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Infinite families of inequivalent real circle actions
on affine four-space

L. Moser-Jauslin

Abstract. The main result of this article is to construct infinite families of non-equivalent equiv-
ariant real forms of linear C∗-actions on affine four-space. We consider the real form of C∗ whose
fixed point is a circle. In [F-MJ] one example of a non-linearizable circle action was constructed.
Here, this result is generalized by developing a new approach which allows us to compare dif-
ferent real forms. The constructions of these forms are based on the structure of equivariant
O2(C)-vector bundles.
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Titre. Sur des familles infinies d’actions non équivalentes du cercle réel sur l’espace affine
de dimension 4

Résumé. Le résultat principal de cet article est de construire des familles infinies de formes
réelles équivariantes, non équivalentes entre elles, d’actions linéaires de C

∗ sur l’espace affine de
dimension 4. L’article [F-MJ] construisait un exemple d’action du cercle non linéarisable. Ici nous
généralisons ce résultat en développant une nouvelle approche qui nous permet de comparer les
différentes formes réelles. Les constructions de ces formes réelles s’appuient sur la structure de
O2(C)-fibrés vectoriels équivariants.

Received by the Editors on July 16, 2018, and in final form on October 23, 2018.
Accepted on December 6, 2018.

L. Moser-Jauslin
Université de Bourgogne Franche-Comté, Institut de Mathématiques de Bourgogne – UMR 5584 du CNRS, 9 avenue Alain Savary,
BP 47870, Dijon 21078, France
e-mail : moser@u-bourgogne.fr

This work was supported by the French “Investissements d’Avenir” program, project ISITE-BFC (contract ANR-lS-IDEX-OOOB)

© by the author(s) This work is licensed under http://creativecommons.org/licenses/by-sa/4.0/

http://epiga.episciences.org/
epiga.episciences.org
http://creativecommons.org/licenses/by-sa/4.0/


2 2. Description of real forms2 2. Description of real forms

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Description of real forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3. Main result : the (2,2m+1) case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4. Real forms of equivariant vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5. O2(C)-vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6. The (1,2) case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7. Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1. Introduction

In this article, we construct infinite families of inequivalent real forms of linear C∗-actions on complex affine
four-space. Consider the real form σ of C∗ whose fixed point set is a circle. That is, σ (t) = t−1 for all t ∈C∗.
Now consider the linear action of C∗ on the four dimensional affine space Y with weights 2,−2,n,−n for
n an odd integer ≥ 3. We study equivariant real forms of this C∗-variety, that is, real forms µ of Y which
are compatible with the real form σ of C∗. The construction of these real forms uses a classification of
equivariant O2(C)-vector bundles where the base (resp. zero fiber) is the irreducible O2(C)-module for
which C

∗ acts with weights 2 and −2 (resp. n and −n). For n ≥ 5, it is known that one can find a family for
which the actions of O2(C) on the total spaces are all inequivalent. By adapting these ideas to real forms,
we will show in particular that, for n ≥ 5, there are infinitely many distinct real forms of Y .

It was shown in [K-R] that, over any field of characteristic zero all actions of any form of a Gm-action on
affine three-space is linearizable. The result from [F-MJ] shows that this result does not hold in dimension
4 for the field R. Here, we describe a systematic approach to find many non-linearizable actions which are
all pairwise inequivalent.

In Section 2, we recall basic definitions of real forms of equivariant varieties. Then in Section 3, we
state and give the proof of the main results. In Sections 4 and 5, we describe the method of constructing
the examples, using equivariant vector bundles for the group O2(C). We then show in Section 6 how the
analogous result for another case fails to hold. In the final section, we state two open questions related to
these results.

2. Description of real forms

If G is a complex linear algebraic group, a real form of G is given by an antiholomorphic involution σ on
G where σ is a group automorphism.

Given a G-variety Y , a (G,σ )-real form of Y , or an equivariant real form of Y compatible with σ , is given
by an antiholomorphic involution µ of Y such that µ(gy) = σ (g)µ(y) for all g ∈ G and y ∈ Y . Two real
forms µ1 and µ2 are equivalent if there exists a regular G-automorphism ψ of Y such that µ2 = ψ◦µ1◦ψ−1.

