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Abstract. We study meromorphic actions of unipotent complex Lie groups on compact Kähler
manifolds using moment map techniques. We introduce natural stability conditions and show that
sets of semistable points are Zariski-open and admit geometric quotients that carry compactifiable
Kähler structures obtained by symplectic reduction. The relation of our complex-analytic theory to
the work of Doran–Kirwan regarding the Geometric Invariant Theory of unipotent group actions
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Résumé. Nous étudions les actions méromorphes de groupes de Lie complexes unipotents sur
les variétés kählériennes compactes en utilisant des techniques de type application moment. Nous
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Introduction

Since the fundamental work of Mumford [MFK94], Kirwan [Kir84], Guillemin–Sternberg [GS82], and oth-
ers, moment map geometry has become one of the most important tools for studying actions of complex-
reductive Lie groups G = KC on Kähler manifolds. Given a Hamiltonian G-manifold, i.e., a Kähler G-
manifold (X,ωX) admitting a moment map µ : X → Lie(K)∗ for the K-action, by the work of Heinzner–
Loose [HL94], Heinzner–Huckleberry–Loose [HHL94], and Sjamaar [Sj95], the set of µ-semistable points
XssG (µ) := {x ∈ X | G • x ∩ µ−1(0) , ∅} admits an analytic Hilbert quotient, i.e., a G-invariant holomor-
phic Stein map π : XssG (µ) → XssG (µ)//G onto a Kählerian complex space XssG (µ)//G with structure sheaf
OXssG (µ)//G = (π∗OXssG (µ))

G; see also the survey [HH99]. If X is projective algebraic, and if the Kähler form ωX
as well as the moment map µ are induced by an embedding of X into some projective space, both the set
XssG (µ) of semistable points and the quotient XssG (µ)//G are the ones constructed via Geometric Invariant
Theory (GIT). This theory crucially uses the fact that complex-analytic objects on X can be averaged over
the compact group K to produce G-invariant objects, which then can be used to construct the quotient.

On the other hand, actions of unipotent groups on (compact) Kähler manifolds appear naturally in a
number of contexts and play an important role in Kähler geometry. By a fundamental result of Lichnerowicz
and Matsushima, a given compact Kähler manifold X can admit a constant scalar curvature Kähler metric
only if the Lie sub-algebra of all holomorphic vector fields having a zero is reductive, see e.g. [Sze14,
Proposition 4.18 and Remark 4.12]. In other words, unipotent subgroups of Aut(X) appear as obstructions
to the existence of such metrics. In a related direction, the paper [CD16] proposes a way to produce
canonical destabilising test-configurations (showing K-unstability of X) from non-reductive subgroups of
the automorphism group.

Motivated by these and other moduli-theoretic questions, Doran and Kirwan in [DK07] started to study
actions of unipotent algebraic groups N on projective manifolds X linearised in very ample line bundles,
using invariant-theoretic methods on the one hand and Geometric Invariant Theory for related actions of
reductive groups G containing N on twisted products G×N X on the other hand. When thinking about the
relation of their work to Kähler geometry and moment maps, one encounters three basic questions:

(a) What is the correct analogue of a “linear” action in Kähler geometry?

(b) Given a compact Kähler N -manifold X, how can one produce Kähler metrics on the non-compact
twisted product G ×N X ?

(c) If (b) has a positive answer, can one use moment map geometry on the non-compact Hamiltonian
G-manifold to produce quotients for the N -action on X with good geometric and complex-analytic
properties?

With a different set of problems in mind, Question (a) has been solved a rather long time ago by
Fujiki [Fuj78], Lieberman [Lie78], and Sommese [Som75]: meromorphic actions and more generally actions
for which the induced action on the Albanese torus is trivial were already called “linear” or “projective”
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in loc. cit., and it turns out that also with a view towards moment map geometry and Kählerian quotient
theory, these are the correct conditions to impose, see Remark 2.2. For actions of reductive Lie groups this
was observed by Huckleberry–Wurzbacher [HW90, Remark on page 262] and Fujiki [Fuj96, Lemma 2.1].
Note that the Lie algebra of the group of all automorphisms acting trivially on Albanese consists exactly of
those holomorphic vector fields having a zero, e.g. see [Fuj78, Proposition 6.8], which connects the question
of “linearity” to the one concerning the existence of extremal Kähler metrics discussed above.

Main results

As our first contribution, using a criterion of Blanchard and and properties of unipotent groups, with
respect to Question (b) we prove the following result.

Theorem (Theorem 3.7). Let N be a unipotent subgroup of the simply-connected complex semisimple Lie
group G. For a connected compact Kähler manifold (X,ωX) endowed with a holomorphic N -action the following
statements are equivalent.

(1) There exists a Hamiltonian G-extension (Z,ωZ ) of the N -action on X.

(2) The N -action on X is meromorphic.

(3) The twisted product G ×N X is Kähler.

Moreover, given a meromorphic N -action on X we can always find a Hamiltonian G-extension that is a G-
equivariant compactification of G ×N X.

Here, a Hamiltonian G-extension of the N -action on (X,ωX) consists of a connected compact Hamil-
tonian G-manifold (Z,ωZ ) and an N -equivariant embedding ι : X ↪→ Z such that for the de Rham coho-
mology classes associated with the Kähler forms we have ι∗[ωZ ] = [ωX]. This theorem links the condition
“meromorphic” to moment map geometry of the G-action on G ×N X, and therefore opens the door to
using the complex-reductive theory for the construction of quotients of X with respect to the N -action.

Once the existence of Hamiltonian G-extensions is established, these can be used to define the set of
N -semistable points XssN [ωX] with respect to the given Kähler class [ωX] ∈ H2(X,R), after one has chosen
a suitable Kähler form on the quasi-affine homogeneous space G/N . While we show in Theorem 4.4, using
Hodge-theoretic arguments as well as the relation of G-semistability to K-invariant strictly plurisubhar-
monic exhaustion functions, that this definition does not depend on the chosen G-extension, the choice of
metric on G/N influences semistability in a subtle way, as we explore in great detail in Section 4.C. The
problems that occur are closely related to the ones encountered in the algebraic situation when searching
for various kinds of “reductive envelopes”, cf. [DK07, Sections 5.2 and 5.3], and can be traced back to the
fact that in general there is no choice of metric on G/N so that the corresponding moment map is proper
or admissible in the sense of [Sj95]. A detailed comparison of the moment map approach introduced here
and the GIT approach of Doran–Kirwan is presented in Section 4.E.

Finally, regarding Question (c), we establish that the set of N -semistable points indeed has a number of
very desirable complex-geometric properties. The following result summarises the content of Theorem 5.3,
Proposition 5.4, Theorem 5.5, and Theorem 5.6.

Theorem. Let (X,ωX) be a compact Kähler manifold endowed with a meromorphic N -action. Then, the
following holds.

(a) The set XssN [ωX] of semistable points admits a geometric quotient π : X
ss
N [ωX]→ XssN [ωX]/N by the N -

action. In fact, π is a principal N -fibre bundle and XssN [ωX]/N =:Q is smooth.

(b) The definition of semistability naturally induces an open embedding φ : Q = XssN [ωX]/N ↪→ Q of Q into
a compact complex space Q such that Q \φ(Q) is analytic.
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(c) The set XssN [ωX] of semistable points is Zariski-open in X. Moreover, the quotient map π : X
ss
N [ωX]→ Q

extends to a meromorphic map π : XdQ.

(d) There exists a Kähler structure ωQ on Q whose restriction ωQ =ωQ|Q to Q ↪→Q is smooth and fulfils

[π∗ωQ] = [ωX |XssN [ωX ]] ∈H
2(XssN [ωX],R).

Future directions

With the fundamental results of a Kählerian quotient theory for meromorphic actions of unipotent groups
established, interesting questions include whether despite the difficulties presented by the examples col-
lected in Section 4.3 under certain additional conditions the set of semistable points can be shown to be
independent of further choices, whether in certain applications there are natural Kähler metrics on the
homogeneous space G/N leading to a quotient that is as well-adapted as possible to the given geometric
situation at hand, and whether given a compact Kähler manifold (X,ωX) with non-trivial non-reductive
part in the automorphism group (obstructing the existence of special metrics) one can use the Kählerian
quotient theory for this unipotent group in order to produce a Kählerian complex space/manifold where
said obstruction vanishes and special metrics might exist.

Organisation of the paper

In the first two sections we review basic facts about meromorphic actions and GIT on Kähler manifolds via
moment maps. In Section 3 we prove our first main result, Theorem 3.7. The difficulties one encounters in
defining the set of semistable points for holomorphic actions of unipotent groups, the actual definition of
semistability, as well as fundamental properties of the set of semistable points are discussed in Section 4,
while in the final Section 5 we prove the second main result concerning the properties of semistable
quotients for unipotent group actions.
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Global conventions

We work over the field C of complex numbers. A complex space is a reduced complex space with countable
topology. Analytic subsets are assumed to be closed. Manifolds are assumed to be connected.

1. Meromorphic group actions

Let us review some facts about meromorphic group actions from [Fuj78] that we will use freely in the
following. Lieberman obtained essentially the same results in [Lie78]. In this section, G denotes a complex
Lie group.

A meromorphic structure on the complex Lie group G is a compactification G together with a meromor-
phic mapping µ : G ×G→ G which extends the group multiplication of G such that µ is holomorphic on
(G×G)∪(G×G). In other words, the compactification G is (G×G)-equivariant. Moreover, the map G→ G,
g 7→ g−1, extends to a meromorphic map G→ G.
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Let us fix a meromorphic structure on G. A complex subgroup H of G is meromorphic if the topological
closure H of H in G is analytic.

Remark 1.1. If G is linear algebraic, we may and will choose G to be a projective manifold. The meromor-
phic subgroups of G are then precisely the algebraic subgroups of G.

Let X be a complex space endowed with a holomorphic G-action. This G-action is meromorphic if the
action map G ×X→ X extends to a meromorphic map G ×X→ X. For meromorphic actions on compact
Kähler manifolds (in fact, on reduced compact complex spaces of class C) we have the following quotient
theorem, see [Fuj78, Theorem 4.1].

Theorem 1.2. (Quotient Theorem) Let X be a compact Kähler manifold on which G acts meromorphically.
Then, there exist a compact complex space Y and a G-invariant surjective meromorphic map π : X d Y such
that the following universal property is satisfied. If π′ : X d Y ′ is another G-invariant meromorphic map to a
compact complex space Y ′ , then there exists a unique meromorphic map m : Y d Y ′ such that m◦π = π′ . In this
situation we call π : Xd Y a meromorphic quotient for the G-action on X.

Example 1.3. Let H be an algebraic subgroup of G. Then there exists a G-equivariant smooth projective
compactification G/H of G/H . Moreover, the H-principal bundle π : G→ G/H extends to a rational map
π : Gd G/H . Then π is a meromorphic quotient for the H-action on G.

In fact, by inspecting Fujiki’s construction, one obtains the following more precise result that has
appeared in several places in the literature; see for example [BBS85, Theorem 0.2.2], as well as [Gre10b,
Proposition 3.1], [Hu05, Section 3], and the references given there for the analogous result in the algebraic
category.

Proposition 1.4. Let X be a compact Kähler manifold on which G acts meromorphically. Then, there exists an
irreducible, compact analytic subset QF of the cycle space of X, a G-invariant meromorphic map πF : X d QF ,
and a G-invariant Zariski-open subset UF ⊂ dom(πF), called a Fujiki set of X, such that

(1) πF : XdQF is a meromorphic quotient for the G-action on X,

(2) UF ⊂ Xgen := {x ∈ X | dimG • x =m is maximal},

(3) for all u ∈UF , we have πF(u) = G •u, considered as a (reduced) cycle of X,

(4) πF(UF) is smooth and Zariski-open in Y , and the restriction πF |UF : UF → πF(UF) is a geometric quotient.

