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1. Introduction

The aim of this article is to show that in a reduced strongly (n — 2)-concave! complex space Z with

n > 2, the space of closed n-cycles is in a natural way endowed with a structure of a reduced complex
space locally of finite dimension. With its tautological family of n-cycles it represents the functor
“analytic family of n-cycles in Z” and also the functor “f-analytic family of n-cycles in Z” introduced
in [Bar08] (see also [Barl3] and [Barl5]) parametrized by a Banach analytic set.

This answers a question asked to me by Y-T. Siu forty years ago.

I was able to solve this question thanks to the notion of f-analytic family introduced in loc. cit.
and using the space Cf (Z) of finite type cycles with its natural topology.

We obtain the following results.

Theorem 1.1. Let n > 2 be an integer. Let Z be a strongly (n — 2)-concave reduced complex space
of pure dimension n + p that is to say admitting a €* exhaustion function ¢ : Z —]0,2] which is
strongly (n — 2)-convex outside the compact set K := ¢~ 1([1,2]). For any a €]0,1] and any n-
cycle Xo in an open neighbourhood of the compact set p~1([a,2]) there exists § €]0,a[ such that, if
Zg:={z€ Z | p(z) > B}, the cycle Xy extends in a unique way to the open set Zg and admits an
open neighbourhood U in the space C;(ZB) such that the ringed space defined by U and the sheaf of
holomorphic functions on U is a (reduced) complex space locally of finite dimension.

Recall that a holomorphic function h : & — C on an open set in Cf,(Z3) is a continuous function
on U such that for any holomorphic map f : S — U (corresponding to an f-analytic family of n-cycles
in Z, see loc. cit.) of a Banach analytic set S to U the composed function h o f is holomorphic.

LT Our conventions will be precised below.



D. Barlet, Finiteness of the space of n-cycles for a reduced (n — 2)-concave complex space 3

Theorem 1.2. Consider the same situation as in the previous theorem, and let now Xq € Cf(Z) be
a finite type n-cycle in Z. Then there exists 5 €]0,1[ and open neighbourhoods V and U respectively
of Xo in Cf(Z) and of XoN Zg in Cf(Z3) such that the restriction map

r:V—-U
is well defined and bi-holomorphic.

We are going to recall briefly the notion of f-analytic family of finite type n-cycles in a complex
space Z.

Firstly the notion of an analytic family of n-cycles in a reduced complex space Z parametrized by
a reduced complex space S is defined as follows (see? [Bar75, Chapter I, p. 33] or [BM14, Chapter
IV, Section 3]), using the following notion of an adapted scale (see [BM14, Chapter IV, Section 2.1}).

Definition 1.3. We call F := (U, B, j) a n-scale on a complex space Z when U and B are open
relatively compact polydiscs respectively in C"* and CP and where j : Zp — W is a closed embedding
of an open set Zg in Z into an open neighbourhood W of U x B in C""?. The open set Zg is called
the domain of E and the open set j~'(U x B) the center of E. When X is a n-cycle in Z, the
n-scale E is adapted to X when |X|N ;=1 (U x 0B) = ().

Note that when F is a n-scale adapted to a n-cycle X in Z, the projection of U x B on U restricted
to j.(X N7~ (U x B)) gives a finite proper map of degree k > 0 and the fibers of this map are classified
by a holomorphic map f : U — Sym”(B). In this case we shall say that f is the classifying map of
the cycle X in the adapted scale E.

Definition 1.4. Let Z be a complex space and let (X;s)ses be a family of n-cycles in Z parametrized
by a reduced complex space S. We shall say that this family is analytic at a point sy € S if for any
n-scale E := (U, B, j) on Z which is adapted to the cycle X, there exists an open neighbourhood Sy
of sg in S satisfying the following properties:

i) For each s € Sy the scale E is adapted to Xj.
ii) Assume that k := degp(Xs,). Then for each s € Sy we have degy(X;) = k.

iii) There exists a holomorphic map f: Sy x U — Symk(B) such that for each s € Sy the restriction
of f to {so} x U classifies the cycle X, in the scale E.

It is easy to see that an analytic family of cycles has a “set theoretic” graph
|G| :=={(s,x) e S x Z | x € |X,|}

which is a closed analytic subset in S x Z and that its projection on S has pure n-dimensional fibers
(which are the supports of the cycles). When we have an analytic family (X;)ses and when the
projection of its graph pr : |G| — S is quasi-proper® we shall say that (Xs)ses is a f-analytic family
of (finite type) n-cycles in Z . Of course this condition implies that each cycle X is a finite type
n-cycle (it means that each cycle admits only finitely many irreducible components) but this condition
contains this fact in a local uniform manner on S.

In an analogous way, when we have an analytic family (X;)ses and when the projection of its
graph pr : |G| — S is proper, we shall say that it is a proper analytic family of compact cycles
in Z.

The following corollary is of course the main result.

2T See Chapter 3 Section 4 in [Bar75] for the case when S is a Banach analytic set.
3 T This means, by definition, that for any so € S there exists an open neighbourhood S; of sp in S and a compact
set K in |G| such that any irreducible component of any fiber pr~'(s) for any s € S; meets K.
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Corollary 1.5. Consider the same situation as in the previous theorems. Then the ringed space given
by the sheaf of holomorphic functions on C'(Z) is a reduced complex space locally of finite dimension.
Moreover, endowed with its tautological family of (finite type) n-cycles it represents the functor

(reduced complex spaces) — (sets)

S+ {f-analytic family of n-cycles in Z parametrized by S}.

Remark. Let X be a (non empty) irreducible analytic subset of dimension 7 in a strongly (n — 2)-
concave complex space Z as in Theorem 1.1. Let g € X be a point in X where the supremum of the
restriction of the exhaustion function ¢ to X is obtained. Then the point zq is in the compact set
K = ¢71([1,2]) because the Levi form of ¢ at the point z has at least n non positive eigenvalues. So
any (non empty) irreducible analytic subset of dimension n in Z has to meet the compact set K. Then
any n-cycle in Z is of finite type and any analytic family of n-cycles in Z has a quasi-proper graph so
is a f-analytic family. This implies that, in the previous corollary, the obvious map* Cf (2) — Clo¢(Z)
is an isomorphism of ringed spaces and Cf (Z) represents also the functor “analytic family of n-cycles
in Z7.

Question. As it appears in the previous remark, we may expect the same result for (n — 1)-cycles
under our assumption of strong (n — 2)-concavity. But our way to use Hartogs figures in the present
article needs one more positive eigenvalue than one can expect. Is the result also true for (n—1)-cycles
under our hypothesis? It would probably be interesting, for instance, to have this kind of result for
1-cycles in a strongly 0-concave complex space.

Acknowledgments. I want to thank the referees for many interesting comments and suggestions
to improve this article.

2. Hartogs figures

2.A. Banachization

For the analytic extension via Hartogs figures, the use of the Banach spaces H(U,C) of continuous
functions, holomorphic inside on a compact polydisc U is not well adapted. We shall use the Banach
space B(U, C) of bounded holomorphic functions on U with the “sup” norm on U. Of course, H(U, C)
is a closed Banach subspace in B(U, C).

Proposition 2.1. Let U be a relatively compact polydisc in C™ and let S be a Banach analytic set.
Let F: S — B(U,C) be a holomorphic map. Then the corresponding function f : S x U — C defined
by f(s,t) = F(s)[t] for (s,t) in S x U is holomorphic (and locally on S uniformely bounded on U ).
Conversely, if we have a holomorphic function f : S x U — C and an open polydisc U" cC U, the
associated map F : S — B(U",C), defined for (s,t) in S x U" by F(s)[t] := f(s,t), is holomorphic.

Proof. The evaluation function ev : B(U,C) x U — C is holomorphic as one may easily see by
differentiation. Then the function f associated to F is the composition of the holomorphic maps
F x idy and ev. So it is holomorphic.

The converse is consequence of the linear isometric inclusion of H(U”,C) in B(U"”,C) as F" : S —
H(U",C) is holomorphic as soon as f is holomorphic (see [Bar75] or [BM]). O

4T The set Cif’c(Z) is the set of all closed cycles of dimension n in the complex space Z; its natural topology which is
associated to the adapted scales is described in [BM14, Chapter IV]. In general, the inclusion map Cf,(Z) — Cl¢(Z) is
continuous but is not a homeomorphism onto its image. See [Barl5] for the comparison between compact sets in these
two spaces.
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2.B. n-Hartogs figure on a complex space

For a € (R*)? let M (c) be the open set in C? defined by

M(a) := MT(a) UM (a) with
MP(a) ::{|t1—a1/2]<a1/4, ’tg‘ <062}
Mc(a) = {\t1|<a1, a2/2<\t2\<a2}

and let also M(a) := {(t1,t2) € C* / |t;| < ey, i =1,2}.
For € > 0 small enough, we define
M(a)® := MP(a)* UM% (a)®  with
P €= {\tl—a1/2|<a1/4—€/4, \t2|<a2—£}
) ={lti] <a1—e, @/24+¢e/2<|t2] <ar—e}

M ()
M
and also M(a)® := {(t1,t2) € C* / |t;| < oy — ¢, i =1,2}.

For a polydisc of radius R in C™ we shall denote by P¢ the polydisc with same center and radius
R—cfor0<e<R.

Definition 2.2. Let n > 2 and p > 1 two integers and let A CC A’ be two open sets in a reduced
complex space Z. We shall call H := (M, M, B,j) a n-Hartogs figure in Z relative to the
boundary of A, the following data

e an embedding j of an open set Z’ in A’ into an open set in C"*?,
e open sets M CC A’ and M CC A relatively compact in Z,
e a relatively compact polydisc B in CP

such that there exists a € (R*)? and a relatively compact polydisc V in C" 2 with the following
conditions:

i) The map j induces a closed embedding of M in M(a) x V' x B.
ii) The map j induces a closed embedding of M in M(«a) x V x B.
iii) We have j~'(M(a) x V x 0B) C A.

