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en sous-groupes de G lorsque p est minoré par le nombre de Coxeter de G. En guise
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1. Introduction

We work over an algebraically closed field k of characteristic p > 0.
In [S1], Serre showed that if semi-simple representations Vi of a group Γ are such that

∑
(dimVi −

1) < p, then their tensor product is semi-simple. In [S2], he more generally considers the case where
Γ is a subgroup of G(k), for G a reductive group, and where Γ is G-cr, meaning that whenever Γ
is contained in a parabolic subgroup P , it is already contained in a Levi subgroup of P . For G =∏

GL(Vi), this is equivalent to the semi-simplicity of the representations Vi of Γ. For a representation
V of G, one can then ask under what conditions does V becomes semi-simple, when considered as a
representation of Γ. In [S2, Theorem 6, page 25], Serre shows this is the case when the Dynkin height
htG(V ) is less than p. For G =

∏
GL(Vi) and V =

⊗
Vi , one has htG(V ) =

∑
(dimVi − 1).

In [D], the results of [S1] were generalized to the case when the Vi are semi-simple representations
of a group scheme G. In this paper, we consider the case when G is a subgroup scheme of a reductive
group G and generalize [S2] (see 4.11) and [D] (see 2.5). As in [D], we first have to prove a structure
theorem (2.5) on doubly saturated (see 2.4) subgroup schemes G of reductive groups G. The proof
makes crucial use of a result of Zhiwei Yun on root systems. The appendix contains the result.

In Section 5, we consider a reductive group acting on an affine variety X and a point x of X whose
orbit G.x is closed in X. We prove a schematic analogue of [BR, Propositions 7.4, 7.6] under some
conditions on the characteristic of k. More precisely, if X embeds in a G-module V of low height,
then we obtain, as a consequence of 2.5(2), an analogue of Luna’s étale slice theorem (5.1, 5.6). In
[BR] the language of schemes was not used and as a consequence the orbit G.x had to be assumed
“separable”. An orbit G.x is separable if and only if the stabilizer Gx is reduced.

2. Saturation and Infinitesimal saturation

2.1. Let G be a reductive algebraic group over k. Our terminology is that of [SGA3]: reductive
implies smooth and connected. By an algebraic group we will mean an affine group scheme of finite
type over k. Fix a maximal torus TG and a Borel subgroup containing TG which determines a root
system R and a set of positive roots R+. Let 〈 , 〉 be the natural pairing between the characters and
co-characters and for each root α, let α

∨
be the corresponding coroot.

If the root system R associated to G is irreducible, the Coxeter number hG of R and of G, admits
the following equivalent descriptions:

(1) It is the order of the Coxeter elements of the Weyl group W . This shows that R and the dual
root system R∨ have the same Coxeter number.
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(2) Let α0 be the highest root and
∑
niαi its expression as a linear combination of the simple roots.

One has:

hG = 1 +
∑

ni . (2.1.1)

(3) Applying this to the dual root system, one gets hG = 〈ρ, β∨〉+1 where ρ is half the sum of positive
roots and β

∨
is the highest coroot. Indeed, ρ is also the sum of the fundamental weights ωi , and

〈ωi , α
∨

j
〉 = δij .

For a general reductive group G, define the Coxeter number hG to be the largest among the ones for
the irreducible components of R.

It follows from (2) above that ifG is a reductive group, U the unipotent radical of a Borel subgroup,
and u := Lie(U), the descending central series of u, defined by Z

1
u = u and Z

i
u = [u, Z

i−1
u], satisfies

Z
h
G (u) = 0. (2.1.2)

For the group U , similarly Z
h
G (U) = (1).

The Lie algebra g of G is a p-Lie algebra. Let X 7→ X
[p]

denote the p-power operation on g. If
”nffl in g is nilpotent and if p ≥ hG , then ”nffl[p] = 0. To check this, we may assume that ”nffl is in the Lie
algebra u of the unipotent radical U of a Borel subgroup. For each positive root α, let Xα be a basis
for the root subspace gα . Express ”nffl as

∑
α∈R+

aα .Xα . Each Xα is the infinitesimal generator of an

additive group. It follows that X
[p]

α
= 0 for each α. Observe that

”nffl[p] =
∑
α∈R+

a
[p]

α
.X

[p]

α
(modulo Z

p
u) (2.1.3)

and Z
p
u = 0, as p ≥ hG (see [Mc 1, page 10]).

2.2. Let g
nilp

(resp. G
u
) be the reduced subscheme of Lie(G) (resp. G) with points the nilpotent

(resp. unipotent) elements. Let U be the unipotent radical of a Borel subgroup. For p ≥ hG ,
the Campbell-Hausdorff group law ◦ makes sense in characteristic p and turns u := Lie(U) into an
algebraic group over k. This is so since Z

p
u = 0. Further, there is an unique isomorphism

exp : (Lie(U), ◦) ∼−→ U (2.2.1)

equivariant for the action of B and whose differential at the origin is the identity. If in addition the
simply connected covering of the derived group of G is an étale covering (which is the case for p > hG ,
and could fail when p = hG due to the presence of SL(p) as factors in the covering), then there is a
unique G-equivariant isomorphism ([S2, Theorem 3, page 21] see Section 6 for details):

exp : g
nilp
→ G

u
(2.2.2)

which induces (2.2.1) on each unipotent radical of a Borel subgroup. Let log : G
u → g

nilp
denote its

inverse.
For u a unipotent element of G(k), one defines the “t-power map” t 7→ ut, from Ga to G, by

t 7→ exp(t log u). (2.2.3)

For G = GL(V ) such a map t 7→ ut is more generally defined for any u in G such that u
[p]

= 1. It
is given by the truncated binomial expression [S1, 4.1.1, page 524]:

t 7→ ut :=
∑
i<p

(
t

i

)
(u− 1)

i
. (2.2.4)
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Similarly, X in End(V ) such that X
[p]

= 0 defines a morphism t 7→ exp(tX) from Ga to GL(V ) given
by the truncated exponential series:

t 7→ I + tX +
(tX)

2

2!
+ . . .+

(tX)
p−1

(p− 1)!
. (2.2.5)

Until the end of §3, we make the following assumptions on the reductive group G.

Assumption 2.3. Let G̃ be the simply connected covering of the derived group G′. We assume that
p ≥ hG and that the map G̃→ G′ is étale.

In particular, by 2.1 and 2.2, the exponential map (2.2.2) is defined, every unipotent element in
G(k) is of order p, and every nilpotent in Lie(G) is a p-nilpotent. One can then define the notions of
saturation and infinitesimal saturation of subgroup schemes G ⊂ G as follows (see Remark 2.19 for
the case when G = PGL(p)).

Definition 2.4. ([S1, §4], [D, Definition 1.5])

(1) A subgroup scheme G ⊂ G is called saturated if for every u in G(k) which is unipotent, the
homomorphism t 7→ ut (2.2.3) from Ga to G factors through G.

(2) A subgroup scheme G ⊂ G is called infinitesimally saturated if for every nilpotent X in Lie(G),
the morphism t 7→ exp(tX) (2.2.2) from Ga to G factors through G.

(3) G is doubly saturated if it is saturated and infinitesimally saturated.

An element of Lie(G) is nilpotent if and only if it is nilpotent as an element of Lie(G). The
reference to the exponential map (2.2.2) in (2) therefore makes sense. One way to see that the
notions of nilpotence for elements of Lie(G) and Lie(G) coincide is to observe that the inclusion of
Lie(G) in Lie(G) is a morphism of p-Lie algebras and that X is nilpotent if and only if it is killed by

an iterated p-power map, i.e. X
[p`]

= 0.
Let G

0
be the identity component of G and G

0

red
the reduced subscheme of G

0
.

Theorem 2.5. Let G ⊂ G be a k-subgroup scheme which is infinitesimally saturated. Assume that if
p = hG, G

0

red
is reductive. Then

(1) The group G
0

red
and its unipotent radical Ru(G

0

red
) are normal subgroup schemes of G and the

quotient group scheme G
0
/G

0

red
is of multiplicative type.

(2) If G
0

red
is reductive, there exists a central, connected subgroup scheme of multiplicative type M ⊂

G
0

such that the morphism M ×G
0

red
→ G

0
realizes G

0
as a quotient of M ×G

0

red
.

We note that since k is assumed to be algebraically closed, a group scheme of multiplicative type
is simply a diagonalisable group scheme.

The proof of part (2) of 2.5 will occupy most section 2, until 2.16. Part (1) will be proven in
section 3.

By [D, Lemma 2.3], the conclusions of 2.5 hold for G if and only if they hold for the identity
component G

o
. Until the end of section 3, we will assume that G is connected.

Lemma 2.6. If G is an infinitesimally saturated subgroup scheme of G, every nilpotent element ”nffl of
Lie(G) is in Lie(G

red
).

Proof. As Ga is reduced, the morphismt 7→ exp(t ”nffl) maps Ga to G
red
⊂ G. Identifying Lie(Ga) with

a copy of the ground field, the image of 1 in Lie(Ga) is ”nffl. �
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Part (2) of 2.5 is a corollary of 2.6 and of the following theorem, which does not refer to G anymore.

Theorem 2.7. Let G be a connected algebraic group such that

(a) G
red

is reductive,

(b) any nilpotent element of Lie(G) is in Lie(G
red

).

Then, the conclusion of 2.5(2) holds. As a consequence, G
red

is a normal subgroup scheme of G and
G/G

red
is of multiplicative type.

Let T be a maximal torus of G
red

, and let H be the centralizer of T in G. One has H∩G
red

= T . It
follows from (b) that any nilpotent element ”nffl of Lie(H) is in Lie(T ), hence vanishes. By the following
lemma, H is of multiplicative type, and in particular commutative.

Lemma 2.8. Let H be a connected algebraic group over k. If all the elements of Lie(H) are semi-
simple, then H is of multiplicative type.

