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Algebraic models of the Euclidean plane

Jérémy Blanc and Adrien Dubouloz

Abstract. We introduce a new invariant, the real (logarithmic)-Kodaira dimension, that allows to
distinguish smooth real algebraic surfaces up to birational diffeomorphism. As an application, we
construct infinite families of smooth rational real algebraic surfaces with trivial homology groups,
whose real loci are diffeomorphic to R

2, but which are pairwise not birationally diffeomorphic.
There are thus infinitely many non-trivial models of the euclidean plane, contrary to the compact
case.
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Titre. Modèles algébriques du plan euclidien

Résumé. Nous introduisons un nouvel invariant, la dimension de Kodaira (logarithmique) réelle,
qui permet de distinguer les surfaces algébriques réelles lisses à difféomorphismes birationnels
près. En guise d’application, nous construisons des familles infinies de surfaces algébriques réelles
rationnelles lisses ayant des groupes d’homologie triviaux, dont les lieux réels sont difféomorphes
à R

2 mais qui sont deux à deux non birationnellement difféomorphes. Contrairement au cas
compact, il y a donc une infinité de modèles non triviaux du plan euclidien.
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Introduction

A real quasi-projective algebraic variety X can be viewed as a complex quasi-projective algebraic variety
endowed with an anti-regular involution, or equivalently as a locally closed subscheme of Pn

C
which is

defined over R. We can then speak about the set X(R) of real points of X (real locus). If X is smooth, this
set is naturally endowed with the structure of differential real manifold, and X is said to be an algebraic
model of this differential manifold. Two models X1 and X2 of the same manifold are said to be equivalent if
there exists a diffeomorphism X1(R)→ X2(R) which comes from a birational map ϕ : X1d X2, such that
ϕ and ϕ−1 are defined at each point of X1(R) and X2(R) respectively. Such a map is called a birational
diffeomorphism. In general a manifold can admit plenty of different models. For example, the hypersurfaces
of P3

R
given by the equations x2n + y2n + z2n − t2n = 0, n ≥ 1, provide infinitely many models of the

sphere S
2 which are pairwise not birational. Nevertheless, if one restricts to the simplest ones, namely the

rational models, then for smooth compact manifolds of dimension at most 2, the model is then unique. In
dimension 1, we obtain only P

1 and in dimension 2 this is the following result of Biswas and Huisman:

Theorem. [1, Corollary 8.1] A compact connected real manifold of dimension 2 admits a rational model if and
only if it is non-orientable or diffeomorphic to S2 or S1 ×S1. Moreover, this model is unique, up to birational
diffeomorphism.

In the non-compact case, the real locus of the real affine algebraic variety A
2
R

provides an obvious
rational algebraic model of the Euclidean plane R

2 endowed with its standard structure of differential
manifold. It is easy to find plenty of other rational models of R2: we can choose for instance the complement
in P

2
R
of a smooth irreducible real curve Γ ⊆ P

2
R
of odd degree d ≥ 3 such that Γ (R) is an oval equivalent

to a line by a diffeomorphism of RP
2. It is thus natural to restrict the study of such models to the

smaller class of “Fake real planes”, introduced in [5] as being smooth algebraic surfaces S defined over R,
non isomorphic to A

2
R
but whose real locus is diffeomorphic to R

2 and whose complexifications S
C
have

“minimal topology” in the sense that they are Q-acyclic topological manifolds, that is, topological manifolds
whose singular homology groups with rational coefficients H̃i(SC;Q) are all trivial.

By general results [7, 9, 10, 5] all these surfaces are affine and rational. A partial classification of them
as real algebraic varieties was given in [5], according to their usual Kodaira dimension. Families of fake
real planes of each Kodaira dimension κ ∈ {−∞,0,1,2} birationally diffeomorphic to A

2
R
were constructed

in [6]. The existence of fake real planes non birationally diffeomorphic to A
2
R
was left open.

Here we show that R2 admits algebraic models non birationally diffeomorphic to A
2
R
of every Kodaira

dimension κ = 0,1,2, answering the main question of [5] :

Theorem 1. There are infinitely many rational models S of the plane R2 up to birational diffeomorphism, all
having trivial reduced homology groups H̃i(SC;Q). Such models exist for every κ = 0,1,2, and moreover, for
κ = 1,2, there exist infinitely many models S up to birational diffeomorphism for which S

C
is even topologically

contractible.

In order to prove this result, we define a notion of real Kodaira dimension κ
R
(S) (Definition 2.4), which

has the property to be smaller than or equal to the classical one κ(S), and can be computed in a very
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similar way (see Definition 2.4 and Remark 2.5). Moreover, we have equality κ(S) = κ
R
(S) in the natural

case where S admits a smooth projective completion V with SNC boundary B = V \S consisting only of real
curves isomorphic to P

1
R
, and intersecting only at real points. The main new noteworthy feature of κ

R
(S)

is that it is invariant under birational diffeomorphisms (Corollary 2.12), contrary to κ(S) (Example 2.6).
We establish the following result, from which Theorem 1 directly follows.

Theorem 2. For each l ∈ {0,1,2}, there is a smooth affine surface S , algebraic model of the plane R2, with
trivial rational homology groups H̃i(SC;Q) and κ

R
(S) = κ(S) = l. Moreover, for l ∈ {1,2}, we can find infinitely

many such S with topologically contractible complexifications S
C
, up to birational diffeomorphism.

As κ
R
is invariant under birational diffeomorphisms, every fake real plane S birationally diffeomorphic

to A
2
R
satisfies κ

R
(S) = −∞ (Corollary 2.15), so every of the examples which we construct in Theorem 2 is

a fake real plane not birationally diffeomorphic to A
2
R
.

In contrast with the cases κ = 1,2, the only smooth algebraic models of R2 of Kodaira dimension
−∞ and 0 with Q-acyclic complexifications known so far are respectively the affine plane A

2
R
and a real

model Y (3,3,3) of one of Fujita’s exceptional surfaces [7] which was constructed in [5]. This motivates the
following question:

Question 0.1. Are the surfaces A2
R
and the fake real plane Y (3,3,3) of real Kodaira dimension 0 given in

§2.B.b the unique algebraic models of R2 with trivial reduced rational homology groups of real Kodaira dimension
−∞ and 0, up to birational diffeomorphism ?

