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Lefschetz (1,1)-theorem in tropical geometry
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Abstract. For a tropical manifold of dimension n we show that the tropical homology classes of
degree (n − 1,n − 1) which arise as fundamental classes of tropical cycles are precisely those in
the kernel of the eigenwave map. To prove this we establish a tropical version of the Lefschetz
(1,1)-theorem for rational polyhedral spaces that relates tropical line bundles to the kernel of the
wave homomorphism on cohomology. Our result for tropical manifolds then follows by combining
this with Poincaré duality for integral tropical homology.
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Titre. Théorème de Lefschetz (1,1) en géométrie tropicale

Résumé. Pour une variété tropicale de dimension n, nous montrons que les classes d’homologie
tropicale de degré (n − 1,n − 1) apparaissant comme des classes fondamentales de cycles tropi-
caux sont exactement celles dans le noyau de l’application d’onde propre. Pour y parvenir, nous
établissons une version tropicale du théorème de Lefschetz pour les (1,1)-classes dans les espaces
polyédraux rationnels qui relie les fibrés en droites tropicaux au noyau du morphisme d’onde en
cohomologie. Notre résultat pour les variétés tropicales s’en déduit alors, en combinant cela avec
la dualité de Poincaré pour l’homologie tropicale entière.
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1. Introduction

The classical Lefschetz (1,1)-theorem characterises the cohomology classes of complex projective varieties
which arise as Chern classes of complex line bundles. The theorem asserts that these classes are precisely
the integral classes in the (1,1)-part of the Hodge decomposition. It implies the Hodge conjecture (over Z)
for the degree 2 cohomology classes of a complex projective variety. In this paper we establish analogous
results for rational polyhedral and tropical spaces.

Tropical homology in the sense of Itenberg, Mikhalkin, Katzarkov, and Zharkov was introduced as an
invariant of tropical varieties capable of providing Hodge theoretic information about complex projective
varieties via their tropicalisations [IKMZ16]. Tropical homology groups with coefficients in a ring Q can
be defined for any rational polyhedral space X, see Definition 2.1. The tropical homology groups with
Q coefficients of a rational polyhedral space X are denoted by Hp,q(X,Q). We also consider the tropical
Borel-Moore homology groups, which are denoted by HBM

p,q (X,Q). The corresponding Borel-Moore and
usual tropical homology groups agree when X is compact.

A tropical cycle, synonymously a tropical space, is a rational polyhedral space that satisfies a balancing
condition which is ubiquitous in tropical geometry, see Definition 4.12. Tropical cycles are the candidates for
tropicalisations of classical algebraic cycles. To a tropical cycle Z of dimension k in a rational polyhedral
space X, we can associate a tropical homology class which we call the fundamental class and denote by
[Z] ∈HBM

k,k (X,Z).
Tropical manifolds are tropical spaces which are locally modelled on matroidal fans, see Definition

5.1. In this paper, we determine exactly which tropical homology classes in HBM
n−1,n−1(X,Z) of a tropical

manifold X of dimension n arise from codimension one tropical cycles. In order to characterise these
tropical homology classes, we make use of the wave homomorphism

φ̂ : HBM
p,q (X,Z)→HBM

p+1,q−1(X,R),

introduced by Mikhalkin and Zharkov [MZ14], which is defined for any rational polyhedral space X. When
X arises as the tropicalisation of a family of complex projective varieties and satisfies some additional
assumptions, then the wave homomorphism is related to the monodromy operator on the mixed Hodge
structure of the family [MZ14, Section 7]. Liu constructed an analogous operator on tropical Dolbeault
cohomology of non-archimedean analytic spaces, which he relates to the monodromy operator in the
weight spectral sequence [Liu17].

It was pointed out by Mikhalkin and Zharkov that the fundamental class of a tropical cycle in X is in
the kernel of φ̂.

Theorem 1.1. For a tropical manifold X of dimension n the kernel of the wave homomorphism

φ̂ : HBM
n−1,n−1(X,Z)→HBM

n,n−2(X,R)
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consists precisely of the fundamental classes of tropical cycles of codimension one in X.

To prove Theorem 1.1, we first establish for rational polyhedral spaces, an analogue of the line bundle
version of the Lefschetz (1,1)-theorem. To do so, we consider the sheaf Aff

Z
of integral affine functions.

These functions play the role of invertible regular functions in tropical geometry. We also consider tropical
cohomology groups Hp,q(X,Q), which are the cohomology groups of a sheaf F pQ on X. The tropical Picard

group of X is defined to be Pic(X) := H1(X,Aff
Z

) and there is a Chern class map c1 : Pic(X)→H1,1(X,Z),
see Definition 3.6. These notions in tropical geometry have also appeared in the context of curves [MZ08]
and tropical complexes [Car13, Car15]. Definition 2.9 also describes the wave homomorphism on tropical
cohomology namely, φ : Hp,q(X,Z)→Hp−1,q+1(X,R).

Theorem 1.2. Let X be a rational polyhedral space with polyhedral structure, then the image of c1 : Pic(X)→
H1,1(X,Z) is equal to the kernel of the wave homomorphism φ : H1,1(X,Z)→H0,2(X,R).

To prove Theorem 1.2, we use a short exact sequence of sheaves 0→ R→ Aff
Z
→F 1

Z
→ 0, known as

the tropical exponential sequence [MZ08]. This produces a long exact sequence in cohomology:

· · · → Pic(X)→H1,1(X,Z)→H0,2(X,R)→ . . . .

For p = 0, the sheaf F 0
R

is the constant sheaf R, so we can identify H2(X,R) and H0,2(X,R). In Proposition
3.5, we show that the boundary map δ : H1,q(X,Z) → Hq+1(X,R) coincides up to sign with the wave
homomorphism. For q = 1, this implies Theorem 1.2.

When X is an abstract tropical space of dimension n, the cap product with its fundamental class
provides a map

∩[X] : Hp,q(X,Z)→HBM
n−p,n−q(X,Z). (1.1)

This allows us to describe the kernel of the wave homomorphism on homology groups.

Theorem 1.3. Let X be a tropical space of dimension n. α ∈H1,1(X;Z) is such that φ(α) = 0, then α ∩ [X] ∈
HBM
n−1,n−1(X,Z) is the fundamental class of a codimension one tropical cycle in X.

To prove Theorem 1.3 we first show that any element L ∈ Pic(X) has a rational section in the sense of
Definition 4.2. A tropical Cartier divisor is a tropical line bundle L ∈ Pic(X) together with a section s. We
can then define a map div: CaDiv(X)→ Zn−1(X), where CaDiv(X) is the group of Cartier divisors on
X and Zn−1(X) is the group of dimension one tropical cycles in X. We then show that the map given by
capping with the fundamental class (1.1) is an isomorphism when X is a tropical manifold. This extends the
version of Poincaré duality with real coefficients of Smacka and the first and third authors [JSS15, Theorem
2]. Combining this statement with Theorem 1.3, we are able to prove Theorem 1.1.

The last section presents corollaries and examples of our main theorems. In particular, we consider
tropical abelian surfaces and Klein bottles with a tropical structure. We also calculate the wave map for
two combinatorial types of smooth tropical quartic surfaces. The Picard rank of a polyhedral space X is
defined to be the rank of Pic(X). We prove the following statement regarding the Picard ranks of smooth
tropical quartic surfaces.

Theorem 1.4. For every 1 ≤ ρ ≤ 19 there exists a smooth tropical quartic surface with Picard rank ρ. Moreover,
such surfaces can be chosen to have the same combinatorial type.
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2. Preliminaries

We set T = [−∞,∞) and equip this set with the topology whose basis consists of the intervals [−∞,b) and
(a,b) for a,b , −∞. We equip T

r with the product topology. The set T r is a stratified space. For a subset
I ⊂ [r] define R

r
I = {x ∈ T r | xi = −∞⇔ i ∈ I} and T

r
I is the closure of RrI in T

r . We then have R
r
I �R

r−|I |

and T
r
I � T

r−|I |. The sedentarity of a point x ∈ T r is sed(x) := {i ∈ [n] | xi = −∞}.

2.A. Abstract polyhedral spaces and tropical varieties

A rational polyhedron in R
r is a subset defined by a finite system of affine (non-strict) inequalities 〈wi ,v〉 ≥ ci

with ci ∈ R and wi ∈ Zr . A face of a polyhedron σ is a polyhedron which is obtained by turning some of
the defining inequalities of σ into equalities.

A rational polyhedron in T
r is the closure of a rational polyhedron in R

r
I �R

r−|I | ⊂ T
r for some I ⊂ [r].

A face of a polyhedron σ in T
r is the closure of a face of σ ∩RJ for some J ⊂ [r]. A rational polyhedral

complex C in T
r is a finite set of polyhedra in T

r , satisfying the following properties:

(1) For a polyhedron σ ∈ C, if τ is a face of σ (denoted τ ≺ σ ) we have τ ∈ C.

(2) For σ,σ ′ ∈ C, if τ = σ ∩ σ ′ is non-empty, then τ is a face of both σ and σ ′ .

The maximal polyhedra, with respect to inclusion, are called facets. If all facets of C have the same
dimension n, we say C is of pure dimension n. The support of a polyhedral complex C is the union of all
its polyhedra and is denoted |C|. If X = |C|, then X is called a rational polyhedral subspace of T r and C is
called a rational polyhedral structure on X.

The relative interior of a polyhedron σ in T
r , denoted relint(σ ), is defined to be the set obtained after

removing all of the proper faces of σ . Given a polyhedral complex C in T
r , for σ ∈ C, the closed star of σ is

St(σ ) := {τ ∈ C | ∃σ ′ ∈ C such that τ,σ ⊂ σ ′}. The open star St(σ ) of σ is the open set which is the relative
interior of the support of St(σ ). Also, let CI denote the union of polyhedra σ ∈ C for which relint(σ ) ⊂R

r
I .

For a rational polyhedron σ in T
r , we denote σ ∩RrI by σI .

A map f : M → N , where M ⊂ T
m and N ⊂ T

n, is an extended affine Z-linear map if it is continuous
and there exist A ∈Mat(n×m,Z), b ∈Rn such that f (x) = Ax+ b for all x ∈Rm.

Definition 2.1. A rational polyhedral space X is a paracompact, second countable Hausdorff topological space
with an atlas of charts (ϕα : Uα→Ωα ⊂ Xα)α∈A such that:

(1) The Uα are open subsets of X, the Ωα are open subsets of rational polyhedral subspaces Xα ⊂ T
rα , and the

maps ϕα : Uα→Ωα are homeomorphisms for all α;

(2) for all α,β ∈ A the transition map

ϕα ◦ϕ−1
β : ϕβ(Uα ∩Uβ)→ ϕα(Uα ∩Uβ)

are extended affine Z-linear maps.

