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On a theorem of Campana and Paun

Christian Schnell

Abstract. Let X be a smooth projective variety over the complex numbers, and A C X a
reduced divisor with normal crossings. We present a slightly simplified proof for the following
theorem of Campana and Paun: If some tensor power of the bundle Q% (log A) contains a
subsheaf with big determinant, then (X, A) is of log general type. This result is a key step
in the recent proof of Viehweg’s hyperbolicity conjecture.
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Titre. Sur un théoréme de Campana et Paun

Résumé. Soit X une variété projective complexe lisse et A C X un diviseur réduit a
croisements normaux. Nous présentons une démonstration légerement simplifiée du théoreme
suivant de Campana et Pdun : si une puissance tensorielle du fibré Q% (log(A)) contient un
faisceau dont le déterminant est big, la paire (X, A) est alors de log-type général. Ce résultat
est une étape clé dans la récente démonstration de la conjecture d’hyperbolicité de Viehweg.
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1. Introduction

The purpose of this paper is to present a slightly simplified proof for the following result by Campana
and Paun [CP15, Theorem 7.6]. It is a crucial step in the proof of Viehweg’s hyperbolicity conjecture
for families of canonically polarized manifolds [CP15, Theorem 7.13], and more generally, for smooth
families of varieties of general type [PS17, Theorem A].

Theorem 1. Let X be a smooth projective variety, and A C X a reduced divisor with at worst normal
crossing singularities. If some tensor power of Qﬁ((log A) contains a subsheaf with big determinant,
then Kx + A is big.

The simplification is that I have substituted an inductive procedure for the arguments involving
Campana’s “orbifold cotangent bundle”; otherwise, the proof of Theorem 1 that I present here is
essentially the same as in the one in [CP15]. My reason for writing this paper is that it gives me a
chance to draw attention to some of the beautiful ideas involved in the proof by Campana and Paun:
slope stability with respect to movable classes; a criterion for the leaves of a foliation to be algebraic
subvarieties; and positivity results for relative canonical bundles.

Remark 2. The most recent arXiv version of the paper by Campana and Paun (from June 14, 2017)
also contains a brief summary of our proof; see [CP15, Section 8.1].

2. Strategy of the proof

Let (X, A) be a pair, consisting of a smooth projective variety X and a reduced divisor A C X with
at worst normal crossing singularities. We denote the logarithmic cotangent bundle by the symbol
QL (log A), and its dual, the logarithmic tangent bundle, by the symbol Jx(—logA). Recall that
Ix(—log A) is naturally a subsheaf of the tangent bundle Zx, and that it is closed under the Lie

bracket on Jx. Indeed, suppose that A is given, in suitable local coordinates x1,zo, ..., 2y, by the
equation x1zy - - xx = 0; then Jx(—log A) is generated by the n commuting vector fields
. 0 . 0 0 0
laxla"'v kaxk7axk+17"'7axna

and is therefore closed under the Lie bracket.
Suppose that Q4 (log A)®Y contains a subsheaf with big determinant, for some N > 1. The
following observation reduces the problem to the case of line bundles.

Lemma 3. If Qﬁ((log A)®N contains a subsheaf of generic rank r > 1 and with big determinant, then
QL (log A)YONT contains a big line bundle.
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Proof. Let 2 C Q% (log A)®Y be a subsheaf of generic rank 7 > 1, with the property that det 2 is
big. After replacing Z by its saturation, whose determinant is of course still big, we may assume that

the quotient sheaf
Q% (log A)*N /2

is torsion-free, hence locally free outside a closed subvariety Z C X of codimension > 2. On X \ Z,
we have an inclusion of locally free sheaves

det B — B — Q% (log A)ONT,
which remains valid on X by Hartog’s theorem. U

For the purpose of proving Theorem 1, we are therefore allowed to assume that Qk(log A)EN
contains a big line bundle L as a subsheaf. Let 2 denote the quotient sheaf, and consider the
resulting short exact sequence

0—L—QY(logA)®N 5 2 0. (2.1)
Since K x + A represents the first Chern class of Q% (log A), we obtain
N - (dim X))V (Kx +A) = c1(L) 4+ ¢1(2)

in N'(X)g, the R-linear span of codimension-one cycles modulo numerical equivalence. By assump-
tion, the class ¢1(L) is big; Theorem 1 will therefore be proved if we manage to show that the class
c1(2) is pseudo-effective. In fact, we are going to prove the following more general result, which is of
course just a special case of [CP15, Theorem 7.6 and Theorem 1.2].

