
Épijournal de Géométrie Algébrique

epiga.episciences.org

Volume 1 (2017), Article Nr. 9

Haas’ Theorem revisited

Benôıt Bertrand, Erwan Brugallé, and Arthur Renaudineau

Abstract. Haas’ theorem describes all patchworkings of a given non-singular plane tropical
curve C giving rise to a maximal real algebraic curve. The space of such patchworkings is

naturally a linear subspace WC of the Z/2Z-vector space
−→
ΠC generated by the bounded

edges of C, and whose origin is the Harnack patchworking. The aim of this note is to provide

an interpretation of affine subspaces of
−→
ΠC parallel to WC .

To this purpose, we work in the setting of abstract graphs rather than plane tropical curves.
We introduce a topological surface SΓ above a trivalent graph Γ, and consider a suitable
affine space ΠΓ of real structures on SΓ compatible with Γ. We identify the vector subspace

WΓ of
−→
ΠΓ characterizing real structures inducing the same action on H1(SΓ,Z/2Z). We then

deduce from this statement another proof of Haas’ original result.
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Titre. Théorème de Haas revisité

Résumé. Le théorème de Haas décrit tous les patchworks d’une courbe tropicale plane lisse
donnée C donnant lieu à une courbe algébrique réelle maximale. L’espace de ces patchworks

est naturellement un sous-espace linéaire WC du Z/2Z-espace vectoriel
−→
ΠC engendré par les

arêtes bornées de C, et dont l’origine est le patchwork de Harnack. Le but de cette note est

de donner une interprétation des sous-espaces affines de
−→
ΠC parallèles à WC .

Pour ce faire, nous nous plaçons dans le cadre des graphes abstraits plutôt que celui des
courbes tropicales planes. Nous introduisons une surface topologique SΓ au dessus d’un
graphe trivalent Γ, et considérons un espace affine adéquat ΠΓ de structures réelles sur SΓ

compatibles avec Γ. Nous identifions le sous-espace vectoriel WΓ de
−→
ΠΓ caractérisant des

structures réelles induisant la même action sur H1(SΓ,Z/2Z). Nous déduisons alors de cet
énoncé une autre démonstration du résultat original de Haas.

Received by the Editors on September 14, 2016, and in final form on July 3, 2017.
Accepted on July 28, 2017.
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e-mail : benoit.bertrand@math.univ-toulouse.fr

Erwan Brugallé
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1. Introduction

Haas classified in his thesis [Haa97] all unimodular combinatorial patchworkings (see [Vir84, IV96])
producing a real algebraic M -curve (i.e. a non-singular compact real algebraic curve of genus g whose
real part has g + 1 connected components). In the tropical reformulation of patchworking in terms
of twist-admissible sets of edges of a non-singular plane tropical curve C given in [BIMS15], the set
of all possible patchworkings with this given underlying tropical curve C is naturally a vector space−→
ΠC over Z/2Z and Haas’ Theorem can be interpreted as follows: the space of all such patchworkings

producing an M -curve is a well identified and easily described subvector space WC of
−→
ΠC (see Section

4.A). In this note we address the question of interpreting affine subspaces of
−→
ΠC parallel to WC . To

this purpose, it is suitable to follow Klein’s approach and to work in the framework of abstract real
topological surfaces, i.e. oriented topological surfaces equipped with an orientation-reversing contin-
uous involution, rather than restricting to real algebraic curves in a given toric surface (see [Kle76]).
Accordingly, we deal with abstract graphs rather than with plane tropical curves. Given an abstract
graph Γ with only 3-valent and 1-valent vertices, we construct a topological surface SΓ decomposed
into a union of disks, cylinders, and pairs of pants (this is just a variation on standard pair of pants
decompositions of a surface). Next, given a continuous involution τ : Γ→ Γ, we define real structures
above the pair (Γ, τ), which are roughly real structures on SΓ compatible with the decomposition
induced by Γ together with τ (see Section 2.C for precise definitions). The set of real structures

above (Γ, τ) is naturally an affine space Π(Γ,τ) over Z/2Z whose direction
−−−→
Π(Γ,τ) has for basis the set

of edges of the quotient graph Γ/τ that are adjacent to two 3-valent vertices (see Lemma 2.11). As
any involution, a real structure on SΓ induces an action on H1(SΓ;Z/2Z) and the main result of this
note can be summarized as follows.

Two real structures above (Γ, τ) induce the same action on H1(SΓ;Z/2Z) if and only if they differ

by an element of a given vector subspace W(Γ,τ) of
−−−→
Π(Γ,τ) having a simple description.

This statement is proved in Theorem 3.2 after the definition of W(Γ,τ) at the begining of Section 3.
We show in Proposition 3.5 that W(Γ,τ) admits an alternative description which corresponds to Haas’
description of the above-mentioned vector space WC in the special case of a non-singular plane tropical
curve C. The connection of Theorem 3.2 and Proposition 3.5 with Haas’ Theorem then comes from
the fact that a real topological surface with a non-empty real part is maximal if and only if the
corresponding induced action on the first homology group of the surface is trivial. In particular, we
recover Haas’ Theorem as a corollary of our main results combined with standard results in tropical
geometry (see Section 4.B).

Our main motivation for the present work was the possible generalisations of Haas’ Theorem in
higher dimensions. Generalising a statement usually first requires to identify the suitable notions
coming into play and allowing a suitable formulation of the original statement. Both in its original
formulation and in its “twist-admissible” tropical reformulation, Haas’ Theorem involves, sometimes
implicitely, several features that a priori make sense only for curves. As an example, it is based
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on the existence of Harnack distribution of signs discovered by Itenberg (see [IV96]), which has no
known analogue yet in higher dimensions. The existence of such Harnack distribution of signs on
Z2 is precisely the fact that naturally turns the space of all patchworkings of a non-singular tropical
curve in R2 in a vector space rather than an affine space as in the case of abstract graphs: it provides
a canonical patchworking on any non-singular tropical curve in R2, which in addition produces an
M -curve. By focusing on abstract graphs rather than on embedded tropical curves, and on the action
on homology induced by a real structure rather than the number of connected components of its real
part, we place Haas’ Theorem in a wider perspective. There, it turns out to be a corollary of a more
general statement which seems to us more likely to have a higher dimensional analogue.

A few words on the context

Despite the surprising elegance of the complete description of maximal unimodular patchworkings,
Haas’ Theorem unfortunately only ever appeared in his thesis [Haa97]. We briefly recap its origin,
rooted in the first part of Hilbert’s 16th problem. This latter concerns the classification, up to isotopy,
of all possible mutual positions of the connected components of the real part of a non-singular real
algebraic curve in RP2 of a given degree d. If d is even, every connected component of the real part
of such a curve is called an oval, and bounds a disc which is called the interior of the oval. One
says that an oval is even (resp. odd) if it is contained in the interior of an even (resp. odd) number
of ovals. The following Ragsdale conjecture played an important role in subsequent developments in
real algebraic geometry, and remains one challenging open question in the case of M -curves.

Conjecture (Refined Ragsdale conjecture, [Rag06, Pet33]). For any non-singular real algebraic curve
of even degree 2k in RP2 having p even and n odd ovals, one has

p ≤ 3k(k − 1)

2
+ 1 and n ≤ 3k(k − 1)

2
+ 1.