Definition 2.2. Let X be a rational polyhedral space. A rational polyhedral structure on X is a finite family
of closed subsets C such that the following conditions hold:

(1) X =
⋃
σ∈C σ ;

(2) for each σ there exists a chart ϕσ : U →Ω ⊂ X such that St(σ ) ⊂U and {ϕσ (τ) | τ ∈ St(σ )} is a rational
polyhedral complex in T

s ×Rr−s.
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2.B. Multi-(co)tangent (co)sheaves

Let C be a rational polyhedral complex in T
r . For a face σ ∈ CI , denote by L

Z
(σ ) ⊂ Z

r
I the Z-module

generated by the integral vectors in Z
r
I tangent to σ .

Definition 2.3. For σ ∈ CI , the p-th integral multi-tangent and integral multi-cotangent space of C at σ are
the Z-modules

FZp (σ ) =
∑

σ ′∈CI :σ≺σ ′

p∧
L
Z

(σ ′) ⊂
p∧
Z
r
I and Fp

Z
(σ ) =

 ∑
σ ′∈CI :σ≺σ ′

p∧
L
Z

(σ ′)


∗

,

respectively. If τ is a face of σ there are natural maps

ιτ,σ : FZp (σ )→ FZp (τ) and ρτ,σ : Fp
Z

(τ)→ Fp
Z

(σ ).

For Q any ring such that Z ⊂Q ⊂R define FpQ(σ ) = Fp
Z

(σ )⊗Q and FQp (σ ) = FZp (σ )⊗Q. When Q = R

we drop the use of the sup- and sub-scripts on Fp(σ ) and Fp(σ ), respectively.

From the Z-modules Fp
Z

(σ ), it is possible to construct a sheaf on |C| ⊂ T
r following [MZ14, Section 2.3].

For each open set Ω ⊂ |C|, consider the poset P (Ω) whose elements are the connected components σ of
faces of C intersecting with Ω. The elements of P (Ω) are ordered by inclusion and if τ ≺ σ recall there are
maps ρτ,σ : FpQ(τ)→ FpQ(σ ).

Definition 2.4. ([MZ14]) Let C be a rational polyhedral complex of T r . For an open setΩ ⊂ |C| define the vector
space

F pQ (Ω) := lim←−−
σ∈P (Ω)

FpQ(σ ).

The sheaves F pQ are constructible and do not depend on the polyhedral structure C but only on the
support |C|. For a polyhedral space X, the sheaves F p are defined by gluing along charts. In fact, this
definition does not require a polyhedral structure on X, see [JSS15].

2.C. Tropical (co)homology

In the following we always assume that X is a rational polyhedral space which admits a rational polyhedral
structure C. In this case, the Z-modules FZp (σ ) and Fp

Z
(σ ) and the maps ιτ,σ , ρτ,σ are well-defined for any

τ ≺ σ ∈ C.
We let ∆q denote an abstract q-dimensional simplex. Again Q will be a ring satisfying Z ⊂Q ⊂R.

Definition 2.5. A C-stratified q-simplex in X is a continuous map δ : ∆q→ X such that

• for each face ∆′ ⊂ ∆q, we have δ(relint(∆′)) ⊂ relint(τ) for some τ ∈ C;

• if ∆q = [0, . . . , q] and ϕ is a chart containing δ(∆q), then

sed(ϕ(δ(0))) ⊃ sed(ϕ(δ(1))) ⊃ . . . ⊃ sed(ϕ(δ(q))).

For τ ∈ C let Cq(τ) denote the abelian group generated by stratified q-simplices δ : ∆q → X that satisfy
relint(∆q) ⊂ relint(τ).
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Definition 2.6. The groups of tropical (p,q)-chains and cochains with respect to C and with Q-coefficients
are respectively,

Cp,q(X,Q) :=
⊕
τ∈C

FQp (τ)⊗
Z
Cq(τ), (2.1)

Cp,q(X,Q) := HomQ(Cp,q(X,Q),Q) =
⊕
τ∈C

FpQ(τ)⊗
Z

Hom
Z

(Cq(τ),Z). (2.2)

The complexes of tropical (p,•)-chains and cochains are respectively,

(Cp,•(X,Q),∂) and (Cp,•(X,Q),d)

where the ∂ and d are the usual singular differentials composed, when necessary, with ιτ,σ and ρτ,σ respectively.
The tropical homology and tropical cohomology groups with coefficients in Q are respectively,

Hp,q(X,Q) := Hq(Cp,•(X,Q)) and Hp,q(X,Q) := Hq(Cp,•(X,Q)).

Definition 2.7. The tropical Borel-Moore chain groups CBM
p,q (X,Q) consist of formal infinite sums of elements

of Cp,q(X,Q) with the condition that locally only finitely many simplices have non-zero coefficients.
The tropical Borel-Moore homology groups are denoted HBM

p,q (X,Q). They are the homology groups of the
complex (CBM

p,• (X,Q),∂).

Remark 2.8. For computations, we will often use the simplicial version of the tropical (co)homology groups
defined above. It is possible to construct a locally finite simplicial structure D on X such that all simplices
are C-stratified, see [MZ14, Section 2.2]. We call such a structure a C-stratified simplicial structure. Fol-
lowing the standard conventions for simplicial (co)homology, we obtain simplicial tropical homology and
cohomology groups, as well as the Borel-Moore variants respectively.

The equivalence of singular and simplicial homology with FQp -coefficients is proved in [MZ14, Section
2.2]. The argument uses cellular homology as an intermediate step, which is introduced in Section 5 in this
work. The argument, which uses barycentric subdivisions, still applies to our case thanks to the fact that
D is a C-stratified simplicial structure. The discussion in [MZ14] is restricted to standard homology, but the
arguments can be extended to the Borel-Moore case after noting that the cellular homotopy argument still
applies and that the cellular chain complex can still be described in terms of relative singular homology

CBM,cell
p,q (C,Q) =HBM

p,q (Xq,Xq−1;Q).

Here, Xq denotes the support of the q-skeleton of C and Hp,q(Xq,Xq−1;Q) denotes relative homology. We
use the identification of singular and simplicial homology throughout the rest of the text. We also use the
same notation to denote both variants of the tropical (co)homology groups.

2.D. The eigenwave homomorphism

Throughout this section X is a rational polyhedral space equipped with a rational polyhedral structure C.
Before presenting the definition of the eigenwave homomorphism from [MZ14] we provide some notation.
If δ : [0, . . . , q + 1]→ X is a C-stratified q + 1-simplex, we denote the restriction of δ to the face [0, . . . , q]
by δ0...q and by σ and τ the faces of C containing the image of the relative interior of [0, . . . , q + 1] and
[0, . . . , q], respectively. Moreover, the vector vδ[q,q+1] ∈ F1(τ) is defined to be the difference of the endpoints
of δq,q+1 in a chart ϕ containing σ . More precisely,

vδ[q,q+1] := ιτ,σ (ϕ(δ(q+ 1)))−ϕ(δ(q)). (2.3)

The vector vδ[q,q+1] is in the linear space L
Z

(τ) ⊗ R. Moreover, given a vector w ∈ FZp−1(τ) we have
w∧ vδ[q,q+1] ∈ Fp(τ).
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Definition 2.9. The eigenwave homomorphism on singular tropical chains,

φ̂ : Cp−1,q+1(X,Z)→ Cp,q(X,R),

is defined on a tropical (p,q)-cell v ⊗ δ to be

φ̂(v ⊗ δ) = (ιτ,σ (v)∧ vδ[q,q+1])⊗ δ0...q.

Dually, the eigenwave homomorphism on singular tropical cochains,

φ : Cp,q(X,Z)→ Cp−1,q+1(X,R),

is defined on a tropical (p,q)-cocell α to be

φ(α)(v ⊗ δ) = α(φ̂(v ⊗ δ)) = α
(
(ιτ,σ (v)∧ vδ[q,q+1])⊗ δ0...q

)
.

A direct computation shows that these give morphisms φ̂ : Cp−1,•(X,Z)[1]→ Cp,•(X,Z) and
φ : Cp,•(X,Z) → Cp−1,•(X,R)[1]. Therefore φ̂ and φ descend to maps on homology and cohomology,
which we also denote by φ̂ and φ, respectively.

3. Tropical exponential sequence

Here we will prove Theorem 1.2 using the tropical exponential sequence (3.1). Throughout this section X
is a rational polyhedral space with a rational polyhedral structure C.

Definition 3.1. The sheaf of real valued functions on X which are affine with integral slope in each chart is
denoted by Aff

Z
.

Definition 3.2. Let x be a point in a polyhedral space X and ϕ : U → T
r a chart such that x ∈ U and

sed(ϕ(x)) , ∅. Then v ∈ Rr is a divisorial direction at x if there exists an x0 ∈ U with sedϕ(x0) = ∅ such
that for all t < 0 we have xt = ϕ(x0) + tv ∈ ϕ(U ) and limt→∞ϕ(x0) + tv = x.

Note that any affine function f ∈ Aff(U ) is constant along the divisorial directions to any x ∈ U since
the value f (x) is a real number. Taking the differential of a real valued function provides a surjective
map d : Aff

Z
→ F 1

Z
. The kernel is the sheaf of locally constant real functions R. The tropical exponential

sequence is

0→R→ Aff
Z
→F 1

Z
→ 0. (3.1)

After passing to the long exact sequence in cohomology for all q there is the coboundary map,

δ : H1,q(X;Z)→Hq+1(X,R).

Recall that F 0 is the constant sheaf R for all X, therefore we identify Hq(X,R) and H0,q(X,R).

Lemma 3.3. Let D be a C-stratified simplicial structure and U denote the cover of X by the open stars of vertices
of either C or D. Then U is a Leray cover of X for the sheaves R, Aff

Z
and F p

Z
.

Proof. Firstly, we show acyclicity of any open star U of a face for the sheaves R, Aff
Z

and F p
Z

. The open
set U is contractible, thus acyclic for R. Furthermore, the contraction can be chosen so that it respects the
simplicial structure on U . Following the arguments in the proof of [JSS15, Proposition 3.11], we see that U
is acyclic for F 1

Z
. The long exact sequence associated to (3.1) implies that U is acyclic for Aff

Z
as well.