Theorem 4. Let X be a smooth projective variety, and A C X a reduced divisor with at worst
normal crossing singularities. Suppose that some tensor power of Q% (logA) contains a subsheaf
with big determinant. Then the first Chern class of every quotient sheaf of every tensor power of
QL (log A) is pseudo-effective.

3. Slopes and foliations

To simplify the presentation, we will prove Theorem 4 by contradiction. Suppose then that, for some
integer N > 1, and for some quotient sheaf 2 of Q% (log A)®¥ | the class ¢;(2) was not pseudo-
effective. Let 2, C 2 denote the torsion subsheaf. Since

c1(2) = c1(2tor) + c1(2/ 2tor),

and since ¢1(Zyor) is effective, we may replace 2 by 2/2;,,, and assume without any loss of generality
that 2 is torsion-free (and nonzero).

By the characterization of the pseudo-effective cone in [BDPP13, Theorem 2.2], there is a movable
class a € Ni(X)g such that ¢;(£2) - a < 0. As shown in [CP11, GKP16], there is a good theory of
a-semistability for torsion-free sheaves, with almost all the properties that are familiar from the case
of complete intersection curves. We use this theory freely in what follows. By assumption,

a(2) -«

,Lba(o@) = I'kg

<0,

and so 2 is a torsion-free quotient sheaf of Q4 (log A)®" with negative a-slope. The dual sheaf 2% is
therefore a saturated subsheaf of Fx (—log A)®N with positive a-slope. At this point, we recall the
following result about tensor products.
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Theorem 5. Let a € Ni(X)r be a movable class. If F and & are torsion-free and a-semistable
coherent sheaves on X, then their tensor product

FRY = (ﬂ\ ®g)/(9 ®g>tor7
modulo torsion, is again a-semistable, and pio(FRY) = pa(F) + p1a(9).

Proof. For the reflexive hull of the tensor product, this is proved in [GKP16, Theorem 4.2 and
Proposition 4.4], based on analytic results by Toma [CP11, Appendix]. Since .Z®¥ and its reflexive
hull are isomorphic outside a closed subvariety of codimension > 2, the assertion follows. (The formula
for the a-slope of .F®% is of course valid for arbitrary nonzero torsion-free coherent sheaves .# and

G) O

Similarly, the fact that Zx(—log A)®N has a subsheaf with positive a-slope implies, again by
[GKP16, Theorem 4.2 and Proposition 4.4], that Zx(—logA) must also contain a subsheaf with
positive a-slope. Let Fa C JIx(—logA) be the maximal a-destabilizing subsheaf [GKP16, Corol-
lary 2.24].

Lemma 6. % is a saturated, a-semistable subsheaf of Tx(—logA), of positive a-slope. Every
subsheaf of Ix(—log A)/Fa has a-slope less than pa(Fa).

Proof. This is clear from the construction of the maximal destabilizing subsheaf in [GKP16, Corol-
lary 2.4]. Note that .#a is the first step in the Harder-Narasimhan filtration of 7x(—logA), see
[GKP16, Corollary 2.26]. O

-

Recall that we have an inclusion Ix(—logA) C Jx. We define another coherent subsheaf .7
TIx as the saturation of Z in Jx; then Tx/F is torsion-free, and

F N Tx(~log A) = Fa. (3.2)

We will see in a moment that % is actually a (typically, singular) foliation on X. Recall that, in
general, a foliation on a smooth projective variety is a saturated subsheaf .# C Jx that is closed
under the Lie bracket on Zx. From the Lie bracket, one constructs an &x-linear mapping

N: FR.F — Ix/F,
called the O’Neil tensor of .F; evidently, .Z is a foliation if and only if its O’Neil tensor vanishes.

