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Crepant Resolutions and Open Strings II

Andrea Brini and Renzo Cavalieri

Abstract. We recently formulated a number of Crepant Resolution Conjectures (CRC) for open
Gromov–Witten invariants of Aganagic–Vafa Lagrangian branes and verified them for the family
of threefold type A-singularities. In this paper we enlarge the body of evidence in favor of our
open CRCs, along two different strands. In one direction, we consider non-hard Lefschetz targets
and verify the disk CRC for local weighted projective planes. In the other, we complete the
proof of the quantum (all-genus) open CRC for hard Lefschetz toric Calabi–Yau three dimensional
representations by a detailed study of the G-Hilb resolution of [C3/G] for G = Z2 ×Z2. Our
results have implications for closed-string CRCs of Coates–Iritani–Tseng, Iritani, and Ruan for
this class of examples.
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Titre. Résolutions crépantes et cordes ouvertes II

Résumé. Nous avons récemment formulé un ensemble de Conjectures de Résolutions Crépantes
(CRC) pour les invariants de Gromov–Witten ouverts des branes lagrangiennes de Aganagic–Vafa,
et nous les avons vérifiées pour la famille des singularités transverses de type A en dimension
trois. Dans cet article, nous élargissons le faisceau de preuves en faveur de nos CRC ouvertes, et
ce dans deux directions. Dans la première, nous considérons des cibles satisfiant la condition dite
de “Lefschetz forte” et vérifions la CRC du disque pour des plans projectifs à poids locaux. Dans
l’autre, nous complétons la démonstration de toutes les CRC ouvertes quantiques (en tout genre)
pour les représentations tridimensionnelles toriques de type Calabi–Yau et vérifiant la condition
de Lefschetz forte, ceci se faisant à travers une étude détaillée de la résolution G-Hilb de [C3/G]
pour G = Z2 ×Z2. Nos résultats ont des conséquences sur les CRC pour les cordes fermées de
Coates–Iritani–Tseng, Iritani et Ruan pour cette classe d’exemples.
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1. Introduction

In a recent paper [2], we proposed two versions of a Crepant Resolution Conjecture for open Gromov–Witten
invariants of Aganagic–Vafa orbi-branes inside semi-projective toric Calabi–Yau 3-orbifolds:

• a general Bryan–Graber-type comparison between disk potentials after analytic continuation (the
disk CRC);

• a stronger identification of the full open string partition function at all genera and arbitrary boundary
components for hard Lefschetz targets (the quantized open CRC).

We recall these statements more precisely in Section 2. Both conjectures were proved in [2] for the case
of the crepant resolutions of type A threefold singularities, but they are expected to hold in wider generality.
In particular, the disk CRC should hold true for general (non-hard Lefschetz) toric CY3 that are projective
over their affinization; moreover, the proof of the quantized open CRC in [2] left out one exceptional ex-
ample of (toric) hard Lefschetz crepant resolution. The purpose of this paper is to offer further evidence of
the general validity of the disk CRC, as well as to conclude the proof of the quantized open CRC for hard
Lefschetz toric three dimensional representations.

The first problem we tackle is the disk CRC for non-hard Lefschetz targets. We concentrate our atten-
tion to local weighted projective planes: our poster-child is the partial crepant resolution π : K

P(1,1,n) →
C
3/Zn+2, where π contracts the image of the zero section to give the quotient singularity 1

n+2 (1,1,−2). In
particular, we establish the following

Theorem 1 [(Theorem 3.6 and Corollary 3.7)]: the disk CRC holds for Y = K
P(n,1,1) and X = [C3/Zn+2].

On a somewhat orthogonal direction, we complete the study of hard Lefschetz crepant resolutions of
three dimensional representations by considering the G-Hilb resolution of [C3/G] for G = Z2 ×Z2 – the
so-called closed topological vertex geometry studied in [4].

Theorem 2 [(Theorem 4.7 and Corollary 4.8)]: the quantized CRC holds for X = [C3/Z2 ×Z2] and Y its
canonical G-Hilb resolution.

In [5], it was shown in detail in the specific example of the A1 threefold singularity that the local CRC
for [C3/Z2] glues to a crepant resolution statement for K

P
1×P1 → [O(−1)

P
1 ⊕O(−1)

P
1/Z2]. Theorem 2,

the results of [2], and a suitable generalization of the gluing theorem of [5] would together imply the all
genus open CRC for all toric hard Lefschetz CY3 targets.
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Context and further discussion

Good part of the proof of Theorem 1 relies on the well-established mirror symmetry framework of [10, 6]: we
construct twisted I-functions as hypergeometric modifications of the untwisted ones and then study their
analytic continuation corresponding to a change of chamber in the Kähler moduli space of the target. The
first step is standard [27, 9, 8]; for the second, we overcome the technical intricacies of the Mellin–Barnes
method [6] through a combined use of hypergeometric resummation and a generalized Kummer-type con-
nection formula for the analytic continuation across a single wall. This technique has a number of features
of independent interest: it turns out to be significantly more powerful than the usual Mellin–Barnes method,
and it is applicable to the study of wall-crossings in toric Gromov–Witten theory in quite large generality.
In particular, it might be applied in combination with the mirror theorem of [7] for the study, and hopefully
the proof, of the closed-string CRC in the toric setting.

As for Theorem 2, our strategy to prove it follows closely ideas of [2] for the case of [C2/Zn ×C]. In
[2, 1], the Gromov–Witten/Integrable Systems was employed to exhibit a one-dimensional Landau–Ginzburg
mirror model for the equivariant quantum cohomology of type A resolutions: the relevant superpotential
was identified with the dispersionless Lax function of the q-deformed (n+1)-KdV hierarchy. For the case of
[C3/Z2×Z2], the relevant Frobenius manifold turns out to be the coefficient space of a particular reduction
of the genus-zero Whitham hierarchy with three marked points [24]; a detailed study of this system and its
bihamiltonian structure will appear elsewhere. As was the case in [2], this has two main upshots: in genus
zero, it allows a one-step study of wall-crossing beyond multiple walls; and in higher genus, it significantly
reduces the complexity of the proof of the quantized version of the open CRC, which turns into an exercise
in all-order classical Laplace asymptotics.

Limited to the class of examples considered here, our results also have implications for ordinary (closed)
Crepant Resolution Conjectures of Iritani [21] and Coates–Iritani–Tseng/Ruan [10, 11]. The proof of the disk
CRC in Section 3 establishes in particular a natural fully-equivariant version of Iritani’s K-theoretic Crepant
Resolution Conjecture for the examples at hand1, whereas the study of the quantized OCRC in Section 4
leads us to verify the all-genus closed CRC with descendents for X = [C3/Z2 ×Z2].

Plan of the paper

The paper is organized as follows. In Section 2, we concisely review our setup in [2] for the disk and the
quantized open CRC. We then furnish a proof of the disk CRC in Section 3, and study its implications at the
level of scalar potentials for each of the two brane setups allowed by the geometry. In Section 4 we study
the closed topological vertex geometry: we first present a mirror description in terms of a one-dimensional
logarithmic Landau–Ginzburg model, which is then used in the analytic continuation relevant for the disk
CRC and the all-order asymptotic analysis necessary to establish the quantized OCRC.

Acknowledgements

The authors would like to thank Hiroshi Iritani, Douglas Ortego, Stefano Romano, Dusty Ross and Mark
Shoemaker for their discussions and comments related to this project. The second author gratefully ac-
knowledges support by NSF grant DMS-1101549, NSF RTG grant 1159964.

2. Crepant Resolution Conjectures: a review

Given X a Gorenstein algebraic orbifold and Y → X a crepant resolution of its coarse moduli space, Ruan
conjectured [26] that the small quantum cohomologies of Y and X should be isomorphic after analytic
continuation and a suitable identification of the quantum parameters. More recently, Coates–Iritani–Tseng

1 ↑ A much more general proof for semi-projective toric orbifolds has been announced by Coates–Iritani–Jiang.
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shaped – and generalized – Ruan’s original Crepant Resolution Conjecture (CRC) into a comparison of
Lagrangian cones via a symplectic isomorphism U

X ,Y
ρ :HX →HY between the Givental spaces of X and

Y [10]; here ρ denotes a choice of analytic continuation path. Further, Iritani’s theory of integral structures
[21] makes a prediction for UX ,Yρ based exclusively on the classical geometry of the targets. In this section
we briefly summarize some of the recent extensions of the Coates–Iritani–Tseng CRC that this work relates
to, and that are relevant for our formulation of the CRC for open Gromov–Witten invariants. Background,
motivation, and extensive discussions of the setup presented here can be found in our previous paper [2,
Sec. 2 and App. A]; the reader who is not familiar with the closed string CRC and its higher genus analogues
is referred to the survey papers [11, 22].

2.A. The disk CRC

In [2], the authors formulate an Open Crepant Resolution Conjecture (OCRC) as a comparison diagram
relating geometric objects in the Givental spaces of the targets, following the philosophy of [10]. Let W be
a three-dimensional CY toric orbifold, p a fixed point such that a neighborhood is isomorphic to [C3/G],
with G � Zn1 × . . . ×Znl . The local group action is defined by the character vectors ( ~m1, ~m2, ~m3) and
a Calabi–Yau 2-torus action T ' (C∗)2 is specified by weights (w1,w2,w3) ∈ H•T (pt). Fix a Lagrangian
boundary condition L which we assume to be on the first coordinate axis in this local chart. Define
neff = lcm{nj / gcd(m1

j ,nj ) |j = 1, . . . , l} to be the size of the effective part of the action along the first
coordinate axis. There exist a map from an orbi-disk mapping to the first coordinate axis with winding d
and twisting2 ~k if the compatibility condition

d
neff
−

l∑
j=1

kjm
1
j

nj
∈Z (1)

is satisfied. Via the Atiyah–Bott isomorphism, the Chen–Ruan cohomology ring of [C3/G] is naturally
identified with a part of H•T (W ), with generators 1p,k. Denoting by 1kp the Poincaré dual of 1p,k, we define
the disk tensor at p as:

D+
W ,p(z; ~w) ,

π

w1|G|sin
(
π
(〈∑l

j=1
kjm

3
j

nj

〉
− w3

z

)) 1

Γ
k
W

1kp ⊗ 1kp, (2)

where Γ
k
W is the 1p,k coefficient of Iritani’s homogenized Gamma function ([2], Eqn. (27)). The global disk

tensor forW is then defined as the sum of the disk tensors at the points adjacent to the Lagrangian L in the
toric diagram ofW . Note that z is thought of as the descendant parameter and hence D+

W (z; ~w) is naturally
a tensor on HW , the Givental space of W .

