Limits of the trivial bundle on a curve

Arnaud Beauville

Abstract

We attempt to describe the vector bundles on a curve C which are specializations of \mathcal{O}_{C}^{2}. We get a complete classification when C is Brill-Noether-Petri general, or when it is hyperelliptic; in both cases all limit vector bundles are decomposable. We give examples of indecomposable limit bundles for some special curves.

Keywords. Vector bundles; limits; Brill-Noether theory; hyperelliptic curves
2010 Mathematics Subject Classification. 14H60
[Français]

Titre. Limites du fibré trivial sur une courbe

Résumé. Nous essayons de décrire les fibrés vectoriels qui sont des spécialisations de \mathcal{O}_{C}^{2}. Nous obtenons une classification complète lorsque C est générale au sens de Brill-Noether-Petri, ou lorsque C est hyperelliptique; les fibrés limites sont décomposables dans chacune des deux situations. Nous donnons également des exemples de fibrés limites indécomposables sur certaines courbe spéciales.

[^0]
Contents

1. Introduction 2
2. Generic curves 2
3. Hyperelliptic curves 3
4. Examples of indecomposable limits 4

1. Introduction

Let C be a smooth complex projective curve, and E a vector bundle on C, of rank r. We will say that E is a limit of \mathcal{O}_{C}^{r} if there exists an algebraic family $\left(E_{b}\right)_{b \in B}$ of vector bundles on C, parametrized by an algebraic curve B, and a point $\mathrm{o} \in B$, such that $E_{\mathrm{o}}=E$ and $E_{b} \cong \mathcal{O}_{C}^{r}$ for $b \neq \mathrm{o}$. Can we classify all these vector bundles? If E is a limit of \mathcal{O}_{C}^{2} clearly $E \oplus \mathcal{O}_{C}^{r-2}$ is a limit of \mathcal{O}_{C}^{r}, so it seems reasonable to start in rank 2.

We get a complete classification in two extreme cases: when C is generic (in the sense of Brill-Noether theory), and when it is hyperelliptic. In both cases the limit vector bundles are of the form $L \oplus L^{-1}$, with some precise conditions on L. However for large families of curves, for instance for plane curves, some limits of \mathcal{O}_{C}^{2} are indecomposable, and those seem hard to classify.

2. Generic curves

Throughout the paper we denote by C a smooth connected projective curve of genus g over \mathbb{C}.
Proposition 1. Let L be a line bundle on C which is a limit of globally generated line bundles (in particular, any line bundle of degree $\geq g+1$). Then $L \oplus L^{-1}$ is a limit of \mathcal{O}_{C}^{2}.

Proof. By hypothesis there exist a curve B, a point $\mathrm{o} \in B$ and a line bundle \mathcal{L} on $C \times B$ such that $\mathcal{L}_{\mid C \times\{0\}} \cong L$ and $\mathcal{L}_{\mid C \times\{b\}}$ is globally generated for $b \neq \mathrm{o}$. We may assume that B is affine and that o is defined by $f=0$ for a global function f on B; we put $B^{*}:=B \backslash\{\mathrm{o}\}$.

We choose two general sections s, t of \mathcal{L} on $C \times B^{*}$; reducing B^{*} if necessary, we may assume that they generate \mathcal{L}. Thus we have an exact sequence on $C \times B^{*}$

$$
0 \rightarrow \mathcal{L}^{-1} \xrightarrow{(t,-s)} \mathcal{O}_{C \times B^{*}}^{2} \xrightarrow{(s, t)} \mathcal{L} \rightarrow 0
$$

which corresponds to an extension class $e \in H^{1}\left(C \times B^{*}, \mathcal{L}^{-2}\right)$. For n large enough, $f^{n} e$ comes from a class in $H^{1}\left(C \times B, \mathcal{L}^{-2}\right)$ which vanishes along $C \times\{0\}$; this class gives rise to an extension

$$
0 \rightarrow \mathcal{L}^{-1} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \rightarrow 0
$$

with $\mathcal{E}_{\mid C \times\{b \mid} \cong \mathcal{O}_{C}^{2}$ for $b \neq \mathrm{o}$, and $\mathcal{E}_{\mid C \times\{0\}} \cong L \oplus L^{-1}$.
Remark 1. Let E be a vector bundle limit of \mathcal{O}_{C}^{2}. We have $\operatorname{det} E=\mathcal{O}_{C}$, and $h^{0}(E) \geq 2$ by semi-continuity. If E is semi-stable this implies $E \cong \mathcal{O}_{C}^{2}$; otherwise E is unstable. Let L be the maximal destabilizing sub-line bundle of E; we have an extension $0 \rightarrow L \rightarrow E \rightarrow L^{-1} \rightarrow 0$, with $h^{0}(L) \geq 2$. Note that this extension is trivial (so that $E=L \oplus L^{-1}$) if $H^{1}\left(L^{2}\right)=0$, in particular if $\operatorname{deg}(L) \geq g$.