Definition 2.3. Let n > 2 and p > 1 two integers and let A CcC A’ be two open sets in a reduced
complex space Z. Let H = (M, M, B, j) be a n-Hartogs figure in Z relative to the boundary of A
and let Xy be a n-cycle in A. We shall say that H is adapted to Xy when the following condition
is satisfied :

Y M(a) x V x dB) N | Xy| = 0. (@)

Remarks.

1. Let H be a n-Hartogs figure in Z relative to the boundary of A. If the open set A; CC A’ has a
boundary A near enough to 0A, then H is again a n-Hartogs figure relative to the boundary
of Ay. For instance, if A := {¢ > 0} where ¢ is a continuous proper function on Z, we may
choose A; := {¢ > ¢} for € > 0 small enough.

2. Note that the n-scale By := (M(«a) x V, B, j) on A associated to H is adapted to Xy as soon
as the n-Hartogs figure H is adapted to Xj.
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3. If Xy is a n-cycle in A’ such that its restriction to A is equal to Xp, the n-scale Ey =
(M(a) x V, B, j) on A is adapted to Xy if and only if the n-Hartogs figure 7 is adapted to Xj.

Note that the n-scale Ey is not a n-scale on A although the subset M(a) x V x OB is contained
in A.

Definition 2.4. In the situation above we define, for ¢ > 0 small enough, the n-Hartogs figure H*®
on A as follows :
HE = (M®,M*, B, j)

where we use the notations

ME =Y M(a)® x Ve x B) andalso M°®:=j }(M(a)® x V¢ x B).

It is obvious to see that when H is a n-Hartogs figure relative to the boundary of A, then H¢ is
again a n-Hartogs figure relative to the boundary of A for all € > 0 small enough.

Moreover, if ‘H is adapted to the n-cycle Xy of A, the same is true for H¢ for all € > 0 small
enough.

Lemma 2.5. Let V be a relatively compact open polydisc in C9. The restriction map
res: B(M(a) x V,C) — B(M(«a) x V,C)
is a linear isometry of Banach spaces.
Note that the restriction map
res : BIM(a)® x VE,C) — B(M(a)® x VE,C)
induces also an isometry for all £ > 0 small enough.

Proof. Let f(v,t1,t2) := >, czam(v,t1).t3* the Laurent expansion of the holomorphic function f :
MC(a) x V — C. The holomorphic functions a,,, m € Z on the product of V by the disc {|t1| < a1}
are given by the formula

1 dz .
am (v, t1) == % g f(v,tl,z).ﬁ with 7 €]ag/2, asl.
zl=r

As the holomorphy of f on M (a) x V implies that a,, = 0 for each negative m on the open set
{|t1 — a1 /2| < a1/4} x V, we conclude that the functions a,, are identically zero for m < 0 and so
f is holomorphic on M(«) x V. This shows that the restriction map res is bijective (and also it
is linear continuous) between the two Fréchet spaces O(M(a) x V) and O(M (a) x V); so it is an
isomorphism of Fréchet spaces.

Let us show that if f is in B(M(a) xV,C), then res(f), which belongs to the space B(M (a) xV, C),
has the same “sup” norm. For this purpose fix € > 0 small enough. As M(a)® x V¢ is a compact
polydisc in M(«a)x V', the maximum of f on this compact is obtained at some point z in the distinguish
boundary of it. But as z is also in the boundary of M (a)¢ x V¢, the desired equality follows.
Conversely, if g is in B(M («) x V,C), its analytic extension f to M(a) x V will be bounded on the
boundary of M(a)® x V¢ by the sup of g on M%(a)® x V. So we obtain the equality of the “sup”
norms for g and f respectively on M () x V and M(«) x V. O



D. Barlet, Finiteness of the space of n-cycles for a reduced (n — 2)-concave complex space 7

The Banach analytic set B(U,Sym”*(CP)). Recall that if p > 1 and k > 1 are integers, there
exists a closed embedding (in fact given by a polynomial map) of Sym*(CP) := (CP)* /Sy, into the
vector space E(k) := @2:1 Sh(CP) given by the elementary tensorial symetric functions®. If U is an
open relatively compact polydisc in C", the subset B(U, Sym*(CP)) is closed and Banach analytic in
the Banach space B(U, E(k)). Indeed, if Q : E(k) — C" is a polynomial map such that Q~(0) =
SymF¥(CP), then the holomorphic map

Q:B(U,E(k)) — B(U,CY) defined by f— Qof

satisfies Q~1(0) = B(U, Sym*(CP)).

Nevertheless, be aware that for an open set Q in F(k) the subset B(U, 2) of elements in B(U, E(k))
taking their values in €2 is not, in general, open in B(U, E(k)); so, for an open polydisc B CC CP, the
subset B(U, Sym¥(B)) is not open in B(U, Sym*(CP)) in general.

Remark. The obvious map H(U, E(k)) — B(U, E(k)) is a closed (linear) isometry and induces a
holomorphic inclusion map

iy H(U, Symk((Cp)) — B(U, Symk((cp))
and for all € > 0 the restriction
r: B(U, E(k)) — H(U®, E(k))
is a (linear and continuous) compact map which induces a holomorphic restriction map
B(U, Sym"(C?)) — H(U*, Sym"(C?)).
This remark will allow us to use Lemma 2.5 with Banach analytic sets like H (U, Sym*(B)).

Notations. Let k € Nandlet U/ cc U cc C" and B cc CP be polydiscs. We shall note Yu (k)
the Banach analytic set classifying the couples of an element in H (U, Sym*(B)) with its isotropy data
on U’. Recall that for a holomorphic map f : U — Sym*(B) the isotropy data on the polydisc U’ is

the map
T(f): U - F®F

where -
F=Q (L(A@'(cn),Ai(cp))) and E' = ) sm(c?).
i m=0
It corresponds to the collection of holomorphic maps
T5,(f) : U — L(AY(C™), AY(CP)) @ S™(CP)

for all 4 € [1, min(n,p)] and m € [0,k — 1] which are given, near a point in U’ where the multiform
graph X associated to f has local branches fi,..., fi, by the formula

k
Th(F)(t) = Y A(Df(1) ® f(t)™
j=1

These maps are always holomorphic on all U and determine the trace map for the projection 7 :
Xy — U of the holomorphic differential forms on U x B.
The subset
Spu(k) € H{U,Sym*(B)) x H(U',F ® E')

5 T See for instance [BM14, Chapter I, §4].
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is defined as the graph of the map f — T(f) := @;,, T (f) which is not holomorphic in general.
Nevertheless it is a Banach analytic subset and its natural projection

Sv (k) — H(U, Sym*(B))

is a holomorphic homeomorphism (see [Bar75, Chapter III, Proposition 2, p.81] or [BM, Chapter V]).

The important point which motivates the introduction of this Banach analytic subset is the fact
that, when S is a reduced complex space, an analytic family of multiform graphs given by a holomor-
phic map f: S x U — Sym*(B) will give an analytic family of cycles in U x B parametrized by S if
and only if the corresponding isotropy data (given by the maps 70 (f 1s) on S x U) are holomorphic
on S x U. This is the isotropy condition ; see [Bar75, Chapter II] or [BM14, Chapter IV, Section 5].

Our next result is the main tool for performing the analytic extension of n-cycles near a (n — 2)-
concave boundary.

Proposition 2.6. Consider the open sets M(a) x V and M(a) x V in C". The inverse of the
restriction map is a holomorphic isomorphism of analytic extension

prigt : B(M(a) x V,SymF(CP)) — B(M(«) x V,Sym*(CP)).

Composed with the restriction to the compact set M(a)ex Ve it sends the subset H(M (a)xV,Sym¥(B))
into H(M()® x V¢, Sym*(B)) for e > 0 small enough.
Moreover, this holomorphic map induces a holomorphic map, again for € > 0 small enough
EMa)xv, M@)e/3xver3(k) — Zaga)esxvers, pma)ersxvee/s(k)

which factorizes the restriction map

EM(a)xv, M(a)/3xvers(k) = Zqayrswverss, pmiayzessxyers (k)

through the restriction

EMa)xv, M) /3xvers(B) = Enrayxv, m(ayesxvers(k).
Proof. Lemma 2.5 gives that the map
prigt : B(M(a) x V, E(k)) = B(M(«a) x V, E(k))

is an isometry of Banach spaces. It is clear that its inverse sends B(M(a) x V,Sym”(CP)) into the
Banach analytic subset B(M () x V, Sym”(CP)) and that if the map f € B(M(a)xV, Sym*(CP)) takes
values in Sym*(B), the same is true for its restriction. This proves the first part of the proposition.

In order to prove the second part, it is enough to show that a holomorphic map of a Banach
analytic set S with values in the subset

H(M(a) x V,Sym*(B))

which is isotropic on the product of S with any relatively compact subset in the open set M (a)a/ 3 x
Ve/3 will have an analytic extension which will be isotropic on any relatively compact open set in
M(a)/3 x VE/3. So it will be isotropic on the closure of the open set M(a)%/3 x V2/3, O

Proposition 2.7. Let n > 2 and p > 1 be integers and let Uy X By the product of two polydiscs with
centers 0 respectively in C* and CP. Denote by (t1,--- ,tn, 21, ,xp) coordinates on Uy x By. Let ¢
be a real valued function of class €* on Uy x Bi, such that

p(t,z) = Re(tr) + Y pieltil> + Y oj.la* + ol[|(t,2)| 1) (@@)

i=1 j=1
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where the real numbers pa,01,--- ,0p are positive (so ¢ is (n — 2)-convexr near (0,0) and dyg o # 0).