The article is organised as follows: Section 1 contains some preliminaries. In Section 2, we define the real
Kodaira dimension of a smooth real surface and establish its basic properties. We also give some examples
of fake real planes of real Kodaira dimension 0 (the surface Y (3,3,3) in §2.B.b) and 2 (the Ramanujam
surface in §2.B.b). Then, in Sections 3 and 4, we provide families of pairwise not birational diffeomorphic
fake real planes of Kodaira dimension 1 and 2 respectively, which achieve the proof of Theorem 2 hence of
Theorem 1. The last subsection (§4.C) describes pairs of fake real planes having the same complexifications
but such that one has real Kodaira dimension 2 and the other is birationally diffeomorphic to A

2
R
.

We thank the referee for his careful reading and his helpful comments to improve the exposition of this
text.

1. Preliminaries

A k-variety is a geometrically integral scheme X of finite type over a base field k. A morphism of k-
varieties is a morphism of k-schemes. In the sequel, k will be equal to either R or C, and we will say
that X is a real, respectively complex, algebraic variety. A complex algebraic variety X will be said to be
defined over R if there exists a real algebraic variety X0 and an isomorphism of complex algebraic varieties
between X and the complexification X0,C = X0 ×Spec(R) Spec(C) of X0, where Spec(C)→ Spec(R) is the
morphism induced by the usual inclusion R ↪→C =R[x]/(x2 +1).

1.A. Real algebraic varieties and morphisms between them

For a real algebraic variety X, we denote by X(R) and X(C) the sets of R-rational and C-rational points
of X respectively. These are endowed in a natural way with the Euclidean topology, locally induced by
the usual Euclidean topologies on A

n
R
(R) ' R

2n and A
n
C
(C) ' C

n respectively. When X is smooth, X(R)
and X(C) can be further equipped with natural structures of C∞-manifolds. Every morphism f : X → X ′

of real algebraic varieties induces a continuous map X(R)→ X ′(R) for the Euclidean topologies, and an

isomorphism of real algebraic varieties f : X
'−→ X ′ induces a homeomorphism X(R)

'−→ X ′(R), which is
a diffeomorphism when X and X ′ are both smooth.
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In the context of the study of real algebraic models of a C∞-manifold, it is natural to consider a broader
class of isomorphisms, induced by appropriate rational maps. Recall that the domain of definition of a
rational map ϕ : X d Y between two k-schemes X and Y is the largest open subset domϕ on which ϕ
is represented by a morphism. We say that ϕ is regular at a closed point x if x ∈ domϕ . A rational map
ϕ : Xd Y is called birational if it admits a rational inverse ψ : Y d X.

Definition 1.1. Let ϕ : X d X ′ be a rational map between real algebraic varieties such that X(R) and
X ′(R) are not empty.

(1) We say that ϕ is R-regular, or that ϕ induces a morphism X(R)→ X ′(R) (that we will again write ϕ),
if the rational map ϕ is regular at every R-rational point of X. Equivalently, the real locus X(R) of
X is contained in the domain of definition of ϕ.

(2) We say that ϕ is R-biregular, or that ϕ is an isomorphism X(R)
'−→ X ′(R), if it is birational and ϕ

and its inverse are R-regular.

(3) A birational diffeomorphism is an R-biregular rational map ϕ : Xd X ′ between smooth real algebraic

varieties (or equivalently an isomorphism X(R)
'−→ X ′(R), where X and X ′ are smooth).

We can then consider the category most often used in real algebraic geometry (for instance in [1, 13, 2])
whose objects are the non-empty real loci X(R) of real algebraic varieties and whose morphisms correspond
to R-regular rational maps X(R)→ X ′(R). Note that the class of morphisms considered is in general much
larger than the class of usual regular maps. For instance, if X is a projective real algebraic surface, the
group Aut(X) of biregular automorphisms of X is often quite small: its neutral component is an algebraic
group and has thus finite dimension. In contrast, the group of birational diffeomorphisms Aut(X(R)) can
be very large. If X is smooth and rational, then Aut(X(R)) acts infinitely transitively on X(R) [13, Theorem
1.4]. A similar behaviour can also happen if X is not rational but only geometrically rational [2, Theorem
2].

1.B. Pairs and (logarithmic) Kodaira dimension

Recall that a Smooth Normal Crossing (SNC) divisor B on a smooth surface S defined over k is a curve B on
S whose base extension Bk to the algebraic closure k of k has smooth irreducible components and ordinary
double points only as singularities. Equivalently, for every closed point p ∈ Bk ⊆ Sk, the local equations of
the irreducible components of Bk passing through p form a part of a regular sequence in the maximal ideal
mSk,p

of the local ring OSk,p of Sk at p.

Definition 1.2. A smooth SNC pair (V ,B) is a pair consisting of a smooth projective surface V and an SNC
divisor B ⊆ V both defined over k.

By virtue of Nagata compactification [19, 20] and of classical desingularization theorems, every smooth
surface S defined over k admits an open embedding S ↪→ (V ,B) into a smooth complete (in fact, projective
by virtue of Chow Lemma) surface with possibly empty reduced SNC boundary divisor B = V \ S , both
defined over k. Such a pair (V ,B) is called a smooth SNC completion of S .

The (logarithmic) Kodaira dimension κ(S) of S is then defined as the Iitaka dimension κ(V ,ωV (logB))
[14], where

ωV (logB) = (detΩ1
V /k)⊗OV (B) ' OV (KV +B),

for any canonical divisorKV onV . More explicitly, lettingR(V ,B) =
⊕

m≥0H
0(V ,ωV (logB)⊗m) be the log-

canonical ring of the smooth SNC pair (V ,B), we have κ(S) = trdegkR(V ,B)−1 if H0(V ,ωV (logB)⊗m) , 0
for sufficiently large m and otherwise, if H0(V ,ωV (logB)⊗m) = 0 for every m ≥ 1, then we set by conven-
tion κ(S) = −∞ and we say for short that κ(S) is negative. The so-defined element κ(S) ∈ {−∞,0,1,2}
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is independent of the choice of a smooth SNC completion (V ,B) of S [15], and it coincides with the usual
notion of Kodaira dimension in the case where S is already complete. Furthermore, it is invariant under
arbitrary extensions of the base field k, as a consequence of the flat base change theorem [11, Proposi-
tion III.9.3]. In particular a smooth real surface S and its complexification S

C
= S ×Spec(R) Spec(C) have

the same Kodaira dimension.

2. The real Kodaira dimension of open real surfaces

2.A. A variant of logarithmic Kodaira dimension

For a smooth real surface S , the Kodaira dimension κ(S) is in general not a birational invariant, unless S
is complete: for instance, the affine plane A

2
R
and the product of the punctured affine line A

1
R
\ {0} with

itself are birational to each other but have Kodaira dimensions −∞ and 0 respectively. We now introduce
a variant of Kodaira dimension more adapted to the study of equivalence classes of open real surfaces up
to birational diffeomorphisms.