The intersection of stars of vertices is the star of the minimal face containing these vertices. Therefore,
all intersections of the cover are acyclic and U is a Leray cover of X.
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Remark 3.4. Let U be the open cover given by stars of vertices of a C-stratified simplicial structure D on
X. Then there is a canonical isomorphism between the tropical simplicial cohomology groups with respect
to D and the Čech cohomology of the sheaves F pQ with respect to the cover U . The Čech chain group

Cq(F pQ ,U ) is canonically isomorphic to the group of q-simplicial cochains with coefficients in FpQ, since

F pQ (Ui0,...,iq ) = FpQ([i0, . . . , iq]) for any q-simplex [i0, . . . , iq] ∈ D. Also the differential maps in both cases

agree. We also use this identification of simplicial and Čech cohomology groups throughout the following
sections without using different notations.

Proposition 3.5. The coboundary map δ : H1,q(X,Z)→H0,q+1(X,R) coincides, up to sign, with the eigenwave
homomorphism. More precisely, we have δ = (−1)q+1φ.

Proof. Let D be a stratified simplicial structure on X. Let Dq denote the simplicies of D of dimension q.
Write [i0, . . . , iq] for the q-simplex with vertices i0, . . . , iq ∈ D with the orientation induced by the ordering
of the vertices. For a q-simplex [i0, . . . , iq], denote its open star by Ui0...iq .

We will compare the coboundary and the eigenwave maps using Čech cochains with respect to the cover
(Ui)i∈D0

. An element α ∈ H1,q(X,Z) is given by a tuple (αi0···q)[i0,...,iq]∈Dq where αi0...iq ∈ F
1
Z

(Ui0...iq ). We
choose a collection of functions fi0...iq ∈ Aff

Z
(Ui0...ik ) such that dfi0...iq = αi0...iq for all [i0, . . . , iq] ∈ Dq. Since

the functions fi0...iq are integer affine and the vertex iq has minimal sedentarity among all of i0 . . . iq, each
function fi0...iq extends uniquely by continuity to the vertex iq. We normalise our choices in such a way that
fi0...iq (iq) = 0.

Write f = (fi0...iq )[i0,...,iq]∈Dq . Since (αi0...iq ) is a closed Čech chain, the Čech boundary

(∂f )i0...iq+1
=

∑
(−1)kfi0...îk ...iq+1

is a constant function. To compute this constant, we evaluate at iq+1 and find

(∂f )i0...iq+1
(iq+1) = (−1)q+1fi0...iq(iq+1)

because of our normalisation.
Note that if iq+1 has strictly lower sedentarity than iq, then fi0...iq is constant when moving along the

divisorial direction at iq+1 towards iq. Let πτ,σ be the projection (along the divisorial direction) between
strata containing the relative interior of two faces τ and σ . In particular, if the relative interiors of τ and σ
are contained in the same strata this map is the identity. Then, whether or not iq and iq+1 have the same
sedentarity, we have fi0...iq (iq+1) = fi0...iq(πτ,σ (iq+1)), where τ and σ are the faces containing [i0, . . . , iq] and
[i0, . . . , iq+1], respectively. Therefore,

φ(α)i0...iq+1
= αi0...iq(vδ[q,q+1]) = αi0...iq (πτ,σ (iq+1)− iq) = fi0...iq(πτ,σ (iq+1)) = fi0...iq (iq+1)

since fi0...iq(iq) = 0. This completes the proof.

Definition 3.6. The tropical Picard group is Pic(X) := H1(X,Aff
Z

). The map from Pic(X) to H1,1(X,Z)
provided by the tropical exponential sequence is called the Chern class map and is denoted by c1 : Pic(X) →
H1,1(X,Z).

Proof of Theorem 1.2. The kernel of the boundary map δ is Pic(X) = H1(X,Aff
Z

) by the long exact sequence
associated to (3.1) and by Propostion 3.5 this is also the kernel of the eigenwave homomorphism. This
completes the proof.

Remark 3.7. There is also a version of Sequence (3.1) with real coefficients namely,

0→R→ Aff→F 1→ 0, (3.2)
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where Aff denote the sheaf of functions which are affine in each chart, not necessarily with integral slopes.
By the same argument the boundary map of the long exact sequence is equal to the eigenwave map extended
to cohomology with R-coefficients φ : H1,q(X,R)→ H0,q+1(X,R). Mikhalkin and Zharkov conjecture that
φp−q : Hp,q(X,R)→ Hq,p(X,R) is an isomorphism for all p ≥ q [MZ14, Conjecture 5.3]. This would imply
that φ : H1,q(X,R) → H0,q+1(X,R) is surjective for all q. By the long exact sequence derived from the
short exact sequence in (3.2) this happens if and only if H0,q(X,R)→Hq(X,Aff) is zero for all q ≥ 1, which
would in turn imply that for all q the following sequence is exact

0→Hq(X,Aff)→H1,q(X,R)→H0,q+1(X,R)→ 0.

A conjecture similar to the one of Mikhalkin and Zharkov was made by Liu [Liu17] for tropical Dolbeault
cohomology, which is a cohomology theory of non-archimedean analytic spaces defined using superforms
in the sense of Lagerberg [Lag12]. We refer the reader to [CLD12, Gub16] for the construction of these forms
on analytic spaces and to [JSS15] for the relation between the cohomology of superforms and the tropical
cohomology groups considered here.

4. Tropical cycle class map

In this section we prove Theorem 1.3. To do this, we first prove the existence of sections of tropical line
bundles, and that the construction of the divisor of a section is compatible with the Chern class map
combined with capping with the fundamental class.

4.A. Tropical line bundles and sections

Throughout this section X is a rational polyhedral space with polyhedral structure C.

Definition 4.1. Let U ⊂ X be an open subset. A tropical rational function f on U is a continuous function
f : U →R such that for every point x ∈U there exists a neighbourhood x ∈ V ⊂U and a polyhedral structure C′
on V such that f |σ is (the restriction of) an affine Z-linear function for any σ ∈ C′ . The set of tropical rational
functions on U is denoted byM(U ).

The map U 7→M(U ) defines a sheaf on X. We consider the short exact sequence of sheaves

0→ Aff→M→M/Aff→ 0.

Upon taking the long exact sequence in cohomology we obtain a map δ : H0(X,M/Aff) → H1(X,Aff).
Recall that Pic(X) = H1(X,Aff)

Definition 4.2. Let L ∈ Pic(X) be a line bundle. A section of L is an element s ∈ H0(X,M/Aff) such that
δ(s) = L.

Let us assume that L can be represented by transition functions (fij ) with respect to the open covering
U = (Ui). Then a section s of L is equivalent to a collection of tropical rational functions si ∈M(Ui) which
satisfies

si − sj = fij

for all i , j . We use the notation CaDiv(X) = H0(X,M/Aff) and call an element s ∈ CaDiv(X) a Cartier
divisor of X.

In the remainder of this section we establish the existence of a section of a tropical line bundle on a
polyhedral space. A version of this statement first appeared in the thesis of Torchiani in the case when X
has no points of sedentarity [Tor10, Theorem 2.3.4]. We start with the following lemmas.
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Lemma 4.3. Let σ be a compact rational polyhedron in T
r . If s : ∂σ →R is a rational function, then s can be

extended to a rational function on all of σ .

Proof. We start with the case where σ ⊂ R
r , so that σ does not contain points of higher sedentarity. We

can assume without loss of generality that σ is of dimension r . For a codimension one face τ of σ , let
Hτ denote the hyperplane in R

r containing τ . We can construct a rational function hτ : Hτ → R which
restricts to s on the face τ . To do this, notice that each point in Hτ can be uniquely written as x+ v where
x ∈ δ ≺ τ and v lies in the normal cone of the face δ in the polyhedron τ with respect to the standard
scalar product in R

r . Then hτ (x+ v) = s(x).
For each codimension one face τ of σ , choose a vector vσ,τ ∈ Z

r pointing from τ to σ such that
L
Z

(σ ) = L
Z

(τ) +Zvσ,τ . Then let πτ : Rr → Hτ be defined by πτ (x) = x −dist(x,Hτ )vσ,τ . Choose m ∈Z
and set

fm,τ (x) = hτ (πτ (x)) +mdist(x,Hτ ).

We will show that for each τ there exists mτ ∈ Z such that fmτ ,τ (x) ≤ s(x) for all x ∈ ∂σ . Since fmτ ,τ (x) =
s(x) for all x ∈ τ , this implies that the rational function

h : σ →R, x 7→max
τ
fmτ ,τ (x), (4.1)

satisfies h|∂σ = s, as required.
To find mτ for a fixed τ , we proceed as follows. Let D ⊂ Hτ be a domain of linearity of hτ and

δ ⊂ ∂σ be a domain of linearity of s. We will show that there exists an m such that fm,τ (x) ≤ s(x) for all
x ∈ π−1

τ (D)∩ δ. Since there are only finitely many pairs D,δ to check we can find the desired mτ .
Firstly, if D ∩ δ = ∅, then let

dist(D,δ) := min
x∈π−1

τ (D)∩δ
dist(x,Hτ ) > 0.

It suffices to choose m ≤ −c
dist(D,δ) , where c denotes maxx∈∂σ s(x)−minx∈∂σ s(x).

If D ∩ δ , ∅, then let

cone(D,δ) = {v ∈Rr | x+ εv ∈ π−1
τ (D)∩ δ for some x ∈D ∩ δ and some ε > 0},

and take v1, . . . , vl to be generators of this cone. Notice that the differentials (dfm,τ )x(vi) and dsy(vi) are
constant over all x ∈ π−1

τ (D) and all y ∈ δ. Then choose an m satisfying (dfm,τ )x(vi) ≤ dsy(vi) for all i, all
x ∈ π−1

τ (D), and all y ∈ δ. Such a choice of m is possible since the left hand side can be made arbitrarily
small except for when vi lies in the lineality space of cone(D,δ). In this case, both sides agree since fτ and
s agree on D ∩ δ. By linearity it follows that

(dfm,τ )x(v) ≤ dsy(v)

for any v ∈ cone(D,δ), x ∈ π−1
τ (D), and every y ∈ δ. Finally, every x ∈ π−1

τ (D)∩ δ can be written in the
form x = x0 + v, where x0 ∈ D ∩ δ and v ∈ cone(D,δ). Then by choosing such an m, it follows that for all
x ∈ π−1

τ (D)∩ δ we have fm,τ (x) ≤ s(x).
Now suppose that σ is a polyhedron in T

r . We proceed by induction, with the base case being when all
points in σ are of sedentarity zero. In this case, the above argument applies. Now asume that the statement
holds if σ does not intersect T ri for 1 ≤ i ≤ k − 1 but that σ ∩T

r
k , ∅. There exists a constant ck and a

function sk : T rk → R such that s|σ∩H−k = sk ◦πk , where H−k is the closed half-space defined by 〈x,ek〉 ≤ ck .
Let Hk be the hyperplane defined by 〈x,ek〉 = ck and H+

k be the closed half-space defined by 〈x,ek〉 ≥ ck .
Now σ ∩H+

k is a rational polyhedron in T
r which contains no points of sedentarity {k}. We define

a rational function s−k : σ ∩H−k → R given by x 7→ sk(πk(x)). Note that for all x ∈ ∂σ ∩H−k , we have
s−k (x) = s(x). Hence, the rational functions s and s−k induce a function s′ : ∂(σ ∩H+

k )→R. By the induction
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assumption there exists a rational function s+k on σ ∩H+
k which extends s′ . Then the function s : σ → R

given by

x 7→

s+k (x) x ∈ σ ∩H+
k ,

s−k (x) x ∈ σ ∩H−k ,

is a well-defined rational function that extends s, as required.

