. On the other hand, by using adjointness, Theorem 5.2, and stability of line bundles, we
can bound both hom(OX ,m∗E) and ext2(OX ,m∗E) and show that χ(OX ,m∗E) has to grow at most
as a polynomial in m2, thus giving a contradiction to ch3(E) > 0. The basic idea is then to reduce
to this case. When β(E) is an integer, this is easy to do by tensoring with line bundles. When it is
a rational number, we pull-back again via the toric Frobenius morphism to simplify denominators.
Finally, the irrational case can be dealt with by elementary Dirichlet approximation.

5.A. Toric Frobenius morphism

Let X be a smooth projective toric threefold. We denote the irreducible torus-invariant divisors
by Dρ (corresponding to the rays ρ of the fan associated to X). The canonical line bundle is then

ωX = OX
(
−
∑

ρDρ

)
.
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For an integer m ∈ N, we denote the toric Frobenius morphism by

m : X → X.

It is defined via multiplication by m on the lattice and is a finite flat map of degree m3. The main
property we will need is the following result from [Tho00] on direct images of line bundles (see also
[Ach15] for a short proof).

Theorem 5.2. Let D ∈ Pic(X) be a line bundle on X. Then

m∗D =
⊕
j

(
L∨j
)⊕ηj ,

where

• the line bundles Lj are given by all the possible integral divisors in the formula

OX

(
1

m

(
−D +

∑
ρ

aρDρ

))
,

where aρ varies in between 0, . . . ,m− 1,

• the multiplicity ηj counts the number of aρ’s giving the same line bundle Lj.

Example 5.3. Let X = P2 × P1 and let us denote the pull-backs of the hyperplane classes from P2

and P1 by h and f respectively, as before. There are five torus-invariant irreducible divisors, three of
them lie in the class h and two of them in the class f . It follows that

m∗O = O ⊕O(−f)⊕(m−1) ⊕O(−h)⊕r1 ⊕O(−h− f)⊕r2 ⊕O(−2h)⊕r3 ⊕O(−2h− f)⊕r4 ,

where r1, r3 grow like m2 and r2, r4 grow like m3.

Example 5.4. Notice that Frobenius pull-back in general does not preserve β-stability. Indeed, in
the case of the blow-up of P3 in a point, we can consider O(h). It is not too hard to check that O(h)
is β-stable, while for any m ≥ 2, the pull-back m∗O(h) = O(mh) is not β-semistable (see [Sch16] and
Section 6. for more details).

5.B. Proof of Theorem 5.1: the integral case

We use the statement in [BMS16, Conjecture 5.3] (or Lemma 2.7 in the present note). Let E be a
β-stable object. In this section, we assume that β(E) ∈ Z. By tensoring by multiples of OX(H), we
can assume that β(E) = 0. We want to show ch3(E) ≤ 0.

Assume the contrary ch3(E) > 0. By using the Hirzebruch-Riemann-Roch Theorem we can
compute

χ(OX ,m∗E) = m3 ch3(E) +O(m2).

If m∗E were β-semistable, we could easily get a contradiction. Unfortunately, in general, it is not
true, as remarked in Example 5.4. But we can still use the push-forward m∗ and Theorem 5.2. Indeed,
by adjointness, we have

χ(OX ,m∗E) = χ
(
(m∗OX)∨, E

)
≤ hom

(
(m∗OX)∨, E

)
+ ext2

(
(m∗OX)∨, E

)
.

The last inequality follows since, given a line bundle L on X, we have hom(L,E[i]) = 0 if i < −1 or
i > 3. We want to prove that the right hand side has order ≤ m2. In the notation of Theorem 5.2,
we have m∗OX = ⊕(L∨j )⊕ηj , where Lj = OX( 1

m

∑
ρ aρDρ).
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First of all, since H is ample and Lj is effective, we have

H2 · Lj ≥ 0

and H2 · Lj = 0 if and only if Lj = OX . Hence, Lj ∈ Cohβ=0(X), when Lj 6= OX , and as remarked
before, by [BMS16], they are all να,0-stable, for all α > 0. If H · L2

j > 0, then

lim
α→0

να,0(Lj) > 0 = lim
α→0

να,0(E)

and so Hom(Lj , E) = 0. If H · L2
j = 0, then by our assumption aρ = 0 for all but at most 3 rays ρ.