Notation 2.1. Given a smooth SNC pair (V ,B) defined over R, we denote by B
R
⊆ B the union of all

irreducible components Bi of BC which are defined over R and such that Bi(R) is infinite.

Remark 2.2. The Zariski closure of B(R) in V is the union of B
R
and of finitely many isolated points of B.

Definition 2.3. Let (V ,B) be a smooth SNC pair defined over R. We say that B
R
contains an imaginary

loop if there exists a pair of distinct irreducible components A and A′ of B
C
defined over R and with infinite

real loci, whose intersection A∩A′ contains a pair of conjugate non-real points, i.e. a C-rational but not
R-rational point.

Definition 2.4. The real Kodaira dimension of a smooth SNC pair (V ,B) defined over R is the element

κ
R
(V ,B) = κ(V ,ωV (logBR)) ∈ {−∞,0,1,2}.

If furthermore B
R
has no imaginary loop, then we define the real Kodaira dimension of S = V \B to be

κ
R
(S) = κ(S(R)) = κ

R
(V ,B).

By definition, given a smooth SNC pair (V ,B) defined over R, the curve B
R
contains imaginary loops

if and only if it has some pairs of non-real singular points q and q. The following lemma provides a simple
procedure to eliminate imaginary loops.

Lemma 2.5. Let (V ,B) be a smooth SNC pair defined over R and let Z = {q1,q1, . . . , qs,qs} be the set of non-real
singular points of B

R
. Let τ : V̂ → V be the blow-up of Z and let E =

∑s
i=1 τ

−1(qi) + τ−1(qi) be its exceptional
locus. Then the following hold:

(1) (V̂ , B̂ = τ∗(B)red) is a smooth SNC pair defined over R for which B̂
R
has no imaginary loops and such that

τ induces an isomorphism V̂ \ B̂→ V \B.

(2) κ(V̂ , B̂) = κ(V ,B) and κ
R
(V̂ , B̂) ≤ κ

R
(V ,B).

Proof. (1): As B is SNC, the morphism τ only blows-up ordinary double points of B, so B̂ is again SNC.
Every irreducible curve on V̂

C
contracted by τ is not defined over R and does not intersect its conjugate,

so does not contain any real point. This implies that B̂
R
is the strict transform of B

R
. Every singular C-

rational point of B
R
which was not real has been blown-up, and every singular C-rational point of B̂

R
is an

R-rational point. Hence, B̂
R
has no imaginary loop. The fact that τ induces an isomorphism V̂ \B̂→ V \B
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follows from the fact that B̂ = τ∗(B)red and that all points blown-up by τ and all exceptional divisors of E
are contained in B and B̂ respectively.

(2): Since the points blown-up by τ are ordinary double points of B
R
hence of B, we have B̂ = τ∗B−E

whereas B̂
R
= τ∗B

R
−2E because E does not contain any real point. Denoting by KV̂ and KV the canonical

divisors on V̂ and V respectively, we have the ramification formula KV̂ = τ∗KV +E for τ . This yields the
two equalities

KV̂ + B̂ = τ∗(KV +B) and KV̂ + B̂
R
= τ∗(KV +B

R
)−E.

The first equality gives κ(V̂ , B̂) = κ(V ,B). The second equality gives κ
R
(V̂ , B̂) ≤ κ

R
(V ,B), since E is

effective.

The following example shows that the inequality of Lemma 2.5 (2) can be strict.

Example 2.6. Take V = P
2
R

and B = L + C, where L ' P
1
R

is the line of equation x = 0 and C is the
smooth conic of equation x2 − y2 − z2 = 0. Then, B

R
= B has imaginary loops, as the points q = [0 : 1 : i],

q = [0 : 1 : −i] are singular points of B. With the notation of Lemma 2.5, the blow-up τ : V̂ → P
2
R
of these

two points yields an SNC pair (V̂ , B̂ = τ∗(B)red) such that B̂ = L̃+ C̃ +E, where E = Eq +Eq is the sum of
the exceptional divisors over q and q respectively, and where L̃, C̃ are the strict transforms of L and C. We
get B̂

R
= L̃+ C̃.

The canonical divisor of V = P
2
R

satisfies KV = −L − C so that KV + B
R
= 0. On the other hand,

by the proof of Lemma 2.5 (2), we have KV̂ + B̂
R
= τ∗(KV + B

R
) − E = −E. Hence κ

R
(V ,B) = 0 whereas

κ
R
(V̂ , B̂) = −∞.

The aim of this section is to show that the definition of κ(S(R)) (or κ
R
(S)) only depends on the bira-

tionnal diffeomorphism class of S(R), or equivalently of the real surface S , up to birational diffeomorphism.

The following notion is natural to compare two possible pairs, up to birational diffeomorphism.

Definition 2.7. Let (V ,B) and (V ′ ,B′) be two smooth SNC pairs defined over R. A birational map of pairs
ϕ : (V ,B)d (V ′ ,B′) is a birational map V d V ′ defined over R inducing an isomorphism

(V \B)(R)
'−→ (V ′ \B′)(R)

(or equivalently inducing a birational diffeomorphism from V \B to V ′ \B′).

Example 2.8. Let (V ,B) and (V ′ ,B′) be two smooth SNC pairs defined over R, and let τ : V → V ′ be
a birational morphism, defined over R. In each of the following cases, τ yields a birational map of pairs
(V ,B)d (V ′ ,B′).

(1) If τ is an isomorphism V
'−→ V ′ such that ϕ(B(R)) = B′(R).

(2) If τ is the blow-up of a point q ∈ B′(R) and B = ϕ−1(B′)red.

(3) If τ is the blow-up of a pair of conjugate non-real points q,q ∈ V ′(C) and B is the strict transform of
B′ . (Here the exceptional locus does not contain any real point.)

Remark 2.9. Another example of simple birational map of pairs τ : (V ,B)→ (V ′ ,B′) is given as follows:
we take τ to be the blow-up of a pair of conjugate non-real points q,q ∈ V ′(C) and B = ϕ−1(B′)red.

Denoting by E ⊆ V the exceptional locus of τ (which is the disjoint union of two conjugate imaginary
(−1)-curves and does not contain any real point) and by B̃ the strict transform of B′ , we get B = B̃+E. We
can then decompose the birational map τ : (V ,B)→ (V ′ ,B′) as the composition of idV : (V ,B)→ (V ,B̃)
with the birational morphism τ : (V ,B̃)→ (V ′ ,B′), which are examples of type (1) and (3) respectively.
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Lemma 2.10. Let ϕ : (V ,B)d (V ′ ,B′) be a birational map of smooth SNC pairs. Then, there exists a sequence
of birational maps of pairs

(V ,B) = (V0,B0)
ϕ1
d (V1,B1)

ϕ2
d · · ·

ϕn−1
d (Vn−1,Bn−1)

ϕn
d (Vn,Bn) = (V ′ ,B′)

such that ϕ = ϕn ◦ · · · ◦ ϕ1 and such that for each i ∈ {1, . . . ,n}, either ϕi or (ϕi)−1 is of one of three types
(1)-(2)-(3) of Example 2.8.