A series of counterexamples to this conjecture have been constructed since the 90’s [Ite93, Haa95,
Bru06]. Nevertheless, no counterexample is known yet among M -curves. As an application of his
classification of maximal unimodular combinatorial patchworkings, Haas proved in his thesis the
following theorem.

Theorem (Haas, [Haa97, Theorem 12.4.0.12 and Proposition 13.5.0.13]). Let A be a non-singular
real algebraic M -curve in RP2 constructed by a unimodular combinatorial patchworking. If A has p
even and n odd ovals, then one has

p ≤ 3k(k − 1)

2
+ 1 and n ≤ 3k(k − 1)

2
+ 4.

Furthermore, such a curve having more than
3k(k − 1)

2
+ 1 odd ovals would have exactly n =

3k(k − 1)

2
+ 4 such ovals.

As far as we know, this is the only known result in the direction of Ragsdale conjecture for maximal
curves.

Organisation of the paper

We start by defining real structures above an abstract graph in Section 2. In Section 3, we prove our
main statement (Theorem 3.2) and Proposition 3.5 which relates our definition of W(Γ,τ) to Haas’
description of the vector space WC . We end this paper by recalling in Section 4 the combinato-
rial patchworking construction and Haas’ Theorem, and by deducing this latter from results from
Section 3.
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Convention and notation

A real topological surface (S, τ) is an oriented topological surface S equipped with an orientation-
reversing continuous involution τ : S → S, called a real structure. Given a real surface (S, τ), we
denote by RS the real part of S, i.e. the set of fixed points of τ . It is a submanifold of S of dimension
1. If S is compact and of genus g, then RS has at most g + 1 connected components (see [Kle76])
and we say that (S, τ) is maximal if it has g + 1 connected components. If (S, τ) is a compact real
surface and A ⊂ S is a real finite set of points, we say that (S \A, τ) is maximal if (S, τ) is.

Given a finite graph Γ, we denote by Vert(Γ) the set of its vertices, by Vert∞(Γ) the set of its
1-valent vertices, and we set Vert0(Γ) = Vert(Γ) \ Vert∞(Γ). By definition, the valency of a vertex
v ∈ Vert(Γ), denoted by val(v), is the number of edges of Γ adjacent to v. We also denote by Edge(Γ)
the set of edges of Γ, and by Edge0(Γ) the set of edges of Γ adjacent to two vertices in Vert0(Γ).
Throughout the text we identify a graph with any of its topological realisations in which edges are
open segments.

2. Real structures above real graphs

2.A. Surfaces associated to a trivalent graph

We will call trivalent a graph such that any of its vertices is either 3-valent or 1-valent, thus authorizing
that it also has leaves. Given a trivalent graph Γ, we construct a topological surface SΓ as follows.
Recall that a pair of pants is an oriented sphere with three open disks removed, in particular it has
three boundary components with induced orientation.

1. To each vertex v of Γ, we associate a topological surface Sv, which is either a pair of pants if
v is 3-valent, or an oriented closed disk if v is 1-valent. Furthermore, we choose a one to one
correspondence between boundary components of Sv and edges of Γ adjacent to v; the boundary
component corresponding to e is denoted by γv,e.

2. To each edge e of Γ, we associate an oriented cylinder Se, and a one to one correspondence
between boundary components of Se and vertices adjacent to e; the boundary component cor-
responding to v is denoted by γe,v.

3. To each pair (v, e) ∈ Vert(Γ)×Edge(Γ) such that e is adjacent to v, we associate an orientation-
reversing homeomorphism φv,e : γv,e → γe,v.

The surface SΓ is obtained by gluing all surfaces Sv and Se via the maps φv,e. It is a closed
oriented topological surface. Clearly, the surface SΓ is not uniquely defined by Γ, but also depends on
the choice of the homeomorphisms φv,e and of the surfaces Sv. However, different surfaces obtained
by different choices are homeomorphic, and such an homeomorphism is canonical up to composition
by Dehn twists along the circles γe,v in SΓ.

Example 2.1. We depicted in Figure 1 a trivalent graph Γ and the corresponding surface SΓ.
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v1

v2

v3

v4

Sv1

Sv2

Sv3

Sv4

Γ SΓ

Figure 1: A trivalent graph Γ and the corresponding surface SΓ

2.B. The groups H1,0(SΓ;Z/2Z) and H0,1(SΓ;Z/2Z)

Let Γ be a trivalent graph. Each circle γe,v defines an element in H1(SΓ;Z/2Z). If v and v′ are the
two vertices adjacent to e, both circles γe,v and γe,v′ define the same element in H1(SΓ;Z/2Z), that
we denote by γe. We define H1,0(SΓ;Z/2Z) to be the subgroup of H1(SΓ;Z/2Z) generated by all the
loops γe, and we set

H0,1(SΓ;Z/2Z) = H1(SΓ;Z/2Z)/H1,0(SΓ;Z/2Z).

Let α1, . . . , αg be a basis of H1(Γ;Z/2Z). To each 1-cycle αi, we associate a class γαi in H1(SΓ;Z/2Z)
as follows:

1. for each e ∈ Edge(Γ) such that e ⊂ αi, choose a 1-chain ηe in Se joining the two boundary
components of Se. Denote by ηv,e the boundary point of ηe contained in γe,v;

2. for each v ∈ Vert(Γ) such that v ∈ αi, choose a 1-chain ηv in Sv joining the points ηv,e and ηv,e′ ,
where e and e′ are the two edges contained in αi and adjacent to v.

We denote by γαi ∈ H1(SΓ;Z/2Z) the class defined by the union of all 1-chains ηe and ηv above.
Further, we extend the map αi 7→ γαi by linearity to an injective Z/2Z-linear map

H1(Γ;Z/2Z) −→ H1(SΓ;Z/2Z)
α 7−→ γα

.

Note that γα is not uniquely defined by α, but is well defined only up to an element in H1,0(SΓ;Z/2Z).
In other words, there is a natural and well defined injective Z/2Z-linear map (or group morphism)

H1(Γ;Z/2Z) −→ H0,1(SΓ;Z/2Z)

that associates to α the class realised by γα in H0,1(SΓ;Z/2Z). The next lemma shows in particular
that this map is an isomorphism.

Example 2.2. We consider the trivalent graph from Example 2.1. We depicted in Figure 2 the 1-
cycle γe, and two possible 1-cycles γα, denoted by γα and γ′α (recall that the decomposition of SΓ into
the union of the surfaces Sv and Se is depicted in Figure 1).

Lemma 2.3. Let Γ be a trivalent graph with b1(Γ) = g. Then both Z/2Z-vector spaces H1,0(SΓ;Z/2Z)
and H0,1(SΓ;Z/2Z) have dimension g. Furthermore, the intersection form on H1(SΓ;Z/2Z) vanishes
on H1,0(SΓ;Z/2Z).