The winding neutral disk potential is defined to be the contraction of the J function of W with the disk
tensor. Lowering indices in the J function with the Poincaré pairing, we can write this as the composition:

F
disk
L (τ,z, ~w) ,D+

W ◦ JW (τ,z; ~w) . (3)

The winding neutral disk potential is a section of Givental space that contains information about disk
invariants at all winding, in the sense that disk invariants of winding d appear in the specialization of
F

disk
L (t, z, ~w) at z = neffw1/d, as coefficients in front of monomials where the compatibility condition (1) is

satisfied. Rather then performing the specialization of the variable z to construct a generating function for
open invariants, we formulate the OCRC as a comparison diagram of winding neutral disk potentials, i.e.
a comparison among sections of Givental space.

2 ↑ Here twisting refers to the image of the center of the disk in the evaluation map to the inertia orbifold.
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Proposal 1. (The OCRC) For W either X or Y , let ∆W denote the free module in the cohomology of W over
H(BT ) spanned by the T -equivariant lifts of Chen–Ruan cohomology classes having age-shifted degree at most
two. There exists a C((z−1))-linear map of Givental spaces O :HX →HY and analytic functions hW : ∆W →C

such that
h
1/z
Y F

disk
L,Y

∣∣∣
∆Y

= h1/zX O ◦F disk
L,X

∣∣∣
∆X

(4)

upon analytic continuation of quantum cohomology parameters.

The analytic functions hW arise from the discrepancy between the small J-function and the canonical
basis-vector of solutions of the Picard–Fuchs system: a precise definition and discussion appears in [2,
App. A.1.1]. Here we only remark that the functions hW are completely determined by classical geometric
data. Because of the close relationship between the disk tensor and the Gamma factors of the central charge
in Iritani’s theory of integral structures [21, 2], we have a prediction for the transformation O in terms of
the toric geometry of the targets.

Proposal 2. (The transformation O) Choose a grade restriction windowW in the GIT problem to identify the
K-theory lattices of X and Y , and forW = X ,Y , define:

ΘW (1p,k) ,
1

sin
(
π
(〈∑l

j=1
kjm

3
j

nj

〉
− w3

z

))1kp (5)

Then the transformation O in Proposal 1 has the form:

O =ΘY ◦CHY ◦CH
−1
X ◦ΘX −1, (6)

where we denote by CHW = z−
1
2 degCHW the matrix of Chern characters (homogenized with respect to the coho-

mological degree “deg") in the bases given byW.

In [2], we show that Proposal 1 follows from the Coates–Iritani–Tseng’s CRC. Proposal 2 coincides with
U
X ,Y
ρ being predicted by a natural equivariant version3 of Iritani’s K-theoretic Crepant Transformation

Conjecture [21]:

Conjecture 2.1. ForW = X ,Y , denote by ΓW the diagonal matrix whose kk entry is Γ
k
W . Then, for every choice

M of grade restriction window, there exists a choice of analytic continuation path ρ such that

U
X ,Y
ρ = Γ Y ◦CHY ◦CH

−1
X ◦ Γ

−1
X . (7)

From Proposal 1 one can extract comparison statements about generating functions for disk invariants.
The strongest statement can be made when the Lagrangian boundary condition intersects a leg whose
isotropy is preserved in the crepant transformation.

Proposal 3. (Scalar disk potentials) Let L be a Lagrangian boundary condition on X that intersects a torus
invariant line whose generic point has isotropy group GL, and such that if we denote L

′ be the corresponding
boundary condition in Y , then L′ also intersects a torus invariant line with generic isotropy group GL. For
W = X ,Y , define the scalar disk potential4 :

FdiskW (τ,y, ~w) =
∑
d

yd

d!

∑
n

1
n!

∣∣∣∣〈τ, . . . , τ〉W ,L,d0,n

∣∣∣∣ ,∑
d

yd

d!

∣∣∣∣∣(D+
W (d; ~w), JW

(
τ,
neffw1

d

))
W

∣∣∣∣∣ . (8)

3 ↑ The fact that Γ -integral structures match with the natural B-model integral structures under mirror symmetry was proved in
[21] for compact toric orbifolds. A general proof of the fully equivariant version of Iritani’s K-theoretic CRC has been announced
by Coates–Iritani–Jiang.

4 ↑ We choose to define the scalar disk potential as a generating function for the absolute value of disk invariants. In the
course of the verifications of Proposal 3, one may observe that the scalar potentials could be matched on the nose with the use
of appropriate matrices of roots of unity - that in the end contribute just signs, albeit with some non-trivial pattern. We have
deliberately forgone to keep track of these phenomena, especially in light of the choice-of-signs the theory of open invariants is
everywhere laden with.
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Then, upon identifying the insertion variables via the change of variable prescribed by the closed CRC, we have:

FdiskL′ ,Y (τ,h
1

neffw1
Y y, ~w) = FdiskL,X (τ,h

1
neffw1
X y, ~w). (9)

2.B. Hard Lefschetz targets: the quantized OCRC

When X satisfies the hard Lefschetz condition5, a natural generalization of the CRC to higher genus GW
invariants is achieved by canonical quantization [10, 11]: the all-genus Gromov–Witten partition functions
are viewed as elements of the respective Fock spaces [19, 18], conjecturally matched by the Weyl-quantization
of the classical canonical transformation U

X ,Y
ρ .

Conjecture 2.2. (The hard Lefschetz quantized CRC, from [10, 11]) Let X → X← Y be a Hard Lefschetz
crepant resolution diagram for which the Coates–Iritani–Tseng CRC holds. For W either X or Y , let ZW denote
the generating function of disconnected Gromov–Witten invariants ofW viewed as an element of the Fock space of
Horb(W )⊗C((z)), and UX ,Yρ the Coates–Iritani–Tseng morphism of Givental spaces identifying the Lagrangian
cones of X and Y . Then

ZY = ̂
U
X ,Y
ρ ZX (10)

In the context of torus-equivariant Gromov–Witten theory of orbifolds with zero-dimensional fixed loci,
the hard Lefschetz quantized CRC can be proven in two steps [2, Prop. 6.3], as follows.

(1) Combining the Coates–Givental/Tseng quantum Riemann–Roch theorem [9, 27] with Givental’s quan-
tization formula in a neighborhood of the large radius points of W identifies a “canonical" R-
calibration defined locally by the genus 0 GW theory of W ;

(2) Conjecture 2.2 then follows from establishing the equality, upon analytic continuation, of the canonical
R-calibrations of X and Y on the locus where the quantum product is semi-simple.

The main consequence drawn in [2] for open Gromov–Witten invariants is a CRC statement for all
genera and number of holes.

Proposal 4. (The quantized OCRC [2]) Let X → X← Y be a Hard Lefschetz diagram for which the higher

genus closed CRC holds. Define the genus g, `-holes winding neutral potential F
g,`
W ,L :H(W )→H⊗`W as

F
g,`
W ,L(τ,z1, . . . , z`, ~w) ,D

+⊗`
W ◦ JWg,` (τ,z1, . . . , z`; ~w) , (11)

where JWg,` encodes genus g , `-point descendent invariants:

JWg,`(τ,z; ~w) ,
〈〈

φα1

z1 −ψ1
, . . . ,

φα`
z` −ψ`

〉〉
g,`

φα1 ⊗ · · · ⊗φα` . (12)

Further, let O⊗` =O(z1)⊗ . . .⊗O(z`). Then,

F
g,`
L′ ,Y =O

⊗` ◦F g,`
L,X . (13)

5 ↑ This is age(φ) = age(I∗(φ)) for all φ ∈Horb(X ), where I : IX → IX is the canonical involution on the inertia stack.
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3. Example 1: local weighted projective planes

3.A. Classical geometry

The family of geometries we study arises as the GIT quotient

C
4//χ C

? , (14)

with torus action on the coordinates (x1,x2,x3,x4) specified by the charge matrix

M =
(
n 1 1 −2−n

)
. (15)

The quotients obtained as the character χ varies are the toric varieties whose fans are represented in Figure
1. The right hand side of Figure 1 corresponds to χ > 0 . The irrelevant ideal is

ILR , 〈x1,x2,x3〉 (16)

and the resulting geometry Y is the total space of O(−n − 2)
P(n,1,1); [x1 : x2 : x3] serve as (quasi)-

homogeneous coordinates for the base, and x4 is an affine fiber coordinate. Torus fixed points and invariant
lines are:

L1 =V (x1,x4), L2 =V (x2,x4), L3 =V (x3,x4), (17)

P1 =V (x2,x3,x4), P2 =V (x1,x3,x4), P3 =V (x1,x2,x4). (18)

We have L1 ' P
1, L2,L3 ' P(1,n), P2, P3 ' [pt], P1 ' BZn. The fibers over the fixed points P2 and P3 are

non-gerby. The fiber over P1 is non-gerby when when n is odd; when n is even, it has a Z2-subgroup as a
stabilizer.

When χ is negative we have the fan on left hand side of Figure 1, which gives the irrelevant ideal

IOP , 〈x4〉 . (19)

Quotienting by x4 , 0 gives a residual Zn+2 action on C
3 with weights (n,1,1); the resulting orbifold

[C3/Zn+2] will be denoted by X . Moving across χ = 0
x1
x2
x3
x4

 ∈C4//C∗→


x1x

n
n+2
4

x2x
1
n+2
4

x3x
1
n+2
4

 ∈C3/Zn+2 (20)

where we denoted by [x1, . . . ,xn] the equivalence class in the appropriate quotient, is a birational contraction
of the image of the zero section s : P(n,1,1) ↪→ K

P(n,1,1).

Figure 1: A height 1 slice of the fans of [C3/Zn+2] (left) and local P(n,1,1) (right) for n = 2.
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α1

−α1 −α2

(n+2)α2

−(n+2)(α1 +α2)

n+2
n α1

α1 −nα2

α2

nα2 + (n+1)α1

L3

−α1n −α1 −α2

α2 −
α1
n

P1
L1

P3

P2

L2

X Y

−α1 − 2α2

α1 +2α2

Figure 2: Toric web diagrams and weights at the fixed points for X and Y .

3.A.a. Bases for cohomology

We consider a Calabi–Yau 2-torus action on Y and X , descending from an action on C
4 with geometric

weights (α1,α2,−(α1 + α2),0). Note that we consider the geometric weights as elements of H2(BT ): an
integer α corresponds to the first Chern class of the representation t 7→ tα . The tangent weights at the
torus fixed points are depicted in the toric diagrams in Figure 2.