We call πF : XdQF a Fujiki quotient of X by G.

2. Hamiltonian G-spaces

Let G = KC be a complex reductive group with maximal compact subgroup K . In this section we review the
definition and some properties of Hamiltonian G-manifolds. A general reference for the complex-analytic
theory of moment maps on Kähler manifolds is [HH99].

2.A. Moment maps

Let (Z,ωZ ) be a Kähler manifold with Kähler form ωZ . Suppose that G acts holomorphically on Z such
that ωZ is K-invariant. A moment map for the K-action on Z is a K-equivariant smooth map µ : Z → k∗,
where K acts via the coadjoint representation on the dual k∗ of its Lie algebra, such that

dµξ = ιξZωZ . (2.1)



6 2. Hamiltonian G-spaces6 2. Hamiltonian G-spaces

Here, for every ξ ∈ k, we write µξ ∈ C∞(Z) for the function defined by µξ(z) = µ(z)(ξ), and ξZ for the
vector field on Z whose flow is given by (t, z) 7→ exp(−tξ) • z, and ιξZωZ for the contraction of ωZ by ξZ .

If a moment map for the K-action on Z exists, we say that (Z,ωZ ) is a Hamiltonian G-manifold.
The notions introduced above make sense for actions of G on Kählerian complex spaces, see for example
[Gre10a, Sections 3.1 and 3.2] and the references given there; in this setup one speaks about Hamiltonian
G-spaces.

Remark 2.1. If G is semisimple, then every Kähler manifold (Z,ωZ ) endowed with a holomorphic G-action
such that ωZ is K-invariant is Hamiltonian. Moreover, in this case the moment map µ : Z → k∗ is unique,
see [GS84, Proposition 24.1] and the discussion following this proposition.

Remark 2.2. For a compact Kähler manifold (Z,ωZ ) endowed with a holomorphic action of the connected
complex reductive Lie group G = KC and K-invariant Kähler form ωZ the following statements are equiv-
alent:

(1) Z is a Hamiltonian G-manifold.

(2) G acts meromorphically on Z in the sense of [Fuj78], see also Section 1.

(3) G acts trivially on the Albanese torus Alb(Z) of Z .

The equivalence (1)⇐⇒ (3) was observed in [Fuj96, Lemma 2.1 and subsequent remark]. The implication
(2) =⇒ (3) follows from [Fuj78, Lemma 3.8] since every complex reductive group is linear algebraic. The
last implication (3) =⇒ (2) follows from [Som75, Proposition I], see also [Fuj78, Proposition 6.10].

For later use we record an elementary result on the moment image of a Hamiltonian G-manifold
(Z,ωZ ) with moment map µ : Z→ k∗: If the interior of µ(Z) relative to k∗ is non-empty, then, due to Sard’s
Theorem, there exists a point z ∈ Z such that dµz is surjective. Since condition (2.1) implies

kerdµz = (k • z)⊥ωZ = {ξZ(z) | ξ ∈ k}⊥ωZ , (2.2)

cf. [HH99, Section 2.3], and therefore that the rank of µ in z coincides with dimK • z, we conclude that Kz
is finite. Conversely, if Kz is finite, then µ is a submersion in z, hence the image of µ has interior points in
k∗. We summarize this discussion in the following

Lemma 2.3. Suppose that (Z,ωZ ) is a G-connected1 Hamiltonian G-manifold. Then µ(Z) has non-empty
interior in k∗ if and only if K acts with generically finite isotropy on Z .

2.B. The set of semistable points

The set of semistable points is defined by

ZssG (µ) := {z ∈ Z | G • z∩µ−1(0) , ∅}.

The G-invariant set ZssG (µ) is open and can be characterized in the following way. For z ∈ ZssG (µ) consider

the inclusion ι : G • z ∩ ZssG (µ) ↪→ Z . Then ι∗ωZ = i∂∂ρ for some strictly plurisubharmonic exhaustion
function ρ and ι∗µ = µρ where µρ : G • z∩ZssG (µ)→ k∗ is given by

µρ(z)(ξ) := dρz(JξZ(z)), (2.3)

where J denotes the complex structure of Z, see [HH96, Section 3].
If Z is compact and if G is semisimple, then ZssG (µ) depends only on the Kähler class [ωZ ], see [HH96,

p. 71]. Since we generalize this result later on for Hamiltonian actions of unipotent groups, we repeat its
proof here for the readers’ convenience.

1 ↑ We say that Z is G-connected if it cannot be written as the disjoint union of two non-empty G-stable closed subsets.
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Proposition 2.4. Let (Z,ωZ ) be a compact Hamiltonian G-manifold with moment map µ and let ω′Z be another
K-invariant Kähler form on Z such that [ωZ ] = [ω′Z ] ∈ H

2(Z,R). Then there exists a moment map µ′ for the
K-action on (Z,ω′Z ) such that Z

ss
G (µ) = Z

ss
G (µ

′).

Proof. Since Z is compact Kähler, the ∂∂-lemma implies ω′Z = ωZ + i∂∂ϕ for some ϕ ∈ C∞(Z). Defining
µϕ : Z→ k∗ in the same way as in Equation (2.3) one checks directly that the map µ′ := µ+µϕ is a moment
map for the K-action on (Z,ω′Z ).

Now suppose that z ∈ ZssG (ωZ ). As noted above, we have ι∗ωZ = i∂∂ρ and ι∗µ = µρ for some strictly

plurisubharmonic function ρ on G • z ∩ ZssG (µ) where ι : G • z ∩ ZssG (µ) ↪→ Z is the inclusion. Since Z
is assumed to be compact, the function ϕ is bounded, hence ρ + ι∗ϕ is still an exhaustion function on
G • z ∩ ZssG (µ). Consequently, ι∗µ′ = µρ+ι∗ϕ has a zero on G • z ∩ ZssG (µ), which implies z ∈ ZssG (µ

′). The
converse inclusion follows by symmetry.

Remark 2.5. If G is semisimple and if (Z,ωZ ) is a compact Hamiltonian G-manifold, the moment map
for the K-action on Z is unique, see Remark 2.1 above. Due to Proposition 2.4, the set of semistable points
therefore depends only on [ωZ ] ∈H2(Z,R). In this case we thus write ZssG [ωZ ] instead of ZssG (µ).

2.C. Analytic Hilbert quotients

The importance of semistability stems from the fact that the set of semistable points admits the analogue
of a good quotient in the analytic category:

Let G be a complex reductive Lie group and Z a complex space endowed with a holomorphic G-action.
A complex space Y together with a G-invariant surjective holomorphic map π : Z→ Y is called an analytic
Hilbert quotient2 of Z by the action of G if

(1) π is a locally Stein map, and

(2) (π∗OZ )G = OY holds.

Here, locally Stein means that there exists an open covering of Y by open Stein subspaces Uα such that
π−1(Uα) is a Stein subspace of Z for all α; by (π∗OZ )G we denote the sheaf U 7→ OZ(π−1(U ))G = {f ∈
OZ(π−1(U )) | f G-invariant}, U open in Y .

An analytic Hilbert quotient of a holomorphic G-space Z is unique up to biholomorphism once it exists
and we will denote it by Z//G. The following properties follow from the corresponding ones in the Stein
case, where analytic Hilbert quotients always exist, see [Hei91]: Two points x,x′ ∈ Z have the same image in
Z//G if and only if G • x∩G • x′ , ∅. For each q ∈ Z//G, the fibre π−1(q) contains a unique closed G-orbit
G • x. The stabiliser Gx of x in G is a complex reductive Lie group, see [Mat60]. If A ⊂ X is a G-invariant
analytic subset, then π(A) ⊂ X//G is analytic, and π|A : A→ π(A) is an analytic Hilbert quotient.

The main results in the quotient theory for complex reductive group actions on Kähler spaces are
summarised in the following theorem.

Theorem 2.6. ([HL94], [HHL94], [HH99], [Sj95]) Let Z be a Hamiltonian G-space with Kähler form ωZ
and moment map µ : Z→ k∗. Then,

(1) ZssG (µ) is open and G-invariant, and the analytic Hilbert quotient π : Z
ss
G (µ)→ ZssG (µ)//G exists,

(2) the inclusion µ−1(0) ↪→ ZssG (µ) induces a homeomorphism µ
−1(0)/K ' ZssG (µ)//G,

(3) the complex space ZssG (µ)//G carries a Kähler structure that is induced by symplectic reduction from ωZ and
that is smooth along a natural stratification of ZssG (µ)//G.

2 ↑ In some places in the literature, the terminology semistable quotient is used for the same concept.
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2.D. Moment maps associated with representations and their images

Let G be a connected semisimple complex Lie group acting linearly on a finite dimensional complex vector
space V . If we equip V with the K-invariant flat Kähler metric ωV given by a K-invariant hermitian inner
product 〈·, ·〉, then a moment map µV : V → k∗ for the K-action on V is given by µξV (v) = −

i
2〈ξ.v,v〉 for

every ξ ∈ k. Note that ωV = i∂∂ρ where ρ(v) = ‖v‖2 for all x ∈ V and that µV = µρ in this case.

For any v ∈ V consider the affine G-variety G • v. The restriction of µV to G • v yields the moment map
for the K-action on G • v associated with the strictly plurisubharmonic exhaustion function ρ|G • v . By abuse
of notation we will denote the restricted Kähler form and moment map again by ωV and µV , respectively.
For later use we record the following result of Sjamaar, see [Sj98, Theorem 4.9, Lemma 4.10]. For its
statement we have to introduce a maximal torus T of K with Lie algebra t, the choice of a positive Weyl
chamber t∗+, and the corresponding set Λ+ of dominant weights. For λ ∈Λ+ let Vλ denote the irreducible
G-representation with highest weight λ.

Theorem 2.7. The moment map µV : G • v→ k∗ is proper and verifies

µV (G • v)∩ t∗+ = cone{λ ∈Λ+ | Vλ occurs in C[G • v]}.

In general it may be rather difficult to decide for which dominant weight λ the irreducible representation
Vλ occurs in C[G • v]. Note that the inclusion G • v ↪→ G • v gives an injective homomorphism of algebras
C[G • v]→C[G • v] �C[G]Gv . Therefore the situation is slightly easier for affine completions of quasi-affine
homogeneous spaces G/Gv for which the map C[G • v]→C[G]Gv is an isomorphism.

To follow this train of thought, recall that an algebraic subgroup H of G is called Grosshans if G/H is
quasi-affine and if the algebra C[G]H �C[G/H] is finitely generated. This is equivalent to the existence of
a finite-dimensional G-representation space W containing G/H as an orbit G •w such that the codimension
of G •w \G •w in G •w is at least 2, see [Gr97, Theorem 4.3]. Recall that an algebraic subgroup of G is
called unipotent if it consists entirely of unipotent elements. If N is a unipotent subgroup of G, then G/N
is always quasi-affine, see [Gr97, Corollary 1.5], but not affine, see [Mat60]; however, not every such N is
Grosshans. If N is the unipotent radical of a parabolic subgroup of G, then N is Grosshans, see [Gr83,
Theorem 2.2].

Suppose that the unipotent subgroup N of G is Grosshans. Then we have a canonical affine comple-
tion G/N

a
= SpecC[G]N . Since N is contained in a maximal unipotent subgroup of G, we can deduce

from [Sj98, Example 4.19] that

{λ ∈Λ+ | Vλ occurs in C[G]N } =Λ+.

Consequently, by embedding G/N
a

into any G-representation, we can find a Kähler form inducing a
proper, surjective moment map for the K-action on G/N

a
. Combining this observation with an application

of Lemma 2.3 to the free K-action on G/N ⊂ G/N a
we obtain the following result.