6 2. Real structures above real graphs6 2. Real structures above real graphs

eα γe

γα

γ′α

Γ SΓ

Figure 2: Lifting cycles

Proof. The group H1,0(SΓ;Z/2Z) is clearly contained in its orthogonal for the intersection form on
H1(SΓ;Z/2Z). Since this latter is non-degenerate, we deduce that H1,0(SΓ;Z/2Z) has dimension at
most g. Let U be the vector subspace of H1(SΓ;Z/2Z) of dimension g generated by all classes γα
with α ∈ H1(Γ;Z/2Z). By construction, the intersection of U with the orthogonal of H1,0(SΓ;Z/2Z)
is trivial, from which we deduce that H1,0(SΓ;Z/2Z) has dimension at least g. Hence H1,0(SΓ;Z/2Z)
has dimension g. Since by definition, the group H0,1(SΓ;Z/2Z) is the quotient of H1(SΓ;Z/2Z) by
H1,0(SΓ;Z/2Z), it also has dimension g. �

We will abusively identify H0,1(SΓ;Z/2Z) with the subgroup of H1(SΓ;Z/2Z) generated by all
classes γα with α ∈ H1(Γ;Z/2Z). We then have the decomposition

H1(SΓ;Z/2Z) = H1,0(SΓ;Z/2Z)⊕H0,1(SΓ;Z/2Z).

Hence the group H0,1(SΓ;Z/2Z) viewed as a subgroup of H1(SΓ;Z/2Z) is the image of a section of
the quotient map H1(SΓ;Z/2Z)→ H0,1(SΓ;Z/2Z).

Remark 2.4. Lemma 2.3 and the filtration of H1(SΓ;Z/2Z) by H1,0(SΓ;Z/2Z) and H0,1(SΓ;Z/2Z)
may be seen as very particular cases of [IKMZ16, Theorem 1]. This relation to tropical homology
explains our choice of notation.

2.C. Real trivalent graphs and real structures above them

Definition 2.5. A real trivalent graph is a pair (Γ, τ), where Γ is a trivalent graph and τ : Γ→ Γ a
continuous involution (called real structure), such that the restriction of τ on any (open) edge of Γ is
either the identity or has no fixed points.

The condition on the restriction of τ on edges of Γ is to exclude the situation when this restriction
is a symmetry locally given by x 7→ −x.

Example 2.6. Any trivalent graph Γ carries a canonical real structure given by τ = Id.

Example 2.7. Two real trivalent graphs (Γ, τ) are depicted in Figure 3. The graph on the left is of
genus 2 whereas the other one is of genus 3. In both cases the graph Γ is drawn on the plane, and τ
is the axial symmetry with respect to the line supporting edges e1 (resp. e1 and e2). Hence e1 (resp.
e1 and e2) are exactly the τ -invariant edges of Γ.
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τ
e1

τ
e1 e2

a) A real trivalent graph (Γ, τ) of genus 2 b) A real trivalent graph (Γ, τ) of genus 3

Figure 3: Real graphs

Next we define the lifts of τ to SΓ that we consider in this text. For this purpose, we need to fix
the following:

• the closed disk S1 = {z ∈ C, |z| ≤ 1} equipped with the complex conjugation σ1 : S1 → S1;

• a pair of pants S3;

• two orientation-reversing involutions σ3 : S3 → S3 and σ̃ : S3 → S3 such that the fixed locus of
σ3 is three disjoint segments, and the fixed locus of σ̃ is a segment (see Figure 4);

σ3 σ̃

Figure 4: Two real structures on a pair of pants

• for each vertex v of Γ, an orientation-preserving homeomorphism ψv : Sv → Sval(v); if in
addition τ interchanges two adjacent edges of a τ -invariant vertex v, then ψv is chosen so that
σ̃(ψv(γv,e)) = ψv(γv,τ(e)) for any edge e adjacent to v.

We say that a continuous orientation-reversing involution τΓ : SΓ → SΓ lifts τ : Γ → Γ if the
following conditions are satisfied:

1. if τ is locally the identity around v, then τΓ
∣∣
Sv

= ψ−1
v ◦ σval(v) ◦ ψv;

2. if v is a 3-valent vertex fixed by τ , and if τ interchanges two adjacent edges of v, then τΓ
∣∣
Sv

=

ψ−1
v ◦ σ̃ ◦ ψv,

3. if τ(v) 6= v, then τΓ
∣∣
Sv

= ψ−1
τ(v) ◦ σval(v) ◦ ψv.
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Note that the three above conditions imply that if τΓ lifts τ , then τΓ(Se) = Sτ(e) for each edge of Γ.
We denote by G the subgroup of the group of homeomorphisms of SΓ generated by elements

h : SΓ → SΓ such that

• h restricts to the identity on
⋃

v∈Vert0(Γ)

Sv;

• if e is a τ -invariant edge of Γ, then the restriction of h on Se is isotopic to a power of the Dehn
twist along γe;

• if τ(e) 6= e, then the restriction of h on Se ∪Sτ(e) is isotopic to a power of the Dehn twist along
γe − γτ(e).

Recall that by definition, two real topological surfaces (S1, τ1) and (S2, τ2) are isomorphic if there
exists an orientation-preserving homeomorphism θ : S1 → S2 such that θ◦τ1 ◦θ−1 = τ2. In particular,
if (Γ, τ) is a real trivalent graph, and if two lifts τΓ,1 and τΓ,2 of τ are conjugated by an element of G,
then the real topological surfaces (SΓ, τΓ1) and (SΓ, τΓ2) are isomorphic.

Definition 2.8. A real structure above a real trivalent graph (Γ, τ) is a lift of τ considered up to
conjugation by an element of G.

Clearly, the set of lifts of τ for a real trivalent graph (Γ, τ) depends on all the choices made
above. However, it follows from Proposition 2.11 below that the set of real structures above (Γ, τ)
only depends on (Γ, τ).

Lemma 2.9. Let S2 be the cylinder {z ∈ C | 1 ≤ |z| ≤ 2}, and conj be the complex conjugation on
C. Denote by T the Dehn twist of S2 along the circle of radius 3

2 given by

T : S2 −→ S2

z 7−→ e2iπ(|z|−1)z
.

Then, up to isotopy and conjugation by a homeomorphism θ : S2 → S2 restricting to the identity on
∂S2, the only real structures on S2 restricting to conj on ∂S2 are conj and T ◦ conj.

The real part of the two real structures conj and T ◦conj differ by a “half” Dehn twist, see Figure 5.

z 7→ z z 7→ e2iπ(|z|−1)z

Figure 5: The real part of two real structures on the annulus {z ∈ C | 1 ≤ |z| ≤ 2}
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Proof. Let τ1 : S2 → S2 be an orientation-reversing continuous involution that restricts to conj on
∂S2. The map τ1◦conj is an orientation-preserving continuous involution that restricts to the identity
on ∂S2. Hence it is, up to a composition by an isotopy restricting to the identity on ∂S2, equal to T k

for some integer k. We compute

T ◦ conj ◦T−1(z) = e4iπ(|z|−1)z = T 2 ◦ conj .

Hence there exists a homeomorphism θ as in the lemma such that τ1 = θ ◦ conj ◦θ−1 if k is even, and
such that τ1 = θ ◦ T ◦ conj ◦θ−1 if k is odd.

If there would exist a homeomorphism θ as in the lemma such that conj = θ ◦ T ◦ conj ◦θ−1, it
would map the real part of T ◦ conj to the real part of conj. Since these two real parts differ by a
“half” Dehn twist, this is impossible. �

Lemma 2.10. Let S ′2 be the cylinder {z ∈ C| 14 ≤ |z| ≤
1
2}, let S ′′2 be the cylinder {z ∈ C|2 ≤ |z| ≤ 4}.