Let p = π∗c1(OP(n,1,1)(1)) ∈ HT (KP(n,1,1)), where π : K
P(n,1,1)→ P(n,1,1) is the bundle projection and

the torus action on O
P(n,1,1)(1) is linearized canonically by identifying C

4 with the tautological bundle
O
P(n,1,1)(−1). Via the Atiyah–Bott isomorphism we have:

p = −α1
n
P1 −α2P2 + (α1 +α2)P3 ∈H2

T (KP(n,1,1)). (21)

The products wi of the three normal (tangent) weights at the fixed points Pi read

w1 =−
n+2
n

α1

(
α2 −

α1
n

)(
α1 +α2 +

α1
n

)
,

w2 =− (n+2)α2(α1 −nα2)(α1 +2α2),

w3 =− (n+2)(α1 +α2)(α1 +n(α1 +α2))(α1 +2α2). (22)

As a module over H(BT ), the equivariant Chen–Ruan cohomology ring of Y = K
P(n,1,1) is spanned by

{1Y ,p,p2,1 1
n
, . . . ,1 n−1

n
}. On X , we have cohomology classes 1g , labeled by the corresponding group elements

g = 1,e2πi/n+2, . . . ,e2πi(n+1)/(n+2); the involution on the inertia stack exchanges 1 k
n+2
↔ 11− k

n+2
.

3.B. Quantum geometry

Genus-zero Gromov–Witten invariants of X and Y can be computed using the quantum Riemann–Roch
theorems of Coates–Givental [9] and Tseng [27] applied to the Gromov–Witten theories of BZn+2 and
P(n,1,1), respectively. We have the following

Proposition 3.1. ([9, 27, 8]) For |y| < nn(n+2)−2−n,|x| < (n+2)n−n/(n+2), define the I-functions

IY (y,z) ,zyp/z
∑
nd∈Z+

yd

∏
〈m〉=〈(n+2)d〉

0≤m<(n+2)d−1
(−(n+2)p −mz)∏

〈m〉=〈d〉
0<m≤d

(p+α2 +mz)(p −α1 −α2 +mz)
1∏nd

m=1(np+α1 +mz)
, (23)
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IX (x,z) ,
∑
k≥0

∏
〈b〉=〈k/(n+2)〉
0≤b< k

n+2

( α2
n+2 − bz)(−

α1+α2
n+2 − bz)

∏
〈b〉=〈kn/(n+2)〉
0≤b< kn

n+2

( nα1
n+2 − bz)

zk
xk

k!
1〈k/n+2〉. (24)

Then, forW either X or Y and w either x or y, IW (w,−z) ∈ −z+HT (W )⊗C[[z−1]]∩LW identically in w.

Proof. This is [6, Theorem 3.5 and 3.7]. �

Since the I-functions of X and Y belong to the cone and behave like z + O(1) at large z, they co-
incide with suitable restrictions of the respective big J-functions to a subfamily of quantum cohomology
parameters.

Corollary 3.2. Denote by q the Novikov variable associated to p and write φ =
∑n+1
k=0 τ k

n+2
1 k
n+2

for an orbifold

cohomology class φ ∈Horb
T (X ). Then the following equalities hold:

JYsmall(q,z) =I
Y (y(q), z), (25)

JXbig(φ,z)
∣∣∣
τk/(n+2)=δk1τ

=IY (x(τ), z), (26)

where logq = limz→∞(IY (y,z)− z), τ = limz→∞(IX (x,z)− z). In particular,

hY = hX = 1. (27)

3.B.a. Analytic continuation and U
X ,Y
ρ

A standard method [10, 8] to relate the Lagrangian cones of X and Y upon analytic continuation hinges on
the following three-step procedure:

(1) find a holonomic linear differential system of rank equal to dimH•(Y ) = dimH•orb(X ) jointly satisfied,
upon appropriate identification of the quantum parameters, by the components of the I-functions of
X and Y as convergent power series around the respective boundary point;

(2) determine the relation between the I-functions upon analytic continuation along a path ρ connecting
the two boundary points;

(3) invoke a reconstruction theorem to recover from the latter the content of big quantum cohomology
and the full-descendent theory in genus zero [7, 13].

Step (3) has been achieved in full generality for toric Deligne–Mumford stacks in [7]. The first step is also
standard [17]; we spell out the details below for the sake of completeness. The main intricacy here lies in
Step (2), as the rank of the system is parametrically large in n and the usual Mellin–Barnes method [6, 20]
is technically more subtle to apply; we present a workaround in the discussion leading to Lemma 3.4.

Lemma 3.3. Let DY the (n+2)th order linear differential operator

DY , (θy +α2)(θy −α1 −α2)
n∏

m=0

(nθy +α1 −mz)− y
n+1∏
m=0

(−(n+2)θy −mz) (28)

where θy = zy∂y and define DX to be the differential operator obtained by replacing y = x−n−2 in Eq. (28).
Then,

D•I• = 0 (29)

Proof. The statement follows from a straightforward calculation from Eqs. (23) and (24). �
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The linear operator DW is the Picard–Fuchs operator of W = X ,Y : Lemma 3.3 establishes that the
torus-localized components of the I-functions of X and Y furnish two bases solutions of the linear system
DW f = 0, respectively in the neighbourhood of the Fuchsian points y = 0 and ∞. Relating the cones of
X and Y thus boils down to finding the change-of-basis matrix connecting the two set of solutions upon
analytic continuation from one boundary point to the other. Let IXk (x,z) denote the coefficient of 1k/(n+2)
in Eq. (24), and define in the same vein

IYk (y,z) =Coeff1Pk+1
IY (y,z), k = 0,1,2, (30)

IYj
n

(y,z) =Coeff1 j
n

IY (y,z), j = 1, . . . ,n− 1. (31)

It is immediately noticed that IXk (x,z) = xk(z1−k/k! +O(xn+2)): this uniquely characterizes {IXk }
n+1
k=0 as a

basis of solutions of DX f = 0. On the other hand, localizing Eq. (23) to the T -fixed points and resumming
in d for |y| < nn

(n+2)n+2 we obtain

IYk =i∗Pk
[
zyp/z n+3Fn+2

(
{An}; {Bn}; (−n− 2)n+2n−ny

)]
, (32)

IYj
n

=
z1−jyj/n

j! n+2Fn+1
(
{Cn,j}; {Dn,j}; (−n− 2)n+2n−ny

)
, (33)

where

An =
(
1,

1
n+2

+
p

z
, . . . ,

n+1
n+2

+
p

z
,
p

z

)
,

Bn =
(1
n
+
np+α1
nz

, . . . ,
n− 1
n

+
np+α1
nz

,1+
np+α1
nz

,1+
p −α1 −α2

z
,1+

p+α2
z

)
,

Cn,j =
(
1,

1
n+2

−
j

n
, . . . ,

n+1
n+2

−
j

n

)
,Dn,j =

( j
n
,
j +1
n
, . . . ,

j +n− 1
n

,1+
j

n

)
, (34)

and pFq ({A}; {B};y) denotes the generalized hypergeometric series

pFq ({A}; {B};w) ,
∏q
i=1 Γ (Bi)∏p
j=1 Γ (Aj )

∞∑
n=0

∏p
i=1 Γ (Ai +n)∏q
j=1 Γ (Bj +n)

wn

n!
, (35)

which is convergent for |w| < 1.

In order to continue to x = y−n−2 � 1 we will need the following analytic continuation theorem for

pFq ({A}; {B};y), which generalizes the classical Kummer continuation formula at infinity for the Gauss
function.

Lemma 3.4. Let p = q + 1, Bj < N, Ai − Aj < Z for i , j and let ρ : R → C be a path in the complex
y-plane from y = 0 to y =∞ having trivial winding number around both y = 0 and y = 1. Then the analytic
continuation of Eq. (35) to |y| � 1 along ρ satisfies

q+1Fq ({A}; {B};y) ∼
q+1∑
k=1

q∏
j=1

Γ (Bj )
Γ (Bj −Ak)

∏
j,k

Γ (Aj −Ak)
Γ (Aj )

(−y)−Ak
(
1+O

(
1
y

))
. (36)

Proof. The argument follows almost verbatim the steps leading to the well-known result for q = 1. Φ(w) ,q+1
Fq ({A}; {B};w) satisfies the generalized hypergeometric equationθ

q∏
j=1

(θ +Bj − 1)−w
q∏
j=1

(θ +Aj )

Φ(w) = 0. (37)
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with θ = w∂w. The same analysis at w =∞ as for the Gauss equation reveals that Ai are local exponents
of Eq. (37),

Φ̃(w) ∼
q+1∑
j=1

cj ({A}; {B}) (−w)−Aj (38)

for some cj ({A}; {B}) ∈C. Let now k be such that Re(Ak −Aj ) < 0 for all j , k; then

ck ({A}; {B}) = lim
w→∞

(−w)Ak Φ̃(w) (39)

Now, Φ(w) can be represented as the multiple Euler–Pochhammer integral [16]

Φj(w) =
q∏
i=1

Γ (Bi)
Γ (Ai)Γ (Bi −Ai)

1
(1− e2πiAi )(1− e2πi(Bi−Ai ))

∫
γ
. . .

∫
γ

tAii (1− ti)Bi−Ai
(1−w

∏
i ti)

q∏
i=1

dti
ti(1− ti)

, (40)

where γ = [C0,C1] is the commutator of simple loops around t = 0 and t = 1. Taking the limit w→∞
along ρ and using the Euler Beta integral,

1
(1− e2πiAi )(1− e2πi(Bi−Ai ))

∫
γ
tAi−1i (1− ti)Bi−Ai−1

q∏
i=1

dti =
Γ (Ai)Γ (Bi −Ai)

Γ (Bi)
, (41)

gives

ck(A,B) =
q∏
i=1

Γ (Bi)
Γ (Bi −Ak)

∏
i,k

Γ (Ai −Ak)
Γ (Ai)

. (42)

from which Eq. (36) follows by the invariance of Eq. (35) under permutation of Ai and analytic continuation
to Re(Aj −Ai) < 0, j , k , i. �

Denote by ĨY (y,z) the analytic continuation of IY (y,z) along ρ as in Lemma 3.4. The matrix expression
of the symplectomorphism U

X ,Y
ρ : HX → HY of Conjecture 2.1 in the bases {1 k

n+2
}k=0,1,...,n−1 for H•T (X )

and {P1,1 1
n
, . . . ,1 n−1

n
, P2, P3} for H•T (Y ) can then be read off upon applying Eq. (36) to Eqs. (32)–(34),

ĨYi (x
−n−2, z) =

n+1∑
k=0

(UX ,Yρ )ikI
X
k
n+2

(x,z). (43)