Proposition 2. Assume that C is Brill-Noether-Petri general. The following conditions are equivalent:
(i) E is a limit of \mathcal{O}_{C}^{2};
(ii) $h^{0}(E) \geq 2$ and $\operatorname{det} E=\mathcal{O}_{C}$;
(iii) $E=L \oplus L^{-1}$ for some line bundle L on C with $h^{0}(L) \geq 2$ or $L=\mathcal{O}_{C}$.

Proof. We have seen that (i) implies (ii) (Remark 1). Assume (ii) holds, with $E \not \not \mathcal{O}_{C}^{2}$. Then E is unstable, and we have an extension $0 \rightarrow L \rightarrow E \rightarrow L^{-1} \rightarrow 0$ with $h^{0}(L) \geq 2$. Since C is Brill-Noether-Petri general we have $H^{0}\left(C, K_{C} \otimes L^{-2}\right)=0\left[A C G, C h .21\right.$, Proposition 6.7], hence $H^{1}\left(C, L^{2}\right)=0$. Therefore the above extension is trivial, and we get (iii).

Assume that (iii) holds. Brill-Noether theory implies that any line bundle L with $h^{0}(L) \geq 2$ is a limit of globally generated ones ${ }^{1}$. So (i) follows from Proposition 1.

3. Hyperelliptic curves

Proposition 3. Assume that C is hyperelliptic, and let H be the line bundle on C with $h^{0}(H)=\operatorname{deg}(H)=2$. The limits of \mathcal{O}_{C}^{2} are the decomposable bundles $L \oplus L^{-1}$, with $\operatorname{deg}(L) \geq g+1$ or $L=H^{k}$ for $k \geq 0$.

Proof. Let $\pi: C \rightarrow \mathbb{P}^{1}$ be the two-sheeted covering defined by $|H|$. Let us say that an effective divisor D on C is simple if it does not contain a divisor of the form $\pi^{*} p$ for $p \in \mathbb{P}^{1}$. We will need the following well-known lemma:

Lemma 1. Let L be a line bundle on C.

1) If $L=H^{k}(D)$ with D simple and $\operatorname{deg}(D)+k \leq g$, we have $h^{0}(L)=h^{0}\left(H^{k}\right)=k+1$.
2) If $\operatorname{deg}(L) \leq g$, L can be written in a unique way $H^{k}(D)$ with D simple. If L is globally generated, it is a power of H.

Proof of Lemma 1. 1) Put $\ell:=g-1-k$ and $d:=\operatorname{deg}(D)$. Recall that $K_{C} \cong H^{g-1}$. Thus by Riemann-Roch, the first assertion is equivalent to $h^{0}\left(H^{\ell}(-D)\right)=h^{0}\left(H^{\ell}\right)-d$. We have $H^{0}\left(C, H^{\ell}\right)=\pi^{*} H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(\ell)\right)$; since D is simple of degree $\leq \ell+1$, it imposes d independent conditions on $H^{0}\left(C, H^{\ell}\right)$, hence our claim.
2) Let k be the greatest integer such that $h^{0}\left(L \otimes H^{-k}\right)>0$; then $L=H^{k}(D)$ for some effective divisor D, which is simple since k is maximal. By 1) D is the fixed part of $|L|$, hence is uniquely determined, and so is k. In particular the only globally generated line bundles on C of degree $\leq g$ are the powers of H.

Proof of the Proposition: Let E be a vector bundle on C limit of \mathcal{O}_{C}^{2}. Consider the exact sequence

$$
\begin{equation*}
0 \rightarrow L \rightarrow E \rightarrow L^{-1} \rightarrow 0, \tag{1}
\end{equation*}
$$

where we can assume $\operatorname{deg}(L) \leq g$ (Remark 1). By Lemma 1 we have $L=H^{k}(D)$ with D simple of degree $\leq g-2 k$. After tensor product with H^{k}, the corresponding cohomology exact sequence reads

$$
0 \rightarrow H^{0}\left(C, H^{2 k}(D)\right) \rightarrow H^{0}\left(C, E \otimes H^{k}\right) \rightarrow H^{0}\left(C, \mathcal{O}_{C}(-D)\right) \xrightarrow{\partial} H^{1}\left(C, H^{2 k}(D)\right)
$$