Let A be the open set { > 0} in Uy x By and let A" be an open neighbourhood of the compact set
A in C"P. Let Xy be a closed analytic subset of pure dimension n in A’ such that each irreducible
component of Xg meets A and such that

[ Xo[ N {t1 = --- = tn =0} C {0}, ()

Then there exists o € (Ri)Q and polydiscs V and B CC By with centers 0 respectively in C"~2 and
CP such that the following conditions are satisfied :

1. M(a)xV x Bcc A;
2. M(a) xV xBCCA;

3. M(a) x Vx OB C A;

4. | Xo| N (M(a) x V x B) = 0 (this implies | Xo| N (M(a) x V x OB) = 0)).
Proof. Choose the polydisc B CC Bj small enough in order that we have
XoN ({0} x B) c {0} and {0} x OB C A.

This is possible as we have |Xo| N {t; = --- =, = 0} C {0} and as ¢ is positive on a small enough
punctured neighbourhood of the origin in the p-plane {t; = --- = ¢, = 0} x CP. So we shall have

| Xo|N(W x9B)=0 and W x9dB C A

for any small enough open neighbourhood W of the origin in C™. A immediate consequence is that
Conditions 1, 3 and 4 will be satisfied as soon as « and V are small enough.

In order to check Condition 2, let us remark first that, up to choosing the real numbers p} and p},
such that p'y > |p1l, p'y €]0, p2] and r > sup;~3 |pi|, we obtain on W x B chosen small enough

n
plt,@) = Re(tr) — phu[t* + pheltal” = (Y [tl) (**)
3
with strict inequality as soon as x # 0. Then for

Ve={(ts,otn) /| Y Il <%
3

the following inequalities hold

1
o(t,x) 21041 —pra®>—re® on MP(a)xV.x B (1)
1
o(t,x) > —ay — pl.o® + Zp,2.0622 —re? on MC%(a)xV.x B (2)

for @ and e small enough in order that M(«) x V; is contained in W.
This allows to fix a1, a9 and e.
Now we shall choose a1 and e smaller in order to satisfy the following conditions :

1 , 1
S and ¢ <§a1. (3)

8o < p'2.a22 , a1 <



10 2. Hartogs figures

To obtain MP(a) x V. x B CC A it is enough to show that on M (a) x V. x B we have, if we let
a1 = u.a and €2 = v.ay = uv.ae

1 > ’
- pP1-& “+ r..
I 1-¢1

Indeed, as we assumed p'j.0q < 3 and r.e < f.a; (so r.v < 1/8) the first condition holds.
In order to satisfy M (a) x Vo x B CC A it is enough to show that on MY (a) x V. x B we have

L, 12
Z'D 9.0i9 > U+ pu- g + r.auv.

But our condition implies

IUQOZ <1U ’I"U’U<1U

which gives u+ p'u?.c +7.uv < 2.u. The condition 8a; < p'y.ce? which implies 2u < % py.cra, allows
to conclude. O

Remarks.

1. We only used Condition (*) for Xy and Inequality (**) for ¢ in a neighbourhood of the origin
in the proof above.

2. Sufficient conditions on ¢ € €2 to satisfy (QQ) are:

i) The origin is not a critical point of .

ii) The Levi form of ¢ at 0 has, at most, (n — 2) non positive eigenvalues in the complex
tangent hyperplane to the real hypersurface {¢(z) = 0}; the existence of real function
@ € €? such that A = { > 0} and satisfying these two conditions is equivalent to the fact
that the open set A has a strongly (n — 2)-concave smooth boundary near the origin (see
Definition 2.10 given below). Indeed, if ¢ is not critical at 0 and has a Levi form at 0 with,
at most, (n — 2) non positive eigenvalues in the complex hyperplane tangent to the real
hypersurface {¢(z) = 0}, its order 2 Taylor expansion at the origin is written, in suitable
local holomorphic coordinates (7, z)

n p
p(r,7) = Re(r1) + Re(Q(r,2)) + > pirlmil> + Y ojulz;* + o(||(7, )%
i=1 j=1

where () is a holomorphic homogeneous degree 2 polynomial and where the real numbers
p2 and 0j,j € [1,p] are positive. Define new local holomorphic coordinates

ti:=m1+Q(r,2),ti:=7 forie[2,n] and xz;:=2x; forje[l,pl
Then we obtain (Q@Q).

3. Condition (*) implies that Xy has no local irreducible component at 0 contained in the hyper-
plane {t; = 0}. In fact, as the coordinate ¢; is choosen in order to suppress the real part of
the holomorphic homogeneous degree 2 term in the order 2 Taylor expansion of ¢ at 0 (see the
previous remark), we want that no local irreducible component of Xy at the origin is contained
in the complex hypersurface 71 + Q(7,x) = 0 locally defined near 0 for ¢ given. Then, as soon
as the restriction ¢|x, has not 0 as a critical point, Condition (*) could be realized when the
Levi form of ¢ has at most (n — 2) non positive eigenvalues on the complex tangent hyperplane
at the origin of the hypersurface {¢ = 0} .
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4. One may easily see that under our hypothesis, the cycle Xy meets the open set A when it
contains 0. Indeed, the analytic subset

{t1=t3=---=tn20}ﬂ’X0’

is nonempty, has dimension at least 1 and meets the complement of A only at the origin.

Of course, assuming that 0 € Xy, the proposition shows that, in fact, Xy contains a branched
covering of degree k > 1 of M (a) x V. inside

MFP(a) x V. x Bcc A.

5. In the situation of Proposition 2.7, for any continuous family (X;)ses of n-cycles in A parametrized
by a Banach analytic set S such that Xg, = XoN A, there exists an open neighbourhood S’ of
50 in S, such that for each s € S’ Condition 4 remains true after analytic extension of the cycles

(see Proposition 2.6), because, thanks to Condition 3, M(a) x V x OB is a compact subset in
A.

2.C. g¢-concave open sets.

Definition 2.8. Let ¢ : U — R be real valued €2 function on an open set U in CV. We shall
say that ¢ is strongly ¢-convex when its Levi form at each point of U has at most ¢ non positive
eigenvalues.

So, with this definition a strongly 0-convex function is a strongly plurisubharmonic function.

Definition 2.9. Let ¢ : Z — R a real valued €? function on a reduced complex space Z. We shall
say that ¢ is strongly g-convex if locally near each point of Z it can be induced by a €? strongly
q-convex function in a local embedding in an open set of an affine space.

Remark that a strongly g-convex function on an irreducible complex space of dimension at least
equal to ¢ + 1 has no local maximum because there exists at any point a germ of curve on which the
restriction of ¢ is strongly p.s.h.

Definition 2.10. Let Z be a reduced complex space and let A be a relatively compact open set in
Z. We shall say that A has a smooth %2 boundary when for each point z in A there exists a
local holomorphic embedding j : W — U of an open neighbourhood W of z in an open set U of
the Zariski tangent space of Z at z and an open set D with smooth ¢ boundary in U such that
W N~ 0D) = W nNoA.

We shall say that the open set A C Z with smooth ¢? boundary is strongly ¢g-concave at a
point z € OA if, in some local holomorphic embedding j : W — U of Z around z as above, one can
define A in W as the subset {j o ¢ > 0} N W where ¢ is a real valued ¢ function on U such that

L. dypj(.) # 0 on the tangent space Ty () of U at j(2).

2. The restriction of the Levi form at j(z) of ¢ to the complex hyperplane tangent at j(z) to the
real hypersurface {p(z) = ¢(j(2))} in U has at most ¢ non positive eigenvalues.

We shall say that A is strongly ¢g-concave if A is strongly g-concave near each point in JA.
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Remark. Assume that Z is of pure dimension ¢ + p. If the defining function ¢ of A satisfies
Conditions 1 and 2 above, we can compose ¢ with a real strictly increasing (non critical) convex
% function (this does not change the level sets {¢ = constant}), in order that c o ¢ is €2 strongly
g-convex (and non critical) near z.

Conversely, if ¢ is a real valued ¢ function which is strongly g-convex and not critical near at a
point z € Z, the open set {¢(x) > ¢(z)} has a strongly g-concave boundary in a neighbourhood of z.

With this terminology, using the remarks above, we may give the following reformulation of
Proposition 2.7:

Corollary 2.11. Letn > 2 and p > 1 be integers, let Z be a reduced complex space of pure dimension
n+p and let A == {p > 0} be an open set with €% smooth boundary in Z. Let Xq be a n-cycle in an
open neighbourhood of a point z € A such that the function ¢|x, is not critical at z.

Assume that A is strongly (n — 2)-concave near z ; then there exists a n-Hartogs figure H =
(M, M, B, j) relative to the boundary of A, adapted to Xy, and such that the point z lies in M.

Proof. Using a local embedding of an open neighbourhood of z in an open set of the Zariski tangent
space T ., it is enough to prove the corollary in the case where Z is an open set in C"+p/, with p’ > p
an integer. As we may choose the function ¢ strongly (n — 2)-convex such that dy, # 0 thanks to the
previous remarks, we can choose local coordinates near z in order to be in the situation of Proposition
2.7 in the case 2z € Xo, as we assumed that ¢|x, is not critical at z. In this case the proposition gives
the result.

If z is not in Xy, the same construction in an open neighbourhood of z with no limit point in Xj
allows to conclude, and in this case the degree of X in the (adapted) scale Ey will be zero. O

2.D. Convexity—concavity
In this paragraph we want to have a brief discussion about g-convexity and g-concavity.

Let us consider in an open set U of C"™ a % function ¢ : U — R and a non critical zero zy on
. So ¢(z0) =0 and dy,, #0. Let D :={z € U / ¢(z) < 0} and let H be the complex hyperplane
tangent at zo to the real hypersurface {¢ = 0} which is smooth near z.