Example 3.1. (n = 1) We have, from Eq. (23) and Eq. (36) for q = 2,

(UX ,Yρ )0,0 =
Γ
(
1
3

)
Γ
(
2
3

)
27

α2
z Γ

(
z+α1−α2

z

)
Γ
(
z−α2+α3

z

)
Γ
(
z+α1
z

)
Γ
(
1
3 −

α2
z

)
Γ
(
2
3 −

α2
z

)
Γ
(
z+α3
z

) ,
(UX ,Yρ )0, 13 =

zΓ
(
−13

)
Γ
(
1
3

)
3

3α2
z −1Γ

(
z+α1−α2

z

)
Γ
(
z−α2+α3

z

)
Γ
(
α1
z + 2

3

)
Γ
(
−α2
z

)
Γ
(
2
3 −

α2
z

)
Γ
(
α3
z + 2

3

) ,

(UX ,Yρ )0, 23 =
2z2Γ

(
−23

)
Γ
(
−13

)
3

3α2
z −2Γ

(
z+α1−α2

z

)
Γ
(
z−α2+α3

z

)
Γ
(
α1
z + 1

3

)
Γ
(
−α2
z

)
Γ
(
1
3 −

α2
z

)
Γ
(
α3
z + 1

3

) , (44)

where α3 = −α1 −α2, and (UX ,Yρ )ik(α(1,2,3)) = (UX ,Yρ )0k(αχi (1,2,3)), where χ ∈ S3 is the cyclic permutation
1→ 2, 2→ 3, 3→ 1.
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Remark 3.5. (On general toric wall-crossings) The arguments we used for the examples of this Section
have a wider applicability to wall-crossings in toric Gromov–Witten theory, including the multi-parameter
case. On general grounds, I-functions - and their extended versions [7] - are multiple hypergeometric
functions of Horn type [20, 21]. When crossing a single wall in the B-model moduli space, however, the
analytic continuation is effectively taking place in one parameter only. Restricting to the sublocus where all
the spectator variables are set to zero reduces the multiple Horn series to a single-variable series which,
upon manipulations of Gamma factors in the summand as in the next section, can always be cast in the
form of a generalized hypergeometric function pFq({A}, {B},w) with q ≥ p − 1. Whenever the series has a
finite radius of convergence as in the Calabi–Yau case, we have p = q + 1, for which Lemma 3.4 applies.
The general case is obtained similarly.

3.B.b. Grade restriction window and the K-theoretic CRC

Let us now turn to Conjecture 2.1 for this family of geometries. Throughout this section, we work with the
natural basis {1 k

n+2
}k=0,1,...,n−1 for H•T (X ) and with the localized basis {P1,1 1

n
, . . . ,1 n−1

n
, P2, P3} for H•T (Y ).

The grade restriction window W = {Lj}j=0,...,n+1, where Lj is a C
∗ equivariant line bundle on C

4 with
character χj given by

χj =

j j < 1+ n
2 ,

j −n− 2 else,
(45)

yields a natural bijection between the K-lattices of X and Y . We make the notational convention of taking
all indexing sets to range from 0 to n+ 1, with the sole purpose of leaving the coefficients corresponding
to identities/trivial objects in the first row/column of any matrix we write. With these choices the matrices
representing the (homogenized, involution pulled-back) Chern characters for X and Y are

[CHX ]
k
j =

(2πi
z

) 1
2 deg

inv∗CHX = e−jk
2πi
n+2 , (46)

[CHY ]
l
j =


e

2πi
n χj(l−

α1
z ) for l = 0, . . . ,n− 1.

e−2πi
χjα2
z for l = n.

e−2πi
χjα3
z for l = n+1.

(47)

Theorem 3.6. Conjecture 2.1 holds with the restriction window W above and the analytic continuation path ρ
as in Lemma 3.4.

Proof. Consider the linear map V :HX →HY defined by

V = Γ −1Y U
X ,Y
ρ ΓX , (48)

in the bases above for H•T (X ) and H
•
T (Y ). The Gamma factors in Eqs. (36) and (48) telescope away by

virtue of Eq. (34), the multiplication formula

Γ (b+mz) = (2π)
1−m
2 mb+mz−

1
2

m−1∏
k=0

Γ

(
b+ k
m

+ z
)
; m ∈Z∧m > 0, (49)

and Euler’s identity, Γ (x)Γ (1 − x) = π/ sin(πx); the final result is a trigonometric matrix with coefficients
[V ]ij being Laurent polynomials in e2πiαk , k = 1,2,3. Right-multiplication by the Chern character matrix

of X and telescoping the resulting sums over roots of unity returns CHY , as given in Eq. (47). �
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3.C. The OCRC

As discussed in Section 2.A, the first implication we draw from Theorem 3.6 is a comparison theorem for
winding neutral disk potentials.

Corollary 3.7. Proposals 1 and 2 hold for Y = K
P(n,1,1) and X = [C3/Zn+2].

This can be employed to obtain more concrete identifications of scalar disk potentials, as we now show.

3.C.a. Scalar disk potentials: non-special legs

In the case where the Lagrangian on Y is on a leg that attached to a non-stacky point, the equality of scalar
disk potentials follows in a simple fashion for all n. When the Lagrangian is on the leg that attached to the
stacky point, we need to consider separately the case n-odd, where the quotient on the leg is effective, and
n-even, where there is a residual Z2 isotropy.

We consider non-special legs first. We have the following

Theorem 3.8. Consider a Lagrangian boundary condition L on X which intersects the second coordinate axis,
and denote by L′ the proper transform in Y . Then, upon identifying the insertion variables via the change of
variable prescribed by the closed CRC, we have the equality of scalar disk potentials:

FdiskL′ ,Y (τ,y, ~w) = F
disk
L,X (τ,y, ~w). (50)

Proof. In this case the tensors Θ from (5) are:[
Θ−1X

]kk
= sin

(
π

(
−α1
z

+
〈
nk
n+2

〉))
, (51)

[ΘY ]ll =
1

sin
(
π
(
nα2−α1

z

))δl,n. (52)

We compute the transformation O as in Eq. (6); note it has nonzero coefficients only for l = n. We then

specialize z = (n+2)α2
d to obtain a map we denote Od ,

O
k
d,n =

sin
(
π
(
− α1d
(n+2)α2

+
〈
nk
n+2

〉))
sin

(
π
(
− α1d
(n+2)α2

+ nd
(n+2)

)) 1
n+2

e
2πij
n+2 (k−d). (53)

The expression in Eq. (53) is summed over the index j ranging from 0 to n+1. When k is not congruent to
d modulo n+2, the exponential part is a sum of roots of unity that adds to 0. When k ≡ d modulo n+2,
O
k
d,n = ±1. Hence our OCRC, Corollary 3.7, together with Eq. (53) gives

±F disk
L,X |z= (n+2)α2

d

(1〈 d
n+2〉) = F

disk
L′ ,Y |z= (n+2)α2

d

(P2). (54)

Disk invariants of winding d for X are the coefficients of the classes 1
k
n+2 with k ≡ d modulo n + 2 after

specializing z = (n+2)α2
d in F

disk
L,X . Summing over all d, we obtain the equality of scalar potentials as stated

in Theorem 3.8. �
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3.C.b. Scalar disk potentials for the special leg: n odd

Theorem 3.9. Let n be an odd integer. Consider a Lagrangian boundary condition L on X which intersects the
first coordinate axis, and denote by L′ the proper transform in Y . Then, upon identifying the insertion variables
via the change of variable prescribed by the closed CRC, we have the equality of scalar disk potentials:

FdiskL′ ,Y (τ,y, ~w) = F
disk
L,X (τ,y, ~w). (55)

Proof. In this case the tensors Θ from (5) are:[
Θ−1X

]kk
= sin

(
π

(
α1 +α2
z

+
〈
k

n+2

〉))
, (56)

[ΘY ]ll =
1

sin
(
π
(
α1+α2
z + α1

nz +
〈
− ln

〉)) . (57)

We compute the transformation O as in Eq. (6). We then specialize z = (n+2)α1
d to obtain Od .

O
k
d,l =

sin
(
π
(
d(α1+α2)
(n+2)α1

+
〈
k
n+2

〉))
sin

(
π
(
d(α1+α2)
(n+2)α1

+ d
n(n+2) +

〈
− ln

〉)) 1
n+2

e
2πij
n(n+2) (kn+l(n+2)−d). (58)

The expression in Eq. (58) is summed over the index j ranging from 0 to n + 1. The degree-twisting
compatibilities are:

X : d ≡ kn mod n+2,

Y : d ≡ 2l mod n.

The Chinese remainder theorem then states that both compatibilities are satisfied when

d ≡ kn+ l(n+2) mod n(n+2). (59)

When (59) is satisfied, the difference in the arguments in the sine functions is an integer multiple of π,
hence O

k
d,l = ±1. When only the compatibility for Y is satisfied, then the exponential part of Eq. (58)

consists of a sum of (n+2) roots of unity that add to 0. All other entries of the matrix representing Od do
not matter for our purposes. For a fixed d, there is a unique pair (k̄, l̄) satisfying both twisting conditions,
and Eq. (58) gives:

F
disk
L,X |z= (n+2)α1

d

(1 k̄
n+2

) = ±F disk
L′ ,Y |z= (n+2)α1

d

(1 l̄
n
). (60)

Disk invariants of winding d for X are the coefficients of the class 1
k̄
n+2 after specializing z = (n+2)α1

d in

F
disk
L,X , whereas for Y they are obtained as the coefficients of the class 1

l̄
n after the same specialization of z

in F
disk
L,Y . Hence, summing over all d, Eq. (60) yields the equality of scalar potentials as stated in Theorem

3.9. �

3.C.c. Scalar disk potentials for the special leg: n even

Theorem 3.10. Let n be an even integer. Consider a Lagrangian boundary condition L on X which intersects the
first coordinate axis, and denote by L′ the proper transform in Y . Then, upon identifying the insertion variables
via the change of variable prescribed by the closed CRC, we have the equality of scalar disk potentials:

FdiskL′ ,Y (τ,y, ~w) = F
disk
L,X (τ,y, ~w). (61)
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Proof. The transformation O in this case is the same as in Section 3.C.c. However we specialize to z =
(n+2)α1

2d to obtain Od :

O
k
d,l =

sin
(
π
(2d(α1+α2)

(n+2)α1
+
〈
k
n+2

〉))
sin

(
π
(2d(α1+α2)

(n+2)α1
+ 2d
n(n+2) +

〈
− ln

〉)) 1
n+2

e
2πij
n(n+2) (kn+l(n+2)−2d). (62)

The expression in Eq. (62) is summed over the index j ranging from 0 to n + 1. The degree-twisting
compatibilities are:

X : 2d ≡ kn mod n+2,

Y : 2d ≡ 2l mod n.