Lemma 7. The O’Neil tensor
N: FRF — Ix | F

vanishes, and F 1is therefore a foliation on X.
Proof. The Lie bracket of two sections of Tx(—logA) is a section of Ix(—logA), and so we get a

logarithmic O’Neil tensor
NA: yAQA@ﬁA — ﬂx(—logA)/ﬁA.

The key point is that Na = 0. Indeed, by Theorem 5, the tensor product .Fa®.%a, modulo torsion,
is again a-semistable of slope

(o (FABFA) =2 pa(Fa) > pal(Fa),

which is strictly greater than the slope of any nonzero subsheaf of Jx(—logA)/.%a by Lemma 6.
This inequality among slopes implies that No = 0, see for instance [GKP16, Proposition 2.16 and
Corollary 2.17].
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The O’Neil tensor N and the logarithmic O’Neil tensor Na are both induced by the Lie bracket
on Jx, and so we have the following commutative diagram:

FadTn 2% Ti(—log A)/Fa

! [

FoF — N Iy F

The vertical arrow on the right is injective by (3.2). Now Na = 0 implies that N factors through
the cokernel of the vertical arrow on the left; but the cokernel is a torsion sheaf, whereas Jx /% is
torsion-free. The conclusion is that N = 0. O

The next step in the proof is to show that the foliation .# is actually algebraic. This is a simple
consequence of the powerful algebraicity theorem of Campana and Paun [CP15, Theorem 1.1], which
generalizes a well-known result by Bogomolov and McQuillan [BM16] and Bost [Bos01, §3.3] from
complete intersection curves to movable classes. (See also the paper [KSTO07] by Kebekus, Sola Conde,
and Toma.)

Theorem 8. Let X be a smooth projective variety over the complex numbers, and let F C Ix be
a foliation. Suppose that there exists a movable class a € N1(X)Rr, such that every nonzero quotient
sheaf of % has positive a-slope. Then F is an algebraic foliation, and its leaves are rationally
connected.

To apply this in our setting, we observe that every quotient sheaf of .% is, at least over the open
subset X \ A, also a quotient sheaf of .#x, because .# and .#a agree outside the divisor A. As #a
is a-semistable with uq(F) > 0, it follows easily that every quotient sheaf of .# has positive a-slope.
We can now invoke Theorem 8 and conclude that the foliation .# is algebraic. In other words [CP15,
§4], there exists a dominant rational mapping

p: X -7
to a smooth projective variety Z, such that
F = ker(dp: Ix — p*yz)

outside a subset of codimension > 2. More precisely, let us follow [CKT16, Construction 2.29] and
denote by the symbol I /z the unique reflexive sheaf on X that agrees with ker(dp: TIx — p* ﬂz)
on the big open subset where p is a morphism. Using this notation, the algebraicity of .# may be
expressed as

F = yX/Z; (3.3)

indeed, .Z is reflexive, due to the fact that Jx /.Z is torsion-free.

Remark 9. Theorem 8 also says that the fibers of p are rationally connected, but we are not going
to make any use of this extra information. This means that the proof of Theorem 4 only uses
characteristic zero methods.

4. Pseudo-effectivity

Let us first convince ourselves that Z cannot be a point. This will later allow us to argue by induction
on the dimension, because the general fiber of p has dimension less than dim X.

Lemma 10. With notation as above, we must have dim Z > 1.
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Proof. If dimZ = 0, then % = Jx and Fan = Ix(—logA), and consequently, the logarith-
mic tangent bundle Jx(—logA) is a-semistable of positive slope. Since the tensor product of a-
semistable sheaves remains a-semistable [GKP16, Proposition 4.4], this means that any tensor power
of Q% (log A) is a-semistable of negative slope. But that contradicts the hypothesis of Theorem 4,
namely that some tensor power of Qﬁ((log A) contains a subsheaf with big determinant, because the
a-slope of such a subsheaf is obviously positive. O

The only properties of #a that we are still going to use in the proof of Theorem 4 are the identity
in (3.2), and the fact that ¢;(%a) - a > 0 for a movable class o € N1(X)r. In return, we are allowed
to assume that p: X — Z is a morphism.