Our terminology (Norguet—Siu convention, see [NS77]) is to say that the open set D is strongly
g-convex near zg € 0D if the restriction to H of the Levi form of ¢ at zy has at most ¢ non positive
eigenvalues.

Looking now at the same open set D but asking for some strong concavity condition, we write
D:={z€ U/ —¢(z) > 0}. Then we shall say that D is strongly g-concave at the point z if the
restriction to H of Levi form of —¢ at 2y has at most ¢ non positive eigenvalues.

If the signature of the restriction to H of the Levi form of ¢ at zg is given by (p — 1) “plus” and
n “minus” we see that that near zy our open set D will be strongly n-convex near zy and strongly
(p — 1)-concave near zy. So D will be strongly (p — 1)-concave near z if the function —¢ is strongly
(p — 1)-convex at the point zg.

In order that a €2 exhaustion function ¢ : Z —]0,2] on a reduced complex space Z gives relatively
compact g-concave subsets Z, := {¢(z) > a} for each a €]0, 1] which is not critical for ¢, we see that
it is enough that the Levi form of ¢ at each point in ¢ 1(]0, 1[) has at most q non positive eigenvalues.
That is to say that ¢ is strongly g-convex on this open set.

In order to reach the key situation given in Proposition 2.7 with a n-cycle, we need to dispose of
a €?-exhaustion ¢ : Z —]0,2] which is (n — 2)-strongly convex on the open set »~1(]0,1[) . So we
need to assume that n > 2.
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2.E. Boxed Hartogs figures

Definition 2.12. Let n > 2 and p > 1 be integers and let A CC A’ be two open sets in a reduced
complex space Z. Let H = (M, M,B,j) and H' := (H',M’', B, j) be two n-Hartogs figures in Z
relative to the boundary of A given by the same (local) embedding j and having the same polydisc
B cc CP. We shall say that these two n-Hartogs figures are boxed when we can choose o, o/, V, V'
in Definition 2.2 in order to have

e M'(d)) cC M(a),
e M'(d) CcC M(w),
o V' CCV.

For instance, if £ > 0 is small enough, the n-Hartogs figures (H, H®) are boxed (see Definition 2.4).

Proposition 2.13. Let n > 2 and p > 1 be integers, let Z be a reduced complex space of pure
dimension n +p and let A CC Z be an open set with smooth €? boundary in Z which is strongly
(n — 2)-concave. Assume that A := {¢@ > 0} and let Xy be a n-cycle in an open neighbourhood A’
of the compact set A, such that any irreducible component of Xo meets A. Then there exists a finite
family of boxed n-Hartogs figures (M., Ha)aca relative to the boundary of A, such that the following
conditions hold:

1. The open sets M., for a € A cover the boundary OA.
2. For each a € A the Hartogs figures H, and H., are adapted to X.
3. For each a € A any irreducible component of Xo meeting M, meets the open set M],.

4. No compact irreducible component of XoN A meets the union of the compact sets M,, a € A.

Remark. Let Xy be any n-cycle in A’. Choosing the open set A’ small enough around the compact
set A, we can assume that the cycle X has only finitely many irreducible components in A’ and that
each of them which is not compact meets A (see Remark 3 following Proposition 2.7).

Corollary 2.14. In the situation of Proposition 2.13, if we assume that the open set A’ containing
A is small enough, any irreducible component I of the cycle Xy in A’ satisfies for all a € A and all
n > 0 small enough:

LN (M x V1 x By) = prigty[T'N (M x V x By

where prigt, : H(M, x V,,Sym*(B,)) — H(HZ x Val, Sym¥(By,)) is the holomorphic map of analytic
extension built in Proposition 2.6.

Remark. In the situation of the previous corollary, choosing € > 0 small enough, there exists, for
each a € A, a holomorphic extension map which lifts the map prigt,:

iprigta : B, vz (k) — X e ().

It allows to extend in this setting an analytic family of branched coverings in M, parametrized by a
Banach analytic set S and which is isotropic on S x M to an analytic family of branched coverings
in M which is isotropic on S x MITE

Proof of Proposition 2.13. Corollary 2.11 and the remark following it implies the existence, for each
z € OA of a n-Hartogs figure H, relative to the boundary of A, contained in A’ and satisfying the
following properties:
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1

z € My,

ii) H, is adapted to X ;

iii) each irreducible component of Xy meeting M, meets the open set M,;

1v

)
)
)
) No compact irreducible component of Xg N A meets M.

As the open sets M, cover the compact set A we can find a finite sub-covering. Then the properties
1, 2, 3 and 4 are consequences of i), ii), iii) and iv) by letting H/, := HZ and choosing € > 0 small
enough. U

Proof of Corollary 2.1/. Let I" be an irreducible component of Xy meeting M, for some a € A. Then
I’ meets M,. As I' does not meet M ()g X V, x 0B, because H, is adapted to Xo, the intersection
I' N M, is the graph of an element v € H(M(a), x Vg, Sym*«(B,)) with k, € N* 6.

The closed analytic subset Y of the open set M¢ defined by Y := prigt, [F N Ma] is not empty, of
pure dimension n and is contained in I'. So it is a union of irreducible components of I' N M¢. But
it contains a non empty open set in each irreducible component of this branched covering. So these
two analytic subsets coincide.

If an irreducible component of X does not meet any M, it has to be compact and contained in
A. In this case the desired equality is obvious. O

3. The extension and finiteness theorem

3.A. Some useful lemmas

The version below of Sard’s lemma is more or less classical.

Lemma 3.1. Let Z be a reduced complex space and let ¢ : Z — R be a real valued €' function. Then
the set of critical values of ¢ has Lebesgue measure 0.

Proof. Firstly note that a point z € 7 is critical for ¢ if, by definition, the differential of ¢ vanishes
on Tz ., the Zariski tangent space of Z at z. Remember also that a complex space is, by definition,
countable at infinity ; so Z and its singular locus have only countably many irreducible components.
As a countable union of sets of measure 0 is again of measure 0, it is enough to prove the lemma when
Z is irreducible. We shall prove the lemma by induction on the integer dim Z. The case dim Z = 0
is obvious. Assume the lemma true for dim Z < mn — 1 for some integer n > 1 and take an irreducible
complex space Z of dimension n. The singular set S of Z has dimension at most (n — 1), and for each
irreducible component S; of S the image of the critical set of ¢|g, has measure 0. So the critical set
of s is again of measure 0. But a critical point of ¢ which belongs to S is a critical point of ¢|g. So
it is enough to show that the set of critical values of ¢ restricted to the complex connected manifold
Z \ S has measure 0. This is the classical Sard’s lemma. g

Lemma 3.2. Let V be an open set and K be a compact set in U x B. The subset V in H(U, Sym*(B))
consisting of the X such that any irreducible component meeting K meets V is an open set in

H(U,Sym*(B)).

Proof. Let us clarify the meaning of an irreducible component of an element X in H(U,Sym*(B)):
we call irreducible component of such a X the closure in U x B of an irreducible component of the
branched covering of U defined by the projection of X N (U x B) on U.

61 as it exists some (m,v) € M(a)q x Vi, such that TN ({m,v)} x B,) # 0.
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Let Xg be such that any irreducible component of Xy which meets K meets V', and assume that
(Xy)u>1 is a sequence converging to X such that for each v > 1 there exists an irreducible component
I', of X, meeting K but not V. Passing to a subsequence, we may assume that the sequence (I'y),>1
converges uniformely on any compact of U x B to a non empty n-cycle I' with closure contained in
Xo and which is a branched covering of U. Then I' meets K and not V. Indeed, if (to, xo) would
be in I' NV, there exists open neighbourhoods U; and By of ¢y and zg respectively in U and B such
that Uy x Bj is contained in V. But then, as Uy := U; NU and Bs := B} N B are non empty open
sets, for ty in Us the fibers of the I', at to for v big enough will meet {to} x By and so V. As at
least one irreducible component of I' meets K without meeting V' and as its closure is an irreducible

component of X, this gives a contradiction. O

Of course, in the case V = (), we get back the fact that the subset in H (U, Sym” (B)) of elements
which do not meet K is open.

Lemma 3.3. Let Z be a complex space and let (Us)icr be an open covering of Z. Assume that for
each i € I a closed n-cycle X; is given in U;. Assume that the following patching condition holds:

V(i,j) € I* X;NU; = X; NU;

as an equality of cycles in U; NU;. Then there exists a unique closed n-cycle X in Z such that for
each i € I we have X NU; = X;.

For the easy proof see [BM14, Chapter IV, Proposition 1.3.1].

The following variant will be used.

Lemma 3.4. (Variant) In the situation of the previous lemma replace the patching condition by the
following two conditions:

1. For each couple (i,5) € I? an open subset Wi ; CC U; NU; is given and we ask that X; N W ; =
Xj N W@j.

2. For each couple (i,j) € I? we ask that any irreducible component of the cycle X; NU; meets the
open set W ;.

Then the conclusion is the same.

Proof. Let T’ be an irreducible component with multiplicity ¢ in the cycle X; NU;. Let I be the
irreducible component of X; which contains I', and put X; = X +6.I". Then I'" meets W; ; and there
exists a closed analytic subset Y of pure dimension n in | X}| such that its restriction to W; ; is equal
to I NW; ;: indeed, Y is the union of the irreducible components of X containing a non empty open
set in I N W; ;. Note that each of these irreducible components of X; has multiplicity ¢ in the cycle
Xj. Then put X; = X} +0.Y. We see that the cycles X and X respectively in ; and U; satisfy
again the patching condition XN W;; = X; N W, ;.

This allows, for fixed (i,7), to make a descending induction on the number (necessarily finite
as W;; is relatively compact) of irreducible components of X; N U;, to show that the condition
X;NU; = X; NU; holds. This reduces this lemma to the previous one. O

3.B. Adjusted scales.