Suppose that at least one real (G,σ )-form on Y , which we denote by µ0, exists. Then we will show that
the set of all equivalence classes of real forms is determined by a cohomology set. Let Γ = {1,γ} be the
Galois group of C/R, and let A = AutG(Y ). Consider the action of Γ on A defined by

γψ = µ0 ◦ψ ◦µ0 = µ0ψµ0.

If µ is any real (G,σ )-form on Y , then ϕ := µ ◦ µ0 = µµ0 ∈ A, and γϕ = µ0µµ
2
0 = µ0µ = (µµ0)−1 = ϕ−1

since µ and µ0 are of order 2. Conversely, if ϕ ∈ A satisfies the condition that γϕ = ϕ−1, then ϕµ0 is a
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real form of Y , since (ϕµ0)2 = ϕ γϕ = ϕϕ−1 = id. In other words, the map which sends µ to µµ0 defines a
bijection between the set of (G,σ )-real forms of Y , and the set Z1(Γ ,A) := {ϕ ∈ A|γϕ = ϕ−1}.

Now suppose that ϕ1µ0 and ϕ2µ0 are two real forms (with ϕ1,ϕ2 ∈ Z1(Γ ,A)). They are equivalent if
and only if there exists an automorphism ψ ∈ A such that ψϕ1µ0ψ

−1 = ϕ2µ0, that is, ψϕ1
γψ−1 = ϕ2. Thus

we define the equivalence relation on Z1(Γ ,A) by ϕ1 ∼ ϕ2 if there exists ψ ∈ A such that ϕ2 = ψϕ1
γ(ψ)−1.

The bijection above induces a bijection between the equivalence classes of (G,σ )-real forms of Y and
H1(Γ ,A) := Z1(Γ ,A)/ ∼.

3. Main result : the (2,2m+1) case

3.A. Construction of circle forms

The case considered here is G = C
∗, and σ (t) = t−1. The fixed points of σ form the circle S1 of elements

of norm 1 in C
∗.

If Y is a C
∗-variety, a real form µ on Y as a C

∗-variety which is compatible with σ is called a real circle
form, and the action of (G,σ ) on (Y ,µ) is called a circle action on Y or a real circle action on Y .

Let Wk be the two-dimensional C∗-module with weights (k,−k). In other words, t(x,y) = (tkx, t−ky) for
t ∈C∗.

Fix m ≥ 1, and n = 2m + 1. In this section, consider the following C
∗-variety :Y = W2 ×Wn. The

following defines a real circle form on Y :

µ0
(( a

b

)
,

(
x
y

))
=

(( b
a

)
,

(
y
x

))
.

We call this form “a linear circle action on affine space". Now we will construct a family of other
real circle forms on Y . There might be many others, but we restrict the study to only some cases (where
equivariant vector bundle methods can be used for constructing and distinguishing different forms).

Later, we will explain how these real forms come from non-equivalent O(2)-actions found by G. Schwarz
in [S1].

Let T = ab. Given h ∈R[T ], let Mh ∈ GL2(C[a,b]) be the matrix given by

Mh =
(
1− T h2 anhn

−bnhn
∑n−1
j=0 (T h

2)j

)
,

Let ϕh be the automorphism of Y :

ϕh
(( a

b

)
,

(
x
y

))
=

(( a
b

)
,Mh

(
x
y

))
.

Note that ϕh is C
∗-equivariant: ϕh ∈ AutC∗(Y ).

We now state the main theorem of this article.

Theorem 3.1. Let h ∈R[T ] be a real polynomial, and let µh = ϕhµ0.

(i) µh defines a real circle form on Y =W2 ×W2m+1;

(ii) µh is equivalent to µh′ if and only if there exists r ∈R∗ such that

h(T ) ≡ rh′(r2T ) mod (Tm).

Note that, if one forgets the action, and one considers µh as a real form of Y as a variety, then they are
all equivalent.
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3.B. Two special cases

(1) As a consequence, for m = 1, we find two inequivalent real forms. For h = 0, we find the linear
circle action, and for h = 1, we have another, non-equivalent form. This case is precisely the action
described in [F-MJ].

