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Limits of the trivial bundle on a curve

Arnaud Beauville

Abstract. We attempt to describe the vector bundles on a curve C which are specializations of O2
C .

We get a complete classification when C is Brill-Noether-Petri general, or when it is hyperelliptic;
in both cases all limit vector bundles are decomposable. We give examples of indecomposable
limit bundles for some special curves.
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Titre. Limites du fibré trivial sur une courbe

Résumé. Nous essayons de décrire les fibrés vectoriels qui sont des spécialisations de O2
C . Nous

obtenons une classification complète lorsque C est générale au sens de Brill-Noether-Petri, ou
lorsque C est hyperelliptique; les fibrés limites sont décomposables dans chacune des deux sit-
uations. Nous donnons également des exemples de fibrés limites indécomposables sur certaines
courbe spéciales.
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1. Introduction

Let C be a smooth complex projective curve, and E a vector bundle on C, of rank r . We will say that E
is a limit of OrC if there exists an algebraic family (Eb)b∈B of vector bundles on C, parametrized by an
algebraic curve B, and a point o ∈ B, such that Eo = E and Eb � OrC for b , o. Can we classify all these
vector bundles? If E is a limit of O2

C clearly E ⊕Or−2C is a limit of OrC , so it seems reasonable to start in
rank 2.

We get a complete classification in two extreme cases: when C is generic (in the sense of Brill-Noether
theory), and when it is hyperelliptic. In both cases the limit vector bundles are of the form L⊕ L−1, with
some precise conditions on L. However for large families of curves, for instance for plane curves, some
limits of O2

C are indecomposable, and those seem hard to classify.

2. Generic curves

Throughout the paper we denote by C a smooth connected projective curve of genus g over C.

Proposition 1. Let L be a line bundle on C which is a limit of globally generated line bundles (in particular,
any line bundle of degree ≥ g +1). Then L⊕L−1 is a limit of O2

C .

Proof. By hypothesis there exist a curve B, a point o ∈ B and a line bundle L on C×B such that L|C×{o} � L
and L|C×{b} is globally generated for b , o. We may assume that B is affine and that o is defined by f = 0
for a global function f on B; we put B∗ := Br {o}.

We choose two general sections s, t of L on C ×B∗; reducing B∗ if necessary, we may assume that they
generate L. Thus we have an exact sequence on C ×B∗

0→L−1
(t,−s)
−−−−−−→O2

C×B∗
(s,t)
−−−−−→L→ 0

which corresponds to an extension class e ∈ H1(C ×B∗,L−2). For n large enough, f ne comes from a class
in H1(C ×B,L−2) which vanishes along C × {o}; this class gives rise to an extension

0→L−1 −→ E −→L→ 0

with E|C×{b} � O2
C for b , o, and E|C×{o} � L⊕L−1.

Remark 1. Let E be a vector bundle limit of O2
C . We have detE = OC , and h0(E) ≥ 2 by semi-continuity.

If E is semi-stable this implies E � O2
C ; otherwise E is unstable. Let L be the maximal destabilizing sub-line

bundle of E; we have an extension 0→ L→ E → L−1 → 0, with h0(L) ≥ 2. Note that this extension is
trivial (so that E = L⊕L−1) if H1(L2) = 0, in particular if deg(L) ≥ g .

Proposition 2. Assume that C is Brill-Noether-Petri general. The following conditions are equivalent:

(i) E is a limit of O2
C ;
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(ii) h0(E) ≥ 2 and detE = OC ;

(iii) E = L⊕L−1 for some line bundle L on C with h0(L) ≥ 2 or L = OC .

Proof. We have seen that (i) implies (ii) (Remark 1). Assume (ii) holds, with E � O2
C . Then E is unstable,

and we have an extension 0→ L→ E → L−1 → 0 with h0(L) ≥ 2. Since C is Brill-Noether-Petri general
we have H0(C,KC ⊗ L−2) = 0 [ACG, Ch. 21, Proposition 6.7], hence H1(C,L2) = 0. Therefore the above
extension is trivial, and we get (iii).

Assume that (iii) holds. Brill-Noether theory implies that any line bundle L with h0(L) ≥ 2 is a limit of
globally generated ones 1. So (i) follows from Proposition 1.

3. Hyperelliptic curves

Proposition 3. Assume that C is hyperelliptic, and let H be the line bundle on C with h0(H) = deg(H) = 2.
The limits of O2

C are the decomposable bundles L⊕L
−1, with deg(L) ≥ g +1 or L =Hk for k ≥ 0.

Proof. Let π : C → P
1 be the two-sheeted covering defined by |H |. Let us say that an effective divisor D

on C is simple if it does not contain a divisor of the form π∗p for p ∈ P1. We will need the following
well-known lemma:

Lemma 1. Let L be a line bundle on C.