The definition of a scale adapted to a cycle is recalled in Definition 1.3.

Definition 3.5. 1. Let Z be a complex space. We shall call adjusted n-scale on Z, written
down E := (U,U’,U",B,B",j), the data of a n-scale on Z, E := (U, B, j), with additional
polydiscs U” cc U’ cc U and B” cC B. We call E the underlying scale of the adjusted
scale E.
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2. We shall say that the adjusted scale E is adapted to a n-cycle X in Z when we have
N U x (B\ B"))n|X| = 0.

Note that this implies that the underlying scale E is adapted to X, but this condition is more
restrictive.

3. When the adjusted scale E is adapted to the n-cycle X, we shall call degree of X in E the
degree of X in F.

4. We shall call center of the adjusted scale, written down D(E), or more simply, D(E), the
open set j~1(U x B) in Z which is also the center of the scale E.

5. We shall call domain of isotropy of the adjusted scale, written down D’(E), the open set
§ 1 (U’ x B) in Z.

6. We shall call domain of patching of the adjusted scale, written down D”(E), the open set
§7HU" x B") in Z.

Remarks.
1. The open set D"(E) is relatively compact in D'(E).

2. When a n-scale E is given, for any compact set K in D(F), there exists an adjusted n-scale E
such that E is the underlying scale of E and with K’ C D”(E). Moreover, if E is adapted to a
n-cycle Xy in Z, we may choose E in order that it is adapted to Xj.

3. As for X € C'¢(Z) the condition to avoid a given compact subset is open in C/¢(Z), when the
adjusted scale E is adapted to a cycle Xy there exists an open neighbourhood, written down
Qi(R), of Xg in Cl°°(Z) such that Q4 (E) is the subset of all n-cycles X in Z for which E is
adapted and degp(X) = k where k := degg(Xp).

Let Z be a reduced complex space and let E = (U, U’,U”, B, B”,j) be an adjusted scale on Z.
For a given integer k consider the continuous map sending a branched covering in H (U, Sym*(B"))
to its isotropy data on U’ (for the notations see what follows Lemma 2.5)

T:H(U,Sym*(B")) - HU',F ® E').

The graph X (k) of this map is a Banach analytic set”, thanks to [Bar75, Propositon 2, p. 81] (see
also [BM]).

The set of couples (f,T(f)) in Xy (k) for which the associated branched covering is contained
in j(ZND(E)) is a closed Banach analytic subset of ¥y ¢/ (k) being the pull-back by the projection of
the subset of elements in H (U, Sym*(B")) contained in j(ZND(E)) which is a closed Banach analytic
subset of H(U,Sym*(B")) by Proposition 4, p. 27 of [Bar75] (see also [BM, Chapter V]).

Definition 3.6. We shall denote G;(E) this Banach analytic set and we shall call it the the k-th
classifying space of the adjusted n-scale E on Z.

We have then a tautological family of n-cycles in the open set D(E) parametrized by Gi(E). It is
an analytic family of cycles in the open set D'(E), in the sense of [Bar75], and the fact that, for k > 1,
locally on Gi(EE), any irreducible component of a branched covering in this family meets U” x B”
implies that we have a f-analytic family of cycles in D'(E).

" T homeomorphic to H(U,Sym”(B")) via the projection!
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Be careful that the tautological family of cycles on the open set D(E) parametrized by Gi(E) is
not, in general, an analytic family of n-cycles ; see the example of [Bar75, p.83] (and also [BM14,
Chapter 1V]).

The next lemma is an obvious consequence of loc. cit.

Lemma 3.7. Let E be an adjusted n-scale on a reduced complex space Z and let k be an integer. The
tautological family of n-cycles in the open set D'(E) parametrized by G(E) has the following “almost
universal” property:

For any analytic family of n-cycles (Xs)scs in Z parametrized by a Banach analytic set S such
that for each s € S the adjusted scale E is adapted to Xg with degp(Xs) = k, there exists an
unique holomorphic map

such that the pull-back by f of the tautological family is the restriction to the open set D'(E) of
the given family.

Of course, conversely, such a holomorphic map gives a f-analytic family of n-cycles on the open
set D'(E).

Note that the pull-back family is in fact defined on the open set D(E) but, as already noticed
above, it may not be analytic outside D’'(E).

As a consequence of this “almost universal” property, we obtain that for any analytic family
(Xs)ses of n-cycles in Z such that for a point sy € S the adjusted n-scale E is adapted to the cycle
X, with degg(Xs,) = k, there exists an open neighbourhood S’ of sy in S such that the previous
lemma applies for the family parametrized by S’. So we shall have a holomorphic classifying map
f 8" — Gr(E) in this situation.

We shall generalize now the concept of classifying space to the case of a finite family of adjusted
n-scales.

Definition 3.8. Consider a reduced complex space Z and a finite family of adjusted n-scales (E;);cs
on Z. Assume that they are adapted to a given finite type n-cycle Xo in Z. Assume that any
irreducible component of X meets the open set W := Uier D" (E;).

We shall call patching data for X, associated to the family (E;);cr, written R((E;)ier, F)
or more simply R when there is no ambiguity, a finite collection of n-scales (Fj ;) for (i,7) € I 2,
i # j, where h belongs to a finite set H(i, j) for each couple (i,5) € I?, i # j, such that the following
properties hold:

i) Fjjp is a n-scale on the open set D'(E;) N D'(E;).
ii) The n-scales Fj ;, are adapted to Xo.
We shall say that the patching data R are complete when the following condition also holds:

iii) For each ¢ # j given, the union of domains of the scales F; j, h € H(i,j), covers the compact
subset D"(E;) N D"(E;) of D'(E;) N D'(EE;).

Notations.

1. In the sequel, when we shall consider a reduced complex space Z and a finite family of adjusted
n-scales (E;);cr, adapted to a finite type n-cycle X, in Z, such that any irreducible component
of Xo meets the open set

W =) D"(E),
i€l

we shall say that the family (E;);cs is convenient for Xo.
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2. In this setting we shall use the following definitions :

W= Uie[ D(E;) ;

W= Uie] D'(E;) ;

W= U D"(Ei) ;

K = User g7 (0 x (B; \ BY))

When the family (E;);er is convenient for a finite type n-cycle Xo, K will be a compact
neighbourhood of K disjoint from Xj.

3. For X € [Tic; Gk, (E;) we shall denote by X* the closed cycle in D(E;) associated to the i-th
component of X.

Lemma 3.9. Let (E;);cr be a finite family of adjusted n-scales on Z, convenient for a n-cycle Xo
of finite type in Z, and let R be some corresponding complete patching data. There exists an open
neighbourhood V of the image Xo of Xo in the product [Licr Gk, (E;) such that for each X €V we have
the following properties:

1. No X' meets the compact set K.

2. For each i € I, any irreducible component of X* meeting D" (E;) N D" (E;) with j # i, meets the
open set Uy, D(Fijn)-

3. For each (i,7,h) the scale F; j is adapted to X and X7,
4. For each (i,j,h) we have degFijh(Xi) = degFijh(Xj) = degFijh(Xo) =FKijh-

Proof. Conditions 1, 3 and 4 are clearly open. An easy consequence of Condition 1, of the inclusion
ii) of Definition 3.8 and of Lemma 3.2 is that Condition 2 is also open. U

For a n-scale E := (U, B, j) on Z we shall abbreviate H(U,Sym*(B)) in Gy(E).

When we consider a cycle Xy in an adapted scale FE := (U, B, j) and when we dispose of a n-scale
F := (V,C,h) on U x B, adapted to Xy, where h is given by an isomorphism of an open set in
U x B into some open neighbourhood of V x C in C" x CP, we have a well-defined map of an open
neighbourhood U of Xy is H(U,Sym*(B)) into H(V,Sym!(C)), where [ := degp(Xy), sending X € U
to the multiform graph associated to h.(X) in the scale F'. This is a consequence of the fact that the
condition Xo N h~(V x dC) = () is open in H(U,Sym*(B)) and that the degree of X near enough
Xy in the adapted scale F' will be equal to [.

Such a map, which will be called a change of scale, is not holomorphic in general but becomes
holomorphic when we add the isotropy condition:

precisely, if U’ CC U and if h=1(V x C) C U’ x B, then the change of scale map

S — H(V,Sym!(C))
will be holomorphic (see Theorem 4, p.66 in [Bar75]).

Definition 3.10. Let (E;);cs a finite family of adjusted n-scales on Z, convenient for a n-cycle X0
of finite type in Z, and let R be some corresponding patching data. Let k; be the degree of X in the
adjusted scale E;. For each (i, j,h), i # j we have a couple of holomorphic maps

Hael gka (Ea) - Gki,j,h (Fi,j,h)

obtained by the changes of scales E; — F;;;, and E; — F; ;j, because, by construction, we have
D(F; ;) cC D'(E;) N D'(Ey).
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We shall denote by S(R) the intersection of the kernels of these double maps® with the open set V
built in LemAma 3.9. It is a Banach analytic set and we shall call it the classifying space associated
to (E;)ier, Xo and R.

Remark that the patching data R are not assumed to be complete in the previous definition.

Proposition 3.11. Consider a finite family of adjusted n-scales which is convenient for the n-cycle
Xo in Z and let R be some complete patching data associated. Keeping the previous notations we
have for each (X")ie;r € S(R) a unique n-cycle X € CH(W') such that X N D'(E;) = X' N D'(E;),
Viel.