Modular arithmetic again tells us that for any d there are four pairs of solutions to the above system of
congruences, corresponding to the solutions to:

2d ≡ kn+ l(n+2) mod
n(n+2)

2
. (63)

Note that if (k0, l0) is a solution of (63), then the other solutions are (k0, l1), (k1, l0), (k1, l1), where k1 =
k0 +

n+2
2 and l1 = l0 +

n
2 . Without loss of generality we denote (k0, l0) and (k1, l1) the solutions such that

2d ≡ kn+ l(n+2) mod n(n+2) and we observe that Ok0
d,l0

=O
k1
d,l1

= ±1, whereas Ok0
d,l1

=O
k1
d,l0

= 0.

Just as before, for l = l0, l1 and all other k’s, the corresponding coefficients in the matrix Od vanish.
This gives the equalities:

F
disk
L,X |z= (n+2)α1

2d

(1 k0
n+2

) = ±F disk
L′ ,Y |z= (n+2)α1

2d

(1 l0
n
), (64)

F
disk
L,X |z= (n+2)α1

2d

(1 k1
n+2

) = ±F disk
L′ ,Y |z= (n+2)α1

2d

(1 l1
n
). (65)

We recognize the disk invariants of winding d for X (resp. Y ) in the sum of the left hand sides (resp. right
hand sides) of Eq. (64) and Eq. (65). Hence, summing over all d, Eq. (60) yields the equality of scalar
potentials as stated in Theorem 3.10. �

4. Example 2: the closed topological vertex

4.A. Classical geometry

The closed topological vertex arises from the GIT quotient construction [12]

0 Z
3

Z
6

Z
3 0// MT

// N // // , (66)

where

M =


1 1 0 −2 0 0
1 0 1 0 −2 0
0 1 1 0 0 −2

 , N =


0 2 0 1 0 1
0 0 2 0 1 1
1 1 1 1 1 1

 . (67)

The resulting geometry is a quotient C6//χ(C?)3, where the characters of the torus action on the affine
coordinates x1, . . . ,x6 of C6 are encoded in the rows of M .

In two distinct chambers, the GIT quotient yields the toric varieties whose fans are given by cones over
Figure 3. The picture on the left hand side corresponds to the orbifold chamber: we delete the unstable
locus

∆OP , V (〈x4x5x6〉) . (68)
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Figure 3: Fans of [C3/(Z2 ×Z2)] (left) and its G-Hilb canonical resolution (right), depicting a slice of the
three dimensional picture with a horizontal hyperplane at height 1.

and then quotient by Eq. (67): using the torus action to make x4, x5 and x6 equal to 1 gives a residual
effective µ32/µ2 � Z2 ×Z2 action6 on C

3 with coordinates x1, x2, x3. We denote by X , [C3/(Z2 ×Z2)]
the resulting orbifold, and by X its coarse moduli space.

The picture on the right hand side corresponds instead to the distinguished large radius chamber that
gives rise to Nakamura’s Hilbert scheme of (Z2 ×Z2)-clusters: we delete the set

∆LR , V

 ∏
(i,j,k),(1,4,5),(2,4,6),(3,5,6),(4,5,6)

〈
xi ,xj ,xk

〉 (69)

and then quotient by the (C?)3 action in Eq. (67); we will denote by Y the corresponding smooth toric
variety. This is the trivalent geometry on the right-hand-side of Figure 4: the local geometry of three
(−1,−1) curves inside a Calabi–Yau threefold intersecting at a point.

α1

α1

−α1 −α2

−α1 −α2

p1

L1

q
p2

p3

L3

L2

α1 +α2 α1

α2

α2

−α1 −α2

α1
2

α2
2

−α1+α22

α2

−α1

−α2

Figure 4: Toric web diagrams and weights at the fixed points of [C3/(Z2 × Z2)] (left) and its G-Hilb
canonical resolution (right).

4.A.a. Bases for cohomology

We equip Y and X with a Calabi–Yau 2-torus action descending from the action on C
6 with geometric

weights (α1,α2,−α1 − α2,0,0,0). This descends to give an effective T ' (C∗)2 action on Y and X which

6 ↑ We choose the isomorphism given by (0,1) being the element whose representation fixes z, (1,0) fixing y and (1,1) fixing x.
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preserves their canonical bundle; the resolution diagram

Y X

X

ρ

��

π

��
(70)

is T -equivariant.

Bases for the equivariant cohomology of Y and X can be presented as follows. Let Li ⊂ Y , i = 1,2,3
denote the torus-invariant projective lines

L1 =V (x4,x5), (71)

L2 =V (x4,x6), (72)

L3 =V (x5,x6). (73)

The cohomology of Y is generated as a module by the duals ωi = [Li]∨ ∈ H2(Y ) of the fundamental
classes in Eqs. (71)–(73), plus the identity class 1Y ∈ H0(Y ). The action on C

6 above yields canonical
lifts of i∗Ljωi = c1(OLj (δij )) to equivariant cohomology. Denoting by q the intersection of the three fixed

lines, pi the other torus fixed point of Li , and by capital letters the corresponding cohomology classes, the
Atiyah–Bott isomorphism sends:

ω1→
α1
2
(Q − P1 + P2 + P3), (74)

ω2→
α2
2
(Q+ P1 − P2 + P3), (75)

ω3→−
α1 +α2

2
(Q+ P1 + P2 − P3). (76)

The T -equivariant Poincaré pairing ηY (φ1,φ2) =
∑
Pi
φ1|Piφ2|Pie

−1(NPi /Y ), in the basis (Q,P1, P2, P3) for
H•T (Y ), takes the block-diagonal form

ηY =



2
α2α

2
1+α

2
2α1

0 0 0

0 α1

2α2
2+2α1α2

− 1
2(α1+α2)

1
2α2

0 − 1
2(α1+α2)

α2

2α2
1+2α2α1

1
2α1

0 1
2α2

1
2α1

1
2

(
1
α2

+ 1
α1

)

. (77)

On X , the torus equivariant cohomology is spanned by the T -equivariant cohomology classes 1g , labeled
by the corresponding group elements g = (0,0), (0,1), (1,0) and (1,1).

4.A.b. The grade restriction window

Consider the natural restriction window W consisting of the trivial representation of (C∗)3 and the three
one dimensional representations whose characters are given by the first three columns of the matrix M in
Eq. (67). These descend to the four irreducible representations of X , whose nontrivial characters are still
encoded by the first three columns of M via iπ-exponentiation; and to the bundles O and OLj (δij ) on Y .
UsingW to identify the K-lattices, the natural basis of irreducible representations for H•T (X ) and the fixed
point basis for H•T (Y ), the matrix representing the (homogenized, involution pulled-back) Chern character
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for X and Y are

(CHX )
k
j ,

(2πi
z

) 1
2 deg

inv∗CHX =


1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

 (78)

(CHY )
l
j =


1 e

πiα1
z e

πiα2
z e−

πi(α1+α2)
z

1 e−
πiα1
z e

πiα2
z e−

πi(α1+α2)
z

1 e
πiα1
z e−

πiα2
z e−

πi(α1+α2)
z

1 e
πiα1
z e

πiα2
z e

πi(α1+α2)
z


. (79)

4.B. Quantum geometry

The primary T -equivariant Gromov–Witten invariants of Y were computed for all genera and degrees in
[23]. Let di , i = 1,2,3 be the degrees of the image of a stable map to Y measured with respect to the basis
Li , i = 1,2,3 of H2(Y ,Z), and suppose that d1 + d2 + d3 , 0. Then [23, Prop. 11–15]

∫
Mg,0(Y ;d1,d2,d3)

1 =
|B2g |(2g − 1)

(2g)!(d1 + d2 + d3)3−2g


1 d1 = d2 = d3,

1 di = dj = 0,dk > 0, i , j , k,

−1 d1 = dj > 0,dk = 0, i , j , k,

0 else.

(80)

The genus-zero Gromov–Witten potential then takes the form

FY (t) ,
1
3!
ηY (φ,φ∪φ) +

∑
n≥0

∑
d1,d2,d3

∫
M0,n(Y ;d1,d2,d3)

∏n
i=1 ev

∗
i φ

n!

=
1
6

(
t30

α1 (−α1 −α2)α2
+

(t0 −α2t2)3

α1α2 (α1 +α2)
+
((α1 +α2) t3 + t0)3

α1α2 (α1 +α2)
+

(t0 −α1t1)3

α1α2 (α1 +α2)

)
+Li3

(
et1

)
+Li3

(
et2

)
−Li3

(
et1+t2

)
+Li3

(
et3

)
−Li3

(
et1+t3

)
−Li3

(
et2+t3

)
+Li3

(
et1+t2+t3

)
(81)

where we denoted HT (Y ) 3 φ :=
∑3
i=0 tiωi and Li3(x) is the polylogarithm function of order 3:

Lin(y) =
∑
k>0

yk

kn
. (82)

As far as X is concerned, its quantum cohomology was determined in [3] by an explicit calculation
of Z2 ×Z2 Hurwitz–Hodge integrals. Introduce linear coordinates xi,j on the T -equivariant Chen–Ruan

cohomology of X by Horb
T (X ) 3 ϕ :=

∑
i,j∈0,1 xi,j1(i,j). Then [3, Thm. 2],

FX (x) = FY (t(x)) (83)

where the Bryan–Graber change of variables t(x) reads
t0
t1
t2
t3

 =

1 1

2 iα1
1
2 iα2 −12 i(α1 +α2)

0 i
2 − i

2 − i
2

0 − i
2

i
2 − i

2
0 − i

2 − i
2

i
2



x0,0
x1,0
x0,1
x1,1

+
iπ
2


0
1
1
1

 . (84)
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4.C. One-dimensional mirror symmetry

In the analysis of the disk and quantized CRC for the type A resolutions in [2], a prominent role was played
by a realization of the D-modules underlying quantum cohomology in terms of a single-field logarithmic
Landau–Ginzburg model, or, in the language of [25], the Frobenius dual-type structure on a genus-zero
double Hurwitz space. This was motivated by a connection of the Gromov–Witten theory for these targets
with a class of reductions of the 2-Toda hierarchy [1]. A similar connection with integrable systems holds
for the closed topological vertex as well; the general story will appear elsewhere, but its consequences for
the purposes of the paper are discussed below.