which implies $h^{0}\left(E \otimes H^{k}\right)=h^{0}\left(H^{2 k}(D)\right)+\operatorname{dim} \operatorname{Ker} \partial=2 k+1+\operatorname{dim} \operatorname{Ker} \partial$ by Lemma 1 .
By semi-continuity we have $h^{0}\left(E \otimes H^{k}\right) \geq 2 h^{0}\left(H^{k}\right)=2 k+2$; the only possibility is $D=0$ and $\partial=0$. But $\partial(1)$ is the class of the extension (1), which must therefore be trivial; hence $E=H^{k} \oplus H^{-k}$.

[^1]
4. Examples of indecomposable limits

To prove that some limits of \mathcal{O}_{C}^{2} are indecomposable we will need the following easy lemma:
Lemma 2. Let L be a line bundle of positive degree on C, and let

$$
\begin{equation*}
0 \rightarrow L \rightarrow E \rightarrow L^{-1} \rightarrow 0 \tag{2}
\end{equation*}
$$

be an exact sequence. The following conditions are equivalent:
(i) E is indecomposable;
(ii) The extension (2) is nontrivial;
(iii) $h^{0}(E \otimes L)=h^{0}\left(L^{2}\right)$.

Proof. The implication (i) \Rightarrow (ii) is clear.
(ii) \Rightarrow (iii) : After tensor product with L, the cohomology exact sequence associated to (2) gives

$$
0 \rightarrow H^{0}\left(L^{2}\right) \xrightarrow{i} H^{0}(E \otimes L) \longrightarrow H^{0}\left(\mathcal{O}_{C}\right) \xrightarrow{\partial} H^{1}\left(L^{2}\right),
$$

where ∂ maps $1 \in H^{0}\left(\mathcal{O}_{C}\right)$ to the extension class of (2). Thus (ii) implies that i is an isomorphism, hence (iii).
(iii) \Rightarrow (i): If E is decomposable, it must be equal to $L \oplus L^{-1}$ by unicity of the destabilizing bundle. But this implies $h^{0}(E \otimes L)=h^{0}\left(L^{2}\right)+1$.

The following construction was suggested by N. Mohan Kumar:
Proposition 4. Let $C \subset \mathbb{P}^{2}$ be a smooth plane curve, of degree d. For $0<k<\frac{d}{4}$, there exist extensions

$$
0 \rightarrow \mathcal{O}_{C}(k) \rightarrow E \rightarrow \mathcal{O}_{C}(-k) \rightarrow 0
$$

such that E is indecomposable and is a limit of \mathcal{O}_{C}^{2}.
Proof. Let Z be a finite subset of \mathbb{P}^{2} which is the complete intersection of two curves of degree k, and such that $C \cap Z=\varnothing$. By [S, Remark 4.6], for a general extension

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(k) \rightarrow E \rightarrow \mathcal{I}_{Z}(-k) \rightarrow 0 \tag{3}
\end{equation*}
$$

the vector bundle E is a limit of $\mathcal{O}_{\mathbb{P}^{2}}^{2}$; therefore $E_{\mid C}$ is a limit of \mathcal{O}_{C}^{2}.
The extension (3) restricts to an exact sequence

$$
0 \rightarrow \mathcal{O}_{C}(k) \rightarrow E_{\mid C} \rightarrow \mathcal{O}_{C}(-k) \rightarrow 0
$$

To prove that $E_{\mid C}$ is indecomposable, it suffices by Lemma 2 to prove that $h^{0}\left(E_{\mid C}(k)\right)=h^{0}\left(\mathcal{O}_{C}(2 k)\right)$. Since $2 k<d$ we have $h^{0}\left(\mathcal{O}_{C}(2 k)\right)=h^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}(2 k)\right)=h^{0}(E(k))$, so in view of the exact sequence

$$
0 \rightarrow E(k-d) \longrightarrow E(k) \longrightarrow E_{\mid C}(k) \rightarrow 0
$$

it suffices to prove $H^{1}(E(k-d))=0$, or by Serre duality $H^{1}(E(d-k-3))=0$.
The exact sequence (3) gives an injective map $H^{1}(E(d-k-3)) \hookrightarrow H^{1}\left(\mathcal{I}_{Z}(d-2 k-3)\right)$. Now since Z is a complete intersection we have an exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-2 k) \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-k)^{2} \rightarrow \mathcal{I}_{Z} \rightarrow 0
$$

since $4 k<d$ we have $H^{2}\left(\mathcal{O}_{\mathbb{P}^{2}}(d-4 k-3)\right)=0$, hence $H^{1}\left(\mathcal{I}_{Z}(d-2 k-3)\right)=0$, and finally $H^{1}(E(d-k-3))=0$ as asserted.