Moreover, this defines a tautological family of cycles in W' which is a f-analytic family of cycles
satisfying the following “almost universal” property:

For any analytic family of n-cycles (Xs)ses in an open neighbourhood of W parametrized by a
Banach analytic set S° such that for sy € S we have X5, = Xo in a neighbourhood of W, there
exists an open neighbourhood S’ of sg in S and a unique holomorphic map

f:8 = S(R)

such that the pull-back by f of the tautological family parametrized by S(R) is the restriction to
the open set W' of the family (Xs)ses -

Proof. For each X € V any X’ does not meet K. As R is complete, we may use Lemma 3.4 with
U; = D'(E;) and W; ; = |J;, D(F; j») to associate to X a finite type n-cycle X of the open set W’. The
f-analyticity of the so defined family is obvious. The “almost universal” property is then clear.  [J

Note that this proposition implies that the map S(R) — Cf (W) classifying the tautological family
of n-cycles in W' is a holomorphic map.

3.C. Shrinkage.

Definition 3.12. Let Z be a reduced complex space and let E := (U, U’,U"”, B, B”, j) be an adjusted
n-scale on Z. For any real 7 > 0 small enough we shall denote by E” the adjusted n-scale on Z defined
as E™ := (U, U'",U", B, B",j). We shall call E” the 7-shrinkage of E.

Recall that for a polydisc P of radius R, P7 is the polydisc with same center and radius R — 7.
The definitions of M(«)”, M ()™ are given in the section 2.B.

Remarks.
1. By definition, the shrinkage of E does not change the embedding j and the polydiscs U”, B, B”.

2. As j is a closed embedding of an open set in Z in an open neighbourhood of the compact set
U x B, it is clear that for any given adjusted n-scale E on Z, there exists a real ¢ > 0 (depending
on E) such that for any 7 €]0,¢[, E” is again an adjusted n-scale on Z.

3. If E is an adjusted scale adapted to the n-cycle Xg in Z, for 7 small enough (depending on E
and Xj), the adjusted n-scale E™ remains adapted to Xy and we shall have also degp-(Xo) =

deg (Xo).

8 T The kernel of a double map f,g: A — B is the pull-back of the diagonal in B x B by the map (f,g) : A — B x B.

9 T Recall that, by definition, this means that for any n-scale E := (U, B, j) on Z, adapted to some X, so € S, with
degr(Xs,) = k, we have an open neighbourhood Sy of sp in S and a classifying map for the corresponding family of
branched coverings f : So x U — Sym*(B) which is isotropic.
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4. If E is an adjusted scale adapted to the n-cycle Xg in Z, there exists an open neighbourhood U
of Xg in C!°¢(Z) and a real € > 0 such that for any X € U and any 7 €]0, ¢, the adjusted scale
E” remains adapted to X with again degp-(X) = degp(Xo).

5. In the situation of the previous proposition 3.11, we may, for 7 > 0 small enough, keep the same
patching data R on the finite family (E7);c; of adjusted n-scales; if it was complete, it remains
complete and if it was convenient'? for the n-cycle Xy, it remains convenient for the n-cycle Xj.
Then we have a holomorphic restriction map

S(R) — ST(R)

where ST(R) is the classifying space associated to the family (E7);c7, and this map is induced
by a finite product of linear (continuous) compact maps. This last point is crucial for
the finiteness results.

3.D. Excellent family.

In order to avoid that our notations become too heavy we shall introduce the following conventions
when H is a n-Hartogs figure in C"*? ; we shall put, using the notations introduced above

/

U:=M(a)xV, U :=M@)xV, U":=M) xVe, B":=B°
where ¢ > 0 is small enough, and where 0 < &’ < &’. The choices of ¢’ and &’ will be precised when
they are useful. We shall associate to ‘H the adjusted n-scale on A given by:

EH = (Uv Ul: U”a Ba B”aj)'

We shall put also

1"

U:i=M()xV, U =M@ xV U =M xv

the holomorphy envelopes respectively of U, U’ and U”. Then we shall have a family of adjusted
n-scales on A/, written down:

EY := (0", 0", 0", B, B",j) with U":=M(a)" x V", U" := M(a)"+" x V',

where 7 is a non negative real number, small enough (for 7 = 0 we shall simply write E).
Then we shall have the isotropic classifying spaces

Gr(H) := Sy (k) and also  GI(H) := S, (k).

Proposition 2.6 gives a holomorphic analytic extension map prigt’ such that the following diagram
commutes:

Gru(H) "> G} (H)

Tes
l %”

Gr(H)

Definition 3.13. Let Z be a reduced complex space of pure dimension n + p, let A CC Z be a
strongly (n — 2)-concave open set in Z and X a n-cycle in an open neighbourhood A’ of A in Z. We
shall say that a finite family (H,)qeca of n-Hartogs figures relative to the boundary of A is excellent
for the cycle Xy when the following conditions hold, where we write E, and E, the adjusted scales
respectively on A’ and A associated to the n-Hartogs figure H,, :

10T See the notations following Definition 3.8.
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1. The adjusted scales E, and E, are adapted to the cycle Xj.

2. We may choose the patching domains of the adjusted scales (fEa)ae 4 in order that the union

D// U j U//a X B//)
acA

contains the compact set 0A.

3. There exists a finite family of adjusted n-scales (Ep)pep on A, adapted to XO, such that the
finite families (E.)c.caup and (E;).caup are convenient for X, where we put E, = E; for b € B.

Moreover we ask that the union D”(B) of the patching domains of the (E;)pcp covers the

compact set A\ D”(A) of A; so D"(A)U D"(B) in an open set containing A.

As a consequence, the union D'(A)"U D'(B) of the isotropy domains will cover A for 7 > 0 small
enough.

Proposition 3.14. (Existence of excellent families) Let Z be a reduced complex space of pure
dimension n + p, A CC Z be a strongly (n — 2)-concave open set with smooth boundary and X) a
n-cycle in an open neighbourhood A' C Z of A such that any irreducible component of Xy meets A.

Then there exists a finite family (Hq)aca of n-Hartogs figures relative to the boundary of A which
is excellent for the cycle Xo.

Proof. First we use Proposition 2.13 to cover JA by a finite family of n-Hartogs figures relative to
the boundary of A adapted to the cycle X¢ such that Conditions 1 and 2 hold. Then we build a finite
family of adjusted n-scales (Ep)pep on A, adapted to Xy in order that Condition 3 holds. O

3.E. The extension and finiteness theorem.

The next theorem will be crucial in the proof of Theorem 1.1.

Theorem 3.15. Let Z be a reduced complex space of pure dimension n + p, where n > 2, p > 1.
Assume that there exists a €2 exhaustion ¢ : Z —]0,2] which is strongly (n — 2)-convex on the open
set “100,1)) and let A :={x € Z | p(z) > a} for some a €]0, 1] which is not a critical value for .
Let Xo a closed n-cycle of an open neighbourhood A' of A in Z such that any irreducible component
of Xo meets A. Then there exists an open neighbourhood A" of A in A and a f-analytic family
(Xg)gEH of n-cycles in A" parametrized by a reduced complex space = (of finite dimension) such that
Xe, = Xo N A" and such that E is isomorphic to an open neighbourhood of Xo N A" in Cf(A”).
satisfies the following universal property:

For any f-analytic family (Xs)ses of n-cycles in A parametrized by a Banach analytic set S and
such that its value at some so € S is equal to Xo N A, there exists an open neighbourhood S’ of
so in S and an unique holomorphic map

h:8 =2
satisfying the equality X = Xh(s) NA for each s € S'.

Proof. Note that A is a relatively compact open set in Z with a €2 boundary which is strongly
(n — 2)-concave.

Begin by covering the compact set A by an excellent finite family (H,)qea of n-Hartogs figures
for A adapted to the cycle Xy. Choose then open sets A; cC A cc A” cc A/, such that the
following properties hold, where we use the notations introduced above for the finite family of the
adjusted scales (Ea)aeA associated to (Hq)aea:
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i) A"\ Ay C Uyen W (E,).
ii
iil) Uyeq W(Eq) C A.

iv) K :=Ugeada ' (Ua % (Ba\ BY)) C Ay

It is easy to fulfill these conditions for A; and A” near enough to A, as, by assumption, the subsets
W(E,) and j; ' (U, x B, \ B”) are compact in A, and as the union of the open sets W (E,) contains
OA.

Note that Condition iv) allows to choose the compact neighbourhood K of K inside A;.

Choose now a convenient finite family (Ej)pecp of adjusted n-scales on A, adapted to X, in order
that the open set (J,cp W” () contains A;.

Put E, = E; for b € B, and define C := AU B. The family of adjusted scales (E.)ecc in A is
then convenient for Xo N A, up to choosing the patching domains big enough. Fix some complete
patching data R associated to the family (E;).cc.

The family (E.).cc of adjusted scales in A’ is convenient for Xy N A” if we choose the patching
domains big enough. Consider now some complete patching data for this family of the form R UR”,
that is to say containing the patching scales already in R. Define the following Banach analytic sets:

)
) Upea W(E,) CC A
)
)

1. Sp is the classifying space of the family (Ec)cec, the degrees being these of Xj in the various
scales adapted to the cycle Xy, with the patching conditions defined by R. Note that R is not
complete in general.

2. S, is the classifying space of the family (E.).cc with the patching conditions defined by RUR”.

3. S_ is the classifying space of the family (E.).cc, with the (complete) patching conditions defined
by R.

Then we get a holomorphic extension map
a:S_— Sy

deduced from the extension maps in the n-Hartogs figures (Hg)acA-

By definition S; is a closed Banach analytic subset of Sy as it is defined in Sy by the patching
conditions given by R”. Then put Z := o~ (S, ). So we have a holomorphic map o : & — S,. We
want to show the following claim:

Claim. There exists a holomorphic map 5 : Sy — = satisfying the two properties:

1. We have a0 3 = Id and Boa = Id in a neighbourhood of the points defined by X, respectively
in S; and =.

2. The holomorphic map f is the composition of a holomorphic map induced by a linear (contin-
uous) compact map and a holomorphic map.