Denote respectively by T1 and T2 the Dehn twists of S ′2 and S ′′2 given by

T1 : S ′2 −→ S ′2
z 7−→ e

2iπ(1− 1
2|z| )z

and
T2 : S ′′2 −→ S ′′2

z 7−→ e2iπ(
|z|
2
−1)z

.

Then, up to isotopy and conjugation by a homeomorphism θ : S ′2 ∪ S ′′2 → S ′2 ∪ S ′′2 restricting to the
identity on ∂(S ′2 ∪ S ′′2 ), the only real structures on S ′2 ∪ S ′′2 restricting to 1

conj on ∂(S ′2 ∪ S ′′2 ) are 1
conj

and T1 ◦ T2 ◦ 1
conj .

Proof. The proof is similar to the proof of Lemma 2.9. Let τ1 : S ′2 ∪ S ′′2 be an orientation-reversing
continuous involution that restricts to 1

conj on ∂(S ′2∪S ′′2 ). The map τ1◦ 1
conj is an orientation-preserving

continuous involution that restricts to the identity on ∂(S ′2 ∪S ′′2 ). Hence it is, up to a composition by
an isotopy restricting to the identity on ∂(S ′2 ∪ S ′′2 ), equal to T k1 ◦ T l2 for some integers k and l. We
extend the Dehn twists T1 and T2 to C by the identity respectively outside S ′2 and S ′′2 . We compute(

T k1 ◦ T l2 ◦
1

conj

)2

(z) = ze
2iπ(l−k)( 1

2|z|−1)

if z ∈ S ′2 and (
T k1 ◦ T l2 ◦

1

conj

)2

(z) = ze2iπ(l−k)(
|z|
2
−1)

if z ∈ S ′′2 . Hence the map (T k1 ◦T l2) ◦ 1
conj is an involution on S ′2 ∪S ′′2 if and only if k = l. We compute

(T1 ◦ T2) ◦ 1

conj
◦ (T−1

1 ◦ T−1
2 ) = (T 2

1 ◦ T 2
2 ) ◦ 1

conj
,

and the lemma is proved as Lemma 2.9. �

The following proposition is the main observation that allows one to compare two different real
structures above a given real trivalent graph (Γ, τ), or in other words, to make sense of the difference
τΓ,1 − τΓ,2 of two real structures in Π(Γ,τ). Let Γ/τ be the quotient of the graph Γ by τ , i.e. edges
and vertices exchanged by τ are identified.

Proposition 2.11. Let (Γ, τ) be a real trivalent graph. Let e1, . . . , ek be the edges in Edge0(Γ/τ),
Then the set Π(Γ,τ) of real structures above (Γ, τ) is naturally an affine space with direction

−−−→
Π(Γ,τ) = Z/2Ze1 ⊕ Z/2Ze2 ⊕ . . .⊕ Z/2Zek.

Furthermore the set of fixed points of such a real structure τΓ is well defined up to isotopy and Dehn
twists on cylinders corresponding to τ -invariant edges in Edge0(Γ).
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Proof. Let e be a τ -invariant edge in Edge0(Γ). It follows from Lemma 2.9 that there exist exactly two
possibilities for the restriction of a real structure on Se, that are given, up to isotopy and conjugating
by T , by conj and T ◦ conj on the cylinder Se = {z ∈ C | 1 ≤ |z| ≤ 2}.

Similarly, for each pair of cylinders {Se, Sτ(e)} with e ∈ Edge0(Γ) such that τ(e) 6= e, it follows
from Lemma 2.10 that there are exactly two possibilities for the restriction of a real structure on
Se ∪ Sτ(e), which differ by a composition with the Dehn twist along γe − γτ(e). �

Example 2.12. On Figure 6 we show the fixed point set of two different real structures lifting the
involution τ on the real graph of genus 2 depicted on Figure 3a.

Figure 6: Two real structures above the same graph (Γ, τ) of genus 2 of Example 2.7

Remark 2.13. In the case when τ = Id, the data of a real structure τΓ : SΓ → SΓ above (Γ, Id) is
equivalent to the data of the ribbon structure on Γ given by SΓ/τΓ. Furthermore, two real structures
differ along an edge e of Γ if and only if the two ribbon structures differ by a half twist along e.

3. Action on H1(SΓ;Z/2Z) induced by a real structure

We identify in this section a vector subspace W(Γ,τ) of
−−−→
Π(Γ,τ) that characterises all real structures

τΓ : SΓ → SΓ inducing the same map τΓ∗ : H1(SΓ;Z/2Z)→ H1(SΓ;Z/2Z). Next lemma ensures that
the action on H1(SΓ;Z/2Z) induced by a real structure above a real trivalent graph is well defined.

Lemma 3.1. Let (Γ, τ) be a real trivalent graph and τΓ : SΓ → SΓ be a lift of τ . Then the induced
involution τΓ∗ : H1(SΓ;Z/2Z)→ H1(SΓ;Z/2Z) only depends on the real structure class of τΓ.

Proof. It follows from the proof of Lemmas 2.9 and 2.10 that any other representative of the real
structure class of τΓ is obtained from this latter by a finite sequence of compositions with either an
isotopy or by an even power of a Dehn twist. Since both types of maps induce a trivial action on
H1(SΓ;Z/2Z), the result follows. �

Given (Γ, τ) a real trivalent graph, we denote by π : Γ → Γ/τ the quotient map. Recall that by

Proposition 2.11, an edge in Edge0(Γ) defines a vector in
−−−→
Π(Γ,τ). There is a natural bilinear map

µ : H1(Γ;Z/2Z)×H1(Γ;Z/2Z) −→
−−−→
Π(Γ,τ)

that associates to two 1-cycles α and β the sum of the vectors in
−−−→
Π(Γ,τ) defined by the edges contained

in the support of the 1-chain π(α∩β). We denote by 〈., .〉 the standard bilinear form on
−−−→
Π(Γ,τ) defined
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by 〈 ∑
e∈Edge0(Γ/τ)

uee,
∑

e∈Edge0(Γ/τ)

vee

〉
=

∑
e∈Edge0(Γ/τ)

ueve.

We define the following vector subspace W(Γ,τ) of
−−−→
Π(Γ,τ):

W(Γ,τ) =
{
w ∈
−−−→
Π(Γ,τ) | ∀α, β ∈ H1(Γ;Z/2Z), 〈w, µ(α, β)〉 = 0

}
.

By definition, we have

W(Γ,τ) =
⋂

α,β∈H1(Γ;Z/2Z)

Ker (µ∗(α, β)) ,

where µ∗(α, β) denotes the linear map dual to the vector µ(α, β).

Theorem 3.2. Let (Γ, τ) be a real trivalent graph, and let τΓ,1 : SΓ → SΓ and τΓ,2 : SΓ → SΓ be two
real structures above (Γ, τ). Then we have

τΓ,1∗ = τΓ,2∗ ⇐⇒ τΓ,1 − τΓ,2 ∈W(Γ,τ).

Proof. Clearly, both maps τΓ,1∗ and τΓ,2∗ have the same restriction to H1,0(SΓ;Z/2Z). Hence accord-
ing to Lemma 2.3, we are left to show that

∀α ∈ H1(Γ;Z/2Z), τΓ,1∗(γα) = τΓ,2∗(γα)⇐⇒ τΓ,1 − τΓ,2 ∈W(Γ,τ).

Given a vector w ∈
−−−→
Π(Γ,τ), we denote by E(w) the set of edges e ∈ Edge0(Γ) such that 〈w, π(e)〉 = 1.