Proof. (See also [DG, IV, §3, Lemma 3.7].) Lie(H) is commutative: Fix x in Lie(H), and let us show
that it is central in Lie(H). As adx is semi-simple, it suffices to show that if y is in an eigenspace of
adx, i.e. [x, y] = λy, then x and y commute, i.e. λ = 0. Let W be the vector subspace of Lie(H)

generated by the y
[p`]

(` ≥ 0). The y
[p`]

commute. The map z 7→ z
[p]

therefore induces a p-linear
map from W to itself, injective by assumption. This implies that W has a basis ei , (1 ≤ i ≤ N)

consisting of elements such that e
[p]

i
= ei , and (

∑
aiei)

[p]
=
∑

(ai)
p
ei . To see this, we view W as an

algebraic group. The morphism W → W given by x 7→ x
[p] − x is étale. Let K be its kernel. In any

basis it is defined by d = dim(W ) equations of degree p, namely: (x
[p]

)i − xi = 0, i = 1, 2, . . . , d, with

an étale set of solutions and no solution at ∞ (the system of homogeneous equations (x
[p]

)i = 0 has

no non-zero solutions by assumptions). By Bezout, the group of solutions is hence a (Z/p)d . Let ei
be a basis for it. If the ei were not linearly independent in W , there would be a linear dependence∑

i∈J
aiei = 0, with the ai ∈ k non-zero, involving a minimal number of ei . We also have

∑
a
p

i
ei = 0.

Hence, by the minimality of the ei , for some λ and ∀i, ap
i

= λai . Rescaling by λ
1
p−1

, we get ai ∈ Fp ,
which is a contradiction.

Lemma 2.9. For b = (bi) in kN , define b
[p]

:= (b
[p]

i
). Then, any b in kN is a linear combination of

the b
[p`]

for ` ≥ 1.

Proof. The b
[pa]

(a ≥ 0) are linearly dependent. A linear dependence relation can be written∑
j≥m

cjb
[pj ]

= 0 (2.9.1)

with cm 6= 0. Extracting p
m

-roots, we get

(
∑
j≥0

djb
[pj ]

) = 0 (2.9.2)

where dj = c1/pm

m+j
. In particular, d0 6= 0, proving the lemma. �

End of proof of commutativity: From the lemma above, y is a linear combination of the y
[p`]

(` > 0).

The bracket [y
[p`]
, x] vanishes for (` > 0). Indeed, it is (ady)

[p`]
(x) which vanishes because [y, [y, x]] =

[y,−λy] = 0. It follows that [y, x] vanishes too.
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The p-Lie algebra Lie(H) is commutative and hence its p-power operation Lie(H) → Lie(H) is

injective. It therefore has a basis ei such that e
[p]

i
= ei . The dual of its restricted enveloping algebra

is the affine bigebra of the kernel K of the Frobenius morphism F : H → H
(p)

, where H
(p)

is obtained
from H by extension of scalars λ 7→ λ

[p]
, k → k. It follows that K is a product of µp ’s.

The same holds for H
(p)

, which is obtained from H using an automorphism of k. The same holds

for each H
(p`)

as well.
For any n, the kernel Kn of the iterated Frobenius map F

n
: H → H

(p`)
is an iterated extension

of subgroups of the kernel of the Frobenius of the H
(pi)

, i < n. It is hence of multiplicative type,
being an iterated extension of connected groups of multiplicative type [SGA3, XVII, 7.1.1].

The Kn form an increasing sequence. By the proof of [D, Proposition 1.1], there exist subgroup of
multiplicative type M of H containing all Kn . As H is connected and as M contains all infinitesimal
neighbourhoods of the identity element, one has M = H. �

Whenever a group M of multiplicative type acts on a group K, its action on Lie(K) defines a
weight decomposition:

Lie(K) =
⊕

β∈X(M)

Lie(K)
β
. (2.9.3)

If v ∈ Lie(K)
β
, then v

[p]
is in Lie(K)

p.β
. Indeed, after any extension of scalars R/k, if m is in M(R),

m(v
[p]

) = (m(v))
[p]

= (β(m)v)
[p]

= β(m)
[p]
v

[p]
. (2.9.4)

Lemma 2.10. Let M be a multiplicative group acting on a group K and let (2.9.3) be the weight

space decomposition for the corresponding action on Lie(K). If β ∈ X(M) is not torsion, Lie(K)
β

consists of nilpotent elements.

Proof. Indeed, if β is not torsion, the p
`
β are all distinct and Lie(K)

p
`
β

must vanish for ` � 0. It

follows that the elements of Lie(K)
β

are nilpotent. �

Let us apply this to the action of T on G by inner automorphisms.

Lemma 2.11. If β in X(T ) is not zero, the weight spaces Lie(G)
β

equals Lie(G
red

)
β
.

Proof. Indeed, Lie(G)
β

consists of nilpotent elements. By our assumption 2.7(b), it is contained in
Lie(G

red
). �

Let B a Borel subgroup of G
red

containing T , and let U be its unipotent radical.

Lemma 2.12. Under the assumption of 2.7, H normalizes U .

Proof. Let C in X(T )⊗ R be the cone generated by the positive roots relative to B and define

C∗ := C \ {0}. (2.12.1)

As in 2.11, we let T act on G by conjugation (t acts by g 7→ tgt
−1

). This action induces actions on
g := Lie(G), the affine algebra A of G, its augmentation ideal m (defining the unit element), and
the dual g∨ = m/m

2
of g. Similarly T acts on U , its Lie algebra u, its affine algebra AU and its

augmentation ideal mU . For the action on affine algebras, t in T transforms f(g) into f(t
−1
gt). From

these actions, we get X(T )-gradings. By 2.7(b)

u =
⊕
β∈C∗

g
β
. (2.12.2)
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It follows that u∨ = mU /m
2

U
is the sum of the (g∨)

β
, for β in the negative −C∗ of C∗. For n > 0, the

weights by which T acts on m
n

U
/m

n+1

U
are in −C∗. As U is connected, the intersection of the m

n

U
is

reduced to 0, and the weights by which T acts on mU are also in −C∗.
Let I be the ideal of A generated by the graded components m

β
of m for β not in −C∗, and put

A1 := A/I. The image in mU of a m
β

as above is contained in m
β

U
, hence vanishes. It follows that

U is contained in the closed subscheme U1 = SpecA1 of G defined by I. As the graded component
defined m

0
of m is contained in I, the graded component A

0

1
of A1 (the T -invariants) is reduced to

the constants. As T is connected it follows that U1 is connected. As the image of m
β

U
in m/m

2
is

(m/m
2
)
β
, the image of I in m/m

2
= g∨ is the orthogonal of u ⊂ g and the tangent space at the origin

of U1 is u.
Claim: The subscheme U1 of G is a subgroup scheme, i.e. the coproduct ∆ : A→ A⊗A, f(g) 7→

f(gh) maps I to I ⊗ A ⊕ A ⊗ I. Indeed, ∆ respects the gradings; for k ⊂ A the constants, one has

A = k ⊕m, and ∆ maps m to (k ⊗m)⊕ (m⊗ k)⊕ (m⊗m), and hence m
β

maps to

(k ⊗m
β
)⊕ (m

β ⊗ k)⊕
∑

β=β′+β′′

m
β′ ⊗m

β′′
. (2.12.3)

As −C∗ is stable by addition, if β = β′+ β′′ and that β is not in −C∗, one of β′ or β′′ is not in −C∗,
and the corresponding m

β′
or m

β′′
is contained in I. The claim follows.

To summarize, U1 is connected, and the inclusion U ⊂ U1 induces an isomorphism Lie(U)
∼−→

Lie(U1). As U is smooth, this implies that U = U1 .
Since H centralizes T , the ideal I is stable by H, meaning that H normalizes U . �

Corollary 2.13. Under the assumption of 2.7, H normalizes G
red

.

Proof. Let B− be the Borel subgroup of G
red

containing T and opposite to B, and let U− be its
unipotent radical. As U−, T and U are normalized by H, the big cell U−TU ⊂ G

red
is stable by the

conjugation action of H, and so is its schematic closure G
red

. �

In what follows, we identify schemes with the corresponding fppf sheaves. A quotient such as
G/H represents the quotient of the sheaf of groups G by the subsheaf H: G is a H-torsor over G/H.

Lemma 2.14. The morphism of schemes

G
red
/T → G/H (2.14.1)

is an isomorphism.

Proof. As T is the intersection of G
red

and H, the morphism (2.14.1), as a morphism of fppf sheaves,

is injective. Testing on Spec (k) and Spec (k[ε]/(ε
2
)), one sees that it is bijective on points and

injective on tangent space at each point. It is hence radicial and unramified. Therefore, on some
open set of G

red
/T , this morphism is an immersion. The G

red
homogeneity then shows that it is

a closed embedding. As G
red
/T is smooth and (2.14.1) is bijective on k-points, to prove that the

closed embedding (2.14.1) is an isomorphism, it suffices to prove that at each point it induces an
isomorphism of tangent spaces. By homogeneity, it suffices to check this at the origin. The tangent
space at the origin of G

red
/T is Lie(G

red
)/Lie(T ).

For the tangent space of G/H we proceed as follows. Let J be the ideal defining H in G and
η be the ideal defining the origin in G/H. As G is a H-torsor on G/H, the pull-back of η/η

2
to

G/H is J/J
2
, and η/η

2
is the fiber if J/J

2
at the origin e. By [D, 2.15] applied to T acting on G

by conjugation, we have an isomorphism (J/J
2
)e

∼−→
⊕

β 6=0
(m/m

2
)
β

= (Lie(G
red

)/Lie(T ))∨. Taking

duals, we see that (2.14.1) is an isomorphism near the origin, hence everywhere, proving 2.14. �
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Corollary 2.15. Under the assumptions of 2.7, G
red

is normal in G, and there exists in G a central
connected subgroup scheme of multiplicative type M such that the morphism M ×G

red
→ G realizes

G as a quotient of M ×G
red

.

Proof. By 2.14, the product map G
red
×H → G is onto, as a morphism of sheaves. As both G

red
and

H normalize G
red
⊂ G, so does G.