Define

Z1 ,−
e
t2
2

(
et1 − 1

)(
et3 − 1

)
(et1+t2 − 1)2

, Z2 ,
e−

t2
2

(
et2 − 1

)(
et1+t2+t3 − 1

)
(et1+t2 − 1)2

,

Z3 ,
et1+

t2
2

(
et2 − 1

)(
et3 − 1

)
(et1+t2 − 1)2

, Z4 , −
e
t2
2

(
et1 − 1

)(
et1+t2+t3 − 1

)
(et1+t2 − 1)2

. (85)

Fix now a branch C of the logarithm and denote by Mα1,α2
' M0,6 × C∗ the smooth complex four-

dimensional manifold of multi-valued functions λ(q) of the form

Mα1,α2
=
{
λ(q) = t0 +

(α1 −α2)t2
2

+α1 log(Z1 − q)(Z2 − q) +α2 log(Z3 − q)(Z4 − q)

−(α1 +α2) logq; Zi , 0,1,Zj
}
. (86)

A given point λ ∈ Mα1,α2
is a perfect Morse function in q with four critical points qcri , i = 1, . . . ,4; its

critical values,
ui = logλ(qcri ), (87)

give a system of local coordinates onMα1,α2
, which is canonical up to permutation. Define now holomor-

phic tensors η ∈ Γ (Sym2T ∗Mα1,α2
), c ∈ Γ (Sym3T ∗Mα1,α2

) onMα1,α2
via

η(∂,∂′) =
4∑
i=1

Resq=qcri
∂(λ)∂′(λ)
λ′(q)

ψ(q)dq, (88)

c(∂,∂′ ,∂′′) =
4∑
i=1

Resq=qcri
∂(λ)∂′(λ)∂′′(λ)

λ′(q)
ψ(q)dq (89)

for holomorphic vector fields ∂, ∂′ , ∂′′ onMα1,α2
, where

ψ(q) =
1
α2

[
1

q −Z1
+

1
q −Z2

− 1
q

]
. (90)

Whenever η is non-degenerate, this defines a commutative, unital product ∂◦∂′ on Γ (TMα1,α2
) by “raising

the indices”: η(∂,∂′ ◦∂′′) = c(∂,∂′ ,∂′′).

Theorem 4.1. Eqs. (88) and (89) define a semi-simple Frobenius manifold structure Fα1,α2
, (Mα1,α2

,η,◦) on
Mα1,α2

with covariantly constant unit. Moreover,

Fα1,α2
=QHT (Y ) 'QHT (X ) (91)

Proof. Associativity and semi-simplicity of the product follow immediately from the fact that the canonical
coordinate fields, ∂ui , are a basis of idempotents of Eq. (89). A straightforward computation of the residues
in Eq. (88) in the coordinate chart ti shows that Eq. (88) is a flat metric and the variables ti are a flat
coordinate system for η; similarly, a direct evaluation of Eq. (89) shows that the algebra admits a potential
function, which coincides with Eq. (81). �
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Corollary 4.2. Let ∇(z)X Y = dXY+zX◦Y be the Dubrovin connection on Fα1,α2
. Then a system of flat coordinates

for ∇(z)X is given by the periods

Πi =
z

(1− e2πiα1/z)(1− e(−1)i2πi(α1+α2)/z)

∫
γi

eλ/zψ(q)dq (92)

where γ1 = [CZ1
,C∞], γ2 = [C0,CZ2

], γ3 = [CZ2
,C∞], γ4 = [C0,CZ1

] and we denoted by Cx a simple loop
encircling counterclockwise the point q = x.

This is [2, Prop. 5.2], where the superpotential and primitive differential λ and φ there are identified
respectively with eλ and ψ(q)dq here: the contours γi give a basis of the first homology of the complex line
twisted by a set of local coefficients given by the algebraic monodromy of eλ/z around the singular points
Zi , 0 and ∞. The reason behind this particular choice of basis, as well as the normalization factor in front
of the integral, will be apparent in the course of the asymptotic analysis of Section 4.D.d.

Remark 4.3. In the language of [25], the Frobenius manifold Fα1,α2
is the Frobenius dual-type structure on

the genus zero double Hurwitz space H0,κ with ramification profile κ = (α1,α1,α2,α2,−α1 −α2,α1 −α2),
with eλ as its superpotential and the third kind differential ψ(q)dq as its primitive one-form; the integrals
Eq. (92) were called the twisted periods of Fα1,α2

in [2]. The corresponding Principal Hierarchy [13] is a
four-component reduction of the genus-zero Whitham hierarchy with three punctures [24]. The special case
α1 = α2 = α is particularly interesting, as in that case Fα,α is the dual (in the sense of Dubrovin [14]) of
a conformal charge one Frobenius manifold with non-covariantly constant identity; flat coordinates for the
two Frobenius structures are in bijection with Darboux coordinates for a pair of compatible Poisson brackets
for the Principal Hierarchy, which thus gives rise to a (new) bihamiltonian integrable system of independent
interest. We will report on it in a forthcoming work.

4.C.a. Computing U
X ,Y
ρ

Encoding the coefficients of Γ X (z) and Γ Y (z) as entries of diagonal matrices, the prediction for the sym-
plectomorphism U

X ,Y
ρ from Iritani’s theory of integral structure is obtained by composing

U
X ,Y
ρ = Γ Y ◦CHY ◦CH

−1
X ◦ Γ

−1
X , (93)

as we now turn to verify. Let Yε be the ball of radius ε around et = 0, measured w.r.t. the Euclidean metric
(ds2) =

∑
i(de

ti )2 in exponentiated flat coordinates, and define the path in Y1

ρ : [0,1] → Y1,
y → (ρ(y))j = iy.

(94)

Beside Πi , systems of flat coordinates for the deformed flat connection ∇(z) are given by the components of
the J-functions of X and Y ; the discrepancy between them encodes the morphism of Givental spaces that
identifies the Lagrangian cones of X and Y under analytic continuation along the path ρ:

JY =U
X ,Y
ρ JX . (95)

As in [2], UX ,Yρ can be computed in two steps, by expressing J• in terms of the periods Π,

Πi =
3∑
α=0

BiαJXα , (96)

Πi =
r∑
j=1

A−1ij J
Y
j , (97)
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where JXα and JYj are the components of the J-functions of X and Y respectively in the inertia basis of
X and in the localized basis of Y ; we have labeled elements of Z2 ×Z2 by a single index α = 0,1,2,3
for g = (0,0), (1,0), (0,1) and (1,1) respectively. Throughout the rest of this Section, in order to simplify
formulas, we define µi , αi/z.

Proposition 4.4. We have

A−1D−10 =


−eiπ(µ1+µ2) sin(πµ1)sin(πµ2)

0 eiπ(µ1+µ2) sin(πµ1)sin(πµ2)
−1

−(−1)µ1 sin(π(µ1+µ2))sin(πµ2)
(−1)2µ1 (−1)µ1 sin(π(µ1+µ2))sin(πµ1)

0
0 0 −1 0
−1 1 0 1

 (98)

Biα = (D1ID2)iα (99)

where

D0 = diagµ−12 (−B(µ1,−µ1 −µ2),B(−µ1,µ1 +µ2),B(−µ1 −µ2,1+µ2),−B(µ1,−µ1 −µ2)) , (100)

D1 = diag
(
e

1
2 iπ(2µ1+µ2),e

1
2 iπ(2µ1+3µ2),e−

1
2 iπµ2 ,e

1
2 iπµ2

)
, (101)

D2 = diag
[
− 2
µ2
B
(µ1
2
,−
µ1 +µ2

2

)
, iB

(µ1
2
,
1
2
(1−µ1 −µ2)

)
,

−B
(1
2
(µ1 +1),

1
2
(1−µ1 −µ2)

)
, iB

(1
2
(µ1 +1),−

µ1 +µ2
2

)]
, (102)

I =
1
4


−1 −1 1 1
1 −1 −1 1
−1 1 −1 1
1 1 1 1

 , (103)

and B(x,y) denotes Euler’s β-function

B(x,y) =
Γ (x)Γ (y)
Γ (x+ y)

(104)

Proof. JXα (x,z) is characterized as the unique system of flat coordinates of ∇(z) which is linear with no
inhomogeneous term in ex0/z and satisfies

∂αJβ(0, z) = δα,β (105)

at the orbifold point x = 0. Then,
Bi,α = ∂αΠi(0, z). (106)

The integrals appearing on the r.h.s. of Eq. (106) can be explicitly evaluated in terms of the Euler β-integral;
this is illustrated in detail in Appendix A.A, and returns Eqs. (101)–(103). Similarly, JYj (t, z) is characterized

as the unique system of flat coordinates of ∇(z) (linear with vanishing inhomogeneous term in et0/z) that
diagonalizes the monodromy of ∇(z) at large radius as

JYj (t, z)Pj =z
(
i∗pje

t·ω/z
)(
1+O(et)

)

∼zet0/z


e−µ1t1P1 j = 1,

Q j = 2,

e−µ2t2P2 j = 3,

e(µ1+µ2)t3P3 j = 4,

(107)
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where the r.h.s. is determined by the localization of ωi at pj as in Eqs. (74)–(76). Then A is determined
by the decomposition of the periods in terms of eigenvectors of the monodromy at large radius, that is,
by their asymptotic behavior as Re(t)→ −∞. The details of the large radius asymptotics of Πi are quite
involved and are deferred to Appendix A.B; the final result is Eq. (98). �

Corollary 4.5. Conjecture 2.1 holds for X = [C3/Z2 × Z2] and Y → X its G-Hilb resolution with grade
restriction windowW and analytic continuation path ρ as in Eqs. (78), (79), and (94).

4.D. Quantization and the all-genus CRC

For j = 1, . . . ,4, define 1-forms formally analytic in z, Rj = Rij(u,z)eu
j /zdui , satisfying the following set of

conditions:

R1: Rij(u,z) ∈ OMα1 ,α2
⊗C[[z]],

R2: ∇(z)Rj = 0 as a formal Taylor series in z,

R3:
∑
j Rij(u,z)Rkj(u,−z) = δik .

By condition R2 and their prescribed singular behavior at z = 0, Rj are formal (asymptotic) flat sec-
tions of the Dubrovin connection uniquely defined up to right multiplication by constants, Rij(u,z) →
Rij(u,z)Nj(z); picking a choice of R is said to endow Fα1,α2

with an R-calibration. Write Bk for the kth

Bernoulli number, ∑
k≥0

Bk
tk

k!
,

t
et − 1

, (108)

and let ∆i(u) be the normalized inverse-square-length of the coordinate vector field ∂ui in the Frobenius
metric, Eq. (88). We will also denote by ψW the Jacobian matrix of the change-of-variables from the
canonical frame, Eq. (87), to the flat coordinate systems t and x for W = Y and X respectively, with
columns normalized by

√
∆.