Hence, ηj has order at most m2: there are at most three non-trivial coefficients aρ, with the property
0 ≤ aρ < m, and related by a linear equation defining Lj in Theorem 5.2. Summing up, we have

hom
(
(m∗OX)∨, E

)
= hom(OX , E) +

∑
j :H·L2

j=0

ηj · hom(Lj , E) = O(m2).

To bound the ext2, by Serre duality, we have

ext2(Lj , E) = hom(E,Lj ⊗ ωX [1]).

Since ωX = OX(−
∑

ρDρ), we have

L′j := Lj ⊗ ωX = OX

(
− 1

m

∑
ρ

(m− aρ)Dρ

)
.

Since 0 ≤ aρ < m, then m − aρ > 0, for all ρ. Therefore, H2 · L′j < 0 and H · (L′j)2 > 0. Hence,

L′j [1] ∈ Cohβ=0(X) and
lim
α→0

να,0(L′j [1]) < 0 = lim
α→0

να,0(E).

Again by stability of L′j [1] we have

hom(E,Lj ⊗ ωX [1]) = 0

for all j. It follows that
χ(OX ,m∗E) = O(m2),

giving the required contradiction.

5.C. Proof of Theorem 5.1: the rational case

In this section, we assume that β(E) ∈ Q \ Z. We write β(E) = p
q , with p and q coprime, q > 0. We

want to show that ch
p/q
3 (E) ≤ 0. As before, by the Hirzebruch-Riemann-Roch Theorem, we have

χ
(
OX ,m∗

(
q∗E ⊗OX(−pH)

))
= m3q3 ch

p/q
3 (E) +O(m2),

and, by adjointness,

χ
(
OX ,m∗

(
q∗E ⊗OX(−pH)

))
= χ

(
(mq∗OX(−mpH))∨, E

)
≤ hom

(
(mq∗OX(−mpH))∨, E

)
+ ext2

(
(mq∗OX(−mpH))∨, E

)
.

By Theorem 5.2,

mq∗OX(−mpH) =
⊕
j

(
L∨j
)⊕ηj ,
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where

Lj = OX

(
1

mq

(
mpH +

∑
ρ

aρDρ

))
,

and 0 ≤ aρ < mq. Therefore,

ch
p/q
1 (Lj) = Lj ⊗OX

(
−p
q
H

)
= OX

(
1

mq

∑
ρ

aρDρ

)

is an effective divisor and cannot be OX because p/q is not an integer. It follows that H2·chp/q1 (Lj) > 0
for all j. Moreover

H · chp/q2 (Lj) =
1

2
H · chp/q1 (Lj)

2 ≥ 0.

As in the β(E) = 0 case, the equality holds if and only if the corresponding ηj has order at most m2,

since q is constant. If H · chp/q2 (Lj) > 0, then

lim
α→0

να,p/q(Lj) > 0 = lim
α→0

να,p/q(E)

and so hom(Lj , E) = 0. As in the integral case, this shows that

hom
(

(mq∗OX(−mpH))∨, E
)

= O(m2).

The vanishing of ext2 follows as in the integral case, by using Serre duality and stability.

5.D. Proof of Theorem 5.1: the irrational case

Finally, we assume that β(E) ∈ R \ Q. By assumption, there exists ε > 0 such that E is να,β-stable
for all (α, β) in

Vε :=
{

(α, β) ∈ R>0 × R : 0 < α < ε, β(E)− ε < β < β(E) + ε
}
.