Moreover, if B
R
and B′

R
have no imaginary loop, then we can assume the same for (Bi)R, for i = 1, . . . ,n.

Proof. By definition, ϕ : V d V ′ is a birational map defined over R, inducing an isomorphism between
(V \B)(R) and (V ′ \B′)(R).

If ϕ is an isomorphism V
'−→ V ′ , then it sends B(R) onto B′(R) and is thus of the type of Exam-

ple 2.8 (1). Otherwise, we can take a minimal resolution of the indeterminacies of ϕ given by

W
τ
xx

τ ′

&&
V

ϕ // V ′

where W is a smooth projective real surface and τ and τ ′ are birational morphisms defined over R.
Recall that since ϕ and ϕ−1 are defined over R, the union of their base-points, including infinitely near
ones, is defined over R, hence consists of either real points or pair of conjugate non-real points. The
minimality assumption implies in particular that τ and τ ′ are the blow-ups of the base-points of ϕ and
ϕ−1 respectively. This gives back the classical decomposition of τ and τ ′ into simple blow-ups (one real
or a pair of conjugate non-real points) and thus the real Zariski strong factorisation of ϕ, as explained for
instance in [22, Chapter II, Proposition 6.4].

We proceed by induction on the number of such points, the case where there is no base-point being
2.8 (1).

If q ∈ V (R) is a base-point of ϕ, then q belongs to B(R), since ϕ induces an isomorphism between
(V \ B)(R) and (V ′ \ B′)(R). We can write τ as τ = τq ◦ τ̂ , where τq : V̂ → V is the blow-up of q and
τ̂ : W → V̂ is a birational morphism defined over R. Writing B̂ = (τq)−1(B)red, the birational map τq yields
a birational maps of pairs (V̂ , B̂)d (V ,B) of type 2.8 (2). Moreover, if B

R
has no imaginary loop, the same

holds for B̂
R
= ((τq)−1(BR))red. As ϕ ◦ τq : (V̂ , B̂) d (V ′ ,B′) is again a birational maps of pairs, whose

minimal resolution has less base-points, we conclude by induction.
The same argument works with a point q ∈ V ′(R) which is a base-point of ϕ−1. We can thus assume

that no point of V (R) or V ′(R) is a base-point of ϕ or ϕ−1.
If τ is not an isomorphism, there is a pair of conjugate non-real points q,q ∈ V (C), both base-points

of ϕ, blown-up by τ . As before, we write τ as τ = τq ◦ τ̂ , where τq : V̂ → V is the blow-up of q and
q, which is thus defined over R. Then τ̂ : W → V̂ is a birational morphism defined over R. The strict
transform B̂ of B on V̂ is then again an SNC-divisor, defined over R, and τq induces a birational map of
pairs (V̂ , B̂)d (V ,B) of type 2.8 (3). Moreover, if B

R
has no imaginary loop, the same holds for B̂

R
, which

is the strict transform of B
R
. As before, the result follows by induction. The same works when τ ′ is not a

regular morphism.

Lemma 2.11. Let ϕ : (V ,B)d (V ′ ,B′) be a birational map of smooth SNC pairs (V ,B) and (V ′ ,B′) defined
over R, such that neither B

R
nor B′

R
has an imaginary loop. Then for every m,n ∈ Z with m ≥ |n|, the map ϕ

induces an isomorphism

ϕ∗ : H
0(V ,mKV +nB

R
)
'−→H0(V ′ ,mKV ′ +nB

′
R
).

In particular, κ
R
(V ,B) = κ

R
(V ′ ,B′).

Proof. Applying Lemma 2.10, we can assume that ϕ is of one of the three cases (1)-(2)-(3) of Example 2.8.
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In case (1), ϕ is an isomorphism V
'−→ V ′ that sends B(R) isomorphically onto B′(R). It thus maps the

Zariski closure of B(R) isomorphically onto that of B′(R). This implies that ϕ(B
R
) = B′

R
(see Remark 2.2).

This achieves the proof in this case.
We then do the two cases (2)-(3), and denote, in both cases, by E ⊆ V the divisor contracted by ϕ.
In case (2), ϕ is the blow-up of a point q ∈ B′(R), B = ϕ−1(B′)red and E = ϕ−1(q).
In case (3), ϕ is the blow-up of a pair of conjugate non-real points q,q ∈ V ′(C), B is the strict transform

of B′ and E = ϕ−1(q) +ϕ−1(q). As B′
R
is an SNC-divisor with no imaginary loop, the points q,q cannot be

singular points of B′
R
.

We find respectively

(2): B
R

=


ϕ∗(B′

R
) +E if q ∈ B′(R) \B′

R
(R),

ϕ∗(B′
R
) if q is a simple point of B′

R
,

ϕ∗(B′
R
)−E if q is a double point of B′

R
,

(3): B
R

=

ϕ∗(B′R) if q < B′
R
(C),

ϕ∗(B′
R
)−E if q ∈ B′

R
(C).

Since KV = ϕ∗(KV ′ ) +E, we obtain

mKV +nB
R
=m(ϕ∗(KV ′ ) +E) +n(ϕ

∗(B′
R
) + εE) = ϕ∗(mKV ′ +nB

′
R
) + δE,

where ε ∈ {−1,0,1} and δ = m+ nε ≥ m− |n| ≥ 0 as m ≥ |n| by hypothesis. As a consequence, the natural
inclusion

H0(V ′ ,mKV ′ +nB
′
R
) 'H0(V ,ϕ∗(mKV ′ +nB

′
R
)) ↪→H0(V ,ϕ∗(mKV ′ +nB

′
R
) + δE)

is a bijection.
Indeed, for each integer r ≥ 0, an effective divisor D equivalent to ϕ∗(mKV ′ + nB′R) + rE is equal to

D̃ + rE for some effective divisor D̃ equivalent to ϕ∗(mKV ′ +nB′R). This is clear for r = 0, and for r > 0 we
just compute E ·D = rE2 ≤ −r < 0 and obtain that D −E is effective, which yields the result by induction.

The case where m = n shows that κ
R
(V ′ ,B′) = κ

R
(V ,B).