Definition 4.1. The Gromov–Witten R-calibration (RY )j = (RY )ij(u,z)eu
j /zdui of Y is the unique R-

calibration on QHT (Y ) ' Fα1,α2
such that

lim
Re(t)→−∞

(RY )ij(u,z) =D
Y
i (z)δij , (109)

where

D Y
i (z) =

exp
[∑

k>0
B2k

2k(2k−1)

(
−µ1−2k1 −µ1−2k2 + (µ1 +µ2)1−2k

)]
i = 1,

exp
[∑

k>0
B2k

2k(2k−1)

(
µ1−2k1 +µ1−2k2 − (µ1 +µ2)1−2k

)]
else.

(110)

The Gromov–Witten R-calibration (RX )j = (RX )ij (u,z)eu
j /zdui of X is the unique R-calibration on

QHT (X ) ' Fα1,α2
satisfying ∑

i

ψXαiR
X
ij (u,z)

∣∣∣∣
x=0

=
(
eeq(V (0))

)−1/2
DXα (z)χαj , (111)
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where χαj is the character table of Z2 ×Z2, V
(0) is the trivial part of the representation V (thought of as

a vector bundle on the classifying stack), and

DXα =



zexp
[∑

k>0
B2kz

2k−1

2k(2k−1)

(
µ1−2k1 +µ1−2k2 − (µ1 +µ2)1−2k

)]
α = 0,

i√
µ2(µ1+µ2)

exp
[∑

k>0
B2kz

2k−1

2k(2k−1)

(
1

µ2k−11
+ 21−2k−1

µ2k−12
+ 1−21−2k

(µ1+µ2)2k−1

)]
α = 1,

− 1√
−µ1(µ1+µ2)

exp
[∑

k>0
B2kz

2k−1

2k(2k−1)

(
1

µ2k−12
+ 21−2k−1

µ2k−11
+ 1−21−2k

(µ1+µ2)2k−1

)]
α = 2,

i√−µ1µ2
exp

[∑
k>0

B2kz
2k−1

2k(2k−1)

(
21−2k−1
µ2k−11

+ 21−2k−1
µ2k−12

− 1
(µ1+µ2)2k−1

)]
α = 3.

(112)

For either X or Y , Eqs. (109) and (111) together with conditions R1-R3 above determine the Gromov–
Witten R-calibration uniquely. Existence of an R-calibration RY compatible with Eq. (109) follows from the
general theory of semi-simple quantum cohomology of manifolds; the existence of an asymptotic solution
RX of the deformed flatness equations satisfying the (a priori over-constrained) normalization condition
Eq. (111) will be shown in the course of the proof of Theorem 4.7.

The relevance of Definition 4.1 is encoded in the following statement, which condenses [18, Thm. 9.1]
and [2, Lem. 6.3, 6.5].

Proposition 4.6. Givental’s quantization formula holds for W = X or Y in any path-connected domain con-
taining the large radius point ofW ,

ZW (tu) = Ŝ
−1
W ψ̂W R̂Weû/z

4∏
i=1

Zi,pt. (113)

where tu denotes the shifted descendent times t
p
u = tp + τW (u)δp0. Moreover, the Coates–Iritani–Tseng/Ruan

quantized CRC,

ZY (tu) =
̂
U
X ,Y
ρ ZX (tu), (114)

holds if and only if the Gromov–Witten R-calibrations agree on the semi-simple locus,

RX (u,z) = RY (u,z). (115)

4.D.a. Saddle-point asymptotics

Formal power series solutions in z of ∇(z)R = 0 are obtained from the saddle-point asymptotics of Eq. (92)
at z = 0. The latter is an essential singularity of the horizontal sections of the Dubrovin connection, and
their asymptotic analysis at z = 0 relies on a choice of phase for the parameters α1, α2, z – namely, a choice
of Stokes sector. A technically convenient choice is to restrict our study to the wedge S+ = {(µ1,µ2)|Re(µ1) >
0,Re(µ2) < −Re(µ1)}; as individual correlators depend rationally on µ1, µ2, our statements will hold in full
generality by analytic continuation in the space of equivariant parameters.

Theorem 4.7. The all-genus, full-descendent Crepant Resolution Conjecture (Conjecture 2.2) holds with X =
[C3/Z2 ×Z2], Y → X its G-Hilb resolution and ρ the analytic continuation path of Eq. (94).

Proof. Asymptotic horizontal sectionsRi(u,z) are given by the classical Laplace asymptotics of the integrals

Ii = z
∫
Li

eλ/zφ(q)dq (116)



24 4. Example 2: the closed topological vertex24 4. Example 2: the closed topological vertex

Z3

Z2Z4

Z1

q1

q4

q2

q3

L3

L1 q

L4

L2

Figure 5: Singular and critical points of the superpotential at the orbifold point. Z1, Z2 are negative
log-infinities of the superpotential. Z3 and Z4 are positive log-infinities. qi , i = 1,2,3,4 are the critical
points.

where the Lefschetz thimble Li is given by the union of the downward gradient lines of Re(λ) emerging
from its ith critical point. Let us first consider the situation at the orbifold point, which is schematized in
Figure 5. We compute from Eq. (86)

qcri

∣∣∣∣
x=0

=
(−1)1/4+σ (i)

2
q(−1)

i
, q =

√√
µ1 +
√−µ2√

µ1 −
√−µ2

, (117)

{Z1,Z2,Z3,Z4}
∣∣∣∣
x=0

=
eπi/4

2
{i,−i,−1,1} , (118)

with σ (1) = σ (4) = 0, σ (3) = σ (2) = 1. It is straightforward to check that the constant phase paths of eλ/z

emerging from qcri are the straight lines arg(q) = ±π(σ (i)+1/4) that terminate at the nearest algebraic zero
of eλ/z or at infinity, as in Figure 5. Moreover, for our choice of phases of the weights in S+, the contour
integrals of eλ/zψ around the Pochhammer contours γi retract [2, Rmk 5.5] to line integrals on the straight
line segments connecting the zeroes of eλ/z inside γi . At the orbifold point, these are precisely the Lefschetz
thimbles Li : then, the saddle-point expansion of the differentials Ri = ψXαjRji(u,z)e

ui /zdxα , dIi = dΠi

satisfies conditions R1-R2 above. We claim that up to right multiplication by Ni ∈ C[[z]], Ri this satisfies
R3 and coincides with the Gromov–Witten R-calibration of X . Indeed, as shown in Appendix A.A, in the
trivialization given by xα the differential of the periods of eλ/z at x = 0 reduce to Euler Beta integrals,
whose steepest-descent asymptotics is determined by Stirling’s expansion for the Γ function:

Γ (x+ y)x−xexx1/2−y '
√
2πexp

∑
k>0

Bk+1(1− y)
k(k +1)

xk
 , Re(x)� 0. (119)

Then:

e−u
i /z∂xαΠi

∣∣∣∣
x=0

=e−u
i /z|x=0B−1iα

'ψXajRji
∣∣∣∣
x=0

(120)
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and by Eqs. (106), (119), and (112) we obtain

ψXajRji

∣∣∣∣
x=0

=

√
2π

eeq(V (0))α
DXa χai (121)

so that R =
√
2πRX . In particular, since by Eq. (112) R satisfies the unitarity condition at x = 0, and

because parallel transport under the Dubrovin connection is an isometry of the pairing in R3, it satisfies
condition R3 for all u. At large radius, by condition R1 and the asymptotic behavior of JY (t, z) around
Re(t)→−∞ (Eq. (107)), we must have that

R' dJYN Y (122)

for some N Y = limRe(t)→−∞ e−u/zI ∈ C[[z]]. Its calculation via the steepest descent analysis of Eq. (116) at

large radius requires extra care since et = 0 is a singular point for ∇(z): in this limit, the critical points of
the superpotential either coalesce at zero or drift off to infinity,

qcr1 ∼
α1
α2

et2/2, qcr2 ∼
(
1+

α1
α2

)
et1+t2/2,

qcr3 ∼
α2

α1 +α2
e−t2/2, qcr4 ∼− e

t2/2. (123)

The essential divergences in the saddle-point computation of N Y from Eq. (116) can be treated as follows:
first rescale the integration variables in Eq. (116) by e−t2/2, e−t1−t2/2, et2/2 and e−t2/2 for i = 1,2,3,4
respectively; then integrate over the steepest descent path, isolating the essential divergence at the large
radius point, and finally take the resulting (finite) limit Re(t)→ −∞: notice that the last two steps do not
commute in general, as poles are generally created along the integration contour in the large radius limit.
The final result reduces, for all i, to the computation of the saddle-point asymptotics of Beta integrals.
Explicitly, we get √

∆clN Y = lim
Re(t)→−∞

√
∆i(u)e

−ui /zIi

=


2πµµ1−1/21 (−µ2)µ2+1/2(−µ1−µ2)−µ1−µ2−1/2

Bas(µ1,−µ1−µ2)
i = 1,

Bas(µ1,−µ2−µ1)
µ
µ1−1/2
1 (−µ2)µ2+1/2(−µ1−µ2)−µ1−µ2−1/2

else,
(124)

where ∆cl = limRe(t)→−∞∆(u) and Bas(x,y) denotes the Stirling expansion of the Euler Beta function.
Then,

lim
Re(t)→−∞

Rij(u,z) =
√
2πD Y

i δij , (125)

and thus RX = RY , concluding the proof. �

Corollary 4.8. The quantized OCRC, Proposal 4, holds for X and Y as in Theorem 4.7.