Choosing other representatives of the real structure class of τΓ,1 and τΓ,2 if necessary, we may assume
that these latter coincide on

SΓ \
⋃

e∈E(τΓ,1−τΓ,2)

Se,

and differ by a composition with a Dehn twist along γe for all edges e in E(τΓ,1−τΓ,2). Hence we have

τΓ,1∗(γα) = τΓ,2∗(γα) +
∑

e∈E(τΓ,1−τΓ,2)∩α

γe. (3.1)

Since the intersection form is non-degenerate on H1(SΓ;Z/2Z), we have

τΓ,1∗(γα)− τΓ,2∗(γα) = 0⇐⇒ ∀γ ∈ H1(SΓ;Z/2Z), (τΓ,1∗(γα)− τΓ,2∗(γα)) · γ = 0,

where a · b ∈ Z/2Z stands for the intersection product of two classes a and b in H1(SΓ;Z/2Z).
Combining Relation (3.1) and Lemma 2.3, we obtain

τΓ,1∗(γα)− τΓ,2∗(γα) = 0⇐⇒ ∀β ∈ H1(Γ;Z/2Z),
∑

e∈E(τΓ,1−τΓ,2)∩α

γe · γβ = 0.

By construction we have ∑
e∈E(τΓ,1−τΓ,2)∩α

γe · γβ = 〈τΓ,1 − τΓ,2, µ(α, β)〉,

so the result is proved. �



12 3. Action on H1(SΓ;Z/2Z) induced by a real structure12 3. Action on H1(SΓ;Z/2Z) induced by a real structure

Example 3.3. Let us consider the real trivalent graph (Γ, τ) of genus 3 depicted in Figure 3b, with
two τ -invariant edges e1 and e2. There exists 16 real structures above (Γ, τ), distributed into 8 parallel
affine subspaces of Π(Γ,τ) with direction W(Γ,τ) = Z/2Zπ(e1 + e2). Note that the real part of the real
topological surface (SΓ, τΓ) is composed of two circles for any element τΓ of Π(Γ,τ). Furthermore, all
possible real structures above (Γ, τ) produce exactly two real isomorphism types of real topological
surfaces: (SΓ, τΓ) is of type1 I for 4 out of these 8 families of real structures, and of type II for the 4
remaining families.

Corollary 3.4. Let (Γ, τ) be a real trivalent graph, and let τΓ,1 : SΓ → SΓ and τΓ,2 : SΓ → SΓ be
two real structures above (Γ, τ). Assume that (SΓ, τΓ,1) is a maximal real topological surface. Then
(SΓ, τΓ,2) is also maximal if and only if the difference τΓ,1 − τΓ,2 lies in W(Γ,τ).

Proof. Recall that a real topological surface (S, τS) with RS 6= ∅ is maximal if and only if τS∗ = Id, see
[BR90, Proposition 5.4.9]. Hence we have τΓ,1∗ = Id. Furthermore, since (SΓ, τΓ,1) has a non-empty
real part, the trivalent graph Γ has at least one τ -invariant edge, which in its turn implies that any
real structure above (Γ, τ) has a non-empty real part. Then, by Theorem 3.2, τΓ,2∗ = Id if and only
if τΓ,1 − τΓ,2 ∈W(Γ,τ), that is to say (SΓ, τΓ,2) is maximal if and only if τΓ,1 − τΓ,2 lies in W(Γ,τ). �

Next proposition gives an alternative description of the space W(Γ,τ) in terms of disconnecting
edges and disconnecting pairs of edges. Recall that edges are always considered open. Given a real
connected trivalent graph (Γ, τ), we define the following sets:

• Edge0,(1)(Γ, τ) is the set of disconnecting edges of Γ/τ in Edge0(Γ/τ), i.e. edges e ∈ Edge0(Γ/τ)
such that Γ/τ \ e is not connected;

• Edge0,(2)(Γ, τ) is the set of pairs {π(e), π(e′)} ⊂ Edge0(Γ/τ), where {e, e′} ⊂ Edge0(Γ) is such
that π(e), π(e′) /∈ Edge0,(1)(Γ, τ) and Γ \ {e, e′} is not connected.

Proposition 3.5. Let (Γ, τ) be a real trivalent graph. Then we have

W(Γ,τ) =

 ⊕
e∈Edge0,(1)(Γ,τ)

Z/2Ze

⊕ Span
{
e+ e′ | {e, e′} ∈ Edge0,(2)(Γ, τ)

}
.

Proof. Let us denote by V the Z/2Z-vector space on the right hand side of the equality stated in the
proposition. Hence we want to show that W(Γ,τ) = V .

Step 1: reduction to the case τ = Id. The map π : Γ→ Γ/τ induces a linear map π̃ :
−−−−→
Π(Γ,Id) →−−−→

Π(Γ,τ). In order to avoid confusion, we denote by µΓ the map H1(Γ;Z/2Z)×H1(Γ;Z/2Z)→
−−−−→
Π(Γ,Id),

and we keep the notation µ : H1(Γ;Z/2Z)×H1(Γ;Z/2Z)→
−−−→
Π(Γ,τ). Recall that

W(Γ,Id) =
{
w ∈
−−−−→
Π(Γ,Id) | ∀α, β ∈ H1(Γ;Z/2Z), 〈w, µΓ(α, β)〉 = 0

}
.

Let
−−−−→
Π(Γ,Id)

sym ⊂
−−−−→
Π(Γ,Id) be the subvector space consisting of vectors w ∈

−−−−→
Π(Γ,Id) fixed by the

natural map induced by τ on
−−−−→
Π(Γ,Id). Note that the difference between two real structures above

(Γ, τ) can always be expressed as such an element. Given w ∈
−−−−→
Π(Γ,Id)

sym, we write w = wfix +weven

where wfix is supported by the edges of Γ fixed by τ and weven is supported by pairs of edges

exchanged by τ . Define the surjective linear map π̄ :
−−−−→
Π(Γ,Id)

sym →
−−−→
Π(Γ,τ) by π̄(w) = π̃(wfix) + π̃(w1),

1 ↑ Recall that a connected real topological surface (S, τ) is of type I if S \ RS is disconnected, and of type II
otherwise.
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where weven = w1 +τ(w1) and the supports of w1 and τ(w1) are disjoint. The vector w1 is not unique,
however π̃(w1) does clearly not depend on the particular choice of w1.

Let us prove that W(Γ,τ) = π̄
(
W(Γ,Id) ∩

−−−−→
Π(Γ,Id)

sym
)
.

Let w ∈
−−−−→
Π(Γ,Id)

sym and let (α, β) ∈ H1(Γ;Z/2Z)×H1(Γ;Z/2Z). Write µΓ(α, β) = µfixΓ + µevenΓ +

µoddΓ , where µoddΓ is supported by edges e ∈ α∩β such that τ(e) /∈ α∩β and µfixΓ and µevenΓ are defined
as above (in general, the decomposition is not unique). We obviously have

〈w, µΓ(α, β)〉 = 〈wfix, µfixΓ 〉+ 〈weven, µoddΓ 〉.

Similarily, we have µ(α, β) = π̃(µfixΓ ) + π̃(µoddΓ ), and

〈π̄(w), µ(α, β)〉 = 〈π̄(wfix), π̃(µfixΓ )〉+ 〈π̄(weven), π̃(µoddΓ )〉.