For any subset K ⊂ X we define
M(K) : = lim−−→

U⊂Xopen
K⊂U

M(U ).

Lemma 4.4. Let K be a compact polyhedral subset contained in an open star of C let s be a section in M(K).
Then there exists s′ ∈M(X) such that s′ |K = s.

Proof. Note that since s is rational function that is defined on an open neighborhood of K it extends to
a compact polyhedral subset K1 that satisfies K ⊂ K̊1. Let K2 be a compact polyhedral subset such that
K1 ⊂ K̊2. We can assume that K2 is contained in the same open star as K . We fix a polyhedral structure D
on K2 such that K1 is the support of a polyhedral subcomplex. We construct s′ inductively on the skeleta
of D. Assume that an extension of s is defined on the k-skeleton of D. Let σ be a k + 1 polyhedron in D.
If σ is contained in the boundary of K2, then s′ |σ = 0. If σ ⊂ K1, then s′ |σ = s|σ . Otherwise Lemma 4.3
provides an extension of the rational function s′ |∂σ to a rational function s′ |σ . Therefore, we can extend
the rational function s′ to all of K2.

By construction the rational function s′ satisfies s′ |∂K2
= 0. By declaring s′ to be zero outside of K2 we

obtain a rational function on X. Since s′ |K̊1
= s|K̊1

we have s′ |K = s.

Lemma 4.5. If X be a tropical space, then H1(X,M) = 0.

Proof. Take an injective map from M to an acyclic sheaf F and denote the quotient sheaf by G := F /M.
We claim that F (X)→ G(X) is surjective. For a t ∈ G(X), let U = (Ui)i∈I be a cover of X such that there
exist a collection si ∈ F (Ui) that map to t|Ui . Since X is paracompact we may assume that U is locally
finite. For each Ui take a locally finite cover by a collection of compact polyhedral subsets so that for
each i there is a member of the cover Ki which is contained in Ui and (Ki)i∈I still cover X. For J ⊂ I set
KJ : =

⋃
j∈J Kj . Since the covering of X by the sets Ki is locally finite, the union KJ is closed.

The set

E := {(J, sJ ) | J ⊂ I, sJ ∈ F (KJ ) mapping to t|KJ }

carries a partial order given by (J, s) ≤ (J ′ , s′) whenever J ⊂ J ′ and s′ |KJ = s. By Zorn’s lemma, E has a
maximal element (J, s). We want to show J = I .

Assume that there exists j ∈ I \ J . Then sj − s maps to zero in G(Kj ∩KJ ) and hence is the image of an
element r ∈M(Kj ∩KJ ). By Lemma 4.4, we can extend r to a section r ′ ∈M(X). Let s′ ∈ F (X) denote the
image of r ′ and consider the section sj − s′ ∈ F (Kj ). By construction, this section agrees with s on KJ ∩Kj .
Therefore we can glue sj − s′ and s to a section of F over KJ∪j . But this is contradiction to the maximality
of (J, s).

Thus F (X) → G(X) is surjective. Using the long exact sequence in cohomology associated to 0 →
M→F →G→ 0 and the fact that F is acyclic, we conclude that H1(X,M) = 0.

Proposition 4.6. Any line bundle L ∈ Pic(X) admits a section.

Proof. Recall that the long exact sequence on cohomology associated to the short exact sequence

0→ Aff→M→M/Aff→ 0
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induces the maps

H0(X,M/Aff)
δ→H1(X,Aff)→H1(X,M).

By definition, we need to show that δ is surjective. This follows from the vanishing of H1(X,M) established
in Lemma 4.5.

4.B. Tropical spaces and the fundamental class

Throughout this section X is a rational polyhedral space of pure dimension n with a polyhedral structure
C and D is a C-stratified simplicial structure on X.

A point x in a rational polyhedral subspace Y of T r is generic if it admits an open neighbourhood in
Y which is an open set of an affine subspace of RrI for some I . Being a generic point is invariant under
integral extended affine maps and hence this notion extends to rational polyhedral spaces. We denote the
(open and dense) set of generic points by Xgen ⊂ X.

Definition 4.7. A rational polyhedral space X is weighted if it is equipped with a locally constant function
ω : Xgen→Z \ {0}. For a maximal face σ ∈ C, the function ω is constant on relintσ and we define ω(σ ) to be
this value. We also denote by ω(∆) its constant value on relint(∆) ∈ Dn.

We can extend Definition 2.3 to simplicial structures. For any ∆ ∈ Dk whose relative interior is contained
in σ ∈ C we define L(∆) to be the minimal linear subspace of L(σ ) which is defined over Q and has
the property that ∆ is contained in a translate of L(∆). Note that in general k ≤ dimL(∆). We set
L
Z

(∆) := L(∆)∩L
Z

(σ ). For ∆ ∈ Dk with rankL
Z

(∆) = k, we define Λ∆ to be the unique generator of∧k
L
Z

(∆) � Z compatible with the orientation of ∆. Then for a simplex ∆, we define F1(∆) in the same
way as for polyhedra in Definition 2.3.

Definition 4.8. (Fundamental chain) The fundamental chain of X is

ch(X) :=
∑
∆∈Dn

ω(∆)Λ∆ ⊗∆ ∈ CBM
n,n (X,Z).

We call X an (abstract) tropical space if ch(X) is closed. In this situation, we call [X] := [ch(X)] ∈HBM
n,n (X)

the fundamental class of X.

When X is a tropical space, it is straightforward to check that the class [X] does not depend on the
choice of simplicial structure on X.

Remark 4.9. The more conventional definition of a tropical space refers to the so-called balancing condi-
tion [MS15, Definition 3.3.1], [MR, Section 6.1]. To formulate this condition in our context, first let us use
the notation ∆′ C∆ to indicate pairs Dn−1 3 ∆′ ≺ ∆ ∈ Dn of the same sedentarity. Let ∆′ ∈ Dn−1 be such
that L

Z
(∆′) has rank n− 1. A primitive generator of a pair ∆′ C∆ is an integer vector v∆,∆′ such that

v∆,∆′ ∧Λ∆′ = ε∆,∆′Λ∆, (4.2)

where ε∆,∆′ is the sign with which ∆′ appears in ∂∆. Primitive generators are unique up to adding an
element in L

Z
(∆′). The rational polyhedral space X is called balanced at ∆′ if∑

∆:∆′C∆

ω(∆)v∆,∆′ ∈ LZ
(∆′), (4.3)

where the v∆,∆′ are primitive generators. The space X is called balanced if it is balanced at all ∆′ ∈ Dn−1
such that L

Z
(∆′) has rank n− 1. It follows from [MZ14, Proposition 4.3] that ch(X) is a closed (n,n)-cycle

if and only if X is balanced. In particular, whether or not X is a tropical space does not depend on the
choice of simplicial structure D.
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Definition 4.10. Given l ∈ Fp
Z

(σ ) and v ∈ FZp′ (σ ) with p ≤ p′ , the contraction 〈l;v〉 ∈ FZp′−p(σ ) is induced

by the usual contraction map 〈 ; 〉 :
∧p(Zr

I )
∗ ×

∧p′
Z
r
I →

∧p′−p
Z
r
I . More generally, given τ,τ ′ ≺ σ and

l ∈ Fp
Z

(τ),v ∈ FZp′ (σ ), the contraction 〈l;v〉 is given by

〈l;v〉 := iτ ′ ,σ (〈ρτ,σ (l);v〉) ∈ FZp′−p(τ ′).

Definition 4.11. The cap product with the fundamental class of X is the map

∩[X] : Cp,q(X,Z)→ CBM
n−p,n−q(X,Z)

α 7→
∑

[i0,...,in]∈Dn

ω(∆)〈α([i0, . . . , iq]);Λ∆〉 ⊗ [iq, . . . , in],

where 〈 ; 〉 denotes the contraction introduced in Definition 4.10.

The definition of the cap product can be extended to ∩σ for arbitrary simplicial chains σ ∈ CBM
p′ ,q′ (X,Z).

Also the Leibniz formula d(α ∩ σ ) = (−1)q+1(δα ∩ σ −α ∩ dσ ) holds on the chain level. If X is a tropical
space then d ch(X) = 0, and it follows that the map ∩[X] described above descends to to a map between
cohomology and Borel-Moore homology groups

∩[X] : Hp,q(X,Z)→HBM
n−p,n−q(X,Z).

To see that ∩[X] does not depend on the simplicial structure on X, note that the cap product can also be
described on the level of singular chains.

4.C. Subspaces, Divisors, and the Chern class map

Throughout this section X is a rational polyhedral space of pure dimension n with a polyhedral structure C.

Definition 4.12. A subset Z ⊂ X is a rational polyhedral subspace if it is closed and the restrictions of the
charts of an atlas of X provide an atlas as a rational polyhedral space for Z .

Given a rational polyhedral subspace Z, there exists a C-stratified simplicial structure D for X such that
Z a union of cells of D. We call such a structure fine enough for Z . It can be constructed inductively as a
simplicial structure of |Ck |. Indeed, for each σ ∈ Ck , the intersection Z ∩ σ is a closed polyhedral subset of
the polyhedron σ and any simplicial structure on ∂σ fine enough for Z∩∂σ can be extended to a simplicial
structure on σ fine enough for Z ∩ σ .

Assume further that Z is of pure dimension k and is equipped with a weight function ω. We define

ch(Z) :=
∑
∆∈Dk
∆⊂Z

ω(∆)Λ∆ ⊗∆ ∈ CBM
k,k (X,Z).

Definition 4.13. The weighted subspace Z is called a tropical cycle if ch(Z) is a closed chain. In this case, we
denote cyc(Z) ∈HBM

k,k (X,Z) the cycle class of Z .