Lemma 2.8. Suppose that N is a unipotent Grosshans subgroup of G. Then there exists a Kähler form ωV on
G/N such that the image of the corresponding moment map µV : G/N → k∗ is a K-invariant dense open subset
of k∗reg. Moreover, ωV and µV extend to the canonical affine completion G/N

a
.

As the following example shows, this result depends on the choice of the G-representation into which
we embed G/N .

Example 2.9. Let G be a simply-connected semisimple complex Lie group. For any choice of λ1, . . . ,λk ∈
Λ+ consider v := v1 + · · · + vk ∈ V ∗λ1

⊕ · · · ⊕ V ∗λk where vj ∈ V ∗λj is a highest weight vector. Then we have

C[G • v] =
⊕

λ∈M Vλ where M is the submonoid of Λ+ generated by λ1, . . . ,λk , see [PV72, Theorem 6].

Consequently, µV (G • v)∩ t∗ is the cone generated by λ1, . . . ,λk .
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To construct an example where the image of G • v under the moment map is not the whole of k∗, let
G = SL(3,C) and choose λ1 =$1+$2 and λ2 = 2$1+$2 where $1,$2 are the fundamental weights of G.
Note that Vλ1

and hence also V ∗λ1
are isomorphic to the adjoint representation of G = SL(3,C). It follows

that Gv1 is the connected subgroup of G having as Lie algebra the semi-direct sum of the kernel of λ1 in
the chosen Cartan sub-algebra of g and the positive maximal unipotent sub-algebra n of g. Since the Lie
algebra of Gv2 for v2 ∈ Vλ2

contains n and since the kernels of λ1 and λ2 intersect only trivially, the Lie
algebra of the stabiliser of v = v1 + v2 must coincide with n. In summary, we see that in the chosen setup
Gv is the unipotent radical of a Borel subgroup of G, hence Grosshans, and that µV : G • v → k∗ is not
surjective.

Remark 2.10. If N is the unipotent radical of a parabolic subgroup of G, a G-representation space E
containing G/N

a
and a certain K-invariant hermitian inner product on E are described in great detail

in [Kir11], extending [GJS02] which dealt with unipotent radicals of Borel subgroups. In this situation
it is natural to equip G/N

a
with the restriction of the associated flat Kähler form ωE as above, since the

associated symplectic structure coincides with the one obtained via symplectic implosion from the cotangent
bundle T ∗K .

3. Hamiltonian G-extensions

Let G = KC be a complex reductive group with maximal compact subgroup K . Recall that a unipotent
subgroup of G is by definition an algebraic subgroup of G consisting entirely of unipotent elements. Such
groups are automatically nilpotent and connected, see [OV90, Chapter 3.2.2], hence simply-connected. Let
N be such a unipotent subgroup of G. Since our focus lies on actions of N , we suppose from now on that
G is connected and semisimple. Due to the simply-connectedness of N , by lifting to the universal cover if
necessary, we may and will often assume that G is simply-connected as well.

3.A. Meromorphic actions and Hamiltonian extensions

We will explore the relation between meromorphic N -actions and Hamiltonian G-actions.

Definition 3.1. Let (X,ωX) be a connected compact Kähler manifold endowed with a holomorphic N -
action. A Hamiltonian G-extension of (the N -action on) (X,ωX) consists in a connected compact Hamiltonian
G-manifold (Z,ωZ ) and an N -equivariant embedding ι : X ↪→ Z such that for the de Rham cohomology
classes associated with the Kähler forms we have

ι∗[ωZ ] = [ωX]. (3.1)

Remark 3.2. As G = KC, and hence K , is assumed to be semisimple, it follows from the fact that integra-
tion over K does not change the cohomology class of a given Kähler form and from Remark 2.1 that any
N -equivariant embedding of (X,ωX) into a compact Kähler G-manifold (Z,ωZ ) satisfying Equation (3.1) is
automatically a Hamiltonian G-extension.

The definition is motivated by the following example and the role it plays in the Geometric Invariant
Theory of unipotent group actions on projective varieties, cf. [DK07, Section 5].

Example 3.3. Let N act effectively on a smooth projective variety X. Any N -equivariant embedding
N ↪→ P(W ), where W is an N -representation space on which N acts via an embedding N ↪→ SL(W ) is a
Hamiltonian SL(W )-extension.

Example 3.4. Suppose that G acts on (X,ωX), extending the N -action. Since integration over K does not
change the cohomology class of ωX , we may, and will, suppose that ωX is K-invariant. Therefore we can
simply take Z = X with ι = idX as Hamiltonian G-extension of the N -action on X.
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On the other hand, the twisted product3 G×N X is G-equivariantly isomorphic to G/N ×X via the map
[g,x] 7→ (gN,g • x) and hence embeds into Z := G/N ×X where G/N is a smooth projective G-equivariant
compactification of the quasi-affine homogeneous space G/N . Endowing Z with a direct product Kähler
metric ω0 ⊕ωX and considering ι : X ↪→ Z, ι(x) = (eN,x), we obtain another Hamiltonian G-extension of
the N -action on (X,ωX).

Remark 3.5. Although the automorphism group of a compact Kähler manifold has a natural structure of
a meromorphic group acting meromorphically on X, see [Fuj78, Theorem 5.5], this cannot be used in order
to find a natural embedding of a unipotent algebraic group N acting holomorphically on X into a complex
reductive group G sitting inside Aut(X) as the following example shows.

Example 3.6. Consider the connected algebraic group

G =



(ad − bc)−1 z w

0 a b
0 c d

 ; ad − bc , 0

 �GL(2,C)nC
2.

According to [Br14, Theorem 1] there exists a 12-dimensional projective complex manifold X having
Aut0(X) isomorphic to G.

The group

N =



1 0 z
0 1 w
0 0 1

 ; z,w ∈C
 �C

2

is a unipotent subgroup of G which is not conjugate to a subgroup of the radical Ru(G), nor to a subgroup
of a Levi subgroup of G.

The group

N =



et tet 0
0 et 0
0 0 e−2t

 ; t ∈C
 �C

is a non-algebraic subgroup of G. Consequently, N does not act meromorphically on X. Its Zariski closure
is the group

N =



t s 0
0 t 0
0 0 t−2

 ; t ∈C∗, s ∈C
 �C

∗ ×C.

Note that N and hence N are not conjugate to subgroups of neither a Levi subgroup nor the radical of G.

Let us state the main result of this section.

Theorem 3.7. Let N be a unipotent subgroup of the simply-connected complex semisimple Lie group G. For a
connected compact Kähler manifold (X,ωX) endowed with a holomorphic N -action the following statements are
equivalent.

(1) There exists a Hamiltonian G-extension (Z,ωZ ) of the N -action on X.

(2) The N -action on X is meromorphic.

(3) The twisted product G ×N X is Kähler.

Moreover, given a meromorphic N -action on X we can always find a Hamiltonian G-extension that is a G-
equivariant compactification of G ×N X.

3 ↑ The twisted product G×N X is by definition the quotient of G×X by the proper holomorphic N -action given by n • (g,x) =
(gn−1,n • x). The N -orbit of (g,x) will be denoted by [g,x] ∈ G ×N X.
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Remark 3.8. Since the centre of G is finite and since N does not contain finite subgroups, it follows that
the G-action on G ×N X is effective whenever N acts effectively on X.

Motivated by the above and by the equivalent conditions listed in Remark 2.2, we make the following
definition that is central to our discussion.

Definition 3.9. Let N be a unipotent subgroup of the simply-connected complex semisimple Lie group G,
and let X be a connected compact Kähler manifold endowed with a holomorphic N -action. We say that
(X,ωX) is a Hamiltonian N -manifold if there exists a Hamiltonian G-extension (Z,ωZ ) of the N -action on
X.

The rest of this section is devoted to the proof of Theorem 3.7.

3.B. Necessary conditions for the existence of a G-extension

In this section, we will show the implications “(1)⇒ (3)⇒ (2)” of Theorem 3.7. Let (X,ωX) be a connected
compact Kähler manifold on which N acts holomorphically, and let α : X → Alb(X) be the natural map
from X to its Albanese torus.

Lemma 3.10. (“(1)⇒ (3)”) If the N -action on X admits a Hamiltonian G-extension, then the twisted product
G ×N X is Kähler.

Proof. Let us consider the induced proper embedding Y = G×NX ↪→ G×N Z � G/N ×Z . The claim follows
from the fact G/N is quasi-affine, and hence Kähler.

Remark 3.11. In fact, if N is a connected nilpotent closed complex subgroup of G, then assuming that
G ×N X be Kähler we can show that N is in fact algebraic: applying [Bla56, Proposition II.1] to the fibre
bundle G ×N X → G/N , we see that G/N is Kähler, an application of [GMO11, Corollary 4.12] then yields
the claim. This justifies our a priori algebraicity assumption on N < G.

Next, we embark on proving the implication “(3)⇒ (2)”. As a first step, we prove the following

Lemma 3.12. If G ×N X is Kähler, then the action of N on the Albanese torus Alb(X) is trivial.

Proof. Suppose that the action of N on Alb(X) is non-trivial. Then, as N acts on Alb(X) by translations,
we can find a closed one-parameter subgroup C ↪→N such that dimC • [0] = 1 where [0] denotes the base
point of Alb(X). The topological closure T := C • [0] ⊂ α(X) ⊂ Alb(X) is a connected compact subgroup
of Alb(X), hence a subtorus. Its pre-image α−1(T ) is a compact C-invariant subvariety of X. According
to the Jacobson-Morozov Theorem, see [Jac62, Theorem III.17], there is a closed subgroup S of G that is
locally isomorphic to SL(2,C) and contains the one-parameter subgroup C ↪→ N under discussion. Since
G ×N X is Kähler and contains Y ′ := S ×

C
α−1(T ) as a closed S-invariant analytic subset, every S-orbit in

Y ′ and therefore every C-orbit in α−1(T ) is Zariski-open in its closure by [GMO11, Corollary 3.9].
There exists a 1-dimensional orbit C • x in X such that α(x) = [0] ∈ Alb(X). Consequently, going

through the possible stabiliser subgroups, we see that there are two possibilities: either the orbit C • x is
compact, i.e., it is a 1-dimensional complex torus, or the normalisation of C • x is biholomorphic to P1.
Both cases lead to contradictions. Indeed, in the first case, the isotropy of C and hence the isotropy in S
would be infinite discrete, which contradicts [GMO11, Proposition 4.4], while in the second case the fact that
α|

C • x is non-constant by construction would produce a non-zero holomorphic 1-form on P
1.

We remark that the fact that N acts trivially on Alb(X) alone does not imply the existence of a
Hamiltonian G-extension of the N -action on X as the following example shows.
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Example 3.13. Let N =
(
1 C

0 1

)
⊂ G = SL(2,C) and consider its action on X = P2 given by

t • [x0 : x1 : x2] := [etx0 : e
itx1 : x2].

The N -orbits in X are not locally Zariski closed, and there are elements having isotropy isomorphic to Z.
According to [GMO11, Theorem 3.6] G ×N X cannot be Kähler. Hence, there does not exist a Hamiltonian
G-extension of the N -action on X although N acts trivially on Alb(X) = {pt}.

Our next goal is to show that, if there exists a Hamiltonian G-extension of the N -action on X, then
N acts meromorphically on X. Due to Lemma 3.12 the claim is equivalent to the fact that the map
N → Autaff(X) induced by the action has analytically Zariski-closed image, where Autaff(X) denotes the
kernel of the Jacobi homomorphism α∗ : Aut

0(X)→ Aut0(Alb(X)), cf. [Fuj78, §2]. Since by [Fuj78, Lemma
4.6 and Theorem 5.5] or [Lie78, Proposition 2.1] the analytic Zariski-topology on the meromorphic subgroup
Autaff(X) < Aut0(X) is obtained from the complex structure on the cycle space CdimX(X ×X), as a first
step we prove a technical lemma about induced actions on cycle spaces.