(2) For m = 2, if h = c0 + c1T and h′ = c′0 + c
′
1T , with all coefficients being real, the theorem implies that

the real forms ϕh ◦µ0 and ϕh′ ◦µ0 are equivalent if and only if :

(i) c0 = c′0 = c1 = c
′
1 = 0;

(ii) c0 = c′0 = 0, c1c′1 , 0;

(iii) c1 = c′1 = 0, c0c′0 , 0; or

(iv) c0c
′
0c1c

′
1 , 0 and (c′0/c0)

3 = c′1/c1.

In particular one finds an infinite family of inequivalent real circle forms of the same C∗-linear action.

3.C. Three linear subgroups of A = Aut
C
∗Y

In order to prove this theorem, we will use certain subgroups of A = Aut
C
∗Y . They are related to vector-

bundle automorphisms described in general in the following sections.

(1) Consider the subgroup Λ ⊂ GL2(C[a,b]) defined as follows. Set T = ab.

Λ =
{
M =

(
P (T ) anQ(T )
bnS(T ) R(T )

)
|P ,Q,R,S ∈C[T ],det(M) = ∆ ∈C∗

}
.

We define an action of Γ on the group Λ. If

M =
(
P (T ) anQ(T )
bnS(T ) R(T )

)
, then γM =

(
R(T ) anS(T )
bnQ(T ) P (T )

)
.

Now consider the subgroup AΛ ⊂ A of automorphisms of the form

ϕM
(( a

b

)
,

(
x
y

))
=

(( a
b

)
,M

(
x
y

))
where M ∈Λ.

By construction, γϕM = ϕγM , and ϕ−1M = ϕM−1 .

(2) We consider also a subgroup of automorphisms of Y coming from the linear circle action. More
precisely, if ω ∈C is of norm 1, we construct the automorphism ρω by

ρω
(( a

b

)
,

(
x
y

))
=

(( ω2a
ω−2b

)
,

(
ωnx
ω−ny

))
.

(3) Finally, if r ∈ R, we consider a subgroup of automorphisms that act only on the first factor:

`r
(( a

b

)
,

(
x
y

))
=

(( ra
rb

)
,

(
x
y

))
.

Proof the theorem, part (i). It suffices to note that ϕh ∈ AΛ, and that M−1h = γMh. This implies that the
cocycle condition γϕ−1h = ϕh is verified, and therefore µh = ϕhµ0 is an anti-holomorphic involution on Y ,
and it is compatible with σ , and therefore is a real circle form.
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3.D. Equivalences

The first step in proving the equivalence relation of part (ii) of the theorem is to reduce the problem of
equivalence to a computation using automorphisms in AΛ.

Proposition 3.2. The real forms µh and µh′ are equivalent if and only if there exists ψ ∈ AΛ and r ∈ R∗ such
that ψϕh

γψ−1 = ϕh′′ where h′′(T ) = rh′(r2T ).

This result is a special case of the general Proposition 4.2, stated later. The proof for this case is given
completely here.

Proof. First note that `rϕh′
γ`−1r = `rϕh′`−1r = ϕh′′ . Thus one direction of the equivalence is clear.

Now suppose that µh is equivalent to µh′ . This means that there is an automorphism ψ ∈ A such that
ψ ◦ϕh ◦ γψ−1 = ϕh′ .

We will now follow an argument from Masuda and Petrie [MP2] to create a vector bundle automorphism
which has the same property. Let H = {±1} be the subgroup of C∗ of two elements. Since ψ is equivariant,
it stabilizes the fixed point set of H . In other words, ψ stabilizes the subvariety B defined as the zero set of
x and y. Also, by equivariance, and from the hypothesis that ψ ◦ϕh ◦ γψ−1 = ϕh′ , we see that there exists
λ ∈C∗ such that

ψ
(( a

b

)
,

(
0
0

))
=

(( λa
λb

)
,

(
0
0

))
.

By choosing an appropriate r ∈ R and ω ∈ C of norm 1, one can construct ψ1 = `−1r ρωψ such that ψ1
fixes pointwise B. Note that ψ1 ◦ϕh ◦ γψ−11 = ϕh′′ .

Finally Y is the total space of the normal bundle of B in Y . Thus ψ1 induces an automorphism ψ2 on
the normal bundle, which gives therefore an automorphism in AΛ.

By the fact that ϕh and ϕh′ are also in AΛ, we have that ψ2 ◦ϕh γψ−12 = ϕh′′ , and the proposition is
proven.

Now we will show that the real circle actions µh which were constructed are all equivalent over a certain
open set of Y . Then part (ii) of the theorem can be proven using this result and Proposition 3.2.