The tropical cycles of dimension k form a group under taking unions and adding up weights (see [AR10,
Lemmas 2.14 and 5.15] and [MR, Section 7.1]), which we denote by Zk(X). With these definitions, the map

cyc : Zk(X)→HBM
k,k (X,Z); Z 7→ cyc(Z)

is a homomorphism.
We are interested in a construction which produces a tropical cycle of dimension n− 1 from a Cartier

divisor. Let s be a section of a line bundle L ∈ Pic(X) and consider the subset of X given by

D(s) := {x | si is not affine in a neighbourhood of x}.

It is a rational polyhedral subspace of dimension n− 1. Next we define weights on this set to turn it into a
tropical cycle following [AR10, Section 3] and [MR, Section 5.2].
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Definition 4.14. The divisor map is

div: CaDiv(X)→ Zn−1(X),

where div(s) is a tropical codimension one cycle supported on D(s). The weight of a generic point x ∈ D(s)gen

(which is of sedentarity zero) is given as follows. Fix i such that x ∈Ui and choose

• a neighbourbood x ∈ U ⊂ Ui and simplicial structure D on U such that D(s) ∩U ⊂ |Dn−1| and x ∈
relint∆′ ,∆′ ∈ Dn−1,

• primitive generators v∆,∆′ for any pair ∆
′ C∆,

and set

ωdiv(s)(x) =
∑

∆:∆′C∆

ωX(∆)dsi |∆(v∆,∆′ )− dsi |∆′ (
∑

∆:∆′C∆

ωX(∆)v∆,∆′ ). (4.4)

The weights ωdiv(s)(x) may happen to be zero; such parts of D(s) are tacitly removed from div(s). For
details on this construction and proof of its well-definedness we refer to [AR10, Sections 3 and 6] as well as
[MR, Section 5.2].

Theorem 4.15. The diagram

CaDiv(X) //

div
��

Pic(X)
c1 // H1,1(X,Z)

∩[X]
��

Zn−1(X)
cyc // HBM

n−1,n−1(X,Z)

(4.5)

commutes.

Lemma 4.16. Let s = (si)i ∈ CaDiv(X) be a Cartier divisor and let D be a simplicial structure fine enough for
D(s). Then

cyc(div(s)) =
∑
∆∈Dn

∆′∈Dn−1
∆′≺∆

ω(∆) · ι∆′ ,∆
(
〈dsi∆′ |∆;ε∆,∆′Λ∆〉

)
⊗∆′ ∈HBM

n−1,n−1(X), (4.6)

where ε∆,∆′ = ±1 is the relative orientation of ∆ and ∆′ and i∆′ is chosen so that relint∆′ ⊂Ui∆′ .

Proof. Since D is a simplicial structure on X fine enough for D(s), the simplices {∆ ∈ D|∆ ⊂ D(s)} form
a simplicial structure for D(s). In particular, it follows that for any ∆′ ∈ Dn−1 with ∆′ ⊂ D(s) the lattice
L
Z

(∆′) is of rank n− 1. For any ∆′ C∆ we choose primitive generators v∆,∆′ (satisfying (4.2)) and use the
notation v∆′ ∈ L

Z
(∆′) for the balanced sum in (4.3). We now want to show that for any ∆′ ∈ Dn−1 its

coefficients on the right hand and left hand side of (4.6) agree.
First assume sed(∆′) = 0 and ∆′ ⊂ D(s). Then for any facet ∆′ ≺ ∆ the rules of contracting wedge

products along 1-forms applied to equation (4.2) provide

〈dsi∆′ |∆;ε∆,∆′Λ∆〉 = dsi∆′ |∆(v∆,∆′ ) ·Λ∆′ − v∆,∆′ ∧ 〈dsi∆′ |∆;Λ∆′〉. (4.7)

Moreover, since v∆′ ∧Λ∆′ = 0, we have

dsi∆′ |∆(v∆′ ) ·Λ∆′ = v∆′ ∧ 〈dsi∆′ |∆;Λ∆′〉.

Comparing with (4.4), this proves the equality of coefficients.
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Let us now consider ∆′ 1D(s). Then si∆′ is affine linear in a neighbourhood of relint(∆′) and therefore
dsi∆′ defines an element in F1(∆′) (independent of a choice of facet ∆′ ≺ ∆). The coefficient of ∆′ in (4.6)
is therefore equal to ∑

∆∈Dn
∆′≺∆

ω(∆)〈dsi∆′ |∆;ε∆,∆′Λ∆〉 = 〈dsi∆′ ;
∑

ω(∆)ε∆,∆′Λ∆〉.

But the sum on the right hand side is exactly equal to the coefficient of ∆′ in ∂ch(X), so it is zero since
ch(X) is closed.

Proof of Theorem 4.15. Let s be a section of a line bundle L ∈ Pic(X). Let D be a simplicial structure on
X fine enough for D(s). We can assume that each open star of D is fully contained in the domain Ui of
si for some i. Hence, by fixing an appropriate choice and restricting to open stars, we can even assume
that s = (si)i∈D0

is labelled by the vertices of D and that Ui is equal to the open star around the vertex
i. As usual we use the notation Ui0...in = Ui0 ∩ · · · ∩Uin for the open stars of higher-dimensional simplices
∆ = [i0, . . . , in] ∈ D.

We first compute the image of s following the upper right path. Since s is a section of L, the transition
functions for L are given by fij = si − sj on Uij . Using the identification of Čech cochains and simplicial
cochains explained in Remark 3.4, we conclude that c1(L) is the simplicial (1,1)-cochain which, when
applied to an edge [i, j] ∈ D1, provides dfij ∈ F1([i, j]). Capping with the fundamental class then gives

c1(L)∩ [X] =
∑

∆=[i0,...,in]

ω∆ι∆,∆0
〈dfi0i1 ;Λ∆〉 ⊗ [i1, . . . , in], (4.8)

where ∆j := [i0, . . . , îj , . . . , in]. Let us now compute the effect of the lower left path using Lemma 4.16. To do
so, we fix the choice of indices i∆′ required in Lemma 4.16 by setting i∆′ = i1 for any ∆′ = [i1, . . . , in] ∈ Dn−1.
In other words, to compute the coefficient of ∆′ we always use the function associated to the first vertex in
∆′ . Let us now fix a maximal simplex ∆ = [i0, . . . , in] ∈ Dn. Then by Lemma 4.16 and with the convention
just made, the contribution of ∆ to cyc(div(s)) in (4.6) is

ω∆

ι∆,∆0
〈dsi1 ;Λ∆〉 ⊗ [i1, . . . , in] +

n∑
j=1

ι∆,∆j 〈dsi0 ;ε∆,∆jΛ∆〉 ⊗ [i0, . . . , îj , . . . , in]

 .
Since the section s satisfies si1 = fi0i1 + si0 we obtain

ω∆

ι∆,∆0
〈dfi0i1 ;Λ∆〉 ⊗ [i1, . . . , in] +

n∑
j=0

ε∆,∆j ι∆,∆j 〈dsi0 ;Λ∆〉 ⊗ [i0, . . . , îj , . . . , in]

 .
The first summand is precisely the sum which appears in Equation (4.8) and the second summand is
homologous to zero (namely, equal to ∂(〈dsi0 ;Λ∆〉 ⊗∆)). Therefore the diagram is commutative.

Proof of Theorem 1.3. Suppose that α ∈ Ker(φ : H1,1(X,Z)→H0,2(X,R)). By Theorem 1.2 there exists L in
Pic(X) such that c1(L) = α. By Proposition 4.6 there exists a section s of L. By the commutativity of the
diagram in Theorem 4.15, we have α ∩ [X] = c1(L)∩ [X] = cyc(div(s)). The statement of the theorem now
follows since cyc(div(s)) is the fundamental class of a codimension one tropical cycle.

5. Poincaré duality with coefficients in Z

In this section we prove Theorem 1.1. To do so, we restrict to tropical manifolds and establish a version of
Poincaré duality over Z. We first introduce tropical manifolds which are tropical spaces locally modelled on
matroidal fans. We do not describe these fans here but refer the reader to the literature for their definition
and properties [AK06, Sha13b, FR13].
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Definition 5.1. A tropical manifold X is a tropical space whose weight function is equal to one and which is
equipped with an atlas of charts {ϕα : Uα → Ωα ⊂ Xα}α∈A such that Ωα ⊂ T

sα ×Rr−sα and Xα ∩ (T sα ×
R
r−sα ) = T

sα ×X ′α , where X ′α ⊂R
r−sα is the support of a matroidal fan.

Definition 5.2. A tropical space X satisfies Poincaré duality with integral coefficients if

∩[X] : Hp,q(X,Z)→HBM
n−p,n−q(X,Z)

is an isomorphism for all p,q.

Theorem 5.3. A tropical manifold satisfies Poincaré duality with integral coefficients.

The above theorem is a extension of the version of Poincaré duality with real coefficients for tropical
manifolds previously proved in [JSS15]. This version related tropical cohomology and tropical cohomology
with compact support with real coeffcients via a pairing given by integration.

We first prove this version of Poincaré duality for matroidal fans using a cellular description of tropical
(co)homology. Let X be a polyhedral subspace in T

r×Rs and C a polyhedral structure on X such that every
cell contains a vertex. Then there are descriptions of tropical (Borel-Moore) homology and cohomology in
terms of cellular chain complexes with respect to C,

HBM
p,q (X,Z) = Hq(C

BM,cell
p,• (C,Z)), where CBM,cell

p,q (C,Z) =
⊕
σ∈Cq

FZp (σ ), (5.1)

Hp,q(X,Z) = Hq(C
cell
p,• (C,Z)), where Ccell

p,q (C,Z) =
⊕
σ∈Cq
σ compact

FZp (σ ) and (5.2)

Hp,q(X,Z) = Hq(Cp,•cell(C,Z)), where C
p,q
cell(C,Z) =

⊕
σ∈Cq
σ compact

Fp
Z

(σ ). (5.3)

For a justification of these identifications see Remark 2.8.
Let V be a fan in R

s and C a polyhedral fan structure on V such that 0 is a vertex of C. We then
find using (5.2) and (5.3) that Hp,0(V ,Z) = Fp

Z
(0) =: Fp

Z
(V ), Hp,0(V ) = FZp (0) =: FZp (V ), Hp,q(V ,Z) =

Hp,q(V ,Z) = 0 for all p ≥ 0,q > 0.
Let X be a tropical variety in R

r and f ∈M(X) be a tropical rational function. The graph ΓX(f ) of f
is a polyhedral complex in R

r+1. For every face τ of div(f ) denote by τ≤ the polyhedron {(x,y)|x ∈ τ,y ≤
f (x)} ⊂ R

r+1. The union Y := ΓX(f )∪ {τ≤|τ ∈ div(f )} is a tropical cycle in R
r if we define the weights

on ΓX(f ) to be inherited from X and the weight on a face τ≤ is defined to be equal to the weight of τ in
div(f ).