Thus 〈w, µΓ(α, β)〉 = 〈π̄(w), µ(α, β)〉, which implies thatWΓ,τ = π̄
(
WΓ,Id ∩

−−−−→
Π(Γ,Id)

sym
)

as announced.

Assuming that Proposition 3.5 is known in the case of τ = Id and computing W(Γ,Id) ∩
−−−−→
Π(Γ,Id)

sym,
it is easy to see that it remains to show that

Edge0,(1)(Γ, τ) = π
(

Edge0,(1)(Γ, Id)
)⋃

π
({
{e, e′} ⊂ Edge0,(2)(Γ, Id) | τ(e) = e′, and τ(e′) = e

})
and

Edge0,(2)(Γ, τ) = π
({
{e, e′} ⊂ Edge0,(2)(Γ, Id) | τ(e) 6= e′

})
= π

({
{e, e′} ⊂ Edge0,(2)(Γ, Id) | τ(e) = e and τ(e′) = e′

})
∪ π

({
{e, e′} ⊂ Edge0,(2)(Γ, Id) | τ(e) 6= e, τ(e′) 6= e′ and τ(e) 6= e′

})
.

These equalities follows from the fact that the quotient map π : Γ → Γ/τ induces a surjective map
π∗ : H1(Γ;Z/2Z)→ H1(Γ/τ ;Z/2Z).

So from now on, we assume that τ = Id, and we use the shorter notation

WΓ = W(Γ,τ), Edge0,(1)(Γ) = Edge0,(1)(Γ, Id), and Edge0,(2)(Γ) = Edge0,(2)(Γ, Id).

Step 2: V is contained in WΓ. An edge in Edge0,(1)(Γ) is not contained in the support of any
cycle in H1(Γ;Z/2Z). In particular we have⊕

e∈Edge0,(1)(Γ)

Z/2Ze ⊂WΓ.

We claim that a pair of edges {e, e′} ⊂ Edge0(Γ) is contained in Edge0,(2)(Γ) if and only if the
two following conditions are satisfied:

1. there exists a cycle γ ∈ H1(Γ;Z/2Z) containing both e and e′;

2. for any theta subgraph Θ of Γ containing e and e′, the graph Θ \ {e, e′} is not connected, see
Figure 7a and b.
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e e′ e

e′

a) Θ \ {e, e′} connected b) Θ \ {e, e′} disconnected

Figure 7:

Indeed, condition (1) is equivalent to the fact that neither e nor e′ is in Edge0,(1)(Γ). Next, a pair
{e, e′} satisfying condition (1) is in Edge0,(2)(Γ) if and only if any path in Γ \ {e} joining the two
vertices adjacent to e contains e′. This is equivalent to condition (2).

It follows from the above claim that for any {e, e′} ∈ Edge0,(2)(Γ) and any γ ∈ H1(Γ;Z/2Z), we
have

e ⊂ γ ⇐⇒ e′ ⊂ γ.

This implies that

Span
{
e+ e′ | {e, e′} ∈ Edge0,(2)(Γ)

}
⊂WΓ

and so V ⊂WΓ.

We define the following vector subspace of
−−−→
Π(Γ,τ):

U =

 ⊕
e∈Edge0,(1)(Γ,τ)

Z/2Ze

⊕ Span
{
e | ∃e′ with {e, e′} ∈ Edge0,(2)(Γ, τ)

}
.

Step 3: WΓ is contained in U . Let e /∈ U . It means exactly that e ∈ Edge0(Γ) \ Edge0,(1)(Γ)
and that Γ \ {e, e′} is connected for any e′ ∈ Edge0(Γ) \ Edge0,(1)(Γ). Denote by v and v′ the two
vertices of Γ adjacent to e. By Menger’s Theorem [BR12, Theorem 3.6.11], there exist two paths
c1 and c2 in Γ \ {e} joining v and v′, and whose intersection is reduced to {v, v′}. Hence e is the
only edge common to the two cycles c1 ∪ e and c2 ∪ e in H1(Γ;Z/2Z). By definition of WΓ, we have
〈w, e〉 = 0 for any w ∈WΓ, and so e /∈WΓ. We conclude that WΓ ⊂ U .

Step 4: WΓ is contained in V . By Step 3 above, an element w̃ of WΓ can be written in the
(non-unique) form

w̃ = w0 + e1 + . . .+ ek + (ek+1 + e′k+1) + . . .+ (em + e′m),

where

• w0 ∈
⊕

e∈Edge0,(1)(Γ)

Z/2Ze;

• {ei, e′i} ∈ Edge0,(2)(Γ) if i ∈ {k + 1, . . . ,m};

• for any i ∈ {1, . . . , k}, there exists an edge e′i of Γ such that {ei, e′i} ∈ Edge0,(2)(Γ);

• ei 6= ej and {ei, ej} /∈ Edge0,(2)(Γ) for any pair {i, j} ⊂ {1, . . . , k}.



B. Bertrand, E. Brugallé & A. Renaudineau, Haas’ Theorem revisited 15B. Bertrand, E. Brugallé & A. Renaudineau, Haas’ Theorem revisited 15

Recall that V is a sub-vector space of WΓ by Step 2, hence w = w0 + e1 + . . . + ek is an element of
WΓ. If k = 0, then w is in V , and so is w̃. Assume now that k > 0. In this case w is an element of
WΓ such that for any edge e ∈ Edge0(Γ) \ Edge0,(1)(Γ) with 〈w, e〉 = 1, we have 〈w, e′〉 = 0 for any
edge e′ with {e, e′} ∈ Edge0,(2)(Γ). The rest of the proof consists in proving by contradiction that
such an element cannot exist.

Let α ∈ H1(Γ;Z/2Z) be a cycle containing an edge in the support of w. Let us denote by e1, . . . , ek
all edges belonging to the intersection of the support of w and α, enumerated in a cyclic order induced
by α. By definition of WΓ, we have 〈w, µ(α, α)〉 = 0, i.e. k is even. Let us also denote by ui the
connected component of α\{e1, . . . , ek} adjacent to the edges ei and ei+1 (where the indices are taken
modulo k). By assumption on w, for each i there exists a path ci in Γ joining the two connected
components of α \ {ei, ei+1}, and such that ci ∩ α is reduced to the two endpoints of ci. Denote by
σ(i) ∈ Z/kZ the integer such that ui∪uσ(i) contains the two endpoints of ci. Hence σ : Z/kZ→ Z/kZ
is an involution with no fixed points. The two endpoints of ci divide α into two connected components.
Let u be one of these latter. Since w ∈ WΓ, we have 〈w, µ(α, u ∪ ci))〉 = 0, that is to say σ(i) = i
mod 2 (see Figure 8a). Furthermore, we claim that for any j, we have

e1 e2

α

ci ci ∪ u β1

β2

a) b)

Figure 8:

j ∈ {i+ 1, . . . , σ(i)− 1} ⇐⇒ σ(j) ∈ {i+ 1, . . . , σ(i)− 1}.

It is enough to prove the claim in the case when j = i + 1. If σ(i + 1) /∈ {i + 1, . . . , σ(i) − 1}, one
easily constructs two cycles β1 and β2 in H1(Γ;Z/2Z) such that 〈w, µ(β1, β2))〉 = 1 (see Figure 8b),
which contradicts that w ∈WΓ.