To complete the proof of 2.15 (and thereby of 2.7), we follow [D, §2.25]. Let M be the subgroup of
H which centralizes G

red
(as always, in the scheme theoretic sense). By [DG, Corollary 2.4 (a) , page

476], M is also multiplicative. Since G
red

is reductive, the group scheme AutT (G
red

) of automorphisms

which preserve T is precisely T
ad

, the image of T in the adjoint group. Hence the conjugation action
of H on G

red
gives the exact sequence:

1→M → H → T
ad → 1 (2.15.1)

and T surjects onto T
ad

implying that M and T generate H. Since M is generated by M
red
⊂ G

red

and M
0
, and since H and G

red
generate G we see that M

0
and G

red
generate G. Moreover, M is

central. Thus

M
0 ×G

red
→ G (2.15.2)

is an epimorphism. This concludes the proof of 2.7 and in particular, 2.5(2). �

Lemma 2.16. Suppose that H is a maximal connected subgroup scheme of multiplicative type of an
algebraic group G. Let Z

0

G
(H) be the identity component of the centralizer of H in G and define

U := Z
0

G
(H)/H. Then the sequence:

0→ Lie(H)→ Lie(Z
0

G
(H))→ Lie(U)→ 0 (2.16.1)

associated to the central extension

1→ H → Z
0

G
(H)→ U → 1 (2.16.2)

is exact.

Proof. Left exactness of (2.16.1) is clear. The maximality of H implies that U is unipotent (see [D,
§2.5, page 590]).

Embed H in Gr
m

as a subgroup scheme. The quotient H ′′ = Gr
m
/H is a torus, being a quotient

of one. The central extension (2.16.2), by a push forward, gives a central extension [SGA3, Exposé
XVII, Lemma 6.2.4]

1→ Gr
m
→ E → U → 1 (2.16.3)

and a diagram of groups:

1

��

1

��

1

��
1 // H //

��

Z
0

G
(H) //

��

U //

=

��

1

1 // Gr
m

//

��

E //

��

U //

��

1

1 // H ′′
= //

��

H ′′ //

��

1

1 1

(2.16.4)
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Since H ′′ is multiplicative every nilpotent in Lie(E) maps to 0 in Lie(H ′′) and hence comes from a
nilpotent in Lie(Z

0

G
(H)).

Since Gr
m

is smooth, by [SGA3, Exposé VII, Proposition 8.2] the sequence (2.16.3) gives an exact
sequence

0→ Lie(Gr
m

)→ Lie(E)→ Lie(U)→ 0. (2.16.5)

Since U is unipotent, any element z in Lie(U) is nilpotent. Let z′ in Lie(E) be a lift of z. The Jordan
decomposition makes sense for any p-Lie algebra over a perfect field k and uses only the p-power map
(see for example [W2, Corollary 4.5.9, page 135]. Thus, by using the Jordan decomposition of the lift
z′ in Lie(E) and noting that the semi-simple part gets mapped to zero in Lie(U), we can assume that
z′ can also be chosen to be nilpotent.

Since every nilpotent in Lie(E) comes from a nilpotent in Lie(Z
0

G
(H)), we conclude that z gets

lifted to a nilpotent in Lie(Z
0

G
(H)). This implies that (2.16.1) is also right exact. �

Lemma 2.17. Suppose that G is a subgroup scheme of G which is infinitesimally saturated in G.
Then the subgroup scheme Z

0

G
(H) is infinitesimally saturated in G; in particular, every non-zero

nilpotent in Lie(Z
0

G
(H)) lies in Lie(Z

0

G
(H)

red
).

Proof. If ”nffl in Lie(Z
0

G
(H)) is nilpotent, the map ρ : t 7→ exp(t”nffl) : Ga → G factors through G. Since

H is central in Z
0

G
(H), the action of H by inner automorphisms fixes ”nffl. Since the map “exp” is

compatible with conjugation the entire curve ρ is fixed by H. Therefore, ρ factors through Z
G

(H)

and hence through Z
0

G
(H)

red
, since Ga is reduced and connected, and hence ”nffl ∈ Lie(Z

0

G
(H)

red
). This

completes the proof of the lemma. �

We have the following extension of [D, Lemma 2.7, Corollary 2.11].

Lemma 2.18. Let G be as in 2.17. Let H ⊂ G be a maximal connected subgroup scheme of multi-
plicative type. Then the central extension (2.16.2) splits and U is a smooth unipotent group.

Proof. We claim that U is smooth. By Lemma 2.16, every element z in Lie(U) comes from a nilpotent
in ”nffl in Lie(Z

0

G
(H)). By 2.17, ”nffl is in Lie(Z

0

G
(H)

red
). Its image z is hence in Lie(U

red
). Thus,

Lie(U) = Lie(U
red

) proving the claim.
Now we have a central extension (2.16.2) with the added feature that U is smooth. By [SGA3,

Exposé XVII, Theorem 6.1.1] it follows that (2.16.2) splits (uniquely) and

Z
0

G
(H) = H × U. (2.18.1)

�

Remark 2.19. Recall that in 2.2, for the existence of an exponential map (2.2.2) we assumed that
the covering morphism G̃ → G′ is étale, which therefore became a part of the standing assumption
(2.3). The case which gets excluded is when the simply connected cover of the derived group has
factors of SL(p). For instance, when G′ is simple with p = hG , the only case excluded is G′ = PGL(p).

Let G be a reductive group for which p = hG . The tables of Coxeter numbers of simple groups
show that except for type A, where h

SL(n)
= n, Coxeter numbers are even greater than 2. It follows

that G̃ is a product of SL(p)’s and other simple factors with p larger than their Coxeter numbers.
Even when the morphism G̃ → G′ is not étale, we can still define the notions of saturation (resp
infinitesimal saturation) of subgroup schemes G ⊂ G as follows.

Say G ⊂ G is saturated (resp infinitesimally saturated) if the inverse image of G in G̃ is saturated
(resp infinitesimally saturated). With this definition, Theorem 2.5 remains true for p ≥ hG .
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This notion of saturation (resp infinitesimal saturation) can also be seen in terms of suitably
defined t-power maps and exponential maps. We restrict ourselves to the case when G′ = PGL(p).
At the level of Lie algebras, the induced morphism:

sl(p)→ pgl(p) (2.19.1)

is a radicial map on the locus of nilpotent elements. If A ∈ gl(p) is a matrix representing an element of
pgl(p), it is nilpotent if all but the constant coefficients of the characteristic polynomial vanishes, i.e.
Tr(∧i(A)) = 0, ∀1 ≤ i < p and the characteristic polynomial reduces to T

p − det(A). This condition
is stable under A 7→ A+ λ.I as (T − λ)

p − det(A) = T
p − (det(A) + λ

p
) = T

p − det(A+ λ.I).

We get the unique lift Ã ∈ sl(p) by taking Ã := A− det(A)
1/p
.I. Now one has Tr(∧i(Ã)) = 0 for

1 ≤ i ≤ p and hence we can define the exponential morphism Ga → PGL(p) as:

t 7→ exp(tA) := exp(tÃ). (2.19.2)

Likewise, in the case of unipotents in the group PGL(p), the restriction of this map to the locus of
unipotent elements:

SL(p)
u → PGL(p)

u
(2.19.3)

is radicial. Thus, any unipotent u ∈ PGL(p) has a unique unipotent lift ũ ∈ SL(p) and one can define
the t-power map Ga → PGL(p) as:

t 7→ u
t

:= image(ũ
t
) (2.19.4)

With the notions of t-power map and exponential morphisms in place, we can define the notions of
saturation (resp infinitesimal saturation) of subgroup schemes G ⊂ G′ exactly as in Definition 2.4
using (2.19.4) (resp (2.19.2)) and these coincide with the definitions made above.

We note however that these “punctual” maps, i.e. defined for each nilpotent A (resp each unipotent
u), are not induced by a morphism from pgl(p)

nilp
to PGL(p)

u
(resp. A1 × PGL(p)

u → PGL(p)
u

:

(t, u) 7→ u
t

is not a morphism).

3. Completion of proof of the structure theorem 2.5

We begin by stating a general result on root systems whose proof is given in the appendix.

Proposition 3.1. Let R be an irreducible root system with Coxeter number h and let X be the lattice
spanned by R. Let φ : X → R/Z be a homomorphism. Then there exists a basis B for R such that if
α ∈ R satisfies φ(α) ∈

(
0, 1/h

)
mod Z, then α is positive with respect to B.

3.2. Assumption 2.3 on the reductive group G continues to be in force. Let G be a subgroup scheme
of G, and H a maximal connected subgroup scheme of multiplicative type of G. For the existence of
H see [D, Proposition 2.1].

Let X(H) be the group of characters of H. The action of H on Lie(G) by conjugation gives
an X(H)-gradation Lie(G) = Lie(Z

0

G
(H)) ⊕

⊕
α6=0

Lie(G)
α
. Recall that if M is a connected group

scheme of multiplicative type over k, the group of characters X(M) is finitely generated and does not
have torsion prime to p. As k is algebraically closed, this means that M is a product of subgroups
isomorphic to Gm or µ

p
j with j > 0.

Corollary 3.3. (cf. [D, Lemma 2.12]) Let M be a connected subgroup scheme of multiplicative type
of G and suppose that p > hG. The action of M on Lie(G) by conjugation gives an X(M)-gradation

Lie(G) =
⊕

α∈X(M)
Lie(G)

α
. If α 6= 0, then for γ ∈ Lie(G)

α
one has γ

[p]
= 0. In particular, if M = H

and γ ∈ Lie(G)
α

we have γ
[p]

= 0.