Definition 5.4. We call Y the open tropical modification of X along f and δ : Y → X an open tropical
modification. The space div(f ) is called the divisor of the modification.

More details on this construction can be found in [AR10, Construction 3.3] as well as [MR, Chapter 5].
We provide some notation useful for modifications. Let δ : V →W be an open tropical modification of fans
along a function f ∈ M(W ) with divisor D and let C be a polyhedral structure consisting of cones which
contains a polyhedral structure for D . We always assume that δ is induced by the projection π : Rr×R→R

r

with kernel er+1. Denote by V the closure of V in R
r ×T . Then the polyhedra

σ̃ = (id×f )(σ ) for all σ ∈ C
σ≤ = σ̃ + ({0} × [−∞,0]) for all σ ∈ C,σ ⊂D (5.4)

σ∞ = σ × {−∞} for all σ ∈ C,σ ⊂D

form a polyhedral structure on V . The intersection of the first two types of cones with V form a polyhedral
structure on V .
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Proposition 5.5. Let V be a matroidal fan in R
s. Then V satisfies Poincaré duality with integral coefficients.

Proof. We use induction on s, with base case being when s = dim(V ). In this case the support of V is R
s

and the statement can be verified using the fact that FZp and Fp
Z

are constant for all p.
If s > dim(V ), by [Sha13b, Proposition 2.2] there exists an open tropical modification δ : V → W

with divisor D where W and D are matroidal fans in R
s−1. The closure V of V in R

s−1 × T satisfies
Hp,q(W,Z) = Hp,q(V ,Z) and HBM

p,q (W,Z) = HBM
p,q (V ,Z) by Proposition 5.6. We have the short exact

sequence

0→ CBM,cell
p,q (D,Z)→ CBM,cell

p,q (V ,Z)→ CBM,cell
p,q (V ,Z)→ 0. (5.5)

Using the notation from (5.4), the maps in (5.5) are given by

v ⊗ σ̃ 7→ v ⊗ σ̃ ,
v ⊗ σ 7→ v ⊗ σ∞, and v ⊗ σ≤ 7→ v ⊗ σ≤,

v ⊗ σ∞ 7→ 0.

The same induction argument as in [JSS15, Lemma 4.26] proves that HBM
p,q (V ,Z) = 0 for q , n and that

the long exact sequence obtained from (5.5) reduces to a short exact sequence which fits into the following
commutative diagram (see (5.7))

0 // Hp,0(W,Z) //

∩[W ]
��

Hp,0(V ,Z) //

∩[V ]
��

Hp−1,0(D,Z)

∩[D]
��

// 0

0 // HBM
n−p,n(W,Z) // HBM

n−p,n(V ,Z) // HBM
n−p,n−1(D,Z) // 0.

(5.6)

Arguing by induction we can assume that W and D satisfy Poincaré duality with integral coefficients. Then
the five lemma shows that V does as well. This completes the proof.

Proposition 5.6. Let δ : V →W be an open tropical modification with divisor D, such that W , V and D are
matroidal fans. Then δ∗ : HBM

p,q (V ,Z)→HBM
p,q (W,Z) and δ∗ : Hp,q(W,Z)→Hp,q(V ,Z) are isomorphisms for

all p,q.

Proof. For cohomology, note that V has three compact cells, which we denote by τ∞, τ0 and τ≤. We further

have Fp
Z

(τ∞) = Fp
Z

(D), Fp
Z

(τ0) = Fp
Z

(V ) and Fp
Z

(τ≤) = Fp
Z

(D)⊕ (Fp−1
Z

(D)∧w), where w : Rn → R is any
Z-linear form such that w(er+1) = 1. By (5.1) we thus have to show that the cohomology of

0 // Fp
Z

(D)⊕Fp
Z

(V ) // Fp
Z

(D)⊕ (Fp−1
Z

(D)∧w) // 0

is equal to Fp
Z

(W ). This follows from dualising the sequence (5.7).
It remains to prove the statement about Borel-Moore homology. In the following, we always use σ to

denote arbitrary cells of W and τ for cells of codimension at least 1. On the chain level δ∗ is given by the
map Ψ : CBM

p,q (V ,Q)→ CBM
p,q (W,Q) defined by v ⊗ σ̃ 7→ π(v)⊗σ , v ⊗ τ≤ 7→ 0, v ⊗ τ∞ 7→ v ⊗ τ . We want to

show that this is a quasi-isomorphism.
Injectivity: Let C be a closed chain in CBM

p,q (V ,Q) with Ψ (C) = ∂B being a boundary. By choosing an

arbitrary lift B̃ of B under Ψ , which is surjective, and subtracting ∂B̃, we can assume Ψ (C) = 0. Note that
the cells τ∞ can be moved in the interior by adding a suitable boundary of τ≤ cells, and hence we can
assume C =

∑
aσ σ̃ +

∑
bττ≤. Then Ψ (C) = 0 implies that aσ ∈ ker(π). From Lemma 5.7, it follows that

if q = n then aσ = 0, and if q < n then aσ ∈ FZp (σ≤). Hence, by adding the boundaries of aσσ≤, we can
assume C =

∑
bττ≤. But then 0 = ∂C =

∑
bτ τ̃ +

∑
cρρ≤ −

∑
π(bτ )τ∞ implies bτ = 0.
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Surjectivity: Let C =
∑
aσσ be a closed chain in CBM

p,q (W,Q). We can obviously find a lift of C of the
form C1 :=

∑
ãσ σ̃ . Its boundary is of the form ∂C1 =

∑
bτ τ̃ . Since Ψ (∂C1) = 0, we get π(bτ ) = 0 and

hence bτ ∈ FZp (τ≤) by Lemma 5.7. Hence by adding bττ≤, we obtain C2 with ∂C2 =
∑
ρ cρρ≤, where ρ runs

through cells of dimension q − 2. Let us compute cρ. By construction it is a sum over the flags ρ ⊂ τ ⊂ σ ,
each contributing ±ãσ . But for each σ there are exactly two such flags, and they contribute with opposite
sign, which implies cρ = 0. Hence we get Ψ (C2) = Ψ (C1) = C and ∂C2 = 0, as required.

Lemma 5.7. Let v ∈ FZp (τ̃) such that π(v) = 0. Then v ∈ FZp (τ≤).

Proof. The statement follows from the fact that the sequence

0 // FZp−1(D)
w 7→w∧er+1 // FZp (V )

v 7→π(v) // FZp (W ) // 0 (5.7)

is exact. This sequence is obtained by combining a similar short exact sequence for Orlik-Solomon algebras
from [OT92, Theorem 3.65] together with the relation between the Orlik-Solomon algebras and Fp from
[Zha13].

Lemma 5.8. LetY be a polyhedral space in T s×Rr−s. ThenHBM
p,q (Y ,Z) = HBM

p+1,q+1(Y×T ,Z) andHp,q(Y ,Z) =
Hp,q(Y ×T ,Z) for all p,q.

Proof. Let C be a polyhedral structure on Y . Given a face σ ∈ C, denote σ∞ := σ × {−∞} and σ̃ := σ ×T .
The collection of all these polyhedra forms a polyhedral structure on Y ×T . The statement for cohomology
now follows directly from (5.3) since the compact cells for the polyhedral structure on Y ×T are precisely
of the form σ × {−∞} for compact cells σ of C.

For Borel-Moore homology, we prove the claimed isomorphism by constructing an explicit homotopy
equivalence on the cellular chain complexes with respect to these polyhedral structures. Let us first look at
the behaviour of the multi-tangent spaces. There are projection and lifting maps

π : Fp(σ̃ )→ Fp(σ∞) = Fp(σ ) and ∧ er+1 : Fp(σ )→ Fp+1(σ̃ ).

The map π is induced by the linear projection R
r ×R→ R

r forgetting the last coordinate. The second
map is given by v 7→ v∧ er+1 := ṽ∧ er+1 where ṽ ∈ π−1(v) and er+1 denotes the kernel of the map π. Note
that the wedge product does not depend on the choice of preimage. Let w : Rr ×R→R be the linear form
given by projecting onto the last factor, regarded as an element w ∈ F1(σ ), as in the proof of Proposition
5.6. We define

Ψ : CBM,cell
p,q (Y ,Z)→ CBM,cell

p+1,q+1(Y ×T ,Z); v ⊗ σ 7→ (v ∧ er+1)⊗ σ̃ and

Φ : CBM,cell
p+1,q+1(Y ×T ,Z)→ CBM,cell

p,q (Y ,Z); v ⊗ σ̃ 7→ π(〈w;v〉)⊗ σ and v ⊗ σ∞ 7→ 0,

where 〈 ; 〉 denotes the contraction from Definition 4.10.
It easy to check Φ ◦Ψ = id since π(〈w;v ∧ er+1〉) = v. We define

h : CBM,cell
p+1,q (Y ×T ,Z)→ CBM,cell

p+1,q+1(Y ×T ,Z); v ⊗ σ∞ 7→ v ⊗ σ̃ and v ⊗ σ̃ 7→ 0,

where v is the map Fp(σ ) → Fp(σ̃ ) induced by mapping each vector v ∈ F1(σ ) to the unique preimage
v ∈ π−1(v) with 〈w;v〉 = 0. Then h provides a chain homotopy between id and Ψ ◦Φ , thus the lemma is
proven.

Corollary 5.9. Let V be a matroidal fan in R
s and set Y = V ×T r . Then Y satisfies Poincaré duality.

Proof. This follows from Proposition 5.5 and Lemma 5.8.
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Remark 5.10. In the following proof we use a local gluing argument. To do so, we need to slightly extend
our terminology. Let X be a polyhedral space with polyhedral structure C. Let U ⊂ X be an open subset.
A C-stratified q-simplex in U is a C-stratified q-simplex δ in X such that δ(∆) ⊂ U . Using this convention,
Definitions 2.6 and 2.7 can be carried over to the open set U instead of X. In particular, we obtain groups
Hp,q(U,Z) and HBM

n−p,n−q(U,Z). Moreover, if X is a tropical space any C-stratified simplicial structure on
U gives rise to a fundamental class [U ] ∈ HBM

n,n (U,Z) and a map ∩[U ] : Hp,q(U,Z) → HBM
n−p,n−q(U,Z)

which do not depend on the simplicial structure. Again we say that U satisfies Poincaré duality if ∩[U ] is
an isomorphism for all p,q.