By the Dirichlet approximation theorem, there exists a sequence
{
βn = pn

qn

}
n∈N

of rational num-

bers such that ∣∣∣∣β(E)− pn
qn

∣∣∣∣ < 1

q2
n

< ε

for all n, where qn → +∞ as n→ +∞.
We compute, for n� 0,

χ
(
OX , qn∗E ⊗OX(−pnH)

)
= q3

n ch
pn/qn
3 (E) +O(q2

n) ≥ q3
n ch

β(E)
3 (E) +O(q2

n).

The last inequality follows since, by definition, chβ3 (E) has a local minimum at β = β(E).

As in the previous cases, we assume for a contradiction that ch
β(E)
3 (E) > 0, and we want to bound

χ
(

(qn∗OX(−pnH))∨, E
)
≤ hom

(
(qn∗OX(−pnH))∨, E

)
+ ext2

(
(qn∗OX(−pnH))∨, E

)
for n� 0. By Theorem 5.2,

qn∗OX(−pnH) =
⊕
j

((
L

(n)
j

)∨)⊕η(n)j

,
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where

L
(n)
j = OX

(
1

qn

(
pnH +

∑
ρ

a(n)
ρ Dρ

))
,

and 0 ≤ a
(n)
ρ < qn. Notice that, since L

(n)
j is an integral divisor, pn

qn
and

a
(n)
ρ

qn
are both universally

bounded with respect to n, there is only a finite number of isomorphism classes of L
(n)
j for all n.

We have that

ch
pn/qn
1 (L

(n)
j ) = L

(n)
j ⊗OX

(
−pn
qn
H

)
= OX

(
1

qn

∑
ρ

a(n)
ρ Dρ

)

is an effective divisor, and cannot be OX for n� 0. Since
∑

ρ a
(n)
ρ Dρ is an integral divisor, we have

H2 ·
∑
ρ

a(n)
ρ Dρ ≥ 1,

so that

H2 · chpn/qn1

(
L

(n)
j

)
≥ 1

qn
.

Now,

H2 · chβ1
(
L

(n)
j

)
= H2 · chpn/qn1

(
L

(n)
j

)
+H3

(
pn
qn
− β

)
≥ 1

qn
− H3

q2
n

> 0

for n� 0. Therefore L
(n)
j belongs to Cohβ(X) for n� 0. By definition,

H · chβ1
(
L

(n)
j

)2
= H ·

(
ch
pn/qn
1

(
L

(n)
j

)
+

(
pn
qn
− β

)
H

)2

> H ·
(

ch
pn/qn
1

(
L

(n)
j

))2
+ 2

(
pn
qn
− β

)
H · chpn/qn1

(
L

(n)
j

)
>

1

q3
n

H ·
(
qn

(∑
a(n)
ρ Dρ

)2
− 2H ·

∑
a(n)
ρ Dρ

)
.

If

fn,j := H · chβ2
(
L

(n)
j

)
=

1

2
H · chβ1

(
L

(n)
j

)2
> 0,

we can argue as in the previous cases to show that Hom(L
(n)
j , E) = 0 by stability. Since qn →∞, we

can have fn,j ≤ 0 only if the ratio

2H2 ·
∑
a

(n)
ρ Dρ

H ·
(∑

a
(n)
ρ Dρ

)2

is not bounded from above for n� 0, since H ·
(∑

a
(n)
ρ Dρ

)2
≥ 0 by assumption. But

2H2 ·
∑

a(n)
ρ Dρ ≤ K ·

∑
a(n)
ρ ,

for a constant K > 0 which is independent on n and j, and

H ·
(∑

a(n)
ρ Dρ

)2
=
∑
ρ,τ

a(n)
ρ a(n)

τ (H ·Dρ ·Dτ ).
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Fix ρ0 such that a
(n)
ρ0 6= 0. Then

a(n)
ρ0 ≤

∑
τ

a(n)
ρ0 a

(n)
τ (H ·Dρ0 ·Dτ )

unless a
(n)
τ = 0 for all τ for which H ·Dρ0 ·Dτ 6= 0. That is, we can have a

(n)
τ 6= 0 possibly only for τ

such that H ·Dρ0 ·Dτ = 0. By our assumption, the latter equality means that Dτ has the same divisor
class as Dρ0 , H ·D2

ρ0 = 0. Indeed, we can show first that H ·Dρ0 ·Dτ = 0 implies that H ·D2
τ ≤ 0.