V. Balaji, P. Deligne, & A. J. Parameswaran, On complete reducibility in characteristic p 11V. Balaji, P. Deligne, & A. J. Parameswaran, On complete reducibility in characteristic p 11

Proof. If α is of infinite order, it suffices to apply 2.10. If α is of finite order, there is a subgroup N
of M isomorphic to µ

p
j to which α restricts non-trivially and it suffices to prove 3.3 for N and the

restriction of α to N . Let us choose an isomorphism of X(N) with X(µ
p
j ) such that the image of α

in Z/pj is of the form p
b

with 0 ≤ b < j.
In a smooth algebraic group, the maximal connected subgroups of multiplicative type are (maxi-

mal) tori. Indeed, if T is such a maximal subgroup, its centralizer ZG(T ) is smooth, being the fixed
locus of a linearly reductive group acting on a smooth variety (see for example [DG, Theorem 2.8,
Chapter II, §5]). Define U := ZG(T )

o
/T . The group scheme U is smooth, as a quotient of ZG(T )

o

which is smooth, and is unipotent by maximality of T . By [SGA3, Exposé XVII, Theorem 6.1.1], we
have a splitting ZG(T )

o ' T × U , and hence T is smooth.
In our case N is hence contained in a maximal torus T of G. Let

φ : X(T )→ R/Z (3.3.1)

be the composite of X(T )→ X(N) = Z/pj and of the inclusion x 7→ x/p
j

of Z/pj in R/Z.

The N -weight space Lie(G)
α

is the sum of T -weight spaces Lie(G)
β

for β a root such that φ(β) =

1/p
j−b

. As 1

p
j−b ≤ 1

p
j <

1
h we may apply 3.1, to conclude that Lie(G)

α
is contained in the in the

Lie algebra of the unipotent radical of a Borel subgroup of G. In particular, it consists of nilpotent
elements, proving 3.3. �

3.4. The proof of 2.5 now follows [D, pages 594–599] verbatim with a sole alteration; recall that in
[D] the group G was the linear group GL(V ) and the condition on the characteristic was p > dim(V ).
For an arbitrary connected reductive G, this condition now gets replaced by p > hG , which makes 3.3
applicable.

Remark 3.5. If G = GL(V ) one has hG = dim(V ). In the case G =
∏

GL(Vi) with for each i,
p > dim(Vi), the case p > hG of Theorem 2.5 gives us [D, Theorem 1.7].

Example 3.6. (Brian Conrad) Here is an example in any characteristic p > 0, of a connected group
of multiplicative type M acting on a reductive group G, and of a non-trivial character α of M , such
that the weight space Lie(G)α contains elements which are not nilpotent. We take G = SLp (so that

hG = p) and M = µp2 , and for α the character ζ 7→ ζ
[p]

.
We embed M in the maximal torus of diagonal matrices of SLp by

ζ 7→ diag(ζ
0
, ζ
−p
, ζ
−2p

, . . . , ζ
−(p−1)p

).

The restriction to M of each simple root and of the lowest root is the character α : ζ 7→ ζ
[p]

, and
Lie(G)α is the sum of the corresponding root spaces. In the standard visualization of SLp this weight
space inside Lie(G) = slp is the span of the super-diagonal entries and the lower-left entry.

A sum of nonzero elements in those root lines contributing to Lie(G)α is a p × p-matrix X ∈ slp
which satisfies

X(e1) = tpep, X(e2) = t1e1, . . . , X(ep) = tp−1ep−1. (3.6.1)

Iterating p times gives Xp = diag(t, . . . , t), with t :=
∏
tj 6= 0. Hence, X ∈ Lie(G)α is not nilpotent.

Example 3.7. A variant of the above example leads to an example of an infinitesimally saturated
group scheme G ⊂ SL(V ) with dim(V ) = p and such that V is an irreducible representation and G

red

is a unipotent group. This in particular implies that G
red

is not normal in G.
Let V be the affine algebra of µp , that is

V = O(µp) :=
k[u]

(u
[p] − 1)

. (3.7.1)
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The vector space V admits the basis {ui | i ∈ Z/p}.
The multiplicative group O(µp)

∗
acts by multiplication on V . For f ∈ O(µp)

∗
, f

[p]
is constant.

Define Nf to be the constant value of f
[p]

. It is in fact the norm of f . The action of O(µp)
∗

on V
induces an action of the subgroup N ⊂ O(µp)

∗
for which Nf = 1.

On V we have also the action of µp by translations and this action normalizes the group O(µp)
∗

and its subgroup N . Consider the group scheme:

G := µp nN. (3.7.2)

We make a few observations on G:

(1) The group G is infinitesimally saturated.

(2) In G consider the first factor µp and {ui | i ∈ Z/p} ' Z/p. These subgroups generate a subgroup
H, which is a central extension of µp n Z/p by µp .

(3) The representation V is irreducible as an H-module. Indeed, a µp-submodule is generated by

some of the u
i
, and if non-zero and Z/p-stable, contains all of them. A fortiori, V is an irreducible

G-module.

(4) The reduced group G
red

can be identified with the unipotent group {f ∈ O(µp)
∗ | f(1) = 1}.

(5) The subgroup G
red

is not normal as the point 1 of µp is not invariant by translations.

4. Semi-simplicity statements

Let G be a reductive group. Let C be an algebraic group and ρ : C → G be a morphism.

Definition 4.1. ([S2, page 20]) One says that ρ is cr if, whenever ρ factors through a parabolic P of
G, it factors through a Levi subgroup of P .

When G = GL(V ), ρ is cr if and only if the representation V of C is completely reducible (or
equivalently, semi-simple) and hence the terminology.

The property of ρ being cr depends only on the subgroup scheme of G which is the (schematic)

image of C. It in fact only depends on the image of C in the adjoint group G
ad

. Indeed, the parabolic
subgroups of G are the inverse images of the parabolic subgroups of G

ad
, and similarly for the Levi

subgroups. A subgroup scheme G of G will be called cr if its inclusion in G is so.
For an irreducible root system R, let α0 be the highest root and

∑
niαi its expression as a linear

combination of the simple roots. The characteristic p of k is called good for R if p is larger than each
ni . For a general root system R, p is good if it is so for each irreducible component of R.

Proposition 4.2. Suppose C is an extension

1→ B → C → A→ 1 (4.2.1)

with A
o

of multiplicative type and A/A
o

a finite group of order prime to p, and suppose that p is good.
Let ρ : C → G be a morphism. If the restriction of ρ to B is cr, then ρ is cr.

We don’t know whether the proposition holds without the assumption that p is good.
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Proof. Let P be a parabolic subgroup, U its unipotent radical, and u the Lie algebra of U . The
parabolic P is said to be restricted if the nilpotence class of U is less than p. If P is a maximal
parabolic corresponding to a simple root α, the nilpotence class of U is the coefficient of α in the
highest root. It follows that p is good if and only if all the maximal parabolic subgroups are restricted.
By [Sei, Proposition 5.3] (credited by the author to Serre, see 6.6), if P is restricted, one obtains by
specialization from characteristic 0, a P -equivariant isomorphism:

exp : (u, ◦) ∼→ U (4.2.2)

from u endowed with the Campbell-Hausdorff group law, to U .
We will first show that whenever ρ factors through a restricted parabolic subgroup P as above, if

the restriction of ρ to B factors through some Levi subgroup of P , the ρ itself factors through some
Levi subgroup of P .

The group U(k) acts on the right on the set L(k) of Levi subgroups of P by

u in U(k) acts by L 7→ u
−1
Lu.

This action turns L(k) into a U(k)-torsor. This expresses the fact that two Levi subgroups are
conjugate by a unique element of U(k). The group P (k) acts on L(k) and on U(k) by conjugation.
This turns L(k) into an equivariant U(k)-torsor.

We will need a scheme-theoretic version of the above. Fix a Levi subgroup Lo . Let L be the
trivial U -torsor (i.e. U with the right action of U by right translations). We have the family of Levi
subgroups Lu := u

−1
Lou parametrized by L = U . We let P act on U by conjugation, and on L as

follows: p = v` in P = ULo acts on L = U by u 7→ v
−1
.pup

−1
. This turns L into an equivariant

U -torsor. When we pass to k-points, and attach to u in L the Levi subgroup uLou
−1

, we recover the
previously described situation.

The morphism ρ : C → P turns L into an equivariant U -torsor. A point x of L corresponding
to a Levi subgroup Lx is fixed by C (scheme-theoretically) if and only if ρ factors through Lx . This
expresses the fact that a Levi subgroup is its own normalizer in P .

We want to prove that if B has a fixed point in L , so does C. Let U
B

be the subgroup of U fixed
by B, for the conjugation action. If B has a fixed point in L , the fixed locus L

B
is a U

B
-torsor. As

B is a normal subgroup of C, C acts on L
B

and U
B

, and the action factors through A.
The isomorphism exp : (u, ◦) → U is compatible with the action of B by conjugation. Hence

it induces an isomorphism from (u
B
, ◦) → U

B
. Let Z

i
(u

B
) be the central series of u

B
, and define

Z
i
(U

B
) := exp(Z

i
(u

B
)). The isomorphism exp induces an isomorphism between the vector group

Gr
i

Z
(u

B
) and Z

i
(U

B
)/Z

i+1
(U

B
), compatible with the action of A. On Gr

i

Z
(u

B
) , this action is linear.

The assumption on A amounts to saying that A is linearly reductive, that is, all its representations
are semi-simple. Equivalently, if k is the trivial representation, any extension

0→ V
a→ E

b→ k → 0 (4.2.3)

splits. Passing from E to b
−1

(1), such extensions correspond to A-equivariant V -torsors, and the
extension splits if and only if A has a scheme-theoretic fixed point on the corresponding torsor.

Define U
B

i
to be U

B
/Z

i
(U

B
), and L

B

i
to be the U

B

i
-torsor obtained from L by pushing by

U
B → U

B

i
. We prove by induction on i that A has a fixed point on L

B

i
.

As U
B

1
is trivial, the case i = 1 is trivial. If x is a fixed point of A in L

B

i
, the inverse image of x

in L
B

i+1
is an equivariant A-torsor on Gr

i

Z
(u

B
) ∼ Z

i
(U

B
)/Z

i+1
(U

B
). By linear reductivity, A has a

fixed point on the inverse image. As the central descending series of u, and hence of u
B

terminates,
this proves 4.2 for restricted parabolic subgroups.