1) If L =Hk(D) with D simple and deg(D) + k ≤ g , we have h0(L) = h0(Hk) = k +1.

2) If deg(L) ≤ g , L can be written in a unique way Hk(D) with D simple. If L is globally generated, it is a
power of H .

Proof of Lemma 1. 1) Put ` := g − 1− k and d := deg(D). Recall that KC � Hg−1. Thus by Riemann-Roch,
the first assertion is equivalent to h0(H`(−D)) = h0(H`)−d. We have H0(C,H`) = π∗H0(P1,O

P
1(`)); since

D is simple of degree ≤ ` +1, it imposes d independent conditions on H0(C,H`), hence our claim.

2) Let k be the greatest integer such that h0(L⊗H−k) > 0; then L =Hk(D) for some effective divisor D,
which is simple since k is maximal. By 1) D is the fixed part of |L|, hence is uniquely determined, and so is
k. In particular the only globally generated line bundles on C of degree ≤ g are the powers of H .

Proof of the Proposition : Let E be a vector bundle on C limit of O2
C . Consider the exact sequence

0→ L→ E→ L−1→ 0 , (1)

where we can assume deg(L) ≤ g (Remark 1). By Lemma 1 we have L = Hk(D) with D simple of degree
≤ g − 2k. After tensor product with Hk , the corresponding cohomology exact sequence reads

0→H0(C,H2k(D))→H0(C,E ⊗Hk)→H0(C,OC(−D))
∂−−−→H1(C,H2k(D))

which implies h0(E ⊗Hk) = h0(H2k(D)) + dimKer∂ = 2k +1+dimKer∂ by Lemma 1.
By semi-continuity we have h0(E⊗Hk) ≥ 2h0(Hk) = 2k+2; the only possibility is D = 0 and ∂ = 0. But

∂(1) is the class of the extension (1), which must therefore be trivial; hence E =Hk ⊕H−k .
1 ↑ Indeed, the subvariety W r

d of Picd (C) parametrizing line bundles L with h0(L) ≥ r + 1 is equidimensional, of dimension
g−(r+1)(r+g−d); the line bundles which are not globally generated belong to the subvarietyW r

d−1+C, which has codimension r .
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4. Examples of indecomposable limits

To prove that some limits of O2
C are indecomposable we will need the following easy lemma:

Lemma 2. Let L be a line bundle of positive degree on C, and let

0→ L→ E→ L−1→ 0 (2)

be an exact sequence. The following conditions are equivalent:

(i) E is indecomposable;

(ii) The extension (2) is nontrivial;

(iii) h0(E ⊗L) = h0(L2).

Proof. The implication (i)⇒ (ii) is clear.
(ii)⇒ (iii) : After tensor product with L, the cohomology exact sequence associated to (2) gives

0→H0(L2)
i−−→H0(E ⊗L) −→H0(OC)

∂−−−→H1(L2) ,

where ∂ maps 1 ∈ H0(OC) to the extension class of (2). Thus (ii) implies that i is an isomorphism, hence
(iii).

(iii) ⇒ (i): If E is decomposable, it must be equal to L⊕L−1 by unicity of the destabilizing bundle. But
this implies h0(E ⊗L) = h0(L2) + 1.

The following construction was suggested by N. Mohan Kumar:

Proposition 4. Let C ⊂ P2 be a smooth plane curve, of degree d. For 0 < k <
d
4
, there exist extensions

0→OC(k)→ E→OC(−k)→ 0

such that E is indecomposable and is a limit of O2
C .

Proof. Let Z be a finite subset of P2 which is the complete intersection of two curves of degree k, and such
that C ∩Z = ∅. By [S, Remark 4.6], for a general extension

0→O
P

2(k)→ E→IZ(−k)→ 0 , (3)

the vector bundle E is a limit of O2
P

2 ; therefore E|C is a limit of O2
C .

The extension (3) restricts to an exact sequence

0→OC(k)→ E|C →OC(−k)→ 0 .

To prove that E|C is indecomposable, it suffices by Lemma 2 to prove that h0(E|C(k)) = h0(OC(2k)).
Since 2k < d we have h0(OC(2k)) = h0(OP2(2k)) = h0(E(k)), so in view of the exact sequence

0→ E(k − d) −→ E(k) −→ E|C(k)→ 0

it suffices to prove H1(E(k − d)) = 0, or by Serre duality H1(E(d − k − 3)) = 0.
The exact sequence (3) gives an injective map H1(E(d − k − 3)) ↪→H1(IZ(d − 2k − 3)). Now since Z is

a complete intersection we have an exact sequence

0→O
P

2(−2k)→O
P

2(−k)2→IZ → 0;

since 4k < d we have H2(O
P

2(d−4k−3)) = 0, hence H1(IZ(d−2k−3)) = 0, and finally H1(E(d−k−3)) = 0
as asserted.