As a consequence of Lemma 2.11, we obtain:

Corollary 2.12. For a smooth real affine surface S , κ
R
(V ,B) is independent of the choice of a smooth SNC

completion (V ,B) of S defined over R and such that B
R
does not have an imaginary loop. The real Kodaira

dimension κ
R
(S) ∈ {−∞,0,1,2} of S introduced in Definition 2.4 is thus a well-defined invariant of S(R).

The following result summarises immediate consequences of the definition and Lemma 2.11.

Proposition 2.13. The real Kodaira dimension κ
R
(S) of a smooth real surface S enjoys the following properties:

(1) κ
R
(S) = κ

R
(S ′) for every smooth surface S ′ defined over R birationally diffeomorphic to S .

(2) κ
R
(S) ≤ κ(S) with equality if S admits a smooth projective SNC completion (V ,B) defined over R such

that B = B
R
has no imaginary loop.

Proof. Assertion (1) follows from Lemma 2.11. For (2), it follows from Lemma 2.5 that the surface S always
admits a smooth projective SNC completion (V ,B) defined over R such that B

R
has no imaginary loop. We

then have B = B
R
+E for some effective divisor E, and thus get κ

R
(S) = κ

R
(V ,B) = κ(V ,B

R
) ≤ κ(V ,B) =

κ(S), with equality if B = B
R
.
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Example 2.14. The inequality κ
R
(S) ≤ κ(S) is strict in general: for instance, let B ⊆ P

2
R

be a general
arrangement consisting of 0 ≤ r ≤ 2 real lines and a collection of p ≥ 0 pairs of non-real complex conjugate
lines. Then for S = P

2
R
\B, we have κ

R
(S) = −∞ independently of r and p while

κ(S) =


−∞ if r +2p < 3,

0 if r +2p = 3,

2 if r +2p ≥ 4.

The equality κ
R
(S) = −∞ follows from the fact that S is birationally diffeomorphic to the complement S ′

of r ≤ 2 lines in P
2
R
, which satisfies κ

R
(S ′) = κ(S) = −∞. On the other hand, since B is an SNC divisor,

κ(S) = κ(P2
R
,B) where K

P
2
R

+B has degree −3+ r +2p.

As a consequence of Proposition 2.13 (1), we obtain:

Corollary 2.15. Let S be a smooth real surface. If S is birationally diffeomorphic to A2
R
, then κ

R
(S) = −∞.

Proof. Follows from Proposition 2.13 (1), and the fact that A2
R
= P

2
R
\L, where L ⊆ P

2
R
is a real line. Hence,

m(K
P

2
R

+L) ' −2mL is not effective for each m ≥ 0, so κ
R
(S) = κ

R
(A2

R
) = κ(P2

R
,L) = −∞.

2.B. Examples

2.B.a. An algebraic model of real Kodaira dimension 0: the exceptional fake plane Y (3,3,3)

Let us recall from [5, §5.1.1] the following construction of a fake plane S of Kodaira dimension 0 whose
complexification S

C
is Q-acyclic1, with H1(SC;Z) ' Z9. Let D be the union of four general real lines

`i ' P
1
R
, i = 0,1,2,3 in P

2
R
and let τ : V → P

2
R
be the real projective surface obtained by first blowing-

up the real points pij = `i ∩ `j with exceptional divisors Eij , i, j = 1,2,3, i , j and then blowing-up the
real points `1 ∩ E12, `2 ∩ E23 and `3 ∩ E13 with respective exceptional divisors E1, E2 and E3. We let
B = `0 ∪ `1 ∪ `2 ∪ `3 ∪E12 ∪E23 ∪E13. The dual graphs of D, of its total transform τ−1(D) in V and of B
are depicted in Figure 1.

B

l2

l0

l3l1

E12

E23

E13

E1

E2

E3 l3

l2

l0

l1

+1

−2

−2

l0

E13 l3
−2

−2

−2

E23

−2
l1

E12

l2

D τ−1(D)

Figure 1: Construction of Y (3,3,3)

By virtue of [5, §5.1.1] (see also [6, §3.2]), the real surface Y (3,3,3) = V \B is a fake real plane of Kodaira
dimension κ(Y (3,3,3)) = 0. Since by construction B = B

R
is a tree, we conclude by Proposition 2.13 (1)

that κ
R
(Y (3,3,3)) = κ(Y (3,3,3)) = 0, hence that Y (3,3,3) is not birationally diffeomorphic to A

2
R
. This

answers [5, Question 5.2].

1 ↑ It is known that there is no fake real plane of Kodaira dimension 0 with Z-acyclic complexification [17, Theorem 4.7.1(1),
p. 244]
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2.B.b. An algebraic model of real Kodaira dimension 2: the real Ramanujam surface

The real Ramanujam surface S is a real model of the complex Ramanujam surface [21] which is constructed
as follows: let D ⊆ P

2
R
= Proj(R[x,y,z]) be the union of the cuspidal cubic C = {x2z + y3 = 0} with its

osculating conic Q at an R-rational point q ∈ C(R) distinct from the singular point [0 : 0 : 1] of C and its
flex [0 : 0 : 1]. Up to change of coordinates, one can for instance choose q = [1 : 1 : −1], which implies that
the equation of Q is

5x2 +24xy − 40xz+45y2 − 15yz − z2.

So Q is a smooth R-rational conic intersecting C at q with multiplicity 5 and transversally at a second
R-rational point p. We let β : F1 → P

2
R
be the blow-up of p with exceptional divisor E ' P

1
R
and we let

S be the complement in F1 of the proper transform D̃ of D . The total transform B of D̃ in a minimal
log-resolution τ : (V ,B)→ (F1, D̃) of the pair (F1, D̃) is a tree of R-rational curves depicted in Figure 2.

• •

•

• •

•

• • • •
−3 −1

−2

C

Q

−3 −1

−2

−2 −2 −2 −2

Figure 2: The weighted dual graph of the divisor B ⊆ V .

The surface S is a fake real plane of Kodaira dimension 2 with contractible complexification S
C
: the

contractibility of S
C
was first established by Ramanujam [21], the fact that κ(S) = 2 follows for instance

from the classification of contractible complex surfaces of Kodaira dimension ≤ 1 established in [8] (see
also [16]), and the fact that S(R) 'R

2 was proven in [5, Example 3.8].
Since the smooth SNC completion (V ,B) of S has the property that B

R
= B is a tree, the equality

κ
R
(S) = κ(S) = 2 holds by virtue of Proposition 2.13 (1), and so, S is not birationally diffeomorphic to A

2
R
.

Remark 2.16. The same argument as above also applies to the three examples of fake real planes S of log-
general type with contractible complexification S

C
constructed in [6, §5.1] from arrangements of real lines

and irreducible singular R-rational quartics in P
2
R
: all these surfaces have the property to admit a smooth

SNC completion (V ,B) defined over R for which B
R
= B is a tree, so that their real Kodaira dimension

κ
R
coincides with their usual Kodaira dimension. All of them are therefore non birationally diffeomorphic

to A
2
R
.