We now prove 4.2 by induction on (the dimension) of G. Suppose that ρ factors through a proper
parabolic subgroup P . As p is good, there exists a restricted proper parabolic Q containing P , and
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P is the inverse image by the projection Q → Q/Ru(Q) of a parabolic P ′ of Q/Ru(Q). Let L be a
Levi subgroup of Q through which ρ factors and let P ′

L
be the parabolic subgroup of L obtained as

the inverse image of P ′ by the isomorphism L
∼→ Q/Ru(Q). Levi subgroups of P ′

L
are Levi subgroups

of P , and it remains to apply the induction hypothesis to L, for which p is good too. �

Remark 4.3. For several results related to 4.2 but in the setting of reduced subgroups, see [BMR1,
Theorem 3.10] and [BMR2, Theorem 1.1 and Corollary 3.7].

Fix in the reductive group G, a maximal torus T , and a system of simple roots corresponding to
a Borel subgroup B containing T . Let U be the unipotent radical of B.

Definition 4.4. (cf. [Dy], [S1], [IMP]) The Dynkin height htG(V ) of a representation V of G is the
largest among {

∑
α>0
〈λ, α∨〉}, for λ a weight for the action of T on V .

This notion and this terminology go back to Dynkin [Dy, pages 331–332] where it is called “height”
as in [IMP], while in Serre ([S1] and [S2]), it is simply “n(V )”. If V is an irreducible representation,
with dominant weight λ

+
and smallest weight λ

−
, it is the sum of the coefficients of λ

+−λ− , expressed
as linear combination of the simple roots.

It follows that the product in End(V ) of the action of htG(V ) + 1 elements of Lie(U) vanishes and

for ”nffl nilpotent in Lie(G), one has ”nfflht(V )+1
= 0 in End(V ).

4.5. The representation ρ : G→ GL(V ) is said to be of low height if p > htG(V ). By [S2, Theorem 6,
page 25], representations of low height are semi-simple. One can show that ifG admits a representation
V of low height which is almost faithful, meaning that its kernel is of multiplicative type, then G
satisfies the assumption 2.3. That p ≥ hG results from the more precise statement that htG(V ) ≥ hG−1

([S3, (5.2.4), page 213]). For the property that G̃/G′ is étale, one uses the fact that the non-trivial
irreducible representation of PGL(p) of the smallest height is the adjoint representation which is of
height 2p− 2.

We now assume that V is of low height, and the assumption 2.3 holds for G. It follows that any
nilpotent ”nffl in Lie(G) satisfies ”nffl[p] = 0, and further, the exponential map (2.2.2) is defined. The image

dρ(”nffl) of ”nffl in Lie(GL(V )) = End(V ) also has a vanishing p
th

-power, hence exp(dρ( ”nffl).t) is defined.
By [S2, Theorem 5, page 24], one has the following compatibility statement.

4.6. Compatibility: If ”nffl in Lie(G) is nilpotent

ρ(exp(t ”nffl)) = exp(tdρ(”nffl)). (4.6.1)

As a consequence, if u
[p]

= 1 in G, one has

ρ(u
t
) = ρ(u)

t
. (4.6.2)

The following theorem is a schematic analogue of [BT], for p large enough.

Theorem 4.7. Suppose that the reductive group G admits a low height almost faithful representation
ρ : G→ GL(V ), and that p > hG. Then, for any non-trivial unipotent subgroup U of G, there exists a
proper parabolic subgroup P of G containing the normalizer NG(U) of U , and whose unipotent radical
contains U .

The condition p > hG implies that G satisfies the assumption 2.3. If G is simple simply connected,
it implies the existence of an almost faithful low height representation except for the G of type F4 ,
E6 , E7 or E8 , in which case the lowest height of a non-trivial representation and the Coxeter number
are respectively 16 > 12, 16 > 12, 27 > 18 and 58 > 30. For these groups, we do not know whether
the conclusion of the theorem is valid assuming only p > hG .
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Proof. Let V
U

be the invariants of U acting on V . It is not zero, because U is unipotent. It is not
V , because the representation V is almost faithful, hence faithful on U . It does not have a U -stable
supplement V ′ in V , because U would have invariants in V ′.

Let H be the subgroup scheme of G which stabilizes V
U

. It contains the normalizer NG(U) of
U . It is a doubly saturated subgroup scheme of G. Indeed, if h in H(k) is of order p, by (4.6.2),

ρ(h
t
) = ρ(h)

t
=
∑

i<p

(
t
i

)
(ρ(h) − 1)

i
, which stabilizes V

U
, and similarly if ”nffl in Lie(H) is nilpotent,

the exp(t”nffl) are in H.
As p > hG , theorem 2.5 ensures that H

0

red
is a normal subgroup scheme of H and that the quotient

H/H
0

red
is an extension of a finite group of order prime to p by a group of multiplicative type. It

follows that U ⊂ H0

red
.

Lemma 4.8. H
0

red
is not reductive.

Proof. If it were, V would be a representation of low height of H
0

red
([S2, Corollary 1, page 25]), hence

a semi-simple representation of H
0

red
, and V

U
would have in V a H

0

red
-stable supplement. As V

U
does

not admit a supplement stable under U ⊂ H0

red
, this is absurd. �

Proof of 4.7 continued: If S is a doubly saturated subgroup scheme of G, we will call Ru(S
0

red
) the

unipotent radical of S and denote it simply by Ru(S). By 2.5, it is a normal subgroup of S and
S/Ru(S

0

red
) does not contain any normal unipotent subgroup. This justifies the terminology.

Define U1 := Ru(H). By 4.8, it is a non-trivial unipotent subgroup of G, and we can iterate the
construction. We define for i ≥ 1

Hi := stabilizer of V
Ui ⊂ V

Ui+1 := Ru(Hi).

One has U ⊂ H0

red
and

U ⊂ NG(U) ⊂ H ⊂ NG(U1) ⊂ H1 ⊂ NG(U2) ⊂ H2 . . . (4.8.1)

The H
o

i,red
form an increasing sequence of smooth connected subgroups of G. It stablizes, hence so

do the sequences of the Ui and of the Hi . If Hi = Hi+1 , one has Hi = NG(Ui+1) = Hi+1 and

Ui+1 = Ru(Hi) = Ru(Hi+1) = Ru(N(Ui+1)
o

red
).

By [BT, Proposition 2.3, page 99] (or for example [H, Section 30.3, Proposition on page 186]), this
implies that N(Ui+1)

red
= (Hi+1)

red
is a proper parabolic subgroup of G. Call it Q. A parabolic

subgroup of G is its own normalizer scheme (cf. [SGA3, XII, 7.9], [CGP, page 469]). As (Hi+1)
red

= Q
is normal in Hi+1 , it follows that Hi+1 = Q and that NG(U) ⊂ Q.

A Levi subgroup L of Q is a reductive subgroup of G, hence satisfies the assumptions of 4.7. It is
isomorphic to Q/Ru(Q). If U is not contained in Ru(Q), we can repeat the argument for the image
U of U in Q/Ru(Q), which is isomorphic to L. One obtains a proper parabolic subgroup of Q/Ru(Q)
which contains the normalizer of U . Its inverse image in Q is a parabolic subgroup, properly contained
in Q and containing the normalizer of U . Iterating, one eventually finds a parabolic P containing
NG(U) and such that U ⊂ Ru(P ). �

Remark 4.9. Let G̃ be the simply connected central extension of the derived group G′, and let G̃i

be its simple factors: G̃ =
∏
G̃i . A representation of low height V of G is almost faithful if and only

if its restriction to each G̃i is not trivial. It suffices to check this for each G̃i separately. Thus we
may assume G is simply connected. The existence of a non-trivial V of low height implies that p > 2
for G of type Bn , Cn(n ≥ 2) or F4 and p > 3 for G of type G2 . Let G be the image of G in GL(V ).
If V is non-trivial, u : G → G is an isogeny. We want to show that it is a central isogeny. If it is
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not, the structure of isogenies ([SGA3, XXII, 4.2.13]) shows that ker(u) contains the kernel of the

Frobenius. The weights of V are the p
th

-powers and htG(V ) is a multiple of p, contradicting the low
height assumption.

4.10. If G is a reductive group for which assumption 2.3 holds, and G is a subgroup scheme of G,
the double saturation G

∗
of G is the smallest doubly saturated subgroup scheme of G containing G.

It is the intersection of the doubly saturated subgroup schemes containing G, and is obtained from
G by iterating the construction of taking the group generated by G, the additive groups exp(t”nffl) for
”nffl nilpotent in Lie(G) and u

t
for u of order p in G(k).

Corollary 4.11. Let V be a low height almost faithful representation of a reductive group G. Assume
that p > hG. Let G be a subgroup scheme of G, and let G

∗
be its double saturation. Then the following

conditions are equivalent:

(i) V is a semi-simple representation of G

(ii) V is a semi-simple representation of G
∗

(iii) G is cr in G

(iv) G
∗

is cr in G

(v) the unipotent radical of (G
∗
)

0

red
is trivial.

Proof. (i) ⇐⇒ (ii): If W is a subspace of V , the stabilizer in G of W is doubly saturated, as we
saw in the beginning of the proof of 4.7. If G stabilizes W , it follows that G

∗
also stabilizes W : the

lattice of sub-representations of V is the same for G and G
∗
, hence the claim.

(iii) ⇐⇒ (iv): Similarly, the parabolic subgroups of G and their Levi subgroups are doubly
saturated, hence contain G if and only if they contain G

∗
.

not (v) =⇒ not (ii): Let U be the unipotent radical of (G
∗
)

0

red
. If it is non-trivial, V

U 6= V ,

because V is faithful on U and does not have a U -stable supplement. As U is normal in G
∗

(2.5), V
U

is a sub-representation for the action of G
∗

on V . This contradicts the semi-simplicity of V .
(v) =⇒ (ii): The representation V of the reductive group (G

∗
)

0

red
is of low height, hence semi-

simple. By 2.5, (G
∗
)

0

red
is a normal subgroup of G

∗
and the quotient A is linearly reductive. If W is

a sub-G
∗
-representation of V , A acts on the affine space of (G

∗
)

0

red
-invariant retractions V → W . It

has a fixed point, whose kernel is a supplement to W .
not (v) =⇒ not (iv): Let U be the unipotent radical of (G

∗
)

0

red
. If it is not trivial, there exists

a parabolic P containing its normalizer, hence G
∗
, and the unipotent radical of P contains U (4.7).