Assume not and set λ =
H2·Dρ0
H2·Dτ . The Hodge Index Theorem says

0 ≥ H · (Dρ0 − λDτ )2 = λ2H ·D2
τ > 0,

a contradiction.
By the assumption in the theorem this implies H · D2

τ = 0. Thus, we get H · (Dτ + Dρ0)2 = 0.
By the extremality assumption, we then have that Dτ is in the same class as Dρ0 . It follows that

H ·
(

ch
pn/qn
1

(
L

(n)
j

))2
= 0.

Moreover, as in the integral case, we can bound the number of torus-invariant divisors in the

same class of such a Dρ0 . Summing up, if fn,j ≤ 0, then the multiplicity η
(n)
j has order at most q2

n.

Together with the finiteness of the isomorphism classes of L
(n)
j , we have that

hom
(

(qn∗OX(−pnH))∨, E
)

=
∑

j :H.
(
L
(n)
j

)2
=0

η
(n)
j hom(L

(n)
j , E) = O(q2

n).

As before, the vanishing of ext2 follows as in the integral case, by using Serre duality and stability.

This shows that ch
β(E)
3 (E) ≤ 0 also in this case, and therefore completes the proof of Theorem 5.1.

6. Details about the blow-up of P3 in a point

Theorem 1.1 implies the existence of Bridgeland stability conditions on all Fano threefolds. However,
it would be interesting to know what the optimal class Γ is. A condition that is coherent with the
case of Picard rank 1 would be Γ ·H = 0.

In this section we will study the blow-up of P3 in a point more carefully. We use the notations for
divisors on X which were introduced in Section 4.B.. In [Sch16], it was shown that the line bundle
O(h) does not satisfy Theorem 1.1 with Γ = 0. In [Mar16], it was shown that the structure sheaf
Oe of the exceptional divisor also does not satisfy Theorem 1.1 with Γ = 0. We will do the following
computation.

Proposition 6.1. Line bundles on the blow-up of P3 in a point and Oe satisfy Theorem 1.1 with

Γ = k(h2 + 2e2), for 1
48 ≤ k ≤

3
98 + 2

√
2

147 .

Note that here Γ ·H = 0.

Proof. Recall that H = 2h− e, so by twisting a suitable choice of O(H), we can assume that the line
bundle is of the form O(mh) for an integer m.

The hyperbola να,β(O(mh)) = 0 is given by the equation

7α2 − 7β2 + 8mβ − 2m2 = 0.
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So when m ≤ 0, then β = 4+
√

2
7 m. Evaluating the left hand side of the inequality in Theorem 1.1, we

get

chβ3 (O(mh))− Γ · chβ1 (O(mh))− α2

6
H2 · chβ1 (O(mh))

=
m3

6
− βm2 + 2β

2
m− 7

6
β

3 − km

=

(
3

98
+

2
√

2

147

)
m3 − km.

So when k ≤ 3
98 + 2

√
2

147 , the above function is less than or equal to 0 for any integer m ≤ 0, and the
theorem holds.

When m = 1 holds, then β = 4−
√

2
7 . A similar computation shows that the inequality holds for

m = 1 when k ≥ 3
98 −

2
√

2
147 .

Now we focus on the case when m ≥ 2. In this case O(mh) is not β-stable. To see this, just note
that there always exists a nontrivial map O(mh − e) → O(mh). The wall induced by this map is
given by the equation

7α2 + 7β2 − 7β − 2m2 + 4m = 0.

When m ≥ 2, this wall is non-empty, and O(mh) is destabilized on the wall. So in order to show the
theorem, it suffices to check the inequality at this wall.