A. Beauville, Limits of the trivial bundle on a curve 5A. Beauville, Limits of the trivial bundle on a curve 5

We can also perform the Strømme construction directly on the curve C, as follows. Let L be a base
point free line bundle on C. We choose sections s, t ∈ H0(L) with no common zero. This gives rise to a
Koszul extension

0→ L−1
i−−→O2

C

p
−−→ L→ 0 with i = (−t, s) , p = (s, t) . (4)

We fix a nonzero section u ∈ H0(L2). Let L be the pull-back of L on C ×A1. We consider the complex
(“monad")

L−1 α−−−→L−1 ⊕O2 ⊕L
β
−−−→L , α = (λ, i,u) , β = (u,p,−λ),

where λ is the coordinate on A1. Let E := Kerβ/ Imα, and let E := E|C×{0}.

Lemma 3. E is a rank 2 vector bundle, limit of O2
C . There is an exact sequence 0→ L→ E → L−1→ 0; the

corresponding extension class in H1(L2) is the product by u2 ∈ H0(L4) of the class e ∈ H1(L−2) of the Koszul
extension (4).

Proof. The proof is essentially the same as in [S]; we give the details for completeness.
For λ , 0, we get easily E|C×{λ} � O2

C ; we will show that E is a rank 2 vector bundle. This implies that
E is a vector bundle on C ×A1, and therefore that E is a limit of O2

C .
Let us denote by α0,β0 the restrictions of α and β to C × {0}. We have Kerβ0 = L⊕N , where N is the

kernel of (u,p) : L−1 ⊕O2
C → L. Applying the snake lemma to the commutative diagram

0 // L−1 i //

��

O2 p //
� _

��

L // 0

0 // N // L−1 ⊕O2 // L // 0

we get an exact sequence
0→ L−1→N → L−1→ 0 , (5)

which fits into a commutative diagram

0 // L−1 // N //

��

L−1 //

×u
��

0

0 // L−1 // O2 // L // 0;

this means that the extension (5) is the pull-back by ×u : L−1→ L of the Koszul extension (4).
Now since E is the cokernel of the map L−1→ L⊕N induced by α0, we have a commutative diagram

0 // L−1 //

×u
��

N //

��

L−1 // 0

0 // L // E // L−1 // 0

so that the extension L→ E→ L−1 is the push-forward by ×u of (5). This implies the Lemma.

Unfortunately it seems difficult in general to decide whether the extension L → E → L−1 nontrivial.
Here is a case where we can conclude:

Proposition 5. Assume that C is non-hyperelliptic. Let L be a globally generated line bundle on C such that
L2 � KC . Let 0→ L→ E→ L−1→ 0 be the unique nontrivial extension of L−1 by L. Then E is indecomposable,
and is a limit of O2

C .
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Proof. We choose s, t in H0(L) without common zero, and use the previous construction. It suffices to prove
that we can choose u ∈H0(KC) so that u2e , 0: since H1(KC) �C, the vector bundle E will be the unique
nontrivial extension of L−1 by L, and indecomposable by Lemma 2.

Suppose that u2e = 0 for all u in H0(KC); by bilinearity this implies uve = 0 for all u,v in H0(KC).
Since C is not hyperelliptic, the multiplication map S2H0(KC)→ H0(K2

C) is surjective, so we have we = 0
for all w ∈H0(K2). But the pairing

H1(K−1C )⊗H0(K2
C)→H1(KC) �C

is perfect by Serre duality, hence our hypothesis implies e = 0, a contradiction.

Remark 2. In the moduli spaceMg of curves of genus g ≥ 3, the curves C admitting a line bundle L with
L2 � KC and h0(L) even ≥ 2 form an irreducible divisor [T2]; for a general curve C in this divisor, the line
bundle L is unique, globally generated, and satisfies h0(L) = 2 [T1]. Thus Proposition 5 provides for g ≥ 4
a codimension 1 family of curves inMg admitting an indecomposable vector bundle limit of O2

C .

Remark 3. Let π : C→ B be a finite morphism of smooth projective curves. If E is a vector bundle limit of
O2
B , then clearly π∗E is a limit of O2

C . Now if E is indecomposable, π∗E is also indecomposable. Consider
indeed the nontrivial extension 0→ L→ E→ L−1→ 0 (Remark 1); by Lemma 2 it suffices to show that the
class e ∈ H1(B,L2) of this extension remains nonzero in H1(C,π∗L2). But the pull-back homomorphism
π∗ : H1(B,L2) → H1(C,π∗L2) can be identified with the homomorphism H1(B,L2) → H1(B,π∗π∗L2)
deduced from the linear map L2 → π∗π

∗L2, and the latter is an isomorphism onto a direct factor; hence
π∗ is injective and π∗e , 0, so E is indecomposable.

Thus any curve dominating one of the curves considered in Propositions 4 and 5 carries an indecom-
posable vector bundle which is a limit of O2

C .
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