Thus, no Levi subgroup of P can contain G
∗
.

(v) =⇒ (iv): By [S2, Theorem 7, page 26], (G
∗
)

0

red
is cr in G, and one applies 4.2. �

Corollary 4.12. Let ρ : G→ GL(V ) be an almost faithful low height representation, and let v in V
be an element such that the G-orbit of v in V is closed. Then there exists a connected multiplicative
central subgroup scheme M ⊂ G0

v
and a surjective homomorphism M ×G0

v,red
→ G

0

v
.

Proof. The orbit being closed in V and hence affine, the reduced stabilizer G
v,red

is reductive ([Bo]).
Since p ≥ hG and since stabilizers are doubly saturated and 2.5(2) holds for G = Gv , we get the
required result. �

We now observe that the results of [D, Section 6] can be obtained as a consequence of 4.11. Note
that by the remarks in [D, page 607] it suffices to prove the semisimplicity results in the case when k
is algebraically closed.
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Theorem 4.13. G be an algebraic group. Let (Vi)i∈I be a finite family of semi-simple G-modules and
let mi be integers ≥ 0. If ∑

mi(dim Vi −mi) < p (4.13.1)

the G-module
⊗

j

∧mj
Vj is semi-simple.

Proof. Let G =
∏

j
GL(Vj ) and V =

⊗
j

∧mj
Vj . Then, (4.13.1) is simply the inequality p > htG(V ).

Replacing G by its image in G we may and shall assume that G is a subgroup scheme of G. Since Vi
are semi-simple G-modules, it follows that G is G-cr, for G =

∏
j

GL(Vj ). By [D, §6.2], we may also

assume that p > dim(Vj ) = h
GL(Vj )

∀j.
Hence by working with the image of G (and G) in GL(V ) and applying 4.11, we conclude that V

is semi-simple as a G-module. �

Remark 4.14. If (Vi , qi) is a non-degenerate quadratic space with dim Vi = 2di on which G acts by
similitudes, then by passing to a subgroup of index at most 2 and mapping to the group of similitudes
rather than GL(Vi), one can replace the term mi(dim Vi−mi) by mi(dim Vi−mi−1), when mi ≤ 2di .

Complete reducibility in the classical case. By 4.1, a subgroup scheme G ⊂ G is called cr if for
every parabolic subgroup P ⊂ G containing G, there exists an opposite parabolic subgroup P ′ such
that G ⊂ P ∩ P ′. Suppose that char(k) 6= 2 and let G be SO(V ) (or Sp(V ) in any characteristic),
relative to a non-degenerate symmetric or alternating bilinear form B on V . In this situation, the
notion of cr can be interpreted as follows: G is cr in G if and only if for every G-submodule W ⊂ V
which is totally isotropic, there exists a totally isotropic G-submodule W ′ of the same dimension,
such that the restriction of B to W +W ′ is non-degenerate (cf. [S3, Example 3.3.3, page 206]).

Lemma 4.15. Let the subgroup scheme G of G be cr. Then the G-module V is semi-simple and
conversely.

Proof. Let W ⊂ V be a G-submodule. Then we need to produce a G-complement.
Consider W1 := W ∩W⊥

. If W1 = (0), then W ⊕W⊥
= V and we are done. So let W1 6= (0).

Then W1 is a G-submodule which is totally isotropic and hence by the cr property, we have a totally
isotropic G-submodule W ′

1
of the same dimension as W1 , such that the form B is non-degenerate on

W1 +W ′
1
. In particular, W1 ∩W ′1 = (0). Since W1 ⊂W

⊥
, we see that W ⊂W⊥

1
.

Let w ∈ W ∩W ′
1
⊂ W

⊥

1
∩W ′

1
and suppose w 6= 0. Since w ∈ W ′

1
, there exists w′ ∈ W1 such

that B(w,w′) 6= 0. On the other hand, since w ∈ W⊥

1
, B(w, v) = 0 for all v ∈ W1 and in particular

B(w,w′) = 0 which contradicts the assumption that w 6= 0. Hence it follows that W ∩W ′
1

= (0).

Thus, W ( X = W ⊕W ′
1
⊂ V is a G-submodule. We proceed similarly and get X1 = X ∩X⊥ such

that X ⊕X ′
1
⊂ V . If X1 = (0), then V = X ⊕X⊥ , so get a G-decomposition of V as W ⊕W ′

1
⊕ . . .,

that is a G-complement of W in V .
Conversely, let V be semi-simple as a G-module. Let W ⊂ V be a totally isotropic G-submodule

of dim(W ) = d. Note that d < dim(V )/2. We therefore have a G-submodule Z ⊂ V such V = W ⊕Z.
The non-degenerate form B gives an G-equivariant isomorphism φ : V → V

∗
= W

∗ ⊕ Z∗ and since
W is totally isotropic φ(W ) ∩W ∗

= (0). Hence φ(W ) ⊂ Z.
Again, since W is totally isotropic, the restriction of B to Z is non-degenerate and hence we get

an isomorphism ψ : Z
∗ → Z. Define W ′ := ψ ◦ φ(W ).

Then it is easily seen that W ′ is of dimension d and also totally isotropic G-invariant submodule
of V . Finally, B is non-degenerate on W ⊕W ′. Hence G is cr in G. �



18 5. Étale slices in positive characteristics18 5. Étale slices in positive characteristics

5. Étale slices in positive characteristics

Let G act on an affine variety X and let x be a point of X whose orbit G.x is closed in X. We prove a
schematic analogue of Luna’s étale slice theorem ( 5.1, 5.6) for suitable bounds on the characteristic
p. In order to make this precise, one needs to extend the notion of a slice in [BR, Definition 7.1]
to a scheme theoretic setting (see 5.6) and in the process one has to work with schematic stabilizers
of closed orbits. The key issue then becomes the semi-simplicity of the tangent space to x in X as
a representation of the stabilizer of G at x. Here the structure theorem 2.5 become crucial and the
bounds on p are forced as a consequence. In [BR] the scheme-theoretic aspects are eschewed forcing
them to make the assumption that the orbit G.x is “separable”, i.e. the stabilizer Gx is reduced. The
bounds on the characteristic therefore do not show up in [BR].

We begin this section with the following (linear) analogue of the Luna étale slice theorem in
positive characteristics.

Theorem 5.1. Let V be a G-module with low height i.e. such that p > htG(V ). Let v in V be
an element such that the orbit G.v is a closed orbit in V . Then there exists a Gv -invariant linear
subspace S of V giving rise to a commutative diagram:

G×Gv S φ //

f
��

V

q

��
(G×Gv S) �G ` // V �G

(5.1.1)

and G-equivariant open subsets U ⊂ (G ×Gv S) containing the closed orbit G.v and an open subset
U ′ of V containing v, for which (5.1.1) induces a cartesian diagram

U
φ //

f
��

U ′

q

��
U �G

`|
U // U ′ �G

(5.1.2)

such that the morphism `|U is étale.

Remark 5.2. The above theorem was stated in the note [MP] whose proof contained serious gaps
(as was pointed to the authors by Serre in a private correspondence).

We note that G/Gv is constructed in [DG, III, Proposition 3.5.2]. It represents the quotient in the
category of fppf sheaves. Furthermore if πv : G → V, g 7→ g.v, the image im(πv), as a locally closed
sub-scheme of V with its reduced scheme structure, can be identified with the scheme G/Gv . We call
this locally closed sub-scheme, the orbit G.v and have the identification G/Gv ' G.v (see also [DG,
Proposition and Definition 1.6, III, §3, page 325]).

Proposition 5.3. Let V be an arbitrary G-module. Let v ∈ V and suppose that there exists a Gv -
submodule S of the tangent space Tv(V ), such that Tv(V ) splits as Tv(G.v)⊕ S. Let G act on G× S
by h.(g, s) := (h.g, s). Then the G-morphism Φ : G× S → V given by (g, s) 7→ g.v + g.s descends to
a G-morphism

φ : G×Gv S → V (5.3.1)

which is étale at (e, 0), e being the identity of G.
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Proof. To ensure that Φ descends to a morphism φ, we need to check for every commutative k-algebra
A, that Φ is constant on all Gv(A)-orbits. For simplicity of exposition we will suppress the A.

Let α in Gv act on G × S by α.(g, s) = (g.α, α
−1
.s). Observe that Φ

(
α.(g, s)

)
= Φ(g.α, α

−1
.s) =

g.α.v + g.α.α
−1
.s = g.v + g.s (since α fixes v). Therefore it is constant on the Gv -orbits. Since the

action of Gv on G × S is scheme-theoretically free, Φ descends to a morphism φ : G ×Gv S → V .
Clearly the actions of G and Gv on G × S commute and hence the descended morphism is also a
G-morphism.

Observe that the quotient morphism G → G/Gv is a torsor for the group scheme Gv , locally
trivial under the fppf topology. Since the action of Gv on S is linear, we see that the associated
fibre space ψ : G ×Gv S → G/Gv is a locally free sheaf of rank = dim(S). In particular, G ×Gv S is
a smooth k-scheme of finite type. Observe further that under the morphism φ, the zero section of
the vector bundle ψ : G ×Gv S → G/Gv canonically maps onto the orbit G.v ⊂ V , while the fibre
ψ
−1

(e.Gv) of the identity coset e.Gv ∈ G/Gv maps isomorphically to the affine subspace S + v ⊂ V .
Since Tv(V ) = Tv(G.v) ⊕ S by assumption, it follows that the differential dφz , at z = (e, 0), is an
isomorphism.

We now apply [D, Lemme 2.9], to conclude that the morphism φ : G ×Gv S → V is étale at
z = (e, 0). �

Proposition 5.4. Let V be a G-module such that p > htG(V ), and let v in V be an element such that
the G-orbit of v in V is closed. Then there exists a Gv -submodule S ⊂ V such that V = Tv(G.v)⊕ S
as a Gv -module. In particular, the consequences of 5.3 holds.