Notation: V (ab) ⊂ Y is the closed subvariety Y defined by the equation ab = 0.
Note first that U = Y \V (ab) is an open G-subvariety, and all the real forms µh restrict to real circle

forms on U . We will start by showing that they are all equivalent on U .
Consider first the analogous setting that was used on Y . Let A′ = Aut

C
∗U . Let Λ′ ⊂ GL2(C[a,b,T −1])

be defined as follows.

Λ′ =
{
M =

(
P (T ) anQ(T )
bnS(T ) R(T )

)
|P ,Q,R,S ∈C[T ,T −1],det(M) = ∆ = cT k , c ∈C∗, k ∈Z

}
.

As before, define an action of Γ on the group Λ′ . If

M =
(
P (T ) anQ(T )
bnS(T ) R(T )

)
, then γM =

(
R(T ) anS(T )
bnQ(T ) P (T )

)
.

Consider the subgroup A′
Λ′ of A

′ of automorphisms of the form

ϕM
(( a

b

)
,

(
x
y

))
=

(( a
b

)
,M

(
x
y

))
where M ∈Λ′ .

By construction, γϕM = ϕγM , and ϕ−1M = ϕM−1 .
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For h ∈R[T ], construct the matrix Kh ∈Λ′ by

Kh =

 1 anh
T m

bnh
∑m−1
j=0 (T h

2)j

T m
∑m
j=0(T h

2)j


and let ψ′h ∈ A

′
Λ′ be the corresponding automorphism of U :

ψ′h
(( a

b

)
,

(
x
y

))
=

(( a
b

)
,Kh

(
x
y

))
.

Lemma 3.3. Let U = Y \V (T ). The real forms µh restricted to U are all equivalent. More precisely, we have
µh = ψ′hµ0ψ

′−1
h′ .

Proof. It suffices to check that det(Kh) = 1 and that Kh
γK−1h =Mh.

Lemma 3.4. Let Ψ ∈Λ′ be a matrix such that γΨ = Ψ and such that det(Ψ ) is a non-zero complex constant.
Then Ψ is of the form

Ψ =
(
α 0
0 α

)
for some α ∈C∗.

Proof. Set Ψ =
(
P (T ) anQ(T )
bnS(T ) R(T )

)
where P ,Q,R,S ∈ C[T ,T −1], with determinant ∆ ∈ C

∗. The first

coefficient of Ψ γΨ −1 is (P P −T nQQ)/∆. Therefore, we have the condition that P P −T nQQ = ∆. Consider
P P and QQ as Laurent polynomials. The highest monomial in P P is of even degree, and the highest
monomial in T nQQ is of odd degree. Thus they do not cancel. The same holds for the lowest degree
monomials. Thus the only possibility to have the given equality is that Q = 0 and P is of degree 0. Set
P = α. We find ∆ = αα, thus ∆ is real. By considering the other coefficients of Ψ , we find similarly that
S = 0, and that Ψ is of the given form.

Proof of Theorem 3.1. By Proposition 3.2, µh is equivalent to µh′ if and only if there exists r ∈R∗ and N ∈Λ
such that NMh

γN−1 =Mh′′ , where h
′′(T ) = rh′(r2T ). This means

NKh
γK−1h

γN−1 = Kh′′
γK−1h′′ .

Set Φ = K−1h′′ NKh ∈ Λ
′ . N satisfies the given equation if and only if γΦ = Φ . Also, since det(Kh) =

det(Kh′′ ) = 1, and since detN is a constant, the same holds of Φ . By Lemma 3.4, there exists α ∈ C∗ such
that Φ is diagonal with terms α and α.

The coefficients of N are all polynomials in T . Note that Kh =
(

1 anqh
bnsh rh

)
where qh = h/Tm,

sh = h(
∑m−1
j=0 T h

2))/Tm, and rh =
∑m
j=0(T h

2)j . The coefficients for N are all polynomials in C[a,b] if and
only if:

αshrh′′ −αrhsh′′ ∈C[T ]
and

αqh′′ −αqh ∈C[T ].
First of all, if h ≡ h′′( mod Tm), then one can choose α = 1, and the two conditions are verified. That is,
one can construct the matrix N ∈Λ which induces the equivalence of ϕh and ϕh′′ .