We can also perform the Strømme construction directly on the curve C, as follows. Let L be a base point free line bundle on C. We choose sections $s, t \in H^{0}(L)$ with no common zero. This gives rise to a Koszul extension

$$
\begin{equation*}
0 \rightarrow L^{-1} \xrightarrow{i} \mathcal{O}_{C}^{2} \xrightarrow{p} L \rightarrow 0 \quad \text { with } \quad i=(-t, s), p=(s, t) . \tag{4}
\end{equation*}
$$

We fix a nonzero section $u \in H^{0}\left(L^{2}\right)$. Let \mathcal{L} be the pull-back of L on $C \times \mathbb{A}^{1}$. We consider the complex ("monad")

$$
\mathcal{L}^{-1} \xrightarrow{\alpha} \mathcal{L}^{-1} \oplus \mathcal{O}^{2} \oplus \mathcal{L} \xrightarrow{\beta} \mathcal{L}, \quad \alpha=(\lambda, i, u), \beta=(u, p,-\lambda),
$$

where λ is the coordinate on \mathbb{A}^{1}. Let $\mathcal{E}:=\operatorname{Ker} \beta / \operatorname{Im} \alpha$, and let $E:=\mathcal{E}_{\mid C \times\{0\}}$.
Lemma 3. E is a rank 2 vector bundle, limit of \mathcal{O}_{C}^{2}. There is an exact sequence $0 \rightarrow L \rightarrow E \rightarrow L^{-1} \rightarrow 0$; the corresponding extension class in $H^{1}\left(L^{2}\right)$ is the product by $u^{2} \in H^{0}\left(L^{4}\right)$ of the class $e \in H^{1}\left(L^{-2}\right)$ of the Koszul extension (4).

Proof. The proof is essentially the same as in $[\mathrm{S}]$; we give the details for completeness.
For $\lambda \neq 0$, we get easily $\mathcal{E}_{\mid C \times\{\lambda\}} \cong \mathcal{O}_{C}^{2}$; we will show that E is a rank 2 vector bundle. This implies that \mathcal{E} is a vector bundle on $C \times \mathbb{A}^{1}$, and therefore that E is a limit of \mathcal{O}_{C}^{2}.

Let us denote by α_{0}, β_{0} the restrictions of α and β to $C \times\{0\}$. We have $\operatorname{Ker} \beta_{0}=L \oplus N$, where N is the kernel of $(u, p): L^{-1} \oplus \mathcal{O}_{C}^{2} \rightarrow L$. Applying the snake lemma to the commutative diagram

we get an exact sequence

$$
\begin{equation*}
0 \rightarrow L^{-1} \rightarrow N \rightarrow L^{-1} \rightarrow 0 \tag{5}
\end{equation*}
$$

which fits into a commutative diagram

this means that the extension (5) is the pull-back by $\times u: L^{-1} \rightarrow L$ of the Koszul extension (4).
Now since E is the cokernel of the map $L^{-1} \rightarrow L \oplus N$ induced by α_{0}, we have a commutative diagram

so that the extension $L \rightarrow E \rightarrow L^{-1}$ is the push-forward by $\times u$ of (5). This implies the Lemma.
Unfortunately it seems difficult in general to decide whether the extension $L \rightarrow E \rightarrow L^{-1}$ nontrivial. Here is a case where we can conclude:

Proposition 5. Assume that C is non-hyperelliptic. Let L be a globally generated line bundle on C such that $L^{2} \cong K_{C}$. Let $0 \rightarrow L \rightarrow E \rightarrow L^{-1} \rightarrow 0$ be the unique nontrivial extension of L^{-1} by L. Then E is indecomposable, and is a limit of \mathcal{O}_{C}^{2}.

Proof. We choose s, t in $H^{0}(L)$ without common zero, and use the previous construction. It suffices to prove that we can choose $u \in H^{0}\left(K_{C}\right)$ so that $u^{2} e \neq 0$: since $H^{1}\left(K_{C}\right) \cong \mathbb{C}$, the vector bundle E will be the unique nontrivial extension of L^{-1} by L, and indecomposable by Lemma 2.