Lemma 11. Without loss of generality, p: X — Z is a morphism.

Proof. Choose a birational morphism f: X — X, for example by resolving the singularities of the
closure of the graph of p: X --» Z inside X x Z, with the following properties: the rational mapping
po f extends to a morphism p: X — Z; both K /X and p*A are normal crossing divisors; and f is
an isomorphism over the open subset where p is already a morphism.
Let A be the reduced normal crossing divisor whose support is equal to the preimage of A in X.
Then
0% (log A) = Q) (log A),

and since the pullback of a big line bundle by p stays big, it is still true that some tensor power of
Q}((log A) contains a big line bundle as a subsheaf. Now define

F = T2 = ker(p*: T3 = p*T%),
T,

which is a saturated subsheaf of - The intersection

Z N QX(—logA)

is a saturated (and hence reflexive) subsheaf of .75 (—log A), whose pushforward to X is isomorphic
to Za, by (3.2) and the fact that .#x is reflexive. Consequently,

c1 <ﬁﬂ QX(—logA)) ca=ci(Fa)-a>0,

where the class & = p*a € N1(X)r is of course still movable. Nothing essential is therefore changed
if we replace the rational mapping p: X --» Z by the morphism p: X — Z; the divisor A C X by
A C X; the sheaf Z#a by the intersection

9}2/2 N yX(—IOgA) C I
and the movable class o € N1(X)g by its pullback & = p*a. O

Let R(p) denote the ramification divisor of the morphism p: X — Z; see [CKT16, Definition 2.16]
for the precise definition. Recall from [CKT16, Lemma 2.31] the following formula for the first Chern
class of our foliation # C Jx, in N1(X)g:

ci(F) = c1(Ixz) = —Kxz + R(p) (4.4)

Computing the first Chern class of Zx is a little tricky [CP15, Proposition 5.1, but at least we can
use the fact that # = I, to estimate the difference

Cl(g‘\) - Cl(yA) = Cl(ﬂ/yA).

Recall that the horizontal part A" C A is the union of all irreducible components of A that map
onto Z; evidently, A7 is again a reduced divisor on X with at worst normal crossing singularities.
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Lemma 12. The class c1(.F) — c1(Fa) — A" is effective.
Proof. Tt is easy to see from (3.2) that we have an inclusion of sheaves
F | Fn — Tx | Tx(—log A).
The sheaf on the right-hand side is supported on the divisor A, and a brief computation shows that

gx/gx(— logA) = @ </VD|X
DCA

is isomorphic to the direct sum of the normal bundles of the irreducible components of A. The rank
of F /Z at the generic point of D is thus either 0 or 1, and

Cl(y/ﬂA) = Z aDD,
DCA

where ap = 0 if # = Za at the generic point of D, and ap = 1 otherwise. To prove that ¢1(.% /. Fa)—
AT s effective, we only have to argue that .# # .Za at the generic point of each irreducible
component of A", This is a consequence of the fact that .# = Tx )z, as we now explain.

Fix an irreducible component D of the horizontal part A"7". At the generic point of D, the
morphism p: X — Z is smooth. After choosing suitable local coordinates x1, . .., z, in a neighborhood
of a sufficiently general point of D, we may therefore assume that p is locally given by

p(x1,...,xn) = (T1,...,24),

where d = dim Z, and that the divisor A is defined by the equation x, = 0. In these local coordinates,
F = Jx/z is the subbundle of Jx spanned by

o 0 0
B2y 01’ Ozgrt

On the other hand, the subsheaf Zx(—logA) is spanned by the vector fields

0 0 0 0
"0x, 0xn_1’ " Oxgyer T Oxy’
and so it is clear from (3.2) that .# # %A in a neighborhood of the given point. O