3. Families of algebraic models of Kodaira dimension 1

Fake real planes S of Kodaira dimension 1 whose complexifications S
C

are Z-acyclic manifolds, that is
topological manifolds with trivial reduced homology groups H̃i(SC;Z), have been classified up to isomor-
phism in [5] (see also [8] and [3] for the complex case). One obtains the following:

Proposition 3.1. A fake real plane of Kodaira dimension κ = 1 with Z-acyclic complexification is not bira-
tionally diffeomorphic to A2

R
.

Proof. By virtue of [5, Theorem 3.2], every such surface admits a completion into a smooth projective
surface V defined over R obtained from P

2
R
by blowing-up specific sequences of real points, and whose

boundary B = V \S consists of a tree of P1
R
’s. In particular, such a smooth pair (V ,B) satisfies B

R
= B, and

we deduce from Proposition 2.13 (1) that κ
R
(S) = κ(S) = 1. The result then follows from Corollary 2.15.

In the rest of this section, we build on a blow-up construction of certain fake real planes of Kodaira
dimension 1 with contractible complexifications [5, Example 3.5] to derive the existence of infinitely many
pairwise non birationally diffeomorphic such surfaces. The main ingredient is the uniqueness of the log-
canonical fibration, given by Lemma 2.11.
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Let 1 < a < b be a pair of coprime integers and consider the rational pencil

Ψ : P2
R
= Proj

R
(R[x,y,z])d P

1
R
, [x : y : z] 7→ [yb : xazb−a].

It has two proper base points q0 = [0 : 0 : 1] and q∞ = [1 : 0 : 0]. A general geometrically irreducible fiber
of Ψ is an R-rational cuspidal curve, with multiplicity a and b − a at q0 and q∞ respectively, and Ψ has
precisely two degenerate members: Ψ −1([1 : 0]) which is supported on the union of the lines Lx = {x = 0}
and Lz = {z = 0} and Ψ −1([0 : 1]) which is supported on the line Ly = {y = 0}. Up to exchanging the roles
of x and z, we assume from now on that a > b − a.

Let Ca,b = Ψ −1([1 : −1]) = {xazb−a − yb = 0}, let p = [1 : 1 : 1] ∈ Ca,b and let β : X(a,b)→ P
2
R
be the

blow-up of p, with exceptional divisor E. We let S(a,b) = X(a,b) \ (Ca,b ∪ Lz) where we identified a curve
in P

2
R
with its proper transform in X(a,b).

The dual graph of the total transform of Ca,b∪Lx∪Ly∪Lz in the minimal resolution α : V (a,b)→ X(a,b)
of the induced rational map Ψ ◦β : X(a,b)d P

1
R
is depicted in Figure 3. The boundary B(a,b) = V (a,b) \

S(a,b) is the reduced total transform of Ca,b ∪ Lz. The induced morphism f = Ψ ◦ β ◦α : V (a,b)→ P
1
R
is

a P
1-fibration having the last exceptional divisors C0 and C1 of α over the points q0 and q∞ as disjoint

sections.

◦ •

•

•

•

•

◦◦
•

•

•

•
◦◦
•

•

•E Ca,b
Lx
Lz

Ly

C0

C1

Figure 3: The dual graph of the total transform of Ca,b ∪ Lx ∪ Ly ∪ Lz, the components denoted by ◦ are
those which do not belong to the boundary B(a,b).

Proposition 3.2. For every pair of coprime integers 1 < a < b, the surface S(a,b) is a fake real plane of Kodaira
dimension κ = κ

R
= 1, with contractible complexification. Furthermore, if (a,b) , (a′ ,b′) then S(a,b) and

S(a′ ,b′) are not birationally diffeomorphic.

Proof. The first assertion follows from [5, Theorem 3.2] and Proposition 2.13 (1) using the fact that B
R
(a,b) =

B(a,b) is a tree. Set S = S(a,b) and S ′ = S(a′ ,b′) and suppose that there exists a birational diffeomorphism
ϕ : S d S ′ . Let (V ,B) = (V (a,b),B(a,b)) and (V ′ ,B′) = (V (a′ ,b′),B(a′ ,b′)) be the smooth pairs obtained
by taking the minimal resolutions of the pencils Ψ ◦ β and Ψ ′ ◦ β′ respectively. The structures of B and
B′ imply that ϕ extends to a birational diffeomorphism of pairs Φ : (V ,B)d (V ′ ,B′). Indeed, otherwise
either Φ or its inverse, say Φ , would contract an irreducible component of B onto a real point of B′ . But B
does not contain any irreducible curve whose proper transform by a birational morphism W → V defined
over R whose center is supported on B is (−1)-curve which can be contracted while keeping the property
that the total transform of B is an SNC divisor.

By virtue of [17, Lemma 4.5.3 p. 237], the positive part of the Zariski decomposition of KV +B is equal
to (1 − 1

a −
1
b )` where ` denotes a general real fiber of the P

1-fibration f : V → P
1
R
. Since 1 < a < b, it

follows that f coincides with the log-canonical fibration f|m(KV +B)| : V → P
1
R
for every integer m ≥ 1. The

same holds for the log-canonical fibration f ′ = f|m(KV ′+B′)| : V
′→ P

1
R
on V ′ . Since B = B

R
and similarly for

B′ , it follows from Lemma 2.11 that for every m ≥ 1, Φ induces an isomorphism between H0(V ,m(KV +B))
and H0(V ′ ,m(KV ′ +B′)). Consequently, there exists an automorphism γ of P1

R
defined over R such that

f ′ ◦Φ = γ ◦ f .
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The curves E, Lx and Ly have multiplicities 1, a and b as irreducible components of the scheme
theoretic fibers of f : V → P

1
R
over the points [1 : 1], [1 : 0] and [0 : 1] respectively. Similarly, the curves

E′ , L′x and L′y have multiplicities 1, a′ and b′ as irreducible components of the scheme theoretic fibers of

f ′ : V ′ → P
1
R

over these points. Since 1 < a < b and 1 < a′ < b′ , and Φ(S(R)) ⊆ S ′(R), it follows that
Φ∗(E) = E′ , Φ∗(Lx) = L′x and Φ∗(Ly) = L′y . Thus γ = id, from which we conclude in turn that a = a′ and
b = b′ .