Lemma 3.14. Let N be a unipotent subgroup of G, let M be a Kähler manifold endowed with a holomorphic
N -action, and let Ck(M) be the Barlet space of compact k-cycles. Then, there exists a natural G-equivariant
isomorphism G ×N Ck(M) �Ck(G ×N M).

Proof. For every irreducible compact analytic subset A of M and each g ∈ N , the image g(A) is again an
irreducible compact analytic subset of M . Hence, we obtain a holomorphic N -action on Ck(M) by the
obvious extension of this action to k-cycles. Moreover, the inclusion ι : M→ G ×N M, x 7→ [e,x] induces a
proper holomorphic embedding of Ck(M) into Ck(G ×N M) by sending A ∈ Ck(M) to ι(A). From this we
obtain a well-defined injective and immersive holomorphic map

Φk : G ×N Ck(M) ↪→Ck(G ×N M), Φk([g,A]) := g • ι(A).

Suppose for a moment that A ⊂ G×NM is an irreducible compact analytic subset. Since G/N is quasi-
affine, and hence in particular holomorphically separable, the bundle projection π : G ×N X→ G/N maps
A to a point gN ∈ G/N . Consequently, Ck(G ×N M) coincides with the space Ck(G ×N M)π of π-relative
cycles. Moreover, the natural G-action on Ck(G×NM) makes the resulting projection Ck(G×NM)→ G/N
equivariant.

We hence conclude from the fact that Φk induces an isomorphism of the fibres over eN that the image
of Φk is all of Ck(G ×N M)π =Ck(G ×N M). The claim follows.

Proposition 3.15. (“(3)⇒ (2)”) If G ×N X is Kähler, then N acts meromorphically on X.

Proof. Composed with the the natural embedding Autaff(X) ↪→Cn(X ×X), the action map N → Autaff(X)
yields the following holomorphic map:

ι : N →Cn(X ×X)
g 7→ Γx 7→g • x := {(x,g • x) | x ∈ X}.

We set n := dimX and consider the N -action on the product X × X given by g • (x,y) = (x,g • y). We
have G ×N (X × X) � (G ×N X) × X, which shows that G ×N (X × X) is Kähler. Hence, the cycle space
Cn(G ×N (X ×X)) is Kähler by [BV89, Théorème 2]. Applying Lemma 3.14 to M = N ×N we infer that
G ×N Cn(X ×X) is likewise Kähler. It therefore follows from [GMO11, Theorem 3.6] that all N -orbits in
Cn(X ×X) are locally closed in the analytic Zariski-topology.

Now, we notice that ι(N ) coincides with the N -orbit of ∆X ∈ Cn(X × X), where ∆X denotes the
diagonal in X × X. This implies that ι(N ) is a locally Zariski-closed, hence Zariski-closed subgroup of
Autaff(X) < Aut0(X) ⊂Cn(X ×X), cf. [Hum75, Section 7.4], as was to be shown.
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For later usage, we note the following, related observation.

Lemma 3.16. An algebraic subgroup H of G which acts meromorphically on X acts automatically trivially on
Alb(X).

Proof. This follows from the fact that every meromorphic homomorphism from an affine linear group to a
compact complex torus is constant, see [Fuj78, Lemma 3.8].

3.C. Existence of a Hamiltonian G-extension

In this section, we will show the crucial implication “(2) ⇒ (1)” of Theorem 3.7, i.e., the fact that mero-
morphic actions of unipotent algebraic subgroups of semisimple groups G always admit Hamiltonian G-
extensions, thereby completing the proof.

Let us recall the setup: Let N be a unipotent subgroup of the simply-connected complex semisimple
Lie group G, and let X be a connected compact Kähler manifold endowed with a meromorphic N -action.

3.C.a. The case of unipotent radicals of Borel subgroups

Let B be a Borel subgroup of G having Levi decomposition B = TU = UT . In a first step, we make the
additional assumption that N coincides with the the unipotent radical U of B; i.e., N =U .

Let us consider the twisted product M := B×U X and the U -equivariant inclusion ιX : X ↪→M as the
fibre over eU . Since the principal bundle B→ B/U � T is holomorphically trivial, the same holds for the
associated fibre bundle; i.e., we have M � T ×X. Explicitly, an isomorphism B×U X → T ×X is given by
[tu,x] 7→ (t,u • x). A direct calculation shows that the induced B-action on T ×X is given by the formula

(tu) • (s,x) = (ts, (s−1us) • x). (3.2)

Let G be a projective meromorphic structure on G. Since the subgroups T , U and B are algebraic in
G, their topological closures in G are analytic.

Lemma 3.17. If U acts meromorphically on X, then the B-action on T ×X defined in Equation (3.2) extends to
a meromorphic B-action on T ×X. In particular, there exists a B-equivariant Kähler compactification (M,ωM )
of M ⊃ ιX(X) such that [ι∗X(ωM )] = [ωZ ].

Proof. By the definition of a meromorphic structure the map c : T ×U → U , (s,u) 7→ s−1us, extends to
a meromorphic map c : T ×U → U which is holomorphic on (T ×U ) ∪ (T ×U ). Analogously, for the
same reason the multiplication map m : T × T → T extend meromorphically to T × T → T making T a
T -bi-equivariant compactification of T . Denote the extended map by m. With this notation, B acts on
T ×X by the formula

(tu) • (s,x) := (m(t, s),α(c(s,u),x)),

where α : U ×X → X is the meromorphic extension of the U -action on X. It is hence clear that B acts
meromorphically on T ×X.

In the next step we consider the holomorphic fibre bundle Z := G×BM
π−→ G/B. The natural inclusion

M ↪→ G ×BM as the fibre over eB is denoted by ιM . Both the typical fibre M and the base G/B of Z are
Kähler. Using Blanchard’s theorem [Bla56, Théorème principal II], we will construct a Kähler form on Z
such that Z is a Hamiltonian G-extension of the U -action on X.

Since G/B is simply-connected, in order to be able to apply Blanchard’s result and hence show that
G ×BM is Kähler, we only have to check that the transgression map from H1(M,R) to H2(G/B,R) is
identically zero. Recall that this map is defined on the set of transgressive elements in H1(M,R) in the
following way. A class [α] ∈ H1(M,R

)
is called transgressive if there exists a 1-form β on Z such that

[ι∗
M
β] = [α] and such that there exists a 2-form τ on G/B such that dβ = π∗τ . Since π∗ is injective, we
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have dτ = 0, and the transgression map then associates [τ] ∈ H2(G/B,R) to [α] ∈ H1(M,R), see [BT82,
Proposition 18.13]. As a side-remark we note that this transgression map is zero if and only if b1(Z) =
b1(G/B) + b1(M) where b1 denotes the first Betti number, see [Bla56, p. 192].

Lemma 3.18. Suppose that B acts trivially on Alb(M). Then, every [α] ∈ H1(M,R) is transgressive, and the
transgression map is identically zero.

Proof. As M is Kähler by Lemma 3.17, we may use the Hodge decomposition to write

[α] ∈H1(M,R) ⊂H1(M,C) =H1,0(M)⊕H1,0(M) =H0(Ω1
M
)⊕H0(Ω1

M
)

as [α] = η + η where η is a holomorphic 1-form on M . Since by hypothesis and Lemma 3.16 the algebraic
subgroup B < G acts trivially on Alb(M), the form η is B-invariant, hence extends to a G-invariant
holomorphic 1-form η̂ ∈ H0(Ω1

Z )
G. Since dη̂ is likewise G-invariant, it is uniquely determined by its

restriction ι∗
M
(dη̂) = d(ι∗

M
η̂) = dη = 0. Consequently, dη̂ = 0 = π∗0. We conclude that [α] is transgressive

and is mapped to 0+ 0 = 0 ∈H2(G/B,R) by the transgression map.

Remark 3.19. The proof works more generally for a parabolic subgroup P < G acting on a compact Kähler
manifold such that the induced action on the Albanese is trivial. To be more precise, we see that for every
such P -manifold X the twisted product G×P X is Kähler. As the G-action on this manifold is Hamiltonian,
by applying [GMO11, Theorem 3.6] or [Fuj96, Remark after Lemma 2.1] together with [Fuj78, Proposition
6.10] we conclude that every P -orbit in X is Zariski-open in its closure and that the P -action on X is
meromorphic. This generalises and gives a new proof for a result of Sommese, cf. [Som75, §3]. For criteria
guaranteeing triviality of induced actions on Albanese tori see [Fuj78, §6c)].

Combining Lemmata 3.17, 3.16, and 3.18 with Blanchard’s theorem we conclude that the twisted product
Z = G×BM is Kähler. Moreover, the first step of Blanchard’s proof [Bla56, p. 187] shows that the cohomology
class of the constructed Kähler form on Z = G×BM pulls back under ιM to [ωM ] on M . Embedding X into
M by ιX and further into Z by ιM we obtain a Hamiltonian G-extension of the U -action on X. Notice that
Z contains G×U X � G×B (B×U X) as a Zariski open subset. In fact, Z = G×BM � G×B (T ×X)→ G×BT
is an extension of the X-fibre bundle G ×U X→ G/N to the projective completion G ×B T of G/N .

3.C.b. The general case

In the second and final step we show that the case of an arbitrary unipotent subgroup N of G can be
reduced to the unipotent radical U of a Borel subgroup B ⊂ G.

Lemma 3.20. Let N be a unipotent subgroup of G. Then there exists a Borel subgroup B = TU of G such that
N ⊂ U . In addition, if N acts effectively and meromorphically on X, then U ×N X admits a U -equivariant
Kähler compactification on which U acts effectively and meromorphically and whose Kähler class extends the
given Kähler class [ωX] on X.

Proof. The first statement is [Hum75, 30.4, Theorem]. Moreover, from the first paragraph in the proof of
[Akh95, Chapter 5, Theorem 4] we conclude that the N -principal bundle U → U/N admits an algebraic
section, whose image we call S . As a consequence, we obtain an N -equivariant isomorphism N × S → U
with S � U/N . Let S be a U -equivariant smooth projective compactification of S . Following the line of
argumentation presented at the beginning of Section 3.C.c we conclude as before that S ×X is a compact
Kähler manifold endowed with a meromorphic U -action, containing U ×N X as a Zariski-open set. Again,
we can choose the Kähler form on S ×X such that its class extends the given Kähler class [ωX].

Finally, by applying the discussion of Section 3.C.c to the compact Kähler manifold X ′ = S ×X with
meromorphic U -action obtained in Lemma 3.20 and noticing that

Y = G ×N X � G ×B (B×U (U ×N X)) � G ×B (T × (U/N )×X) (3.3)

we arrive at
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Proposition 3.21. (“(2)⇒ (1)”) Let N be a unipotent subgroup of G acting effectively and meromorphically on
the compact Kähler manifold X. Then, there exists a Hamiltonian G-extension Z of the N -action on X, which
can be chosen such that it contains Y := G ×N X as a Zariski open subset. More precisely, we might choose

Z = Y = G ×B (T ×U/N ×X),

where B = TU is a Borel subgroup of G with N ⊂U and where T ×U/N is the B-equivariant compactification
of T × (U/N ) constructed in Lemmata 3.17 and 3.20.

Remark 3.22. (Non-uniqueness) There are many possible ways to choose the compactifications T and S ;
in the first case, we have all smooth projective toric varieties of dimension dimT to choose from.

3.C.c. Additional observations

We note a minimality property of the above construction that is crucial for subsequent arguments on the
independence of the set of semistable points from the chosen G-extensions, see Section 4.B below.