Proof. One knows that G
0

v
is the kernel of the natural map Gv → π0(Gv), to the group of connected

components, and hence is a normal subgroup of finite index. Further, we note that | Gv/G
0

v
| =

| G
v,red

/G
0

v,red
|. Note also that since G

v,red
is a saturated subgroup of G, by [S2, page 23, Property

3] the index | G
v,red

/G
0

v,red
| is prime to p.

Since G.v is a closed orbit by 4.12 (and 2.5) we have an exact sequence:

1→ G
0

v,red
→ G

0

v
→ τ → 1 (5.4.1)

where τ is a multiplicative group scheme.
Now V is semi-simple as a G

0

v,red
-module, G

0

v,red
being a saturated subgroup of G and also as

a τ -module since it is multiplicative (and hence linearly reductive). Thus by [D, Lemme 4.2] V is
semi-simple as a G

0

v
-module and therefore as a Gv -module as well.

In particular, we have a Gv -supplement S for the Gv -invariant subspace Tv(G.v) ⊂ Tv(V ) = V ,
i.e. we have a Gv -decomposition S ⊕ Tv(G.v) for V . �

We recall the “Fundamental lemma of Luna” which holds in positive characteristics as well and
which is essential to complete the proof of Theorem 5.1.

Lemma 5.5. ([GIT, page 152]) Let ¯s : X → Y be a G-morphism of affine G-schemes. Let F ⊂ X be
a closed orbit such that:

(1) ¯s is étale at some point of F

(2) ¯s(F ) is closed in Y

(3) ¯s is injective on F

(4) X is normal along F.

Then there are affine G-invariant open subsets U ⊂ X and U ′ ⊂ Y with F ⊂ U such that ¯s � G :
U �G→ U ′ �G is étale and (¯s, pU ) : U → U ′×

U′�G U �G is an isomorphism (where pU : U → U �G
is the quotient morphism).
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Proof of 5.1. As a first step, we need to show that the categorical quotient G ×Gv S �G exists as a
scheme. As we have seen in 5.3, action of G on G× S (via g.(a, s) = (g.a, s) and the (twisted) action
of Gv on G× S commute and hence

k[G×Gv S]
G

= (k[G× S]
Gv )

G
= (k[G× S]

G
)
Gv = k[S]

Gv . (5.5.1)

Thus it is enough to show that k[S]
Gv is finitely generated and we would have

G×Gv S �G ' S �Gv . (5.5.2)

As we have observed in the proof of 5.4, G
0

v
⊂ Gv is a normal subgroup of finite index. Thus,

the finite generation of k[S]
Gv is reduced to checking finite generation of k[S]

G
0

v . We may therefore
replace Gv by G

0

v
in the proof. Further, since G.v is a closed orbit, G

v,red
is reductive. Therefore, by

4.12, we have a surjection M ×G
v,red
→ Gv . Since M in Gv is central k[S]

Gv =
(
k[S]

G
v,red

)M
.

Again, since G
v,red

is reductive, the ring of invariants k[S]
G
v,red

is a finitely generated k-algebra.
Since M is a group of multiplicative type over an algebraically closed field, it is a product of Gm ’s and
a finite group scheme. Therefore, by [GIT, Theorem 1.1] and [AV, Page 113], the ring of invariants(
k[S]

G
v,red

)M
is also finitely generated. This proves the finite generation of k[S]

Gv .

The commutativity of the diagram (5.1.1) now follows by the property of categorical quotients by
the group G.

Now we check the conditions of Lemma 5.5. We consider the given closed G-orbit F = G×Gv {v} ⊂
G×Gv S. Then we need to check that φ(F ) is a closed orbit in V . In fact, φ(F ) is precisely the closed
orbit G.φ(v) = G.v ⊂ V . Thus we have verified conditions (2) and (3) of Lemma 5.5. Condition (1)

is precisely the content of 5.4 and (4) holds since G×Gv S has been seen to be smooth.
The isomorphism (¯s, pU ) shows that the diagram (5.1.2) is cartesian. This completes the proof of

5.1. �

Corollary 5.6. Let X be an affine G-scheme embeddable as a closed G-subscheme in low height G-
module. Let x ∈ X be such that the orbit G.x ⊂ X is closed. Then there exists a locally closed
Gx-invariant subscheme (a “slice”) X1, of X with x ∈ X1 ⊂ X such that the conclusions of 5.1 hold

for the G-morphism G×Gx X1 → X.

Proof. This follows from 5.1 (which corresponds to [BR, Proposition 7.4]) exactly as in [BR, Propo-
sition 7.6]. �

The following consequence of the slice theorem has many applications so we state it here without
proof.

Corollary 5.7. (see [BR, Proposition 8.5, page 312]) Let F be an affine G–subvariety of P(V ), with
V as a G–module with low height, and suppose that F contains a unique closed orbit F cl. Then there
exists a G-retract F −→ F cl.

Let V be a finite dimensional G–module and let

htG(∧(V )) := maxi{htG(∧i(V ))} (5.7.1)

We then have the following application to the theory of semistable principal bundles in positive
characteristics.

Theorem 5.8. Let E be a stable G-bundle with G semi-simple and ρV : G → SL(V ) be a represen-
tation such that p > htG(∧(V )). Then the associated bundle E(V ) is polystable of degree 0.
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Proof. The proof follows [BP, Theorem 9.11] verbatim where the notion of “separable index” is
replaced by the Dynkin height, the key ingredient being Corollary 5.7. �
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6. Added in proof

In Section 2.2, after making suitable assumptions on G, we refer to Serre in (2.2.2) for the construction
of the exponential map exp : g

nilp

∼−→ G
u
. The proof that Serre gives in ([S2, Theorem 3, page 21]

is only a sketch. At his suggestion, we complete it. We work in principle over an algebraically closed
field but phrase the argument so that it remains valid over more general bases.

Let T be a maximal torus, B a Borel subgroup containing T and U its unipotent radical. We
assume p ≥ h. By this assumption on the characteristic, the Campbell-Hausdorff group law ◦ on
Lie(U) is well-defined. The first step is the construction of a B-equivariant isomorphism

exp : (Lie(U), ◦) ∼−→ U (6.0.1)

For this step we give complete proofs. The second step is to glue these isomorphisms into

exp : g
nilp

∼−→ G
u
. (6.0.2)

This requires the additional assumption that the simply connected covering G̃ of the derived group
G′ is étale over G′. Here we will mainly give references.

6.1. Let R
+

be the set of positive roots: the set of roots of T acting on Lie(U). For α in R
+

, let Uα
be the corresponding root subgroup, and let xα be an isomorphism from Uα to Ga .

Fix a total order on R
+

. The corresponding product map from
∏
Uα to U is an isomorphism of

schemes: it is a morphism between smooth connected schemes which is étale at the origin, bijective
by [Bible, 13-05], and one applies Zariski’s main theorem as in [SGA3, XXII, 4.1] (or see [Bo2, IV,
14.5]).

This isomorphism identifies U with the affine space with coordinates (xα) (α ∈ R
+

). In these
coordinates, the action of T on U by conjugation is given by

t in T acts by (xα) 7→ (α(t)xα)

This action respects the group law. It follows that the α-coordinate of x · y is a linear combination of
the x

i

β
y
j

γ
for iβ + jγ = α.

We grade the polynomial algebra O(U) by defining degree of xα to be the height of α (if the
expression of α as a linear combination of simple roots is

∑
niαi , the height of α is

∑
ni). The

corresponding increasing filtration Fil of O(U) is invariant by T -conjugation as well as by the action
on the right and left by U -translations. It is hence invariant by B-conjugation.

The assumption p ≥ h is equivalent to O(U) being generated by Filp−1 . The definition of the
exponential (6.0.1) is a special case of the following construction.
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6.2. Let U be an algebraic group and Fil be an increasing filtration of its affine algebra. Assume that
O(U) is a polynomial algebra k[(xα)α∈A ] and that for some integers d(α) > 0, Fil is the increasing
filtration deduced from the grading for which xα is homogeneous of degree d(α). Assume that the
α-coordinate of x · y is a polynomial of degree ≤ d(α) in the (weighted) coordinate of x and y. This
is equivalent to the compatibility:

∆(Fili) ⊂
∑
j+k=i

Filj ⊗ Fil
k

(6.2.1)

of the filtration Fil with the coproduct.
We will view Lie(U) as the Lie algebra of the left invariant vector fields on U . Let Dα be the

element of Lie(U) which is δα at e. If [ε]α is the k[ε]/(ε
2
) valued point of U with coordinate xα = ε,

x
β

= 0 for β 6= α, Dαf is the coefficient of ε in f(x.[ε]α). From this it follows that Dα(x
β
) is of degree

≤ d(β)− d(α), and as a consequence

Dα Fili ⊂ Fil
i−d(α)

(6.2.2)

i.e. Dα is of (descending) filtration d(α).
We now assume that O(U) is generated by Filp−1 , i.e. that all d(α) are less than p. Then any

Lie polynomial of degree ≥ p in the derivations Di in Lie(U) vanishes on the xα and hence vanishes
identically, implying that the Campbell-Hausdorff group law ◦ on Lie(U) is defined.

Definition 6.3. The exponential map exp from Lie(U) to U is the map having as coordinates the
truncated exponential

exp(D)α :=
∑
n<p

(
D
n

n!
(xα) at e

)
(6.3.1)

Lemma 6.4. For f in Filp−1, one has

f(exp(D)) =
∑
n<p

(
D
n

n!
(f) at e

)
(6.4.1)

Proof. This holds by the definition of exp when f is a coordinate function xα , and it suffices to check
that, for g in Fila and h in Fil

b
with a+ b < p, one has the following equality:

∑ D
n

n!
(fg) =

∑ D
n

n!
(f)
∑ D

n

n!
(g) (6.4.2)

the sums being truncated at n < p. Both sides can be identified with sums
∑ D

n

n! (f)D
m

m! (g), where
on the left we have n + m < p and on the right n < p and m < p. If n + m ≥ p, then either n > a
or m > b, in which case D

n
(f) = 0 (resp. D

m
(g) = 0). The terms missing on the left side therefore

vanish. �

Lemma 6.5. The morphism exp is a group homomorphism

exp : (Lie(U), ◦) −→ U. (6.5.1)

Proof. If f is in Filp−1 , so are its left-translates. As the derivations D in Lie(U) are left invariant,
(6.4.1) applied to the left-translate of f gives:

f(x · exp(D)) =
∑
n<p

(
D
n

n!
(f) at x

)
(6.5.2)
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hence

f(exp(D′) · exp(D)) =
∑
n,m<p

(
D′

m

m!