4. Families of algebraic models of Kodaira dimensions 2

Here we construct infinite families of pairwise non birationally diffeomorphic fake real planes of real Ko-
daira dimension 2 with contractible complexifications. We also give examples of Z-acyclic complex surfaces
of log-general type with two real forms: one of them has negative logarithmic Kodaira real dimension and
is in fact birationally diffeomorphic to A

2
R
whereas the other one has real Kodaira dimension 2, hence is

not birationally diffeomorphic to A
2
R
.

4.A. A criterion for isomorphism

Lemma 4.1. Let S be a fake real plane of real Kodaira dimension 2, with Q-acyclic complexification. Suppose
that there exists a smooth SNC completion (V ,B) of S defined over R for which B = B

R
. Then the log-canonical

rational map
ϕ : V d Proj(

⊕
m≥0

H0(V ,m(KV +B
R
)))

is a morphism, which restricts to an isomorphism between S and its image.

Proof. By hypothesis, S
C
is a smooth Q-acyclic surface of Kodaira dimension κ(S

C
) = κ(S) = κ

R
(S) = 2. By

the Bogomolov-Miyaoka-Yau inequality (see e.g. [17, Theorem 6.6.2]) S
C
does not contain any topologically

contractible algebraic curve. Since S
C
is affine and rational, it follows from [17, Lemma 1.5.1 p. 198] that

the only curves contracted by a KV
C

+B
C
-MMP ran from (V

C
,B

C
) are irreducible components of B

C
. The

assumption that B = B
R

implies that such a MMP is defined over R. Let h : (V ,B) → (W,∆) be the
corresponding birational morphism, where ∆ = h∗B. Then (W,∆) is an lc pair defined over R, such that

KW +∆ is semi-ample [17, Theorem 4.12.1], and h restricts to an isomorphism S = V \B '→W \∆. We have
KV + B = h∗(KW +∆) + E where E is an effective Q-divisor supported on the exceptional locus of h, and
h induces an isomorphism h∗ : H0(W,m(KW +∆))

∼→ H0(V ,m(KV + B)) = H0(V ,m(KV + B
R
)) for every

m ≥ 0. Finally, again due to the fact that S
C

is affine, rational and does not contain any topologically
contractible algebraic curve, it follows from [17, Lemma 1.6.1 p. 200] that the only curves that could be
contracted by the log-canonical morphism

ψ :W → Proj(
⊕
m≥0

H0(W,m(KW +∆))) ' Proj(
⊕
m≥0

H0(V ,m(KV +B
R
)))

are irreducible components of ∆. So ϕ = ψ ◦ h restricts to an isomorphism between S and its image.

By combining Lemma 2.11 and Lemma 4.1, we obtain the following:

Proposition 4.2. Let S and S ′ be fake real planes of real Kodaira dimension 2 withQ-acyclic complexifications.
Assume further that there exist SNC minimal completions (V ,B) and (V ′ ,B′) of S and S ′ respectively defined
over R such that B = B

R
and B′ = B′

R
. Then every birational diffeomorphism f : Sd S ′ is an isomorphism.

Proof. Let F : (V ,B)d (V ′ ,B′) be the birational map of pairs induced by f . The hypothesis implies that
the boundaries B

R
= B and B′

R
= B′ are trees of R-rational curves [5, Lemma 2.3]. So by 2.11, ϕ induces an
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isomorphism θ between the log-canonical rings

R(V ,B
R
) =

⊕
m≥0

H0(V ,m(KV +B
R
)) and R(V ′ ,B′

R
) =

⊕
m≥0

H0(V ′ ,m(KV ′ +B
′
R
))

of the pairs (V ,B
R
) and (V ′ ,B′

R
) respectively. On the other hand, it follows from Lemma 4.1 that the

log-canonical morphisms ϕ : V → X = Proj(R(V ,B
R
)) and ϕ′ : V ′ → X ′ = Proj(R(V ′ ,B′

R
)) restrict to

isomorphisms S = V \ B
R
' X \ ϕ∗(BR) and S ′ = V ′ \ B′

R
' X ′ \ ϕ′∗(B′R). We thus get a commutative

diagram

S //

f
��

V

F
��

ϕ // X

o
��

S ′ // V ′
ϕ′ // X ′

where the right-hand side isomorphism is induced by θ. This shows that f is an isomorphism.

4.B. Miyanishi-Sugie surfaces: a countable family of pairwise non birationally diffeomet-
ric fake real planes of log-general type

We consider the following real counterpart of a family of smooth complex topologically contractible surfaces
of log-general type constructed by Miyanishi-Sugie [18]. For each integer s ≥ 1, we will construct a surface

Ss, defined over R, which corresponds to the surface X
(1)
s+1,1 of [18], i.e. to the construction of [18] with

n = s+1, m = 1 and r = s. We recall the construction here for self-containedness.
We define Cs and Ls to be the irreducible curves in P

2
R
= Proj(R[x,y,z]) given by the zero loci of the

polynomials
ys((s2 − 1)x+ sy − z) + (x − sy)(x+ y)s and ((s2 − 1)x+ sy − z)

respectively. Note that the polynomials above correspond to −yn−1z+x2(xn−2−
∑n−2
i=2 (i−1)

(n
i

)
xn−i−2yi) and

(n2 −2n)x+ (n−1)y − z, with n = s+1, and thus the equations of Cs and Ls are the same as those given in
[18, Lines 1-2, Page 338].

The curve Cs is rational, of degree s + 1 with a unique cuspidal singularity of multiplicity s at the
point [0 : 0 : 1], which is solved by one blow-up. The line Ls is the tangent line to Cs at the point
p = [1 : −1 : s2 − s − 1] and intersects Cs with multiplicity s at p and with multiplicity 1 at the point
q = [s : 1 : s3].

Let τ : V0,s → P
2
R

be the birational morphism defined over R obtained by first blowing-up q and
then blowing-up s + 1 times the intersection point of the proper transform of Cs with that of the previous
exceptional divisor produced. Let E1, . . . ,Es+2 ' P

1
R
be the corresponding successive exceptional divisors.

Let B0,s = Cs ∪ Ls ∪
⋃s+1
i=1Ei , where we identified each curve with its proper transform in V0,s and let

Ss = V0,s \B0,s. The dual graph of B0,s is given in the following figure, where the double arrow corresponds
to a multiple intersection at a point (corresponding here to the point p).

•• • •
s2 + s − 1 0 −2 −2

Cs Ls E1 Es+1s ︸          ︷︷          ︸
s+1

The smooth surface Ss is defined over R. A minimal log-resolution fs : (Vs,Bs)→ (V0,s,B0,s) defined over
R of the pair (V0,s,B0,s) is obtained by taking a log-resolution of the singular point [0 : 0 : 1] of Cs and
blowing-up the real point p and its infinitely near points s times to separate the proper transforms of Cs
and Ls.