Proof of Theorem 5.3 . Let C be a polyhedral structure for X. The proof is completed in two steps.
Step 1: Open stars of faces satisfy Poincaré duality: A star Uσ of a face σ ∈ C of a tropical manifold is

isomorphic as a tropical manifold to a connected neighbourhood U of (0, (∞)r ) in a polyhedral complex
of the form Y = V ×T r , where V is a matroidal fan. Note that C induces a polyhedral structure C′ on Y .
There is a homeomorphism f : U → Y which preserves the stratification given by C and C′ . Hence if δ is
a C-stratified simplex in U , the push-forward f∗(δ) = f ◦ δ is a C′-stratified simplex in Y . We obtain the
following commutative diagram.

Hp,q(U,Z)
∩[U ] // HBM

n−p,n−q(U,Z)

f∗
��

Hp,q(Y ,Z)
∩[Y ] //

f ∗

OO

HBM
n−p,n−q(Y ,Z)

It is straightforward to check that the two vertical arrows are isomorphisms. Since ∩[Y ] is an isomorphism
by Corollary 5.9, the map ∩[U ] is also an isomorphism.

Step 2: Finite unions of open stars of C satisfy Poincaré duality: We proceed by induction on the number
of open stars in the union with the base case covered above. Suppose that a union of k open stars satisfy
Poincaré duality. Let U be an open star and V be a union of k open stars of C. Then U ∩V is also a union
of k open stars, so that U , V , and U ∩V satisfy Poincaré duality. The following short exact sequence of
complexes (with respect to C)

0→ CBM,cell
p,• (U ∩V ,Z)→ CBM,cell

p,• (U,Z)⊕CBM,cell
p,• (V ,Z)→ CBM,cell

p,• (U ∪V ,Z)→ 0

induces a Mayer-Vietoris sequence MBM
p,• (U,V ) for the tropical Borel-Moore homology groups. We further

denote by Mp,•(U,V ) the Mayer-Vietoris sequence for tropical cohomology groups. We get a map of
sequences

Mp,•(U,V )→MBM
n−p,n−•(U,V )

where in each degree we take the cap product with the appropriate fundamental class. Now the claim
follows from the five lemma, since by our assumption U , V and U ∩V satisfy Poincaré duality.

Corollary 5.11. If X is a compact tropical manifold of dimension n, then

Hp,q(X,Z) 'Hn−q,n−q(X,Z).

Remark 5.12. A tropical manifold X also satisfies Hp,q
c (X,Z) �Hn−p,n−q(X,Z), where Hp,q

c (X,Z) denotes
cohomology with compact support. Capping with the fundamental class of a tropical manifold also produces
a map

∩[X] : Hp,q
c (X,Z)→Hn−p,n−q(X,Z), (5.8)

which again is an isomorphism for all p,q. This can be proven by essentially dualising the argument given
in this section.
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The last step in order to prove Theorem 1.1 is to relate the wave homomorphism on cohomology to its
variant on homology.

Lemma 5.13. The following diagram is commutative:

H1,1(X,Z)

∩[X]
��

φ // H0,2(X,R)

∩[X]
��

HBM
n−1,n−1(X,Z)

φ̂ // HBM
n,n−2(X,R)

Proof. This follows on the level of individual simplices by the definition of φ (see Definition 2.9).

Proof of Theorem 1.1. It is easy to check φ̂ ◦ cyc = 0 (see [MZ14, Theorem 5.4]). Conversely, let β ∈
HBM
n−1,n−1(X,Z) such that φ̂(β) = 0. Since X satisfies Poincaré duality with integral coefficients, there

exists α ∈ H1,1(X,Z) with α ∩X = β. By Lemma 5.13 we have φ(α)∩X = 0. Then, again by Poincaré
duality, we get φ(α) = 0 and the statement follows from Theorem 1.3.

6. Corollaries and Examples

In this final section we deduce some corollaries of the main theorems and present some explicit examples.
In the case of tropical abelian surfaces and Klein bottles with a tropical structure, we show how to represent
(1,1)-classes in the kernel of the wave map as fundamental classes of tropical cycles. We also calculate the
wave map for two combinatorial types of smooth tropical quartic surfaces. We start with some interesting
consequences of Theorem 1.1.

Corollary 6.1. Let X be a tropical manifold. If H0,2(X,R) = 0, then every class in HBM
n−1,n−1(X,Z) is the

fundamental class of a tropical cycle in X.

Proof. By Poincaré duality 5.3 we find that HBM
n,n−2(X,R) = 0 and thus every element of HBM

n−1,n−1(X,Z) is in

the kernel of φ̂. The corollary now follows from Theorem 1.1.

Corollary 6.2. Let X be a tropical manifold. If α ∈HBM
n−1,n−1(X,Z) is a torsion class, then α is the fundamental

class of a codimension one tropical cycle.

Proof. We have φ̂(α) = 0 ∈HBM
n,n−2(X,R). Thus the corollary follows again from Theorem 1.1.

Remark 6.3. In some instances the image of the wave homomorphism is contained in the appropriate
cohomology group with rational instead of real coefficients. Then the dimension of the kernel of the ex-
tension φ : H1,1(X,Z)⊗Q→H0,2(X,Q) gives the rank of the free part of the kernel of φ : H1,1(X,Z)→
H0,2(X,Q). For example, for the Q-tropical projective varieties as introduced in [IKMZ16] the wave homo-
morphism is always defined over Q.

6.A. Tropical structures on the Klein bottle

Let K be a Klein bottle obtained from gluing a parallelogram P ⊂ R
2 with edges a,b,c,d as follows. The

edges b and d are glued using the translation in the direction of a, and the edges a and c are glued
using an (orientation-reversing) affine transformation h which sends a to c with flipped orientation. Let
H ∈ GL(2,R) be the linear part of h. Then the tropical structure given by Z

2 ⊂ R
2 extends to K if and

only if H ∈ GL(2,Z). Note that det(H) = −1 and one of its eigenvalues is −1, hence the second eigenvalue
is +1. It follows that the eigenvectors have rational directions and a computation shows that the two
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primitive eigenvectors either form a lattice basis or generate a sublattice of index 2. We can normalise the
two cases to the following matrices:

H1 =
(
−1 0
0 1

)
H2 =

(
−1 1
0 1

)
(6.1)

Correspondingly, the parallelogram P has vertices 0, l1e1, l1e1 + l2v2, and l2v2, where v2 is either e2 or
(1
2
)

(see Figures 1, 2). We denote the two Klein bottles by K1 and K2.

v v
vv

v

−1

Figure 1: Representing the torsion class in H1,1(K1) of a Klein bottle K1 from Subsection 6.A as a parallel
class.

−1

Figure 2: Representing a class in H1,1(K2) of the Klein bottle K2 from Subsection 6.A as a parallel class.

Note that H2,0(K,Z) = Z2 so that H2,0(K,R) = 0. Hence we are in the situation of Corollary 6.1 which
says that any (1,1)-class can be represented by a tropical cycle of dimension one. Let a = [0, l1e1] and
b = [0, l2v2] denote two oriented edges of P . Any (1,1)-class can be represented by

v ⊗ a+λv2 ⊗ b, v ∈Z2,λ ∈Z.

As boundaries of (1,2)-chains we obtain

∂(
(
x
y

)
⊗ P ) =

2ye2 ⊗ a if H =H1,

y
(1
2
)
⊗ a if H =H2.

(6.2)

Hence we find H1,1(K1,Z) = Z2⊕Z⊕Z = 〈e2⊗a,e1⊗a,e2⊗b〉 and H1,1(K2,Z) = Z⊕Z = 〈
(1
1
)
⊗a,

(1
2
)
⊗b〉.

Among these generators, the chains e1⊗a and v2⊗b can obviously be represented by tropical cycles. Such
representations are less obvious for the torsion class e2 ⊗ a and the class

(1
1
)
⊗ a. Explicit representations

by tropical cycles are depicted for the two cases in Figures 1, 2. Here the chains are drawn in thin red lines
with framing and orientation given by simple and double arrows respectively. The homologous tropical
cycles are drawn in thick red lines and labelled with their respective weights if not equal 1.

For the sake of completeness let us briefly discuss the full classification of tropical Klein bottles. Instead
of just a translation, we may glue the edges b and d via the affine transformation x 7→ T x+ t, where t is the
translation along a and T ∈ GL(2,Z) (before we assumed T = id). Depending on H , the possible matrices
T are of the following two types (see [Sep10])

T1,n =
(
1 0
n 1

)
, n ∈Z T2,n =

(
1 + 2n −n

4n 1− 2n

)
, n ∈Z. (6.3)
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The obtained Klein bottles K1,n and K2,n give a full list of Klein bottles with a tropical structure. Analogous
to the case n = 0, we can compute the homology groups for n , 0 as H1,1(K1,n,Z) = Z/2Z ⊕Z/nZ =
〈e2 ⊗ a,e2 ⊗ b〉 and H1,1(K2,n,Z) = Z/2nZ = 〈

(1
2
)
⊗ b〉. Again, it is clear that v2 ⊗ b can be represented by

tropical cycles, while for e2 ⊗ a the same trick as for K1, Figure 1, is needed.

6.B. Tropical abelian surfaces

A tropical abelian surface is S = R
2/Λ where Λ is a rank two lattice equal to 〈w1,w2〉Z for w1,w2 ∈ R2.

Therefore S � S1 × S1. The sheaf F p
Z

is the constant sheaf
∧p

Z
2 for p = 0,1,2, and tropical homology

groups Hp,q(S,Z) are free Z modules whose ranks are given by the follow tropical Hodge diamond,

1
2 2

1 4 1
2 2

1

.

We can choose a basis of H1,1(S,Z) as αij = ei ⊗ σj where σ1,σ2 form a basis of H1(S,Z) and e1, e2 are a
lattice basis of Z2. Furthermore suppose that σi is the quotient of the oriented line in R

2 in direction wi .
Then the eigenwave homomorphism is given by φ̂(αij ) = ei ∧wj .

We can explicitly describe a parallel representative of α ∈ H1,1(S,Z)∩ ker(φ̂). For α ∈ H1,1(S,Z) we
can write α = v1 ⊗ σ1 + v2 ⊗ σ2, where v1 and v2 are integer vectors. Then α is in ker(φ̂) if and only if
v1 ∧w1 + v2 ∧w2 = 0.