D
n

n!
(f) at e

)
(6.5.3)

In the completed free associative algebra Q〈〈X,Y 〉〉, if H
d
(X,Y ) is the Lie polynomial which is

the degree d component of the Campbell-Hausdorff group law, one has

exp

(∑
H
d
(X,Y )

)
= exp(X) · exp(Y ). (6.5.4)

Modulo terms of degree ≥ p, one still has∑
n≤p

(∑
d<p

H
d
(X,Y )

n

n!

)
≡
∑
n<p

X
n

n!

∑
n<p

Y
n

n!
(6.5.5)

and this continues to hold in Z[ 1
(p−1)! ]〈〈X,Y 〉〉. Substituting D′ and D for X and Y , we get

f(exp(D′) · exp(D)) = f(exp(D′ ◦D)) (6.5.6)

for f in Filp−1 . Hence exp(D′) · exp(D) = exp(D′ ◦D).
Define ∆af to be f(xa)− f(x). For f in Filp−1 , (6.5.2) reads

∆
exp(D)

f =
∑

0<n<p

(
D
n

n!
(f)

)
(6.5.7)

In Q[[X]], one has log exp(X) = X. Modulo monomials of degree ≥ p, one still has

∑
0<n<p

(−1)
n

( ∑
0<m<p

X
m

m!

)n/
n ≡ X (6.5.8)

and this continues to hold in Z[ 1
(p−1)! ][[X]].

Substituting D for X, in (6.5.8), we obtain from (6.5.7) that for f in Filp−1 , one has

Df =
∑

0<n<p

(−1)
n
∆
n

exp(D)
f
/
n. (6.5.9)

This gives a formula for a left inverse a 7→ log a of exp : Lie(U) −→ U ; viewed as a derivation,

log a =
∑
n<p

(−1)
n
∆
n

a

/
n (6.5.10)

when applied to f in Filp−1 . This shows that the exponential is injective and hence, being an étale
homomorphism of connected groups, it is an isomorphism.

In the case of the unipotent radical U of a Borel subgroup, the given construction of the exponential
map, depending only on the filtration Fil of O(U), is invariant by B-conjugation.

�

Remark 6.6. (i) Let I ⊂ R
+

be the set of simple roots, and for J ⊂ I, let PJ be the corresponding

parabolic subgroup and UJ its unipotent radical. Let R
+

J
⊂ R+

be the set of α in R
+

which are linear

combinations of simple roots in J . For α =
∑
niαi in R

+ −R+

J
, define dJ (α) =

∑
i/∈J

ni . Then if all

dJ (α) are < p, the construction we have given of the exponential map gives a similar map

exp : Lie(UJ ) −→ UJ . (6.6.1)
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It suffices to replace d by dJ in the earlier proofs.

(ii) More generally, let Γ ⊂ R+
be a closed set of positive roots, and let UΓ be the corresponding

subgroup of U . For any fixed total order on Γ, the corresponding product map∏
α∈Γ

Uα −→ UΓ (6.6.2)

is an isomorphism of schemes. For α in Γ, define dΓ(α) to be the largest number of elements of Γ of
which α is the sum (with repetitions allowed).

In [Sei], Seitz states that when all dΓ(α) are < p, an exponential map from Lie(UΓ) to UΓ is
defined. He writes (before [Sei, Proposition 5.1, page 483]) that the argument in Section 4 of [S1]
yields this result. The reference is mistaken and should be replaced by Section 2.1 of [S4]. The
argument given in the preceding paragraphs, with d replaced by dΓ , also yields the result.

6.7. Let B be the variety of Borel subgroups of G. We have fiber spaces X and Y over B where
the fibers at a Borel subgroup B in B are respectively the unipotent radical U and its Lie algebra.
The given construction of the exponential map works over any base on which the primes ` < h are
invertible. Over B, we therefore obtain an isomorphism exp : Y

∼−→ X. The natural map from X to
G (resp. Y to Lie(G)) is proper, being the restriction to a closed subset of B ×G (resp. B × Lie(G))
of the second projection.

The reduced subscheme g
nilp

(resp. G
u
) of Lie(G) (resp. G) with points the nilpotent (resp.

unipotent) elements, is the schematic image of Y in Lie(G) (resp. of X in G). We want to complete
the following G-equivariant diagram in the solid arrows by an isomorphism at the dotted arrow:

Y ∼
exp //

��

X

��
g
nilp

// G
u

(6.7.1)

Replacing G by its derived group G′ does not change the diagram, nor does replacing a semi-simple G
by its simply connected covering G̃, provided G̃ is étale over G. Under our assumptions this reduces
us to the case where G is semi-simple and simply connected. Here are references for the existence of
the dotted arrow isomorphism in (6.7.1).

(A) By [St, 6.11, 8.1] G
u

is normal with a smooth dense orbit whose complement is of codimension
≥ 2. This holds in any characteristic for any simply connected G. Normality results from G

u
being

the complete intersection in G defined by the equations χ(g) = χ(e) for χ the characters of the
fundamental representations, and being smooth outside codimension 2.

(B) The same holds for g
nilp

when G is simply connected and p good, because g
nilp

is then

equivariantly isomorphic to G
u
. A nice proof is in [BR, Corollary 9.3.4]. The isomorphism uses a

representation (V, ρ) such that the pairing Tr(ρ(X)ρ(Y )) on Lie(G) is non-degenerate. It is then
defined as induced by the map g 7→ ρ(g) − 1 from G to End(V ), composed with the orthogonal
projection of End(V ) (endowed with the symmetric bilinear form Tr(XY )) to Lie(G) ⊂ EndV . This
does not work for SL(n) for which one use X 7→ 1 +X.

(C) Over the dense orbits of g
nilp

and G
u
, (6.7.1) is a system of isomorphisms, and the composite

isomorphism extends across codimension 2 by normality.

Appendix. Coxeter number and root systems, by Zhiwei Yun

Proposition A1. Let R be an irreducible root system associated to a simple group G with Coxeter
number h and let X be the lattice spanned by R. Let φ : X → R/Z be a homomorphism. Then there
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exists a basis B for R such that if α ∈ R satisfies φ(α) ∈
(
0, 1/h

)
mod Z, then α is positive with

respect to B.

Proof. Pick any basis B0 = {α1 , . . . , αr} of R. We lift φ to a linear map y : X → R which is viewed
as a point in V = Hom(X,R).

Let W be the Weyl group of R. Then there is an action of the extended Weyl group Hom(X,Z)oW
on V and the validity of the statement for the linear map y is invariant for this action. Therefore we
may assume that y lies in the fundamental alcove attached to B0 , i.e.

αj (y) ≥ 0, ∀1 ≤ j ≤ r (A1.1)

θ(y) ≤ 1 (A1.2)

where θ is the highest root with respect to B0 . Then for all α ∈ R, we have

| α(y) |≤ 1. (A1.3)

We claim that there exists a basis B of R such that for any β ∈ R with

β(y) ∈
(
− 1,−1 + 1/h

)
∪
(
0, 1/h

)
, (A1.4)

β positive with respect to B.
Write θ =

∑
i
niαi and let α0 = 1−θ and n0 = 1 as usual. Then we have the equality

∑r

i=0
niαi =

1, viewed as affine functions on V and we have

h =

r∑
i=0

ni . (A1.5)

Therefore, for some 0 ≤ i ≤ r, we have αi(y) ≥ 1/h.
If i = 0, then θ(y) ≤ 1− 1/h and in this case, we can take B = B0 . In fact, for any negative root

−β with respect to B0 , we have 0 ≥ −β(y) ≥ 1−1/h, so that −β cannot satisfy the condition (A1.4).
If i > 0, let vi be the vertex of the fundamental alcove opposite to the root hyperplane αi . So

αj (vi) = 0 if j 6= i and αi(vi) = 1/ni . We take a basis B of R such that the vector y−vi is dominant,
i.e. for any β ∈ R positive for B, we have the relation: β(y) ≥ β(vi).

Such a basis B of R satisfies the requirements of the claim. In fact, let β ∈ R be negative with
respect to B.

Write β =
∑r

j=1
mjαj for some −nj ≤ mj ≤ nj . Then, β(vi) = mi/ni . On the other hand,

β(y) =
∑r

j=1
mjαj (y). Since β is negative for B, we have

β(y) ≤ β(vi) = mi/ni (A1.6)

and we have two cases:

• If β > 0, with respect to B0 , then β(y) ≥ 0 and 0 ≤ mj ≤ nj for all j. If mi = 0, then (A1.6)
implies that β(y) = 0 and so β fails to satisfy (A1.4). If mi ≥ 1, then β(y) ≥ αi(y) ≥ 1/h, again
not satisfying (A1.4).

• If β < 0, with respect to B0 , then −1 ≤ β(y) ≤ 0 and −nj ≤ mj ≤ 0 for all j. If mi = −ni ,
then β(vi) = −1 which forces β(y) = −1 by (A1.6). If mi ≥ −ni + 1, then comparing | β(y) |
with | θ(y) |, it misses at least one copy of αi(y), therefore | β(y) |≤ θ(y)−αi(y) ≤ 1− 1/h and
yet again, β(y) does not satisfy (A1.4).

This proves the claim and the proposition. �
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(2005), exp. no. 932, pp. 195–217. MR-2167207

[S4] J-P. Serre, Exemples de plongements des groupes PSL2(Fp) dans des groupes de Lie simples,
Invent. Math., 124 (1996), 525-562. MR-1369427
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