Proposition 3.23. Let X be a compact Hamiltonian N -manifold and let Y be the G-equivariant compactifica-
tion of Y := G ×N X whose existence is guaranteed by Proposition 3.21. Then, for any Hamiltonian G-extension
Z of the N -action on X, there exists a G-equivariant embedding Y ↪→ G/N × Z where G/N is a certain
G-equivariant compactification of G/N .

Proof. Let Z be any G-extension of the N -action on X. The N -equivariant embedding X ↪→ Z induces a
G-equivariant embedding Y = G ×N X ↪→ G ×N Z � G/N ×Z . The identification G/N � G ×B (T ×U/N ),
cf. Equation (3.3), suggests choosing the compactified fibre bundle

G/N := G ×B (T ×U/N ) (3.4)

as a well-adapted G-equivariant compactification of G/N . With this definition we obtain the desired
embedding Y = G ×B (T ×U/N ×X) ↪→ G ×B (T ×U/N ×Z) � G/N ×Z .

Remark 3.24. Since N is a connected subgroup of the simply-connected group G, the quasi-affine vari-
ety G/N is simply-connected. Consequently, every smooth compactification of G/N is likewise simply-
connected, see [FL81, 0.7(B)]; in particular, this observation applies to the compactification constructed in
Proposition 3.23.

Example 3.25. Suppose that N =
(
1 C

0 1

)
⊂ G = SL(2,C). Choosing T = P1, we see that G/N = G ×B T is

the blow-up of P2 at the origin, i.e., the first Hirzebruch surface.

4. The set of semistable points with respect to unipotent groups

Let G = KC be a simply-connected semisimple complex Lie group with maximal compact subgroup K , let
N be a unipotent subgroup of G, and let (X,ωX) be a compact Hamiltonian N -manifold. In this section we
explain how one can use the concept of Hamiltonian G-extensions in order to define the set of semistable
points XssN [ωX] for the N -action on X.

4.A. Defining the set of semistable points

We will slowly approach the goal of defining the correct notion of semistability, see Definition 4.2 below.
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4.A.a. The naive approach

Since (X,ωX) is a compact Hamiltonian N -manifold, we can find a Hamiltonian G-extension (Z,ωZ ) of the
N -action on X with N -equivariant embedding ι : X ↪→ Z . It is tempting to define the set of N -semistable
points in X as the N -invariant open subset ι−1(ZssG [ωZ ]). As the following example shows, this set heavily
depends on the choice of the G-extension (Z,ωZ ).

Example 4.1. Let X = P1 with the Fubini-Study metric ωFS and let N = C act on P1 by t • [x0 : x1] =
[x0 + tx1 : x1]. Since the N -action extends to an action of G = SL(2,C), we have the following three
Hamiltonian G-extensions.

(1) Z1 = X where ι1 = idX ,

(2) Z2 = X ×X endowed with ωZ2
= 1

2 (ωFS ⊕ωFS ) and the diagonal G-action, where the embedding is
given by ι2(x) = (x,x), and

(3) Z3 = Z2 with ωZ3
= 2ωZ2

and with the diagonal G-action where ι3(x) = ([1 : 0],x).

It is not hard to show that ι−11 (Zss1,G) = ι
−1
2 (Zss2,G) = ∅ while ι−13 (Zss3,G) = P1 \ {[1 : 0]}.

4.A.b. The case of linear actions on projective manifolds

Let us recall the approach taken by Doran and Kirwan in [DK07]. There, the authors study the situation
where X is a subvariety of P(W ) for some finite-dimensional G-moduleW and they consider the embedding
ι̂ : G ×N X ↪→ G ×N P(W ) � (G/N )×P(W ) that is induced by the embedding ι : X ↪→ P(W ). Then, they
equip G ×N X with the G-linearised ample line bundle L := ι̂∗(pr∗1(OG/N ) ⊗ pr∗2(OP(W )(1))). In this way,
Doran and Kirwan can consider the set of Mumford-semistable points (G ×N X)ssG (L) in G ×N X and they
proceed by defining the set of Mumford-semistable points in X as XssN (L) := ι

−1(G ×N X)ssG (L), see [DK07,
Definition 5.1.5]. As shown in [DK07, Propositions 5.1.8 and 5.1.9], this set XssN does not depend on the
choice of the group G and can be intrinsically defined knowing only the N -action on X.

4.A.c. The definition of semistability

The algebraic approach suggests that in our situation, we should choose a Hamiltonian G-extension (Z,ωZ )
of the N -action on X and then consider the analogous embedding Y := G ×N X ↪→ G ×N Z � G/N ×Z,
such that the Hamiltonian G-extension Z plays the role of the projectivised G-module P(W ).

To implement this idea, first note that the N -equivariant embedding ι : X ↪→ Z induces the G-
equivariant proper embedding

ι̂ : Y = G ×N X ↪→ G ×N Z � G/N ×Z (4.1)

given by ι̂([g,x]) = (gN,g • ι(x)). Secondly, recalling that G/N is quasi-affine, choose a G-representation
space V containing G/N as an orbit as well as a K-invariant hermitian inner product on V , which induces
K-invariant Kähler forms ωV on G/N and

ω̂Z :=ωV ⊕ωZ (4.2)

on G/N ×Z . Then, we take
ωY := ι̂∗ω̂Z (4.3)

as Kähler form on Y . The spaces considered so far fit into following commutative diagram

X �
� ι //

��

Z

��
Y = G ×N X

� � ι̂ // (G/N )×Z,
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where the vertical arrows correspond to the maps given by x 7→ [e,x] and z 7→ (eN,z), respectively. It
follows that [ωY ] extends [ωX] to Y . Recall that, as K is semisimple and ωY is K-invariant, there exists
a unique moment map µY : Y → k∗ for the K-action on Y , see Remark 2.1; in other words, Y is a (non-
compact) Hamiltonian G-manifold. We will use µY to define a notion of semistability for the N -action:

Definition 4.2. Let (X,ωX) be a Hamiltonian N -manifold. We define the set of N -semistable points (with
respect to [ωX]) as

XssN [ωX] := X ∩Y
ss
G [ωY ] ,

where the Kähler form ωY on Y = G ×N X is given by Equations (4.2) and (4.3) above. Analogously, the set
of N -stable points in X is defined as XsN [ωX] := X ∩Y

s
G[ωY ], where we set Y sG[ωY ] := G •µ−1Y (0).4

Note that XssN [ωX] a priori depends on the choice of G, ωV , and Z although we do not convey this
information in our notation. We will discuss the choices regarding G and the metric on G/N in Section 4.C
below. As we will see, the definition is actually independent of the choice of a Hamiltonian G-extension,
once G and the metric on G/N are fixed; see the subsequent section.

Example 4.3. (A non-projective compact Kähler manifold with meromorphic C-action) Let S be a
non-projective K3-surface with Pic(S) , {e}, and let L→ S be a non-trivial holomorphic line bundle on
S with zero section ZL ⊂ L. Let P := L \ZL→ S be the associated C

∗-principal bundle, and consider the
non-trivial P1-bundle

M := P ×
C
∗ P

1 −→ P /C∗ = S.

As the Albanese of P1 is trivial and since S is a simply-connected compact Kähler manifold, the compact
complex manifold M is Kähler by Blanchard’s theorem, cf. the discussion in Section 3.C.c. On the other
hand, as the non-projective surface S embeds into M as zero section, Y is likewise non-projective. Since
the corresponding vector field has zeroes, the effective C

∗-action from the left is trivial on the Albanese of
M, see [Fuj78, Prop. 6.8] or [Lie78, Proposition 3.14]. Trivially extend the action of C∗ on M to an action
of the Borel subgroup C

∗ < B of lower-triangular matrices in SL(2,C) =: G, and define

X := G ×BM.

Since the B-action on the Albanese of M is trivial and since P
1 is simply-connected, it again follows from

Blanchard’s theorem that the compact complex manifold X is Kähler, see also Lemma 3.18. Moreover, the
G-action on X induces an action of the unipotent algebraic subgroup N < G of strictly upper-triangular
elements of SL(2,C). Set K := SU(2). Then, any K-invariant Kähler form ωX on X produces a moment
map µX : X → k∗ for the K-action; i.e., X is its own Hamiltonian G-extension, so that the N -action on X
is meromorphic.

Now, apply the construction described at the beginning of the present section to X. As G > N already
acts on X, we can choose Z = X as Hamiltonian G-extension. Let ωV be the essentially unique flat K-
invariant Kähler form on G/N � C

2 \ {0} ⊂ V = C
2, and hence consider the Kähler form ωY = ωV ⊕ωX

on Y := G ×N X � G/N ×X, together with the resulting moment map µY = µG/N +µX : Y → k∗. We claim
that XssN [ωX] , ∅, which will conclude our construction. In order to establish the claim, we first note that
µX(X) , {0}, as otherwise Equation (2.2) would imply that the K-action on X is trivial. Let β0 ∈ µX(X)\{0}
and choose x0 ∈ µ−1X (β0). We have µG/N (G/N ) = k∗ \ {0}, cf. Section 2.D, and hence there exists g0 ∈ G
such that µG/N (g0U ) = −β0. By construction, we then have µY (g0 • (eU,g

−1
0 • x0)) = µY (g0U,x0) = 0, and

hence (eU,g−10 • x0) ∈ Y ssG [ωY ]∩ ({eU } ×X) = XssN [ωX], which is therefore non-empty, as claimed.

4 ↑ With this definition, a semistable point x ∈ X is N -stable if and only if N • x is closed in XssN [ωX ]. In view of Lemma 5.1
and Theorem 5.3 below this is the correct notion in our situation. The reader should however be aware that there are several
notions of (proper) stability in use in the literature.
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4.B. Semistability does not depend on the G-extension

In contrast to the naive definition of semistability discussed in Section 4.A.a above, it turns out the set of
G-semistable points in Y with respect to ωY as defined in Definition 4.2 does not depend on the choice of
the Hamiltonian G-extension (Z,ωZ ).

Theorem 4.4. Let N be a unipotent subgroup of the simply-connected semisimple complex Lie group G, acting
meromorphically on the compact Kähler manifold (X,ωX). Let (Zj ,ωj ), j = 1,2, be two Hamiltonian G-
extensions of the N -action on X. Choose a G-equivariant algebraic embedding G/N ↪→ V into a G-representation
space V , and a K-invariant Hermitian inner product on V , inducing Kähler forms ωV on G/N , ω̂Z on G/N×Z,
and ωY ,1, ωY ,2 on Y , as described in Section 4.A.a. Then, we have Y

ss
G [ωY ,1] = Y

ss
G [ωY ,2].

Proof. We will prove that on the smooth Kähler compactification Y of Y constructed in Proposition 3.21
there exists a (1,1)-form α ∈ A1,1(Y ) satisfying the following two properties:

(a) α|Y =ωY ,2 −ωY ,1, and

(b) [α] = 0 ∈H2(Y ,R).

It then follows from the ∂∂-lemma on the compact Kähler manifold Y that there is a smooth function
ϕ ∈ C∞(Y ) such that α = i∂∂ϕ. Restricting everything to Y , we obtain a bounded smooth function ϕ on
Y such that ωY ,2 = ωY ,1 + i∂∂ϕ. In this situation, we can repeat the proof of Proposition 2.4 to deduce
Y ssG [ωY ,1] = Y

ss
G [ωY ,2]. Hence, in order to complete the argument, we must show existence of Y and α with

the above properties.
To do so, we note first that (Z,ωZ ) := (Z1 × Z2,

1
2 (ω1 ⊕ω2)) is another Hamiltonian G-extension of

the N -action on X; here, G acts diagonally on Z1 × Z2 and ι : X ↪→ Z is given by the direct product
ι(x) = (ι1(x), ι2(x)) of the two inclusions ιj : X ↪→ Zj , j = 1,2. Our situation can be summarised by the
following diagram:

G/N ×Z1
// Z1

Y ι̂ //

ι̂1
66

ι̂2

((

G/N ×Z
prZ //

q1

OO

q2
��

Z

OO

��
G/N ×Z2

// Z2.