Note that the top point of the wall, which is also the intersection with the hyperbola να,β(O(mh)) =

0, has coordinates β = 1
2 and α2 = 2m2−4m+7/4

7 . So we have

chβ3 (O(mh))− Γ · chβ1 (O(mh))− α2

6
H2 · chβ1 (O(mh))

=
m3

6
− βm2 + 2β2m− 7

6
β3 − km− 2m2 − 4m+ 7/4

42
(4m− 7β)

= −m
3

42
+
m2

21
− km.

It is easy to see that this function is negative for m ≥ 2 and k > 0.
For the structure sheaf Oe, we have β = 1

2 and

ch
1/2
3 (Oe)− Γ · ch1/2

1 (Oe) =
1

24
− 2k,

from which the result follows. �

References

[AB13] D. Arcara and A. Bertram, Bridgeland-stable moduli spaces for K-trivial surfaces. With
an appendix by Max Lieblich. J. Eur. Math. Soc. (JEMS) 15 (2013), no. 1, 1–38. MR-
2998828

[Ach15] P. Achinger, A characterization of toric varieties in positive characteristic p, Int. Math.
Res. Not. IMRN 2015 (2015), no. 16, 6879–6892. MR-3428948

[BBMT14] A. Bayer, A. Bertram, E. Macr̀ı, and Y. Toda, Bridgeland stability conditions of threefolds
II: An application to Fujita’s conjecture, J. Algebraic Geom. 23 (2014), no. 4, 693–710.
MR-3263665

http://www.ams.org/mathscinet-getitem?mr=2998828
http://www.ams.org/mathscinet-getitem?mr=2998828
http://www.ams.org/mathscinet-getitem?mr=3428948
http://www.ams.org/mathscinet-getitem?mr=3263665


M. Bernardara, E. Macr̀ı, B. Schmidt, & X. Zhao, Bridgeland Stability Conditions on Fano Threefolds 23M. Bernardara, E. Macr̀ı, B. Schmidt, & X. Zhao, Bridgeland Stability Conditions on Fano Threefolds 23

[BMS16] A. Bayer, E. Macr̀ı, and P. Stellari, The space of stability conditions on abelian three-
folds, and on some Calabi–Yau threefolds, Invent. Math. 206 (2016), no. 3, 869–933.
MR-3573975

[BMT14] A. Bayer, E. Macr̀ı, and Y. Toda, Bridgeland stability conditions on threefolds I:
Bogomolov–Gieseker type inequalities, J. Algebraic Geom. 23 (2014), no. 1, 117–163.
MR-3121850

[Bri07] T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166
(2007), no. 2, 317–345. MR-2373143

[Bri08] T. Bridgeland, Stability conditions on K3 surfaces, Duke Math. J. 141 (2008), no. 2,
241–291. MR-2376815

[BVdB03] A. Bondal and M. Van den Bergh, Generators and representability of functors in commu-
tative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36. MR-1996800

[CLS11] D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, Graduate Studies in Mathe-
matics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR-2810322

[Fuj82] T. Fujita, Classification of projective varieties of ∆-genus one, Proc. Japan Acad. Ser. A
Math. Sci. 58 (1982), no. 3, 113–116. MR-0664549

[HRS96] D. Happel, I. Reiten, and S. O. Smalø, Tilting in abelian categories and quasitilted algebras,
Mem. Amer. Math. Soc. 120 (1996), no. 575, viii + 88 pp. MR-1327209

[IP99] V. A. Iskovskikh and Y. G. Prokhorov, Algebraic geometry. V. Fano varieties. A trans-
lation of Algebraic geometry. 5 (Russian), Ross. Akad. Nauk, Vseross. Inst. Nauchn. i
Tekhn. Inform., Moscow. Translation edited by A. N. Parshin and I. R. Shafarevich. En-
cyclopaedia of Mathematical Sciences, vol. 47, Springer-Verlag, Berlin, 1999. MR-1668575

[Li15] C. Li, Stability conditions on Fano threefolds of Picard number one, preprint, 2015.
arXiv:1510.04089