After blowing-up the singular point of Cs on V0,s, the total transform of B0,s is given by the following
dual graph, where F is the exceptional curve contracted on the singular point of Cs.
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•• • • •
−1 s − 1 0 −2 −2
F Cs Ls E1 Es+1ss ︸          ︷︷          ︸

s+1

The total transform Bs of B0,s is thus a tree of R-rational curves whose dual graph is depicted on

Figure 4 (which is the same as the graph of X
(1)
n,m given in [18, Theorem 1, Page 339], with m = 1 and

n = s+1).

••

•

•

••

• • • •

•

−s − 1 −1 −s − 1 −1 −s −2 −2

−2

−2

−2

−2

F Cs Ls E1 Es+1︸          ︷︷          ︸
s+1

 s − 1
 s − 1

Figure 4: The weighted dual graph of the boundary divisor Bs.

Proposition 4.3. For every s ≥ 2, Ss is a fake real plane with contractible complexification and κ(Ss) =
κ
R
(Ss) = 2. Furthermore, if s, s′ ≥ 2 are two integers, then Ss is birationally diffeomorphic to Ss′ if and

only if s = s′ .

Proof. The fact that the complexification of Ss is contractible and of log-general type is proven in [18]:
the log-general type is the purpose of the construction and the contrability is given in [18, Theorem 2].
Since Bs = Bs,R by construction, we have κ

R
(Ss) = κ(Ss) = 2, and Sn is a fake real plane by virtue of [5,

Proposition 2.4]. By Proposition 4.2, every birational diffeomorphism between Ss and Ss′ is an isomorphism.
But the description of the dual graphs of the boundaries Bs in Figure 4 implies that every isomorphism
between Ss and Ss′ extends to an isomorphism of pairs between (Vs,Bs) and (Vs′ ,Bs′ ) and that two such
pairs are non isomorphic for different s and s′ .

4.C. Fake real planes of general type with nontrivial real forms

To complete this section, we reconsider a family of fake real planes of general type with two real forms
intoduced in [5, §3.2.2]. We start with the projective duals Γ1 and Γ2 of real nodal cubic curves C1,C2 ⊆ P

2
R
,

such that the two branches at the singular point of C1,C2 are real, respectively non-real.
Note that C1,C2 are not equivalent under Aut(P2

R
) = PGL2(R), and that every real nodal cubic curve

of P2
R
is projectively equivalent to either C1 or C2. The latter can be checked by looking at the parametri-

sations P
1
R
→ C1,C2, given by polynomials of degree 3 having the same value at two points, which are

either real or pairs of non-real complex conjugates. Explicitely, one can choose, for instance, the equations
of C1 and C2 to be

x2z − y2z+ xy2 = 0 and x2z+ y2z − xy2 = 0. 2

With these coordinates, we find that C1 and C2 are exchanged by the non-real complex projective trans-
formation [x : y : z] 7→ [x : iy : z]. Moreover, both curves C1,C2 have a singular point at [0 : 0 : 1], an

inflection point at [0 : 1 : 0] and then two other complex inflection points, which are [1 : ±i
√
3
3 : 1

4 ] for C1

and [1 : ±
√
3
3 : 14 ] for C2.

2 ↑ The equations given in [5, §3.2.2] are unfortunately false, as both are linearly equivalent, having one singular point with two
real branches.
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The curves Γ1 and Γ2 are thus rational quartics with three cusps: an ordinary real cusp p0 corresponding
to the common R-rational flex of C1 and C2, and either a pair of non-real conjugate cusps q and q for
Γ1 or an additional pair or real ordinary cusps q1 and q2 for Γ2. So Γ1 and Γ2 are not isomorphic over
R, but their respective complexifications are both projectively equivalent over C. In fact, after change of
coordinates, the curves Γ1 and Γ2 can be given by the equations

(x2 + y2)2 + z(2x3 +2xy2 − y2z) = 0 and x2y2 + x2z2 + y2z2 +2xyz(x+ y − z) = 0,

and the projective transformation θ : [x : y : z] 7→ [x+ iy : x− iy : z/2] maps Γ1 isomorphically onto Γ2. The
cusps of Γ1 are then p0 = [0 : 0 : 1],q = [1 : i : 0], q = [1 : −i : 0], and the ones of Γ2 are p0 = [0 : 0 : 1],
q1 = [1 : 0 : 0], q2 = [0 : 1 : 0].

For i = 1,2, the tangent line Li = Tp0(Γi) to Γi at p0 (given respectively by y = 0 and x = y and
satisfying θ(L1) = L2) intersects Γi transversally in a unique other real point pi different from p0 (being
given by p1 = [1 : 0 : −1/2] and p2 = [1 : 1 : −1/4] = θ(p1)). Let (a,b) be a pair of positive integers such
that 4b − a = ±1 and let τi : Vi → P

2
R

be the real birational morphism obtained by first blowing-up pi
with exceptional divisor E1 ' P

1
R
and then blowing-up a sequence of real points on the successive total

transforms of E1 in such a way that the following two conditions are satisfied: a) the inverse image of pi is a
chain of curves isomorphic to P

1
R
containing a unique (−1)-curve A and b) the coefficients of A in the total

transform of Γi and Li = Tp0(Γi) are equal to a and b respectively. We denote the corresponding exceptional

divisors by E1, . . . ,Er−1,Er = A and we let Bi = Γi ∪ Tp0(Γi)∪
⋃r−1
j=1Ej , i = 1,2.

Proposition 4.4. For every choice of integers (a,b) ∈Z>0 as above, the following hold for the surfaces Si = Vi\Bi ,
i = 1,2:

a) S1 and S2 are Z-acyclic fake real planes of Kodaira dimension 2 with isomorphic complexifications.

b) κ
R
(S2) = 2, in particular S2 is not birationally diffeomorphic to A

2
R
.

c) κ
R
(S1) = −∞, and S1 is actually birationally diffeomorphic to A2

R
.

Proof. The complex surfaces S1,C and S2,C are isomorphic, by lifting the projective transformation θ. The
fact that S1 and S2 are Z-acyclic fake real planes of log-general type is established in [5, Proposition 3.10].
Since by construction B2 is a tree of R-rational curves, we have κ

R
(S2) = κ(S2) = 2 by Proposition 2.13 (2),

and so S2 is not birationally diffeomorphic to A
2
R
. The fact that S1 is birationally diffeomorphic to A

2
R
is

proven in [6, Proposition 21].
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