We denote the Kähler form ωV ⊕ωj on G/N ×Zj by ω̂j , see Equation (4.2), and note that by assumption
the same form ωV appears in both formulas. Then, it follows from the general construction and from the
diagram above that

ωY ,2 −ωY ,1 = ι̂∗(q∗2(ω̂2)− q∗1(ω̂1)) = ι̂
∗(pr∗Z(ω2 −ω1)). (4.4)

Let G/N as defined in Equation (3.4) and let us denote the natural projection G/N ×Z → Z by prZ . As
Z is a Hamiltonian G-extension, by Proposition 3.23 there exists a G-equivariant holomorphic embedding
ψ : Y ↪→ G/N ×Z . It now follows from Equation (4.4) that

α := ψ∗(pr∗Z(ω2 −ω1)) ∈ A1,1(Y ) (4.5)

fulfils property (a), as desired.
We still must show that the K-invariant 2-form α is cohomologuous to zero on Y . For this, we

consider the holomorphic fibre bundle q := prG/N ◦ψ : Y ↪→ G/N × Z → G/N with typical fibre X and

base G/N . Since Y is Kähler, and as by Remark 3.24 the manifold G/N is simply-connected, it follows
from [Bla56, Théorème II.1.1] that the transgression map H1(X,R)→ H2(G/N,R) is zero. Consequently,
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the Leray spectral sequence for q degenerates at the E2-term by [Bla56, Théorème II.1.2]; see also [Voi07,
Theorem 4.15 and Remark 4.16]. Again using simple-connectedness of G/N , we conclude that

Hk(G/N,R)⊗H l(X,R) = Ek,l2 = Ek,l∞ = GrkHk+l(Y ,R) and E1,1
∞ = {0}.

Computing the corresponding filtration of H2(Y ,R) and comparing it with the Leray spectral sequence for
prG/N then leads to the following commutative diagram

0 // H2(G/N,R)
q∗ // H2(Y ,R)

j∗X // H2(X,R) // 0

0 // H2(G/N,R)

=

OO

pr∗
G/N // H2(G/N,R)⊕H2(Z,R)

ψ∗

OO

j∗Z // H2(Z,R)

ι∗

OO

// 0

where jX : X ↪→ Y is the inclusion as the fibre over eN ∈ G/N , and similarly for jZ .
Now, Equation (4.5) says that [α] = ψ∗([0]⊕ [ω2 −ω1]). Together with [j∗X(α)] = [ι∗2(ω2)] − [ι∗1(ω1)] =

[ωX]− [ωX] = 0 this implies that [α] = 0, as claimed.

Remark 4.5. Note that in contrast to their difference the forms ωY ,j themselves do not extend to the

compactification Y .

4.C. Discussion regarding the choice of Kähler metric on G/N

As this is a subtle issue, let us discuss the choice of Kähler forms on G/N made in Section 4.A.a and the fact
that we have to fix such a form in some detail. We will provide examples showing that the independence
statement of Theorem 4.4 is optimal from many points of view. The problems occuring are closely related to
the ones encountered in the algebraic situation when searching for various kinds of “reductive envelopes”,
cf. [DK07, Sections 5.2 and 5.3].

4.C.a. The algebraic situation

Let us compare with Doran–Kirwan’s approach in the algebraic situation, see Section 4.A.a: The key point
that explains the choice of the trivial line bundle on G/N and that eventually makes the proof of [DK07,
Proposition 5.1.9] on the independence of semistability from the choice of the embedding into G work is
the following. Given any pair G and G′ of reductive groups such that N ⊂ G ⊂ G′ , the line bundles L on
G ×N X and L′ on G′ ×N X constructed in [DK07] as above verify ι∗L′ = L where ι : G ×N X ↪→ G′ ×N X
is the embedding induced by the inclusion G ↪→ G′ . In the analytic category, such a canonical choice of
Kähler metric on G/N does not exist, even among curvature forms in the trivial line bundle. Indeed, every
K-invariant Kähler metric of the form ω = i∂∂ρ with ρ ∈ C∞(G/N )K is the curvature form of a K-invariant
hermitian metric in the trivial line bundle on G/N , cf. [Dem12, Chapter V, (12.6)]. Even if we restrict to
metrics of this form, the set of semistable points might change, as the following example shows.

Example 4.6. Let us consider the algebraic and hence meromorphic action of C � N ⊂ G = SL(2,C) on
X = P1, endowed with the Fubini-Study form ωFS . As Hamiltonian G-extension of the N -action on X we
take Z = X. Let K = SU(2).

According to [Dem12, Lemma 7.10], every K-invariant Kähler form on G/N � C
2 \ {0} is of the form

i∂∂ρ(‖z‖) where ρ is a smooth function on R
>0 such that ρ ◦ exp is strictly increasing and strictly convex.

Let ϕ ∈ C∞(R>0) be the function defined by ϕ(t2) = ρ(t). Then the unique moment map for the action of
SU(2) on C

2 \ {0} is given by

z = (z1, z2) 7→ ϕ′(‖z‖2)
 |z1|2−|z2|22 z1z2
z1z2 − |z1|

2−|z2|2
2

 . (4.6)
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We now consider the one-parameter family of Kähler forms ωG/N,c given by ωG/N,c := i∂∂ρc(‖z‖),
where ρc(t) = c log(1 + t2) with c > 0. Following the construction of Section 4.A.a, the induced Kähler
form on Y = G/N ×P1 is ωc = i∂∂ρc(‖z‖)⊕ωFS . Identifying su(2)∗ with isu(2) via the Killing form, the
corresponding moment map µ : (G/N )×P1→ isu(2) is given by

µ(z, [x0 : x1]) =
c

1+ ‖z‖2

 |z1|2−|z2|22 z1z2
z1z2 − |z1|

2−|z2|2
2

+ 1
|x0|2 + |x1|2

 |x0|2−|x1|22 x0x1
x0x1 − |x0|

2−|x1|2
2

 .
A slice for the SU(2)-action on (G/N ) × P1 is given by S = {((z, r), [0 : 1]) | z ∈ C, r ≥ 0}. The point
((z, r), [0 : 1]) ∈ S is mapped under µ to

c

1+ |z|2 + r2

 |z|2−r22 − 1
2 rz

rz − |z|
2−r2
2 + 1

2

 .
Consequently, µ−1(0) is non-empty if and (c − 1)|z|2 = 1 for some z ∈ C∗, which is the case if and only if
c > 1. In summary, we see that, depending on c > 0, the set of semistable points XssN can be empty or not.

4.C.b. Proper moment maps

Notice that Example 4.6 shows that for non-projective G-varieties in general the set of GIT-semistable
points for the linearisation of the G-action in an ample line bundle L and the set of semistable points
with respect to a moment map µ computed using the curvature form of a Hermitian metric in the same
line bundle L do not have to coincide. In case the moment map under discussion is proper, the two sets
coincide by [Sj95, Theorem 2.18]. Hence, in the above example one could look for Kähler forms leading
to proper moment maps that would then give a link to the algebraic theory and establish independence of
semistabilty from the choice of the metric.

Looking at formula (4.6) one sees that a moment map of the most general form possible in the given
situation is proper on C

2 \ {0} if and only if

lim
t→0

ϕ′(t)t = lim
t→∞

ϕ′(t)t =∞.

Since t 7→ ρ(et) = ϕ(e2t) is strictly increasing and strictly convex, we see that t 7→ 2ϕ′(e2t)e2t is strictly
increasing. Hence, limt→0ϕ

′(t)t =∞ is impossible. This proves that there is no proper SU(2)-equivariant
moment map on C

2 \ {0}. Using compactness of P1, one can use this to conclude that none of the moment
maps for the corresponding Kähler forms on G/N ×P1 is proper either, so that proper moment maps just
do not exist in the situation at hand.

4.C.c. Metrics arising from embedding into representations

As we have seen in Section 2.D, a natural choice in the situation at hand is to consider Kähler metrics on
G/N that are obtained by embedding this homogeneous space as an orbit in a G-representation space, and
this is also the choice made in the construction presented in Section 4.A.a. We will see in Section 5 below
that this leads to a number of desirable properties. However, also a restriction to this class of metrics does
not lead to a common notion of semistability, as the following example shows.

Example 4.7. We continue the discussion at the end of Example 2.9 and consider G = SL(3,C) and
N = Gv the unipotent radical of a certain Borel subgroup of G. If we equip G/N with the restriction of the
flat Kähler metric for which the image of the moment map µV has complement with non-empty interior,
and if we take X = Xα to be the G-flag manifold corresponding to the coadjoint orbit Ad∗(K) •α through
a point α ∈ k∗reg such that −α does not lie in the image of µV , then the set of semistable points for the
G-action on G ×N X is empty. On the other hand, as N is a Grosshans subgroup of G, there exists a
G-module V ′ inducing a moment map µV ′ on G/N whose image is a K-invariant dense open subset of
k∗, see Lemma 2.8. Without loss of generality, we may assume that the point α ∈ k∗reg chosen above fulfils
−α ∈ µV ′ (G/N ). Then, for the Kähler metric on G ×N X induced by the second embedding the set of
semistable points is not empty.



D. Greb and C. Miebach, Hamiltonian actions of unipotent groups 21D. Greb and C. Miebach, Hamiltonian actions of unipotent groups 21

4.C.d. Unipotent radicals of parabolic subgroups

The next example shows that even in the case that we are able to embed N as the unipotent radical of
parabolic subgroups of two different semisimple groups G1 and G2 and hence, as explained in Remark 2.10,
for each of the two embeddings there exists a very natural choice of a Kähler form on Gj /N , we cannot
expect XssN to be independent of the group Gj .

Example 4.8. Let us consider the action of N =C
2 on X = P2 given by the embedding

N ↪→ G1 = SL(3,C) = SU(3)C = KC

1 , (t, s) 7→


1 0 t
0 1 s
0 0 1

 .
Taking the obvious Hamiltonian G1-extension Z1 = X, we have G1 ×N X = G1 ×N Z1 = (G1/N )×P2 with
moment map µ = µV +µ

P2
: (G1/N )×P2→ k∗1 = su(3)

∗. Since N is embedded as the unipotent radical of

a parabolic subgroup P of G1, we may consider the canonical affine completion G1/N
a

and equip it with
the canonical Kähler form that is described in the paragraph before Remark 3.4 in [Kir11], cf. Remark 2.10.

The behaviour of the corresponding moment map µV on G1/N
a

is best understood in terms of its

description as the universal K (P )-imploded cross-section (T ∗K)K,K
(P )

impl , see [Kir11, Definition 3.11]. According

to the discussion following Remark 3.13 in [Kir11], the G1-orbits in G1/N
a

correspond to the strata

(K1 ×Ad∗(K
(P )
1 ) • σ )/≈

K
(P )
1
,

where σ runs through the open faces of (t∗1)+. In particular, the open orbit G1/N is associated with the
interior int(t∗1)+ of (t∗1)+. The description of the moment map µV given in [Kir11, Theorem 3.12] now
implies that µV (G1/N ) is contained in (k1)∗reg = Ad∗(K1) • int(t∗1)+. Since µ

P2
(P2) does not intersect the

interior of (t∗1)+, the zero fibre of µ is empty, hence XssN = ∅.
Now, let us consider the second embedding

N ↪→ G2 = SL(2,C)× SL(2,C) = (SU(2)× SU(2))C= KC

2 , (t, s) 7→
((
1 t
0 1

)
,

(
1 s
0 1

))
.