[LM16] J. Lo and Y. More, Some examples of tilt-stable objects on threefolds, Comm. Algebra 44
(2016), no. 3, 1280–1301. MR-3463144

[Mac14a] A. Maciocia, Computing the walls associated to Bridgeland stability conditions on projec-
tive surfaces, Asian J. Math. 18 (2014), no. 2, 263–279. MR-3217637

[Mac14b] E. Macr̀ı, A generalized Bogomolov–Gieseker inequality for the three-dimensional projec-
tive space, Algebra Number Theory 8 (2014), no. 1, 173–190. MR-3207582

[Mar16] C. Martinez, Failure of the generalized Bogomolov–Gieseker type inequality on blowups,
preprint, 2016.

[MP15] A. Maciocia and D. Piyaratne, Fourier–Mukai transforms and Bridgeland stability condi-
tions on abelian threefolds, Algebr. Geom. 2 (2015), no. 3, 270–297. MR-3370123

[MP16] A. Maciocia and D. Piyaratne, Fourier–Mukai transforms and Bridgeland stability con-
ditions on abelian threefolds II, Internat. J. Math. 27 (2016), no. 1, 1650007, 27 pp.
MR-3454685

[Piy16] D. Piyaratne, Generalized Bogomolov–Gieseker type inequalities on Fano 3-folds, preprint,
2016. arXiv:1607.07172

http://www.ams.org/mathscinet-getitem?mr=3573975
http://www.ams.org/mathscinet-getitem?mr=3121850
http://www.ams.org/mathscinet-getitem?mr=2373143
http://www.ams.org/mathscinet-getitem?mr=2376815
http://www.ams.org/mathscinet-getitem?mr=1996800
http://www.ams.org/mathscinet-getitem?mr=2810322
http://www.ams.org/mathscinet-getitem?mr=0664549
http://www.ams.org/mathscinet-getitem?mr=1327209
http://www.ams.org/mathscinet-getitem?mr=1668575
https://arxiv.org/abs/1510.04089
http://www.ams.org/mathscinet-getitem?mr=3463144
http://www.ams.org/mathscinet-getitem?mr=3217637
http://www.ams.org/mathscinet-getitem?mr=3207582
http://www.ams.org/mathscinet-getitem?mr=3370123
http://www.ams.org/mathscinet-getitem?mr=3454685
https://arxiv.org/abs/1607.07172


24 References24 References

[SAGE] The Sage Developers, Sage Mathematics Software (Version 6.6), 2015. http://www.

sagemath.org

[Sch14] B. Schmidt, A generalized Bogomolov–Gieseker inequality for the smooth quadric threefold,
Bull. Lond. Math. Soc. 46 (2014), no. 5, 915–923. MR-3262194

[Sch16] B. Schmidt, Counterexample to the generalized Bogomolov-Gieseker inequality for three-
folds, preprint, 2016. arXiv:1602.05055

[Tho00] J. F. Thomsen, Frobenius direct images of line bundles on toric varieties, J. Algebra 226
(2000), no. 2, 865–874. MR-1752764

[Tod12] Y. Toda, Stability conditions and curve counting invariants on Calabi–Yau 3-folds, Kyoto
J. Math. 52 (2012), no. 1, 1–50. MR-2892766

[Tod14] Y. Toda, Derived category of coherent sheaves and counting invariants, preprint, 2014.
arXiv:1404.3814

http://www.sagemath.org
http://www.sagemath.org
http://www.ams.org/mathscinet-getitem?mr=3262194
https://arxiv.org/abs/1602.05055
http://www.ams.org/mathscinet-getitem?mr=1752764
http://www.ams.org/mathscinet-getitem?mr=2892766
https://arxiv.org/abs/1404.3814

	1. Introduction
	2. Background on tilt stability
	3. Li's Bogomolov inequality
	4. The main theorem
	5. Toric threefolds
	6. Details about the blow-up of ¶3 in a point