As the open set |J.co W” (IEC) contains A", there is, on Sy, a tautological family of n-cycles
which is f-analytic on A”. Then the “almost universal” property of S_ gives a holomorphic map
B : S, — S_ which factorizes via the closed Banach analytic subset = C S_. Let us show that the
holomorphic map 5 : S; — = deduced from this factorization satisfies the two properties of the claim.

First we have awo § = Id and [ o @ = Id respectively in S; and =, by definition of = and (3 (see
Proposition 2.6).

To see the second property, consider 7 > 0 small enough and let us show that the holomorphic
map induced by the linear compact (by Vitali’s theorem) restriction 7 : S, — ST factorizes 3, where
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T

T is the classifying space corresponding to the 7-shrinkage (fEZ)ceC of the family (E.)ccc with the
patching data R UR". Indeed, for 7 small enough, the tautological family of ST is still f-analytic on
A and the “almost universal” property of S_ gives again a holomorphic map A7 : ST — S_. And
we have § = ,5’7 or” proving our assertion. In fact, the map BT takes its values in = because the
7-shrinkage does not change the patching data deduced from R UR” for 7 small enough.

We conclude that the Banach analytic set = has finite dimension thanks to the finiteness lemma
of [Bar75, p. 8] (see also [BM, Chapter V]). Moreover, it is isomorphic to S; which is also of finite
dimension.

The holomorphic isomorphism 3 : S, — = factorizes via an open neighbourhood of Xy N A” in
Cf (A") because S, parametrizes a f-analytic family of cycles in A”, and because a cycle X near
enough to Xy N A” defines an element in = C S_ as it satisfies the patching conditions R UR”. This
shows that we can identify the Banach analytic set = (which is a reduced finite dimensional complex
space) with an open neighbourhood of X N A” in Cf(A").

The universal property is obvious. U

Note that it is not restrictive to choose A” := {¢ > a3} for some «a; €]0, a[, near enough to a.

Remarks.

1. The reduced complex space (of finite dimension) = built in the previous theorem parametrizes
a f-analytic family of n-cycles in the open set A” which is an open neighbourhood of A. So,
when we have a f-analytic family (Xg)ses of n-cycles in A parametrized by a Banach analytic
set S and such that its value at some sy € S is equal to Xo N A we can extend each cycle Xj,
s €S, toan-cycle X, in A in order that the family (X,)seg is f-analytic in A”, with the
condition that each irreducible component of X, meets A and with the equality Xs N A = X,
for each s € §'.

2. We shall see later on that = is also (isomorphic to) an open neighbourhood of the point XoNA
in Cf (A).

4. Finiteness of the space of n-cycles of a reduced strongly (n — 2)-
concave space (n > 2).

4.A. The global extension theorem.

First we have to complete our terminology.

Definition 4.1. We shall say that a reduced complex space Z is strongly ¢-concave, where ¢ > 0
is a natural integer, if there exists a real valued ¢ exhaustion function on Z, ¢ : Z —]0, 2], which is
strongly g-convex outside the compact set K := ¢~ 1([1,2]).

In the sequel, when we consider a reduced complex space Z which is assumed to be ¢g-concave, we
shall always assume implicitly that we have chosen such an exhaustion ¢. For instance, any reduced
compact complex space is strongly g-concave for any g > 0.

When Z is strongly g-concave irreducible and non compact of dimension at least ¢+ 1, the function
¢ achieves its maximum at a point in K. So we shall have ¢(Z) =|0, u] with u > 1.

Theorem 4.2. Let n > 2 be an integer. Let Z be a reduced complex space which is strongly (n — 2)-
concave. Let a €]0,1[ and let X be a finite type n-cycle in the open set Zo := {2 € Z | ¢(2) > a}.
Then there exists a unique n-cycle X in Ct(Z) such that X N Z, = X.

The proof will use the following remark.
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Remark. Consider a closed irreducible analytic subset I' of dimension n in Z. As the restriction
¢r of the exhaustion ¢ to I must reach its maximum (as ¢ is continuous and proper), this maximum
cannot be obtained at a point in which ¢ is strongly (n — 2)-convex. So we have I' N ¢ ~1[1,2]) # 0.

Proof. The uniqueness of X is a consequence of the previous remark: if X;, i = 1,2, are in cf(Z) and
satisfy X; N Z, = X, then any irreducible component I'; of X; has to meet Z, and so has to contain
an open set in Xo. Then it has to be an irreducible component of X, and its multiplicity in X; and
X2 must coincide. So X1 Xg

To show that this cycle exists, consider first the case where X is compact in Z,. Then X=X
is a solution. So it enough to consider the case where X is irreducible and non compact. Thanks to
[ST71, Theorem 8.3], for each z € 9Z, there exists an open set U, and an unique closed analytic set
X, in Z, UU, of pure dimension n such that X, N Z, = X. Choose a finite set of points z1,...,2n
and open sets U/ CC U; := U,, such that the union of the U] covers the compact set 0Z,. Let

N:=2Z,U (Uf\;1 U/) and put

N
X1 = (Xu(|Jx.))na

i=1
Let us show that X is a closed analytic subset in 2. Consider z € Q. If z is in Z, we have X; = X in
a neighbourhood of z and the assertion is clear. If not, either z is not in any U, and X is the union
of the X, in a neighbourhood of z and the assertion is clear, or z is in 6UJ1, e ,8UJ’-k for ji,...,jk in
[1,N]. As the set X}, is closed and analytic in Z, U Uj,, then X is again the union of the X, near
z in , and the assertion is proved.

So in this situation there exists a real positive 5 < o such that Zg C €. Let X5 be the irreducible
component of X7 N Zg which contains X; then X5 is a closed irreducible analytic subset of Zg such
that XoNZ, = X.

Now let

= inf{f < a / 3X3 irreducible n-cycle of Zg such that Xz N Z, = X}.

Then what we obtained above shows that we have v < «, and, applying the same arguments to the
cycle X, defined on Z, via the cover of Z, by the Zg, 3 > « in which we already built an irreducible
n-cycle Xg extending X, we conclude that v = 0 and that there exists an (unique) irreducible n-cycle
X in Z extending X. O

4.B. Some consequences.

We shall give first some easy consequences of the fact that the reduced complex space Z is strongly
n-concave.

Proposition 4.3. Let n > 2 be an integer and let Z be a reduced complex space which is strongly
(n — 2)-concave. Then the natural map j : C (Z) — C°(Z) is a homeomorphism. Moreover, for each
a €]0, 1] the restriction map

resqo : CH(2) = Cf (Z,)
is well defined and is also a homeomorphism.

Proof. Let us prove first that any n-cycle X in Z has finitely many irreducible components. As this
implies the same result for each Z, for a €]0, 1], this will imply the fact that the restriction map res,
is well defined, and then bijective as a consequence of Theorem 4.2.

As the family of irreducible components of a n-cycle is locally finite, only finitely many irreducible
components of X can meet the compact set K := ¢~!([1,2]). But we have seen in the remark following
the previous theorem that any irreducible component of X must meet K. So X is a finite type cycle.

To show the continuity of res;! it is then enough to prove that j is a homeomorphism which is
an easy consequence of the lemma below.
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Lemma 4.4. Let Z be a reduced complex space and let (X,),>0 be a sequence of n-cycles in Z
converging in C/¢(Z) to a cycle Y. Assume that there exists a relatively compact open set Q in Z
such that any irreducible component of each X, and of Y meets Q. Then all these cycles are of finite
type and the sequence converges to'Y in Cf (7).

Proof of Lemma 4.4. First if Y = (), for v > 1 the cycle X, will be disjoint from the compact set
K := ), and this implies that X, is the empty cycle. So the conclusion holds in this case. If Y is
not empty, let U be a relatively compact open set in Z meeting each irreducible component of Y.
We have to show, by definition of the topology of Cf (Z), that for v > 1 each irreducible component
of X, meets U. If it is not the case, passing to a subsequence, we may assume that for each v there
exists an irreducible component I', of X, disjoint from U. As, passing again to a subsequence, we
may assume that the sequence (T',) converges in C/°¢(Z) to a cycle T, we shall have |T'| C |Y| and
Il NU = (. To conclude, it is enough to show that T' is not the empty cycle, as any irreducible
component of I' is also an irreducible component of Y and then meets U by hypothesis. As each I',
is not empty, it has to meet K = Q. This implies that I" also meets K and so is not empty. This
contradicts our assumption. O

W(Za) = C°(Za)
for « €]0, 1], is a holomorphic homeomorphism. To conlude the proof we have to show the continuity
of res; !, and this reduces to prove that if the sequence (X,) of C/¢(Z) is such that the sequence
(X, N Z,) converges in C'¢(Z,), then it converges in C!°°(Z). Let Y, € C'°(Z,) be the limit of this
sequence in C!°°(Z,) and let Y € C!°(Z) be the cycle extending it. Let A be the set of 3 €]0, a] such
that the sequence (X, N Z3) converges in C°“(Z3) to Y N Zg. Then « is in A so A is not empty. Put
7 := inf A. Theorem 3.15 implies that v = 0 and we obtain also the convergence in any Cl°°(Z3), for
any 3 > 0; this gives the convergence in C,Z{’C(Z ), as, by definition, a n-scale on Z is also a n-scale on

Zg for > 0 small enough. O

End of the proof of Proposition 4.3. We have proved that j, and then also each jq : C,

4.C. An analytic extension criterion.

The aim of this paragraph is to prove the following analytic extension result.

Theorem 4.5. Let Z be a complex space and n an integer. Consider a f-continuous'! family (Xs)ses
of n-cycles of finite type in Z parametrized by a reduced complex space S. Fix a point sg in S and
assume that the open set Z' in Z meets all irreducible components of Xs, and such that the family
of cycles (Xs N Z')ses is analytic at so. Then there exists an open neighbourhood Sy of so in S such
that the family (Xs)ses, is f-analytic.