Here, N is embedded as the unipotent radical of a Borel subgroup of G2, and thus in particular again a
Grosshans subgroup of G2. As G2-extension of the N -action on X = P2 we choose the embedding

ι : P2 ↪→ P3, ι([z0 : z1 : z2]) = [z0 : z2 : z1 : z2],

which is N -equivariant for the N -action on P3 given by

N ↪→ G2 ↪→ SL(4,C), (t, s) 7→


1 t 0 0
0 1 0 0
0 0 1 s
0 0 0 1

 .
A moment map µ

P3
: P3 → su(2) ⊕ su(2) for the K2-action on P3 with respect to the Fubini-Study

metric is given by the explicit formula

µ
P3
([z0 : z1 : z2 : z3]) =

1
|z0|2 + · · ·+ |z3|2

 |z0|2−|z1|22 z0z1
z0z1 − |z0|

2−|z1|2
2

 ⊕  |z2|2−|z3|22 z2z3
z2z3 − |z2|

2−|z3|2
2

 ,
see Example 4.6. In order to determine the semistable locus Y ssG2

(µY ) in Y = G2 ×N X we consider the
closed embedding

Y = G2 ×N X ↪→ G2 ×N Z � G2/N ×P3
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and the moment map µY = (µV +µ
P3
)|Y . The canonical affine closure of

G2/N � (C2 \ {0})× (C2 \ {0})

is V = C
2 ⊕C2 = C

4, which we equip with the Hermitian structure 1
2〈·, ·〉st , where 〈·, ·〉st is the standard

Hermitian product of C4. A direct calculation using the formulae given in Example 4.6 and the explicit
expression for µ

P3
given above yields

µY (eN, [0 : 0 : 1]) = µV ((1,0), (1,0)) +µP3
([0 : 1 : 0 : 1]) = 0.

Hence, we have XssN , ∅.

4.D. Semistable points induced by affine completions of G/N

There is a further way to define N -semistable points in X, less directly linked to the intrinsic geome-
try of G/N and X. Instead of discussing the diagonal G-action on G/N × Z let us consider an affine
completion G/N

a
and consider the diagonal G-action on G/N

a × Z . Let ι : X ↪→ G/N
a × Z be the N -

equivariant embedding and define XssN [ωX] := ι
−1((G/N

a × Z)ssG [ωV +ωZ ]). Then, XssN [ωX] is an open
N -invariant subset which contains but in general is strictly bigger than XssN [ωX]. Analogously, we define
XsN as ι−1((G/N

a ×Z)sG[ωV +ωZ ]).

Lemma 4.9. Let (X,ωX) be a compact Hamiltonian N -manifold with a Hamiltonian G-extension (Z,ωZ ). If
N is a Grosshans subgroup of G, i.e., if C[G]N is finitely generated, then for the canonical affine completion
SpecC[G]N of G/N the set XssN is non-empty.

Proof. We already noticed in Section 2.D that under the Grosshans assumption the corresponding moment
map µV : SpecC[G]N → k∗ is surjective. Every moment map µ = µV +µZ : SpecC[G]N ×Z→ k∗ thus has
non-empty zero fibre.

4.E. Algebraic actions on projective manifolds

In this section, we study the following situation: let X be a projective manifold and N a unipotent group
acting linearly on X in the sense that there exists a finite-dimensional N -representation W such that the
corresponding homomorphism N → GL(W ) embeds N into a semisimple subgroup G of SL(W ), and an
N -equivariant embedding ι : X ↪→ P(W ). We will compare the moment map approach presented in earlier
sections with the Geometric Invariant Theory approach of Doran–Kirwan [DK07].

Consider the (very ample) line bundle LX := ι∗(O
P(W )(1)) on X, which is N -linearised by construction.

Let 〈·, ·〉 be a Hermitian inner product on W and set K := SU(W,〈·, ·〉)∩G, so that G = KC. Endow P(W )
and hence X with the corresponding Fubini-Study Kähler form ωFS and its restriction ωX := ι∗(ωFS ),
respectively, so that [ωX] = c1(LX) ∈H2(X,R). Note that P(W ) is a Hamiltonian G-extension of X. Next,
as suggested by the construction of semistable points with respect to ωX , we look at

ι : X ↪→ Y = G ×N X ↪→ G ×N P(W ) � G/N ×P(W ) ↪→ G/N
a ×P(W ),

cf. Section 4.D, and additionally at the G-linearised ample line bundle L := OG/N a � O
P(W )(1). In this

situation, we define
XsN (LX) := ι

−1((G/N
a ×P(W ))sG(L))

to be the pre-image of the GIT-stable points for the G-action on G/N
a ×P(W ) and the given linearisation,

which is unique as G is semisimple. The main comparison result regarding moment-map-semistability and
GIT-semistability can now be formulated as follows:

Proposition 4.10. In the above situation, assume additionally that G/N
a
is normal. Then, we have

XssN [ωX] = X
s
N (LX). (4.7)
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Proof. The inner product 〈·, ·〉 induces a K-invariant Hermitian metric on O
P(W )(1) such that i

2π × the

curvature is ωFS . Using a K-invariant Hermitian metric on the trivial line bundle over V ⊃ G/N a
with

i
2π × curvature equal to ωV , we get a K-invariant Hermitian metric h on L→ G/N

a ×P(W ) with i
2π ×

curvature equal to ωV +ωFS . We are hence in the general situation of [Sj95, Section 2.2]5, with the exception
that G/N

a ×P(W ) is normal and not smooth, which does not affect Sjamaar’s arguments6. In particular,
the compact complex space (G/N

a ×P(W ))ssG (µG/N a×P(W ))//G is projective algebraic by Grauert’s version
of the Kodaira Embedding Theorem, see [Sj95, Theorem 2.17]. Moreover, we claim that

(G/N
a ×P(W ))ssG (µG/N a×P(W )) = (G/N

a ×P(W ))ssG (L). (4.8)

In order to prove this, as the moment map µG/N a×P(W ) is proper we can follow the general line of

argumentation presented in [Sj95, proof of Theorem 2.18]: Since the possibly singular variety G/N
a×P(W )

is contained in V × P(W ), and since all differential geometric and symplectic objects are obtained by
restriction, the computations regarding the relation between the norms of sections and (the norm square
of) the moment map given in the first paragraph of loc. cit. continue to hold, so that for any µ-semistable
p ∈ G/N a ×P(W ) and any G-invariant section s of L over (G/N

a ×P(W ))ssG (µG/N a×P(W )), the restriction

of the function h(s, s) to the closure of G • p inside (G/N
a ×P(W ))ssG (µG/N a×P(W )) takes on its maximum

at the limit F∞(p) under the gradient flow of −‖µG/N a×P(W )‖
2, from which we conclude that s is bounded

on (G/N
a × P(W ))ssG (µG/N a×P(W )). Furthermore, an application of [Gre10a, Proposition 7.6] shows that

the set of µ-semistable points is Zariski-open. Since in addition G/N
a × P(W ) is normal, it therefore

follows from Riemann’s Extension Theorem7 that s extends to a G-invariant section over the whole of
G/N

a ×P(W ). The arguments for the two implications “algebraically semistable implies analytically semi-
stable” and “analytically semistable implies algebraically semistable” can now be used without changes,
proving (4.8).

The analogous equality for stable points follows from the fact that on both sides, these are the ones for
which the corresponding fibre of the quotient map consists of a single (closed) orbit. Intersecting with ι(X)
yields XsN [ωX] = X

s
N (LX), from which we conclude using Corollary 5.2 proven in Section 5.A below.

Remark 4.11. (Comparison of semistable points) In the given situation, Doran and Kirwan in [DK07,
Definition 5.1.6] define the set of GIT-semistable points to be

XssN (LX) := X ∩Y
ss
G (ι̂∗OG/N �OP(W )(1)),

where ι̂ is given by (4.1). In general, this set will not coincide with XssN [ωX], as the following argument shows.
Assume we had XssN [ωX] = X

ss
N (LX). Since the latter set only depends on the N -action on X and its lift

to the N -linearised line bundle LX , see [DK07, Proposition 5.1.9], the same would be true for XssN [ωX]. In
particular, XssN [ωX] would be independent of the chosen embedding N ↪→ G and of the chosen embedding

G/N ↪→ V with (normal) affinisation G/N
a
. This however would stand in contradiction to Example 4.8.

In this direction, Equality (4.7) gives the inclusion XssN [ωX] ⊂ X
ss
N (LX), which in general is strict, as the

gradient flow of the norm square of the moment map of a GIT-semistable point in ι̂(Y ) might converge to
a point (in the zero fibre of the moment map) in the boundary of ι̂(Y ) in G/N

a ×P(W ).

5. Properties of quotients by unipotent groups

We establish the existence of a compactifiable geometric quotient of the set of semistable points by the
N -action that extends to a meromorphic map from X to the compactification and carries a natural Kähler

5 ↑ As G is semisimple, the moment map computed there has to coincide with µG/N a×P(W ).
6 ↑ See also [HaH99] for the result attributed to Roberts. Regarding [Sj95, Lemma 2.16], see also [HHL94].
7 ↑ In Sjamaar’s setup the application of Riemann’s Extension Theorem is not justified, since at this point the complement of

the set of µ-semistable points is not known to be small enough; e.g., it could contain interior points (in the Euclidean topology).
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form obtained by symplectic reduction. We will use the notation established in Section 4.A.a.

5.A. Existence of geometric quotients

As in the reductive case, sets of semistable points admit quotients, which in the unipotent case are auto-
matically geometric, since unipotent groups cannot have properly semistable orbits by the following

Lemma 5.1. Let (X,ωX) be a Hamiltonian N -manifold. Then every N -orbit in X
ss
N [ωX] is closed in X

ss
N [ωX],

i.e., we have XssN [ωX] = X
s
N [ωX].

Proof. Consider the analytic Hilbert quotient πG : Y
ss
G [ωY ] → Y ssG [ωY ]//G. The fibre π−1G (πG(x)) is an

affine G-variety, see [HH99, Proposition 3.3.7]. It hence follows from a classical result that every N -orbit is
closed in π−1G (πG(x)) and hence in Y ssG [ωX]. The claim follows.

Corollary 5.2. In the situation of Section 4.D, we have XssN [ωX] = X
s
N [ωX].

Proof. It follows from Lemma 5.1 that every orbit in Y ssG [ωY ] is closed in Y ssG [ωY ]. If Φ : Y ↪→ G/N
a ×Z is

the natural inclusion, we hence have

Y ss[ωY ] = {y ∈ Y | G • y ∩µ−1Y (0) , ∅} = {y ∈ Y | G •Φ(y)∩µ−1
G/N

a×Z
(0) , ∅}.

As Φ restricted to X ⊂ Y coincides with ι, the claim follows.

Theorem 5.3. Let (X,ωX) be a compact Hamiltonian N -manifold. Then, the set X
ss
N [ωX] of semistable points

admits a geometric quotient π : XssN [ωX]→ XssN [ωX]/N by the N -action. In fact, π is a principal N -fibre bundle
and XssN [ωX]/N =:Q is smooth.

Proof. By the quotient theory for Hamiltonian actions of reductive groups, see Theorem 2.6, the set of
G-semistable points Y ssG [ωY ] = G •XssN [ωX] admits an analytic Hilbert quotient by the G-action. Moreover,
by Lemma 5.1, every G-orbit in Y ssG [ωY ] is closed there, hence the quotient Y ssG [ωY ]→ Y ssG [ωY ]//G is in
fact geometric. By construction of the twisted product, the restriction to XssN [ωX] ⊂ Y

ss
G [ωY ] yields the

desired geometric quotient π.
For every x ∈ XssN [ωX], the G-orbit is closed, hence the isotropy subgroup Gx is reductive. On the other

hand, as x ∈ X, the isotropy is contained in N , and hence unipotent. It follows that Gx = Nx = {e}, and
hence that π is a principal N -fibre bundle.