From Lemma 12, we draw the conclusion that
— (Kx/z + Ahor R(p)) -a= (a(F) - Ahor) ca>ci(Fa)-a>0, (4.5)

where a € Nj(X)g is the movable class from above. We will therefore reach the desired contradiction
if we manage to prove that the divisor class Kx /7 + AT — R(p) is pseudo-effective. According to
[CP15, Theorem 3.3] or to [CKT16, Theorem 7.1}, it is actually enough to check that Kr + Ap is
pseudo-effective for a general fiber F' of the morphism p; and we can prove, by induction on the
dimension, that Kr + Ap is not only pseudo-effective, but even big. The results that we use here
are slight improvements of [Cam04, Theorem 4.13], which is itself a generalization of Viehweg’s weak
positivity theorem.
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5. Induction on the dimension
In this section, we use induction on the dimension to finish the proof of Theorem 4 and Theorem 1.

Proposition 13. Suppose that Theorem 1 is true in dimension less than dim X. If some tensor
power of QL (log A) contains a subsheaf with big determinant, then Kx/z + AT s pseudo-effective.

Proof. Let F be a general fiber of the morphism p: X — Z; since dimZ > 1, we have dim F' <
dim X — 1. Denote by Ap the restriction of A; since F' is a general fiber, Ap is still a normal crossing
divisor. Clearly

(Kx/z + Ahor)’F = Kr + Ap,

and according to [CKT16, Theorem 7.3], the pseudo-effectivity of K x /Z—i—Ah‘”" will follow if we manage
to show that Kp 4+ A is pseudo-effective.
By hypothesis and by Lemma 3, there is a nonzero morphism

L — Q% (log A)®*

from a big line bundle L to some tensor power of Q}((log A). Since F is a general fiber of p: X — Z,
we can restrict this morphism to F' to obtain a nonzero morphism

Lp — (Q}((log A) ‘F) o

Here L denotes the restriction of L to the fiber; since L is big, L is also big.
The inclusion of F' into X gives rise to a short exact sequence

0— Apx — Q}((logA)‘F — QL(log Ap) — 0,

which induces a filtration on the k-th tensor power of the locally free sheaf in the middle. Since the
normal bundle A x is trivial of rank dim Z, we find, by looking at the subquotients of this filtration,
that there is a nonzero morphism

LF — Q};(log AF)®j

for some 0 < j < k. Because L is big, we actually have 1 < j < k. Since we are assuming
that Theorem 1 is true for the pair (F, Ap), the class Kp + Ap is big on F, hence pseudo-effective.
Appealing to [CKT16, Theorem 7.3], we deduce that the class K x /Z—i—A’m is pseudo-effective on X . [

By induction on the dimension, the two assumptions of Proposition 13 are met in our case, and
the class Kx /7 + A" is therefore pseudo-effective. According to [CKT16, Theorem 7.1], this implies
that Ky, + A" — R(p) is also pseudo-effective.! Going back to the inequality in (4.5), we find that

0> —(Kx/z + AT — R(p)) - > c1(Fa) - a >0,

and so we have reached the desired contradiction. The conclusion is that ¢;(2) is indeed pseudo-
effective, and so Theorem 4 and Theorem 1 are proved.

Remark 14. Most of the argument, for example the proof of Lemma 10, goes through when some
tensor power of Q}( (log A) contains a subsheaf with pseudo-effective determinant. But Theorem 4 is
obviously not true under this weaker hypothesis: for example, on the product E x P! of an elliptic
curve and P!, there are nontrivial one-forms, yet the canonical bundle is not pseudo-effective. What
happens is that the last step in the proof of Proposition 13 breaks down: when L is not big, it may
be that j = 0 (and Lp is then trivial).

1T As stated, both [CP15, Theorem 3.3] and [CKT16, Theorem 7.1] actually assume that Kx + A is pseudo-

effective, but in the case of a morphism p: X — Z, the proofs go through under the weaker hypothesis that Kx,z + APor
is pseudo-effective.
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