The hypotheses translated in terms of classifying maps means that we have a continuous map
¢ : S — Cf(Z) such that the composed map 7 o ¢ is holomorphic at sq, where 7 : C[,(Z) — Cl¢(Z') is
the restriction map.

Then the theorem says that there exists an open neighbourhood Sy of sg in S such that the map
¢ is holomorphic on Sy. Note that, as r is holomorphic'?, the hypothesis that ¢ is holomorphic at sq
is a necessary condition.

This result is not true in general if we take for S a non smooth Banach analytic set which is not
of finite dimension (locally). The reader may find a counter-exemple with an isolated singularity in
[BM, Chapter V].

The key point for the proof of the previous theorem is the following analytic extension result.

1T This means that we have a continuous family of finite type n-cycles such that its graph is quasi-proper over S.
This is equivalent to the continuity of the classifying map ¢ : S — Cf,(Z) of this family.

121 in the sense that for any holomorphic map 1 : T — C;(Z) of a reduced complex space T' the composed map r o
is holomorphic.
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Proposition 4.6. Let S a reduced complex space and let ) # Uy C Us be two polydiscs in C". Let
f: S x Uy — C a continuous function, holomorphic on {s} x Uy for each s € S. Assume moreover
that the restriction of f to S x Uy is holomorphic. Then f is holomorphic on S x Us.

Proof of Proposition 4.6. First consider the case S smooth. As the question is local on S it is enough
to consider the case where S is an open set in C™. Fix an open relatively compact polydisc P in S.
The function f defines a map F : Uy — €°(P,C), where we write down ¢°(P,C) the Banach space
of continuous functions on P, via the formula F(t)[s] = f(s,t) for t € Uy and s € P. First we shall
show that the map F' is holomorphic.

Let U CC U; be a polydisc. For any fix s € S we have

of 1 dri A -+~ ANdy, .
—(s5,t) = ——. 8, T). Vte U Vielln].
ati( ) (217‘1’)” aan( ) (7’1—tl)...(Ti—ti)Q...(Tn—tn) [ ]
where t := (t1,...,t,) are coordinates on C". This Cauchy formula shows that F' is C-differentiable

and its differential at the point t € U is given by
n
h > Fi(t).hi, heC",
i=1

where F; is associated to the function

(s,t) — gi:(s,t) i€ [l,n]
which is holomorphic for each fixed s € S thanks to the Cauchy formula above.

Let H(P,C) the closed subspace of °(P,C) of functions which are holomorphic on P. Our
hypothesis implies that the restriction of F' to the non empty open set U; takes its values in this
subspace. Let us show that this is also true on U;. Assume that there exists tyg € Us such that
F(to) is not in H(P,C). Thanks to the Hahn-Banach theorem we can find a continuous linear form
A on €°(P,C), vanishing on H(P,C), and such that A(F(tp)) # 0. But the function ¢t + \(F(t)) is
holomorphic on Uy and vanishes on Uy; this contradicts A\(F(tp)) # 0. So F takes values in H(P,C)
and f is holomorphic on § x Uy when S is a complex manifold.

The case where S is a weakly normal complex space follows immediately.

When S is a general reduced complex space, the function f is meromorphic and continuous on
S x Uy and holomorphic on S x U;. So the closed analytic subset Y C S x Uy along which f may not
be holomorphic has no interior point in each {s} x Us. The analytic extension criterion of [BM14,
Chapter IV, Criterion 3.1.7] allows to conclude. O

Proof of Theorem 4.5. Let |G| C S x Z be the graph of the f-continuous family (X;s)ses and let A
be the set of points in (o, () € |G| admitting an open neighbourhood S, x Z¢ in S x Z such that the
family of cycles (Xs N Z¢)ses, is analytic. Remark that, thanks to our hypothesis, the open set A in
|G| meets every irreducible component of {so} x | X,,|.

Assume to begin that there exists a smooth point zg of | X, | in the boundary of AN ({so} x| X5s,])-
Choose a n-scale E := (U, B, j) on Z which is adapted to X, and satisfying :

degp(|Xsl) =1, Ju(Xs) = k.(U x {0})
20 €jH(U X B), j(z0) := (to,0).

It is clear that such a n-scale exists as zp is a smooth point in |X,,|. Let S; be a sufficiently small
open neighbourhood of sy in S and let f : S; x U — Sym*(B) be the (continuous) classifying map
for the family (Xg)ses, in the scale E. As j~1(U x {0}) meets A, there exists a non empty polydisc
Us C U such that Uz x {0} is contained in A. Then we may apply Proposition 4.6 to each scalar
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component of f in order to obtain that f is holomorphic on S7 x U. Moreover, as the same argument
applies to any linear projection of U x B to U near enough the vertical one; this implies that f is an
isotropic map, up to shrinking slightly U. This contradicts the fact that the point (sg, zp) is in the
boundary of the open set AN ({so} x |Xs,|) of | Xs,]-

If the boundary of AN ({so} x |Xs,|) is contained in the singular set of | X,|, we may apply the
analytic extension criterion of [BM14, Chapter IV, Criterion 3.1.7], and we obtain directly that A
contains | Xg,|. So in any case the family of cycles (Xs)ses is analytic at so. As the graph |G| is, by
assumption, quasi-proper on S, it is enough to use the next proposition (which is proved in [Barl5,
Proposition 2.2.3]) to conclude.

Proposition 4.7. Let Z and S be reduced complex spaces and let (Xs)ses be a f-continuous family of
n-cycles in Z. Assume that this family is analytic in sg € S. Then there exists an open neighbourhood
S’ of sp in S such that the family (Xs)ses s a f-analytic family of n-cycles in Z.

4.D. Proof of Theorem 1.2 and its corollary

We shall begin by a lemma which will give the case where the n-cycle Xg is compact.

Lemma 4.8. Let Z be a strongly (n — 2)-concave reduced complex space. Then C,(Z) is open in

cf(2).

Proof. Let Xy be a compact cycle in Z. There exists a €]0, 1] such that X is contained in Z, =
{x € Z | p(x) > a}. So X, does not meet the compact set ¢~ '({a}). This is an open condition in
CIL(Z ). And as any irreducible n-dimensional analytic subset in Z has to meet K, if it does not meet
¢~ 1({a}) it is contained in Z, (by connectedness). Then any X € Cf,(Z) which is near enough Xj is
contained in Z, so is compact. ]

Note that under the hypothesis of the previous lemma, C,(Z) is not closed in C(Z) in general,
as one can see taking Z := Py \ {0} and considering the set of hyperplanes in Py.

As we already know from [Bar75] that C,(Z) is a reduced complex space, Theorem 1.2 and its
corollary are proved near a compact n-cycle in Z.

The case where Xg is not compact. Of course we are in the case where Z is not compact. Fix Xy a
non compact n-cycle in Cf (Z) and choose an o €]0, 1] which is not a critical value of ¢ and of the
restriction of ¢ to | Xg|; this is possible thanks to Sard’s Lemma 3.1 and the fact that ¢(|Xo|) contains
10, 1].

Consider now the reduced complex space = constructed in Theorem 3.15. It is an open neigh-
bourhood of XoN A" in Cf (A”) and we may assume that A” := Zg for some 3 < «a very near a. Due
to Proposition 4.3 it is homeomorphic to an open neighbourhood V of Xy in Cf (Z). So the restriction
map

resg:V — =

is holomorphic, bijective and is a homeomorphism. Now the continuity of res; ! and the finiteness
of E allow to apply Theorem 4.5 because we already know that the tautological family of cycles
parametrized by = is f-analytic on the open set A” which is an open set which meets any irreducible
component of each cycle in this family (because K C Zg). Then res; ! is holomorphic and so resq is
an isomorphism of Banach analytic sets. O
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4.E. A compactness criterion for the connected components of the reduced com-
plex space C!(Z) when Z is strongly (n — 2)-concave

For a reduced complex space Z which is compact, the compactness of the connected components
of C,(Z) is a consequence of the existence of a ¢! 2n-differential form on Z which is d-closed and
such that its (n,n) part is positive definite in the Lelong sense. Indeed, this gives that the volume
(computed with this (n,n) part) of the n-cycles is constant on connected components. The result
follows then from Bishop’s theorem [Bis64] (see [BM14, Chapter IV] for details).

In the case of a non compact strongly (n — 2)-concave reduced complex space Z we have the
following analogous result :

Proposition 4.9. Let Z be a reduced complex space which is strongly (n — 2)-concave. Assume that
there exists on Z a €' 2n-differential form w which is d-closed with compact support and such that
its (n,m) part is positive definite in the Lelong sense in a neighbourhood of K = o~ 1([1,2]), and
everywhere non negative in the Lelong sense. Then the connected components of Cf(Z) are compact.

Proof. For @ < 1 near enough to 1 and for any continuous hermitian metric A on Z there exists a
constant C' such that the following inequality holds:

volp(X NZy) < C./ w for any cycle X € Cf (2).
b'e

As the function X — [y w is locally constant on Cf (Z) because dw = 0 (the direct image of w as a
current is d-closed, so locally constant at smooth points of C,(Z), and this current is a continuous
function on Cf,(Z) thanks to Proposition IV 2.3.1 of loc. cit.), we have a uniform bound for the volume
of XN Z, for X in a given connected component of Cf (Z). This implies that the closure of the image
of this connected component in Cf(Z,) is compact, thanks to Bishop’s theorem (see [BM14, Chapter
IV, Theorem 2.7.20]). But the restriction map Cf (Z) — Cf(Z,) is a homeomorphism by Proposition
4.3, so the image of a connected component is closed and then compact. ]
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