Hence the map σ induces an involution on {2, . . . , σ(1) − 1} with no fixed points. However the
cardinal of this latter set is odd, so such a fixed-point free involution cannot exist. �

Recall that a graph is said to be k-edge connected if it remains connected after removing any set
of l < k edges.

Corollary 3.6. Let (Γ, τ) be a real trivalent graph. If Γ/τ is 3-edge connected, then W(Γ,τ) is the
trivial vector space. In particular there exists at most one real structure τΓ above (Γ, τ) for which
(SΓ, τΓ) is maximal.

4. Haas’ Theorem

Here we explain how the results from the previous section specialise to Haas’ Theorem in the particular
case of non-singular tropical curves in R2. We first give in Section 4.A a tropical formulation of
Viro’s combinatorial patchworking, and state Haas’ Theorem classifying combinatorial patchworkings
producing M -curves. We prove this latter in Section 4.B.
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We assume that the reader has a certain acquaintance with tropical geometry. We refer to
[BIMS15] for an introduction to tropical geometry at the level needed here, as well as a more detailed
exposition of combinatorial patchworking and Haas’ Theorem.

4.A. Combinatorial patchworking and Haas’ Theorem

Here we present the reformulation of the particular case of unimodular combinatorial patchworking
in terms of twist-admissible sets of edges of a non-singular plane tropical curve given in [BIMS15]. If

e is an edge of a tropical curve in R2, we denote by (xe, ye) ∈ Z2 a primitive direction vector of the
line supporting e (note that (xe, ye) is well defined up to sign, however this does not play a role in
what follows).

Definition 4.1. Let C be a non-singular tropical curve in R2. A subset T of Edge0(C) is called
twist-admissible if for any cycle γ of C, we have∑

e∈γ∩T
(xe, ye) = 0 mod 2. (4.2)

Given T a twist-admissible subset of edges of a non-singular tropical curve C in R2, perform the
following operations:

(a) at each vertex of C, draw three arcs as depicted in Figure 9a;

(b) for each edge e ∈ Edge0(C) adjacent to the vertices v and v′, join the two corresponding arcs
at v to the corresponding ones for v′ in the following way: if e /∈ T , then join these arcs as
depicted in Figure 9b; if e ∈ T , then join these arcs as depicted in Figure 9c; denote by P the
obtained collection of arcs;

(c) choose arbitrarily an arc of P and a pair of signs for it;

(d) associate pairs of signs to all arcs of P using the following rule: given e ∈ Edge(C) the pairs of
signs of the two arcs of P corresponding to e differ by a factor ((−1)xe , (−1)ye), see Figure 9b
and c; (Note that the compatibility condition (4.2) precisely means that this rule is consistent.)

(ε1, ε2)

((−1)xeε1, (−1)yeε2)

(ε1, ε2)

((−1)xeε1, (−1)yeε2)

a) b) e /∈ T c) e ∈ T

Figure 9: A patchworking of a non-singular tropical curve
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(e) map each arc A of P to (R×)2 by (x, y) 7→ (ε1 exp(x), ε2 exp(y)), where (ε1, ε2) is the pair of
signs associated to A. Denote by CT the curve in (R×)2 which is the union of these images over
all arcs of P.

Note that all possible choices at step (c) above produce the same curve CT up to the action of
(Z/2Z)2 by axial symmetries (z, w) 7→ (±z,±w). Viro combinatorial patchworking Theorem [Vir01]
may be reformulated in terms of twist-admissible sets as follows.

Theorem 4.2. (Viro) Let T be a twist-admissible subset of edges of a non-singular tropical curve
C in R2. Then there exists a real algebraic curve in (C×)2 with the same Newton polygon as C, and
whose real part in (R×)2 is isotopic to CT .

Remark 4.3. It is possible to produce an equation for the real algebraic curve whose existence is
attested by Theorem 4.2, see [BIMS15, Remark 3.9].

Example 4.4. One may choose T to be empty as the empty set clearly satisfies (4.2). This corre-
sponds to Harnack patchworking mentioned in the introduction. The resulting curve corresponds to
the construction of simple Harnack curves described in [Mik00] via Harnack distribution of signs, see
[IV96]. Furthermore, the isotopy type of CT in (R×)2, up to axial symmetries, only depends on the
Newton polygon of C, see Proposition 4.11.

Example 4.5. Let us consider the non-singular tropical curve C of degree 6 depicted on Figure 10.
We equip C with three different twist-admissible collection of edges in Figures 11, 12, and 13. In each
case we depict the isotopy types of the real part of the corresponding real algebraic curve in both
(R×)2 and RP2. Note that these are the only isotopy types of maximal real sextics in RP2.

Figure 10: A tropical sextic

Given a non-singular tropical curve C, Haas’ classified in [Haa97] all twist-admissible sets produc-
ing an M -curve. At that time the formalism of tropical geometry did not exist yet, and the original
formulation of Haas’ theorem is dual to the one we present here in Theorem 4.6.

We say that a twist-admissible set of edges T of C is maximal if it satisfies the two following
conditions:

1. any cycle in H1(C;Z/2Z) contains an even number of edges in T ;

2. for any edge e ∈ T , either C \ e is disconnected, or there exists an edge e′ ∈ T such that C \ e
and C \ e′ are connected, but C \ (e ∪ e′) is disconnected.

Theorem 4.6. (Haas) Let C be a non-singular tropical curve in R2, and let T be a twist-admissible
set of edges of C. Then a real algebraic curve whose existence is asserted by Theorem 4.2 is maximal
if and only if T is maximal.
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Figure 11: Simple Harnack sextic

Figure 12: Gudkov’s sextic

Example 4.7. The empty collection is maximal, hence we recover the existence, for each non-singular
tropical curve, of a canonical maximal patchworking mentioned in the introduction.

4.B. Proof of Haas’ Theorem

Here we deduce Theorem 4.6 from Theorem 3.2 and Proposition 3.5. First, we introduce some
standard notations.

The coordinatewise argument and log maps are defined by:

Arg : (C×)2 −→ (R/2πZ)2

(z, w) 7−→ (arg(z), arg(w))
and

Log : (C×)2 −→ R2

(z, w) 7−→ (log |z|, log |w|) .

Note that the image of the map Arg is canonically identified with any fiber of the map Log. We also
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Figure 13: Hilbert’s sextic

define the following self-diffeomorphism of (C×)2 fot t > 1

Ht : (C×)2 −→ (C×)2

(z, w) 7−→
(
|z|

1
log(t)

z

|z|
, |w|

1
log(t)

w

|w|

)
.

Given a complex polynomial P (z, w) =
∑
ai,jz

iwj and ∆ ⊂ R2, we define

P∆(z, w) =
∑

(i,j)∈∆

ai,jz
iwj .

The (closed) coamoeba of the algebraic curve X with equation P (z, w) = 0, denoted by CA(P ), is
defined as the topological closure in (R/2πZ)2 of the set Arg(X).

Example 4.8. If P (z, w) is a real binomial whose Newton segment ∆(P ) has integer length 1, then
the real part of the real algebraic curve defined by P (z, w) intersects two quadrants Q1 and Q2 of
(R×)2. If u denotes a primitive integer vector normal to ∆(P ), then the coamoeba CA(P ) is the
geodesic in (R/2πZ)2 with direction u and passing through Arg(Q1) and Arg(Q2). On Figure 14a we
depicted the coamoeba of a line given by the equation z + aw = 0 with a > 0. It joins the points
(0, π) and (π, 0).