Appendix. Boundary behavior of periods

For |xi | < 1, i = 1,2,3, and Re(c) > Re(a) > 0 let F
(3)
D (a,b1,b2,b3, c,x1,x2,x3) denote the Lauricella hyper-

geometric function of type D [15],

F
(3)
D (a,b1,b2,b3, c,x1,x2,x3) ,

∑
d1,d2,d3≥0

(a)d1+d2+d3
(c)d1+d2+d3

3∏
i=1

(bi)dix
di
i

di !
, (126)
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=
Γ (c)

Γ (a)Γ (c − a)

∫ 1

0
ta−1(1− t)c−a−1

3∏
i=1

(1− xit)−bidt. (127)

The last line analytically continues outside the unit polydisc the power-series definition of F
(3)
D . Furthermore,

the continuation to arbitrary parameters a and c is obtainted through the use of the Pochhammer contour:∫ 1

0
→ 1

(1− e2πia)(1− e2πic)

∫
[C0,C1]

. (128)

Eqs. (127) and (128) can then be used to express Eq. (92) in the form of a sum of generalized hypergeometric
functions. Explicitly, we have

Π4 =− e
t0
z +

(α1−α2)t2
2

Zα1
2 Z

α2
3 Z

α2
4

Zα2
1Γ (−α1 −α2)Γ (1 +α1)Γ (1−α2)

F
(3)
D

(
−α1 −α2,−α1,−α2,−α2,1−α2,

Z1

Z2
,
Z1

Z3
,
Z1

Z4

)
Γ (1−α1 −α2)Γ (α1)

Γ (1−α2)
F
(3)
D

(
1−α1 −α2,−α1,−α2,−α2,1−α2,

Z1

Z2
,
Z1

Z3
,
Z1

Z4

)
Γ (1−α1 −α2)Γ (1 +α1)

Γ (2−α2)
Z1

Z2
F
(3)
D

(
1−α1 −α2,1−α1,−α2,−α2,2−α2,

Z1

Z2
,
Z1

Z3
,
Z1

Z4

), (129)

Π1 =Π4 (Z1↔ Z2), (130)

Π2 =e
t0
z +

(α1−α2)t2
2 Zα1+α2

1Γ (−α1 −α2)Γ (α1)Γ (−α2)
F
(3)
D

(
−α1 −α2;−α1,−α2,−α2;−α2,

Z2

Z1
,
Z3

Z1
,
Z4

Z1

)
+
Γ (−α1 −α2)Γ (α1 +1)

Γ (1−α2)
F
(3)
D

(
−α1 −α2;1−α1,−α2,−α2;1−α2,

Z2

Z1
,
Z3

Z1
,
Z4

Z1

)
−Γ (−α1 −α2)Γ (α1 +1)

Γ (1−α2)
F
(3)
D

(
−α1 −α2;−α1,−α2,−α2;1−α2,

Z2

Z1
,
Z3

Z1
,
Z4

Z1

) (131)

Π3 =Π2 (Z1↔ Z2), (132)

where Zi(t), i = 1,2,3,4 were defined in Eq. (85).

A.A. Orbifold point

By Eq. (106), the matrix B in Eq. (106) is computed by evaluating the derivatives of Πi at the orbifold point
x = 0. Consider for simplicity the case α = 0. We have

Z1Z
−1
2 |x=0 =− 1, Z1Z

−1
3 |x=0 =i, Z1Z

−1
4 |x=0 =− i,

Z2Z
−1
3 |x=0 =− i, Z2Z

−1
4 |x=0 =i, Z3Z

−1
4 |x=0 =− 1. (133)

The value of the Lauricella function, Eq. (126), for arguments equal to distinct roots of unity different from
one can be computed explicitly using the integral representation of Eq. (127): the symmetry of the Gauss
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function 2F1(a,b,c,x) under transposition of a and b and simple manipulations with the products over
roots of unity allow to simplify the integrands down to tβ(1−t)γ for parameters β and γ depending linearly
on µ1,µ2. The integrals are in turn evaluated with the aid of the Euler Beta integral, Eq. (41). For example,
for i = 4, we have

∂x0Π4|x=0 =
e

1
2 iπµ2

µ22µ1+µ2+1

∫ 1

0

(1− q)µ1−1(1 + q)µ2+1

q
µ1+µ2

2

dq
q

=
Γ (µ1)Γ (−

µ1+µ2
2 )

Γ (µ1−µ22 )

e
1
2 iπµ2

µ22µ1+µ2+1
2F1

(
−
µ1 +µ2

2
,−1−µ2,

µ1 −µ2
2

,−1
)

=
Γ (µ1)Γ (−

µ1+µ2
2 )

Γ (µ1−µ22 )

e
1
2 iπµ2

2µ1+µ2+2
Γ (µ1−µ22 )

µ2Γ (−1−µ2)Γ (1 +
µ1+µ2

2 )

∫ 1

0

(1− q)
µ1+µ2

2

q1/2+µ2/2
dq
q

=
e

1
2πiµ2

4

Γ
(
µ1
2

)
Γ
(
−µ1+µ22

)
Γ (1−µ2)

(134)

The value of the derivatives with respect to xα for α > 0 are computed in the same way; the final result is
Eqs. (99)–(103).

A.B. Large radius

By the discussion at the end of the proof of Proposition 4.4, twisted periods behave around large radius as

Πi(t,α) ∼ z
(
A−1i,1 +A

−1
i2 e
−t1µ1 +A−1i3 e

−t2µ2 +A−1i,4e
t3(µ1+µ2)

)
. (135)

When Re(t)→ −∞, the arguments of the Lauricella functions appearing in the expression of Πi behave
like

(Z2Z
−1
1 ,Z2Z

−1
3 ,Z2Z

−1
4 ) ∼ (−∞,∞,∞), (136)

(Z2Z
−1
1 ,Z3Z

−1
1 ,Z4Z

−1
1 ) ∼ (−∞,0,1), (137)

(Z1Z
−1
2 ,Z3Z

−1
2 ,Z4Z

−1
2 ) ∼ (0,0,0), (138)

(Z1Z
−1
2 ,Z1Z

−1
3 ,Z1Z

−1
4 ) ∼ (0,−∞,1). (139)

The simplest asymptotics is for i = 3, as it is dictated by the convergent power series expansion of Eq. (126):

Π3 ∼e
t0
z +

(µ1−µ2)t2
2 Z

µ1+µ2
1

Γ (−µ1 −µ2)Γ (µ1 − 1)
Γ (−µ2)

∼− e
t0
z −µ2t2

Γ (−µ1 −µ2)Γ (1 +µ2)
Γ (1−µ1)

. (140)

This sets A3,j = δj,3
Γ (−µ1−µ2)Γ (1+µ2)

Γ (1−µ1)
.

The other cases are more delicate. One strategy to treat them, as in [2], is to resum Eq. (126) in one
of the variables and then apply the Kummer formulas to the summand, which in all cases has the form
of a Gauss function in the resummed variable. For Π2 and Π4, we use that, when (x1,x2,x3) ∼ (0,∞,1),
F
(3)
D (a,b1,b2,b3, c,x1,x2,x3) ∼ F1(a,b2,b3, c,x2,x3), where

F1(a,b2,b3, c,x2,x3) =
∑
m,n≥0

(a)m+n(b2)m(b3)n
(c)m+nm!n!

xm2 x
n
3 (141)
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is the Appell F1 function. Performing the summation on n for fixed m in Eq. (141) gives

F1(a,b2,b3, c,x2,x3) =
Γ (c)
Γ (a)

∑
m≥0

xm2 (b2)mΓ (a+m)
m!Γ (c+m) 2F1(a+m,b3, c+m,x3)

Γ (c) (1− x3)−a−b3+c Γ (a− c+ b3)
Γ (a)Γ (b3)

∞∑
k=0

xk2 (b2)k 2F1 (c − a,c+ k − b3;−a+ c − b3 +1;1− x3)
k!

+
Γ (c)Γ (−a+ c − b3)

Γ (c − a)

∞∑
k=0

2F1 (a+ k,b3;a− c+ b3 +1;1− x3)
xk2(a)k (b2)k
k!Γ (c+ k − b3)

(142)

The leading asymptotics at x3 ∼ 1 is therefore given by

F1(a,b2,b3, c,x2,x3)

∼ Γ (c)Γ
(a− c+ b3)

Γ (a)Γ (b3)
(1− x3)c−a−b3 (1− x2)−b2 +

Γ (c)Γ (−a+ c − b3)
Γ (c − a)Γ (c − b3)

2F1 (a,b2;c − b3;x2) , (143)

and further application of the Kummer formula at infinity on x2 yields

F1(a,b2,b3, c,x2,x3) ∼
Γ (c)Γ (a− c+ b3)

Γ (a)Γ (b3)
(1− x3)c−a−b3 (−x2)−b2 +

Γ (c)
Γ (c − a)

Γ (b2 − a)
Γ (b2)

(−x2)−a

+
Γ (c)Γ (c − a− b3)Γ (a− b2)
Γ (c − a)Γ (a)Γ (c − b3 − b2)

(−x2)−b2 . (144)

Hence:

e−
t0
z Π4 ∼

Γ (µ1)Γ (−µ1 −µ2)e−µ1t1
Γ (1−µ2)

−
Γ (−µ1)Γ (µ1 +µ2)

Γ (1 +µ2)
+
Γ (µ1)Γ (−µ1 −µ2)e(µ1+µ2)t3

Γ (1−µ2)
, (145)

e−
t0
z Π2 ∼−

eiπ(µ1+µ2)Γ (−µ2)Γ (µ1 +µ2)
Γ (1 +µ1)

+
eiπ(µ1+µ2)Γ (−µ1 −µ2)Γ (µ2)e−µ2t2

Γ (1−µ1)

−
Γ (µ1)Γ (−µ1 −µ2)e(µ1+µ2)t3

Γ (1−µ2)
. (146)

Finally, for Π1 we use that

F
(3)
D (a;b1,b2,b3;c;x1,x2,x3) =(−x2)−b2F1 (a− b2,b1,b3, c − b2,x1,x3)

(
1+O

(
1
x2

))
+(−x2)−a

Γ (c)Γ (b2 − a)
Γ (b2)Γ (c − a)

(
1+O

(
1
x2

))
(147)

where we have resummed w.r.t. x2, applied Lemma 3.4 for q = 1, and isolated the leading contribution in
x2 for x1/x2 ∼ 0, x3/x2 ∼ 0, as is the case when Re(t) ∼ −∞ by Eqs. (136)–(139). Setting now x1 = x3 and
further application of Lemma 3.4 gives

F
(3)
D (a;b1,b2,b3;c;x1,x2,x3) ∼ (−x2)−a

Γ (c)Γ (b2 − a)
Γ (b2)Γ (c − a)

+(−x2)−b2
Γ (c)Γ (a− b2)
Γ (a)Γ (c − b2)

2F1 (a− b2,b1 + b3, c − b2,x1)

∼ (−x2)−a
Γ (c)Γ (b2 − a)
Γ (b2)Γ (c − a)

+(−x2)−b2(−x1)b2−a
Γ (c)Γ (a− b2)Γ (b1 + b3 + b2 − a)

Γ (b1 + b3)Γ (c − a)Γ (a)
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+(−x2)−b2(−x1)−b1−b3
Γ (c)Γ (a− b2 − b1 − b3)
Γ (a)Γ (c − b1 − b2 − b3)

, (148)

so that

e−
t0
z Π1 ∼

(−1)µ1Γ (µ1)Γ (−µ1 −µ2)e−µ1t1
Γ (1−µ2)

−
Γ (−µ1)Γ (−µ2)
Γ (1−µ1 −µ2)

−
Γ (µ1)Γ (µ2)e−µ2t2

Γ (1 +µ1 +µ2)
, (149)

which concludes the proof.
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