Suppose that v1 and v2 are linearly independent. Consider the triangle T in R
2 with vertices 0,w1,

and w2. Firstly, we claim that if v1∧w1 +v2∧w2 = 0, then the lines in directions v1 +v2, v1, and v2 drawn
from the vertices 0,w1, and w2, respectively, are concurrent.

Since v1 ∧ v2 , 0, it forms a R-basis of
∧2

R
2 and hence there exists an α ∈ R such that αv1 ∧ v2 =

v1 ∧w1 = −v2 ∧w2. Then the three lines mentioned above intersect at the point p = α(v1 + v2) in R
2. To

see this notice that (x −wi)∧ vi = 0 is the defining equation for the line from wi . Then

(α(v1 + v2)−wi)∧ vi = α(vj ∧ vi) + vi ∧wi for i , j.

Consider the (1,1)-cycle α′ = (v1 +v2)⊗ [0,p]−v1⊗ [w1,p]−v2⊗ [w2,p]. Then α −α′ = ∂(β1 +β2), where
βi = vi ⊗ τi is a (1,2)-simplex based on the triangle τi = [0wip] (with given orientation). Then α′ is the
fundamental class of a tropical 1-cycle and it is homologous to α, see Figure 3.

If v1 and v2 are linearly dependent and α ∈ ker(φ̂) then w1 +w2 = αv1 for some α ∈ R. In particular,
w1 +w2 is a rational direction and α can be represented by a parallel cycle supported on the diagonal of a
fundamental domain for S .

6.C. Tropical hypersurfaces

A tropical hypersurface in R
n+1 or in an n + 1-dimensional tropical toric variety is the divisor (as in

Definition 4.14) of a tropical polynomial function. It is an n-dimensional polyhedral complex which is dual
to a regular subdivision of a lattice polytope. This implies the following statement.

Proposition 6.4. A tropical hypersurface is homotopic to a bouquet of spheres.

A tropical hypersurface is non-singular if it is a tropical manifold. This is the case if and only if it is
dual to a regular subdivision of a lattice polytope which is primitive, i.e. if every top dimensional polytope
in the subdivision is of lattice volume 1.

Corollary 6.5. If X is a non-singular tropical hypersurface in an n + 1-dimensional tropical toric variety for
n ≥ 3 then every class in HBM

n−1,n−1(X,Z) is the fundamental class of a tropical cycle in X.
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w1

w2

v1

v2

v1 + v2

•
p

k2

k1

k12

Figure 3: A (1,1)-cycle on a tropical abelian surface in red and green on the left, and a representative of
its class by the fundamental class of a tropical 1-cycle.

Proof. It follows from Proposition 6.4 that H0,2(X,R) = 0, so the statement follows from Corollary 6.1.

The first example of non-trivial wave maps for tropical hypersurfaces is in the case of smooth tropical
quartic surfaces. We now look at two specific examples.

Definition 6.6. A smooth tropical quartic surface is dual to a primitive regular triangulation of a size 4 tetra-
hedron.

There is one 2-dimensional polytopal sphere P contained in smooth tropical quartic surface. It is dual
to all cells of the regular subdivision of the size 4 tetrahedron which contain the unique interior lattice
point of the size 4 simplex of dimension 3. The Betti diamond of a smooth tropical quartic surface is:

1
0 0

1 20 1
0 0

1

so the wave map sends a Z-module of rank 20 to a 1-dimensional real vector space. The Picard rank of
smooth tropical quartic surface X is the rank of Pic(X). Since H0,1(X,Z) = 0 for a smooth tropical quartic
surface X the map c1 : Pic(X)→ H1,1(X,Z) is injective by the long exact sequence obtained from (3.1).
Hence the Picard rank is equal to the rank of the kernel of the wave homomorphism by Proposition 3.5.

Example 6.7. (A tropical surface with Picard rank 19) A tropical hypersurface X with Newton polytope
n+ 1-simplex of size d is floor decomposed if the relative interior of every top dimensional polytope in the
dual subdivision of X does not intersect the hyperplanes {xn+1 = i} for all 0 ≤ i ≤ d − 1}. For examples see
[Sha13a].

A floor decomposed tropical quartic surface is determined (up to choice of constants regulating the
height of the floors) by a collection of non-singular planar tropical curves C1,C2,C3,C4 where each Cd is
of degree d (i.e. dual to a primitive triangulation of the size d lattice triangle).

Given a floor decomposed surface X a basis of its H1,1(X,Z) tropical homology was described in
[Sha13a]. On a floor given by the curves Ci and Ci+1, there are i(i + 1) − 1 independent “floor cycles".
This produces 11 + 5 + 1 = 17 independent (1,1)-cycles. They can be chosen such that their support, after
projecting to the plane, forms a minimal loop in Ci ∪Ci+1 not contained in Ci or Ci+1. By our particular
choice of curves C1, . . . ,C4, any such cycle is disjoint from the cycle of C3. Hence we can assume the floor
cycles do not intersect the polytopal sphere. Additionally, there is a cycle h, a multiple of which is the
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Figure 4: The floor diagram of a smooth tropical quartic surface with rank(H1,1(X,Z)∩ker(φ)) ≥ 18.

τ1

τ2

τ3

σ1

σ2

σ3

↑←
↑→

↑→

P

γ

β

Figure 5: On the left the branched path which is the support of a (2,1)-cycle whose boundary is τ1 +τ2 +τ3.
On the right a depiction of the polytope P and the cycles β and γ from Example 6.7.
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Figure 6: A tropical quartic surface and its bounded polytope from Example 6.8.

hyperplane section, which can also be made disjoint from P . Together with the cycles α and β which are
illustrated on the right hand side of Figure 5 and completely described in [Sha13a], these cycles form a basis
of H1,1(X,Z).

We now describe how (2,0) cells behave when passing to homology depending on their supporting
point. Orient each face of P so that it is the boundary of the 3-dimensional polytope. At any edge γ of
X of sedentarity ∅ there are three faces adjacent to it: σ1,σ2, and σ3. If τi is an appropriately oriented
generator of FZ2 (σi) we can find a (2,1)-cell whose support is the branched path on the left of Figure 5
and whose boundary is τ1 + τ2 + τ3. Moreover, for any point x not on the polytopal sphere we can find a
branched path in X whose endpoints are x and points of positive sedentarity, thus showing that a (2,0)-
cycle supported on x is homologous to 0. In addition, for two faces σ1, σ2 of the polytopal sphere, we have
τ1 ∼ τ2 where τi are appropriately oriented generators of FZ2 (σi) and such an τi generates H2,0(X,Z). We
denote the class of these τi by τ .

This implies that φ̂(h) = φ̂(γ) = 0 for all floor cycles γ . Moreover, using this description of H2,0(X,R)
we can explicitly compute φ̂(α) = lτ and φ̂(α) = hτ , where l is the lattice length of the unique cycle in C3
(i.e., the j-invariant of C3) and k is the lattice height of the pentagonal prism P (or, the distance between the
floors connected by C3). Varying the coefficients of the defining tropical polynomial, these two parameters
can be controlled independently. In particular, we can arrange both l

k ∈Q and l
k <Q.

We conclude that Ker(φ̂) has rank 19 or 18, depending on our choice and thus any tropical quartic
surface with the combinatorial type of the one chosen above must have Picard rank equal to 18 or 19 by
Theorem 1.1.

Example 6.8. (A smooth tropical quartic surface with Picard rank 1) The second example is dual to a
cone triangulation. Fix a primitive regular triangulation of each of the four two dimensional faces of the
size 4 tetrahedron. We obtain a unique primitive regular triangulation by considering the cone over this
triangulation with the cone point being the unique interior lattice point (1,1,1) of the size 4 simplex. See
Figure 6 for an example.

In this case all 34 bounded 2-dimensional faces of X are faces of the polytopal sphere P contained in
X. Each such face corresponds to a unique lattice point on the boundary of the tetrahedron. There are
3 types of such points: the 4 vertices of the tetrahedron, the 3 × 6 = 18 lattice points on the edges of the
tetrahedron, and the 3× 4 = 12 lattice points contained in the relative interior a 2-dimensional face of the
tetrahedron. Any (2,0)-cycle whose support is not contained on the polytopal sphere P is homologous to
zero since its support is then contained in unbounded faces. Orient each two dimensional face of P so that
the collection of faces form the boundary of the bounded 3-dimensional polytope in the complement of X
in R

3. As in the previous example, equipping any p ∈ σ ⊂ P with the unique generator of FZ2 (σ ) oriented
coherently with respect to σ , we obtain representatives of the (same) generator τ ∈H2,0(X,Z).
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Each bounded 2-dimensional face σ provides a (1,1)-cycle by taking its boundary and equipping each
with a coefficient in FZ1 which is a vector generating Z

3 together with the lattice parallel to σ . Each
bounded two dimensional face of X corresponds to a lattice point on the boundary of ∆. We denote such
a cycle by αa where a is the corresponding lattice point in ∂∆. If a is in the interior of a two dimensional
face of ∂∆, then αa = 0 in homology. This leaves 22 such (1,1)-cycles. Suppose the defining polynomial of
X is f (x) = “

∑
a∈∆ cax

a”. Up to sign we have φ̂(αa) = waτ where,

(1) if a in the relative interior of an edge of ∆ with primitive integer direction v, then

wa = ca+v − ca−v ;

(2) if a is a vertex of ∆, let a1, a2, a3 denote the three lattice points in the relative interiors of edges of ∆
which are of lattice distance one away from a. Then

wa = ca1
+ ca2

+ ca3
− 3c(1,1,1).

Let W ⊂ H1,1(X,Q) denote the subspace spanned by the 22 cycles. It turns out that dim(W ) = 19, and
that W , together with the hyperplane section h, generate H1,1(X,Q). By choosing a basis for W among
the αa’s, we can identify Hom

Q
(W,R) with R

19. Let Vcoef = R
∆∩Z3

be the vector space of polynomials
f = (ca)a and let C ⊂ Vcoef denote the cone of coefficients of tropical polynomials of the fixed combinatorial
type. Then φ̂ induces a linear map w : Vcoef → R

19 which is explicitly given by formulas (1) and (2). It
can be checked that s has full rank and hence w(C) ⊂ R

19 has non-empty interior. For any 1 ≤ r ≤ 19, let
Yr ⊂ R

19 be the subset of vectors whose entries span a 20 − r-dimensional Q-subspace of R. Since Yr is
dense for any r, there exists a tropical polynomial f ∈ C with w(f ) ∈ Yr . Such an f describes a tropical
surface X with Picard rank equal to r . In particular, we can produce a tropical surface of Picard rank equal
to 1. This proves Theorem 1.4 from the introduction.
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