Example 4.9. (See [Mik05, Proposition 6.11 and Lemma 8.19]) If P (z, w) is a real trinomial
whose Newton triangle ∆(P ) has Euclidean area 1

2 , then the real part of the real algebraic curve defined
by P (z, w) intersects three quadrants Q1, Q2, and Q3 of (R×)2. If u1, u2, and u3 denote primitive
integer vectors normal to the three edges of ∆(P ), then the coamoeba CA(P ) is the union of the two
triangles with vertices Arg(Q1), Arg(Q2), and Arg(Q3), and whose sides are geodesics with direction
u1, u2, and u3. In particular CA(P ) is a (degenerate) pair of pants. On Figure 14b we represented
the coamoeba of a line given by the equation z + aw + b = 0 with a > 0 and b < 0.

Recall (see for example [BIMS15, Section 2.2]) that to any tropical curve C in R2 is associated a
dual subdivision of its Newton polygon. We denote respectively by ∆v and ∆e the polygon dual to
the vertex v and the edge e of C. Next statement is proved in [Mik05, Section 6].
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(π, 0)(0, 0)

(0, π)

(π, 0)

(0, π)

(π, 0)(0, 0)

(0, π)

(π, 0)

(0, π)

a) Coamoeba of a real line b) Coamoeba of a real line
defined by z + aw with a > 0 defined by z + aw + b with a > 0 and b < 0

Figure 14:

Theorem 4.10. (Mikhalkin) Let C be a tropical curve in R2 defined by some tropical polynomial
“
∑
bi,jx

iyj”. Then given a collection ai,j of non-zero complex numbers, the image by Ht of the
algebraic curve in (C×)2 defined by the complex polynomial

Pt(z, w) =
∑

ai,jt
−bi,jziwj

converges when t→ +∞, for the Hausdorff metric on compact subsets of (C×)2, to a subset V∞ that
can be described as follows:

• Log(V∞) = C;

• for any vertex v of C, we have Log−1(v) ∩ V∞ = CA(P∆v
1 );

• for each edge e of C,

we have Log−1(e) ∩ V∞ = e× CA(P∆e
1 ) .

If furthermore all the ai,j’s are real numbers, then the real part of the real algebraic curve defined
by Pt(z, w) converges when t → +∞, for the Hausdorff metric on compact subsets of (R×)2, to
V∞ ∩ (R×)2.

Note that one can recover Theorem 4.2 by combining Theorem 4.10 together with Examples 4.8
and 4.9. In particular, an equation of a simple Harnack curve is given by next proposition. We define
the function ε : Z2 → {±1} by ε(i, j) = 1 if both i and j are even, and by ε(i, j) = −1 otherwise.
Recall that the Viro’s patchworking construction and the definition of a twist admissible set of edges
of a non-singular tropical curve are given in Section 4.A.

Proposition 4.11. (Itenberg, see [IV96] or [BIMS15, Remark 3.9]) Let C be a non-singular
tropical curve in R2 defined by some tropical polynomial “

∑
bi,jx

iyj”, and let

Pt(z, w) =
∑

ε(i, j)t−bi,jziwj , V∞ = lim
t→+∞

Ht ({Pt = 0}) .

Then up to axial symmetries, the real part of V∞ is isotopic in (R×)2 to the curve C∅ constructed out
of C and the empty twist admissible set. In particular, the real algebraic curve defined by Pt(z, w)
with t large enough is maximal. Furthermore, the isotopy type of its real part in (R×)2, up to axial
symmetries, only depends on the Newton polygon of C.
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We are now ready to deduce Haas’ Theorem from what is discussed above.

Proof of Theorem 4.6. Let C be a non-singular tropical curve in R2 defined by the tropical polynomial
“
∑
bi,jx

iyj”, and let ν : Z2 → {±1} be some function. We define

Pt(z, w) =
∑

ε(i, j)t−bi,jziwj , V 0
∞ = lim

t→+∞
Ht ({Pt = 0}) ,

and
Rt(z, w) =

∑
ν(i, j)t−bi,jziwj , V∞ = lim

t→+∞
Ht ({Rt = 0}) .

We equipped both V∞ and V 0
∞ with the real structure coming from the restriction of the complex

conjugation on (C×)2. Compactifying C by gluing a point to each unbounded edge C, we obtain a
graph Γ. The map Log : V 0

∞ → C induces a pair of pants decomposition of the topological surface
V 0
∞. To each unbounded edge of C corresponds an unbounded cylinder of V 0

∞. A surface SΓ as in
Section 2.A is obtained by gluing a disk to each such unbounded cylinder of V 0

∞, and we have the
identities

Sv = Log−1(v) ∩ V 0
∞ ∀v ∈ Vert(C), and Se = Log−1(e) ∩ V 0

∞ ∀e ∈ Edge(C),

up to considering degenerate pairs of pants for Sv instead of usual ones in the construction of SΓ in
Section 2.A. All previous definitions and results are easily seen to hold with this benign substitution.
Furthermore, the real structure on V 0

∞ induces a real structure τΓ,1 above the real graph (Γ, Id).
Since C in non-singular, for any vertex v of C there exists (µ1, µ2) ∈ {±1}2 such that

R∆v
t (µ1z, µ2w) = ±P∆v

t (z, w).

In particular, the map sv : (z, w) 7→ (µ1z, µ2w) induces a real homeomorphism (i.e. commuting with
real structures)

ζv : Log−1(v) ∩ V∞ → Sv.

Let ζ : V∞ → V 0
∞ be a (not necessarily real) homeomorphism restricting to ζv on Log−1(v) ∩ V∞ for

each vertex v of C. Note that ζ is well defined up to isotopy and conjugation by a finite product of
Dehn twists along cylinders Se with e ∈ Edge0(Γ). Furthermore, given an edge e ∈ Edge0(Γ) adjacent
to two vertices v and v′, the two maps sv and sv′ coincide if and only if, up to an isotopy restricting
on the identity on ∂Se, the restriction of ζ to Log−1(e)∩ V∞ is a real map. The real structure on V∞
induces, via the map ζ, a real structure on V 0

∞, which in its turn induces a real structure τΓ,2 above
the real graph (Γ, Id). Let T be the set of edges for which ζ∣∣

Log−1(e)∩V∞
is not a real map. By Lemma

2.9, we have

τΓ,2 − τΓ,1 =
∑
e∈T

e.

On the other hand, by [BIMS15, Theorem 3.4 and Remark 3.9], the set T is twist-admissible and the
real part of the algebraic curve in (C×)2 with equation Rt(z, w) = 0 is isotopic in (R×)2 to the curve
CT for t large enough. Hence by Corollary 3.4 and Proposition 3.5 applied to τΓ,1 and τΓ,2, the real
algebraic curve in Rt(z, w) = 0 for t large enough is maximal if and only if T is maximal.

To finish the proof of Haas’ Theorem, it is enough to notice that for any set T of twist-admissible
edges of C, there exists a function ν : Z2 → {±1} as above such that the real part of the algebraic
curve in (C×)2 with equation ∑

ν(i, j)t−bi,jziwj = 0

is isotopic in (R×)2 to the curve CT for t large enough, see [BIMS15, Remark 3.9]. �
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