5.B. Compactifications of the quotient

We will establish the existence of natural compactifications of the quotient XssN [ωX]/N , which we assume to
be non-empty in this section.

Recall that the fundamental construction of Section 4.A.a involves the choice of an embedding of
G/N into a Hermitian K-representation V as a G-orbit G • v, see Equation (4.2). This leads to an affine
completion G/N

a
:= G • v of G/N to which both the Kähler form and the moment map extend. Consider

the composition Φ : Y ↪→ G/N
a ×Z of the open embedding G/N ×Z ↪→ G/N

a ×Z with the embedding
(4.1) used in the main construction.

Proposition 5.4. The inclusion Y = G ×N X
Φ
↪→ G/N

a ×Z induces an open embedding

φ : XssN [ωX]/N ↪→Q

of XssN [ωX]/N =Q into a compact complex space Q such that Q \φ(Q) is analytic and nowhere dense.
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Proof. We claim that Φ(Y ) is Zariski-open in its closure. For this, we first look at the compactification
V ×Z ↪→ P(V ⊕C)×Z ; by slight abuse of notation, the composition of Φ with this embedding will also be
denoted by Φ . Since the G-action on the compact Kähler manifold Z is Hamiltonian, it is meromorphic, see
Remark 2.2. As in addition the G-action on V is algebraic, the G-action on the compact Kähler manifold
P(V ⊕C) ×Z is meromorphic. Secondly, we notice that Φ(Y ) = G • ({eU } × ι(X)), where ι : X ↪→ Z is the
extension map; i.e., Φ(Y ) is the G-sweep of a compact complex submanifold of P(V ⊕C)×Z . It therefore
follows from [Fuj78, Lemma 2.4(1)] that Φ(Y ) is Zariski-open in its closure inside P(V ⊕C)×Z, and hence
it is Zariski-open in its closure inside G/N

a ×Z . We denote this closure by Y .
By Theorem 2.7 the moment map µV is proper on G/N

a
. It follows that the moment map for the

action of K on G/N
a ×Z and hence the restriction µY : Y → k∗ of this moment map to the analytic subset

Y ⊂ G/N a × Z is likewise proper. Recalling the construction of the Kähler form ωY and the associated
moment map µY , we can summarise the situation in the following commutative diagram:

Y �
� //

µY ��

Y

µY
��

� � // G/N
a ×Z �

� //

��

V ×Z

µV +µZ
yy

k∗
= // k∗.

Here, in the first line, the first inclusion is open and the other two inclusions are closed.
Since µY is proper, its zero fibre is compact, and hence the associated analytic Hilbert quotient

Y
ss
G (µY )//G ' µ

−1
Y
(0)/K is a compact complex space, which in fact comes with a natural closed embed-

ding into the (non-compact) analytic Hilbert quotient (V ×Z)ssG (µV +µZ )//G. As the inclusion Y ↪→ Y has
Zariski-open image, and as every G-orbit in Y ssG (µY ) = Y

ss
G [ωY ] is closed by the argument in the proof of

Theorem 5.3, the inclusion Y ssG [ωY ] ↪→ Y
ss
G (µY ) is Zariski-open and saturated with respect to the quotient

map π : Y
ss
G (µY )→ Y

ss
G (µY )//G. It therefore induces the desired Zariski-open embedding

φ : Q = XssN [ωX]/N � Y ssG [ωY ]/G ↪→ Y
ss
G (µY )//G =:Q

into the compact complex space Q.

5.C. Zariski-openness of semistable points and meromorphic extension of the quotient
map

While there is no general result for analyticity of the complement of the set of semistable points in a
Hamiltonian G-manifold with non-proper moment map, in our setup this can be shown by hand.

Theorem 5.5. Let (X,ωX) be a compact Hamiltonian N -manifold. Then, the set X
ss
N [ωX] of semistable points

is Zariski-open in X. Moreover, the quotient map π : XssN [ωX]→ XssN [ωX]/N extends to a meromorphic map8

π : XdQ to the compact complex space Q constructed in the proof of Proposition 5.4.

Proof. By part (1) of Theorem 2.6, XssN [ωX] is open in the Euclidean topology. Let πF : XdQF be a Fujiki
quotient of X by the N -action, whose existence is guaranteed by Proposition 1.4, and let Γ ⊂ X ×QF be
the graph. In particular, Γ is an N -invariant, irreducible, compact analytic subset of X ×QF , where N acts
only on the first factor. Embedding X ×QF into Y ×QF and further into P(V ⊕C)×Z ×QF as in the proof
of Proposition 5.4 we can interpret Γ as an N -invariant subvariety in P(V ⊕C)×Z ×QF . Using again that
the G-action on the latter space is meromorphic, we conclude that Γ̂ := G • Γ is Zariski-open in its closure
in Y ×QF , and in particular irreducible. On Y ⊂ Y it is the graph of the G-invariant extension of the
N -invariant meromorphic map πF from X to Y = G ×N X. It follows that Γ̂ is the graph of a G-invariant

8 ↑ The reader is referred to [Whi72, Chapter 6, Section 3] for an in depth discussion of meromorphic mappings between
complex spaces.
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meromorphic map from Y to QF , which we will call π̂F . The graph of the restriction of π̂F to Y
ss
G (µY ) is

equal to Γ̂ ◦ := Γ̂ ∩ (Y ssG (µY )×QF). Now, Y
ss
G (µY )×QF admits an analytic Hilbert quotient by the G-action,

namely Π = π × idQF : Y
ss
G (µY ) ×QF → Q ×QF . As Γ̂ ◦ is a G-invariant, irreducible analytic subset of

Y
ss
G (µY )×QF , its image Γ̂ ◦red =Π(Γ̂ ◦) is an irreducible analytic subset of Q ×QF by the basic properties of

analytic Hilbert quotients listed in Section 2.C.
On the one hand, as orbits through points in Y ssG (µY ) ⊂ Y

ss
G (µY ) are closed, Γ̂ ◦red defines a meromorphic

map πF,red from Q to QF , cf. the argument given in the proof of [Gre10a, Proposition 4.5]. On the other
hand, consider the open subset U :=UF∩XssN [ωX], cf. Proposition 1.4. As this set is N -invariant, and since
both πF |U and π|U are geometric quotients for the N -action on U by Proposition 1.4 and Theorem 5.3,
respectively, the respective images πF(U ) ⊂ QF and π(U ) ⊂ Q ⊂ Q are biholomorphic via πF,red. It
follows that πF,red : Qd QF is bimeromorphic. From this, we conclude that (πF,red)−1 ◦πF : X d Q is a
meromorphic extension of π and that there are Zariski-open, dense subsets Ω ⊂ Q and ΩF ⊂ QF that are
biholomorphic via πF,red. By shrinking UF if necessary, we may assume that ΩF = πF(UF) and Ω ⊂Q ⊂Q.
The situation is hence summarised by the following commutative diagram

UF
� � //

πF
����

XssN [ωX]

π
����

ΩF
� � (πF,red)

−1
// Q �
� // Q.

In particular, the Zariski-open subset UF is contained in XssN [ωX]. Since X is compact, using a Noetherian
induction argument applied to the analytic subset X ′ := X \ UF we conclude that XssN [ωX] and hence
X \XssN [ωX] is constructible in the Zariski-topology of X. As we know from the start that X \XssN [ωX] is
closed in the Euclidean topology of X, the claim follows.

5.D. Reduced Kähler structure on the quotient

We will show that using a symplectic reduction procedure the quotient XssN [ωX]/N can be endowed with a
Kähler form naturally induced from ωX . This form extends to the compactification Q and its class pulls
back under π to the class of [ωX] on XssN [ωX].

Theorem 5.6. In the setup of Proposition 5.4, there exists a Kähler structure9 ωQ on the compact complex space

Q whose restriction ωQ =ωQ|Q to Q ↪→Q is smooth and fulfils

[π∗ωQ] = [ωX |XssN [ωX ]] ∈H
2(XssN [ωX],R).

Proof. Once again, recall our setup in the following commutative diagram

XssN [ωX]
� � //

π
����

Y ssG [ωY ]

����

ψ

))
� � // Y

ss
G [ω̂Z ]

� � //

π
����

G/N
a ×Z �

� // V ×Z

prZ
��

Q � // Y ssG [ωY ]//G
� � // Q Z.

(5.1)

By applying the Kählerian reduction procedure of [HHL94] to Y
ss
G [ω̂Z ] and to the quotient Q, we obtain

a Kählerian structure ωQ on Q induced by restricting local K-invariant potentials of ω̂Z to µ−1
Y
(0) and by

the homeomorphism µ−1
Y
(0)/K 'Q, cf. Theorem 2.6. We denote the restriction of ωQ to Q by ωQ.

9 ↑ See [Gre10a, Sections 3.1 and 3.2] for the basic definitions regarding Kähler structures on (singular) complex spaces.
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In order to show that ωQ is smooth, we first note that Y ssG [ωY ] ⊂ Y
ss
G [ω̂Z ] is smooth and π-saturated,

and secondly recall the observation made in the proof of Theorem 5.3 above that the G-action on Y ssG [ωY ]
is free. Therefore, it follows from the construction of the reduced Kähler form ωQ, see [HHL94, Lemma
2 on page 132 and the proof on pages 133/134] and also compare with [Sj95, Theorem 2.10], that in the
fundamental commutative diagram

µ−1Y (0)

πK
����

� � τ // Y ssG [ωY ]

π
����

µ−1Y (0)/K '
τred // Q

(5.2)

the fibre µ−1Y (0) is smooth, the K-action on µ−1Y (0) is free, and that the Kähler structure ωQ is smooth and
fulfils the “symplectic reduction” equation

τ∗(π∗ωQ) = π
∗
K (τ
∗
redωQ) = ωY |µ−1Y (0) = τ

∗(ωY |Y ssG [ωY ]). (5.3)

More is true. Since Y ssG [ωY ] is π-saturated, and since the moment map µY : Y → k∗ is proper as
observed in the proof of Proposition 5.4, the moment map µY is admissible in the sense that the gradient
flow Ft of −‖µY ‖2 through any point p ∈ Y ssG [ωY ] exists for all times, cf. [Kir84, §9], and hence there
exists a continuous retraction of Y ssG [ωY ] to µ−1Y (0) defined by z 7→ limt→∞Ft(z), see [Sj95, page 109]
and the references given there, as well as [Ler05]. In particular, the inclusion displayed in the first line of
Diagram (5.2) induces an isomorphism between de Rham cohomology groups,

τ∗ : H2(Y ssG [ωY ],R)
�−→H2(µ−1Y (0),R).

Equation (5.3) therefore implies that

[π∗ωQ] = [ωY |Y ssG [ωY ]] ∈H
2(Y ssG [ωY ],R). (5.4)

In addition, from the right hand part of Diagram (5.1), from Equations (4.2) and (4.3), and from the the
fact that the de Rham cohomology class of ωV is trivial we infer that

[ωY |Y ssG [ωY ]] = [ψ∗(pr∗Z(ωZ ))] ∈H
2(Y ssG [ωY ],R),

so that (5.4) becomes
[π∗ωQ] = [ψ∗(pr∗Z(ωZ ))] ∈H

2(Y ssG [ωY ],R).

Finally, using this, the left hand part of Diagram (5.1), and the fact that Z as a G-extension of X fulfils (3.1)
we conclude

[π∗ωQ] = [ωX |XssN [ωX ]] ∈H
2(XssN [ωX],R).
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