Suppose that $u^{2} e=0$ for all u in $H^{0}\left(K_{C}\right)$; by bilinearity this implies $u v e=0$ for all u, v in $H^{0}\left(K_{C}\right)$. Since C is not hyperelliptic, the multiplication map $\mathrm{S}^{2} H^{0}\left(K_{C}\right) \rightarrow H^{0}\left(K_{C}^{2}\right)$ is surjective, so we have $w e=0$ for all $w \in H^{0}\left(K^{2}\right)$. But the pairing

$$
H^{1}\left(K_{C}^{-1}\right) \otimes H^{0}\left(K_{C}^{2}\right) \rightarrow H^{1}\left(K_{C}\right) \cong \mathbb{C}
$$

is perfect by Serre duality, hence our hypothesis implies $e=0$, a contradiction.
Remark 2. In the moduli space \mathcal{M}_{g} of curves of genus $g \geq 3$, the curves C admitting a line bundle L with $L^{2} \cong K_{C}$ and $h^{0}(L)$ even ≥ 2 form an irreducible divisor [T2]; for a general curve C in this divisor, the line bundle L is unique, globally generated, and satisfies $h^{0}(L)=2$ [T1]. Thus Proposition 5 provides for $g \geq 4$ a codimension 1 family of curves in \mathcal{M}_{g} admitting an indecomposable vector bundle limit of \mathcal{O}_{C}^{2}.

Remark 3. Let $\pi: C \rightarrow B$ be a finite morphism of smooth projective curves. If E is a vector bundle limit of \mathcal{O}_{B}^{2}, then clearly $\pi^{*} E$ is a limit of \mathcal{O}_{C}^{2}. Now if E is indecomposable, $\pi^{*} E$ is also indecomposable. Consider indeed the nontrivial extension $0 \rightarrow L \rightarrow E \rightarrow L^{-1} \rightarrow 0$ (Remark 1); by Lemma 2 it suffices to show that the class $e \in H^{1}\left(B, L^{2}\right)$ of this extension remains nonzero in $H^{1}\left(C, \pi^{*} L^{2}\right)$. But the pull-back homomorphism $\pi^{*}: H^{1}\left(B, L^{2}\right) \rightarrow H^{1}\left(C, \pi^{*} L^{2}\right)$ can be identified with the homomorphism $H^{1}\left(B, L^{2}\right) \rightarrow H^{1}\left(B, \pi_{*} \pi^{*} L^{2}\right)$ deduced from the linear map $L^{2} \rightarrow \pi_{*} \pi^{*} L^{2}$, and the latter is an isomorphism onto a direct factor; hence π^{*} is injective and $\pi^{*} e \neq 0$, so E is indecomposable.

Thus any curve dominating one of the curves considered in Propositions 4 and 5 carries an indecomposable vector bundle which is a limit of \mathcal{O}_{C}^{2}.

References

[ACGH] E. Arbarello, M. Cornalba, P.A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, vol. 267, Springer-Verlag, New York, 1985. MR0770932
[ACG] E. Arbarello, M. Cornalba, and P.A. Griffiths, Geometry of algebraic curves. Vol. II, with a contribution by Joseph Daniel Harris, Grundlehren der Mathematischen Wissenschaften, vol. 268, Springer, Heidelberg, 2011. MR-2807457
[H] J. Harris, Theta-characteristics on algebraic curves, Trans. Amer. Math. Soc. 271 (1982), no. 2, 611638. MR-0654853
[S] S. A. Strømme, Deforming vector bundles on the projective plane, Math. Ann. 263 (1983), no. 3, 385-397. MR-0704303
[T1] M. Teixidor i Bigas, Half-canonical series on algebraic curves, Trans. Amer. Math. Soc. 302 (1987), no. 1, 99-115. MR-0887499
[T2] M. Teixidor i Bigas, The divisor of curves with a vanishing theta-null, Compositio Math. 66 (1988), no. 1, 15-22. MR-0937985

[^0]: Received by the Editors on March 8, 2018, and in final form on August 30, 2018.
 Accepted on October 4, 2018.
 Arnaud Beauville
 Université Côte d’Azur, CNRS - Laboratoire J.-A. Dieudonné, Parc Valrose, F-06108 Nice cedex 2, France
 e-mail: arnaud.beauville@unice.fr

[^1]: $1 \uparrow$ Indeed, the subvariety W_{d}^{r} of $\operatorname{Pic}^{d}(C)$ parametrizing line bundles L with $h^{0}(L) \geq r+1$ is equidimensional, of dimension $g-(r+1)(r+g-d)$; the line bundles which are not globally generated belong to the subvariety $W_{d-1}^{r}+C$, which has codimension r.