For the converse, note that the second equation implies that αh ≡ αh′′( mod Tm).
Since h and h′′ are real, if the real part of α is not zero, this implies that h ≡ h′′( mod Tm). If α is

purely imaginary, then h ≡ −h′′( mod Tm).We also know that ϕh′′ is equivalent to ϕ−h′′ , by posing r = −1,
which gives rh′′(r2T ) = −h′′(T ). Thus the existence of an appropriate matrix N implies the condition in
the theorem.
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4. Real forms of equivariant vector bundles

The examples given here were constructed using techniques of equivariant O2(C)-vector bundles over
O2(C)-modules. In [K-S], Kraft and Schwarz studied the following situation. Let G be a reductive complex
group, and let B and F be two G-modules. The total space of an equivariant G-vector bundle over B
with zero fiber F, as a variety, is isomorphic to affine space. If an equivariant bundle is not trivial, it can
happen that the associated action on the total space is non-linearizable. In fact, all examples of algebraic
non-linearizable actions on affine complex space known at this time are constructed in this way. Kraft and
Schwarz studied the case where the algebraic quotient of B by G is the affine line. They showed that the
set of equivalence classes of G-vector bundles with base B and zero fiber F forms a moduli space. Another
approach to the study of these G-vector bundles was developed in [MP1], [MP2], [MMP] and [MJ], using the
construction of equivariant bundles as subbundles of trivial ones. The method we used in Proposition 3.2
due to Masuda and Petrie was originally formulated to show how non-equivalent G-vector bundles can lead
to non-equivalent actions on the total spaces.

In this section, we will compare the study of real forms of equivariant vector bundles and equivariant
real forms on the total space. In the next section, we will describe how to use O2(C)-bundles to construct
real forms of linear C∗-actions on four-space.

Let π : E→ B be a G-vector bundle. This means that it is a vector bundle over B, the group G acts on
E and B, π is equivariant, and G acts linearly on the fibers. That is, for any b ∈ B and g ∈ G, the restriction
of the action of g from π−1(b) to π−1(gb) is linear. If f is a G-automorphism of B, a G-automorphism of E
over f is a G-automorphism ϕ of E such that ϕ ◦π = π ◦ f , and such that ϕ is linear on the fibers, that is,
for any b ∈ B, the restriction of ϕ from π−1(b) to π−1(f (b)) is linear. A G-vector bundle automorphism of
E→ B is a G-automorphism ϕ of E over the identity map on B.

Suppose B is a complex G-variety, σ is a real form of G and µB is a fixed real form of B compatible
with σ .

Definition 4.1. A real form µ of E is called a G-vector bundle real form compatible with σ and µB, if µ is
an anti-holomorphic involution on E defining a real form compatible with σ and such that µ ◦π = π ◦µB,
and µ is R-linear on the fibers. Two G-vector bundle real forms µ1 and µ2 are equivalent if there exists a
G-vector bundle automorphism ψ which conjugates µ1 to µ2.

Clearly, G-vector bundle real forms compatible with σ give real forms on the total space. Also, if two
such real forms are equivalent as G-vector-bundle real forms, then they are equivalent as equivariant real
forms on the total space. In general, the converse is not true. However, under some conditions, we can
induce information of non-equivalence on the total space from non-equivalence as vector bundle real forms.
The following proposition is essentially the result from Masuda-Petrie [MP2] which was used in Proposition
3.2.

Suppose π : E → B is a trivial G-vector bundle and f is a G-automorphism of B. Then f induces a
G-autormorphism on E = B×F, which we also call f . Suppose now that σ is a real form of G, and µB is a
real form of B compatible with σ , and µ is a G-vector bundle real form of E, compatible with σ and µB. If
f is a G-equivariant automorphism of B which preserves µB, (that is, f µBf

−1 = µB), then f ∗µ := f µf −1 is
another vector bundle real form of E compatible with σ and µB. By definition f ∗µ and µ are equivalent as
equivariant real forms of E.

Proposition 4.2. Let G be an algebraic complex group with real form σ , and let B be a G-variety with real form
µB compatible with σ . Suppose π : E→ B is a trival G vector bundle.

Suppose that G has a subgroup H such that EH = B, the zero section of the vector bundle.
Then, given two equivariant vector bundle real forms µ1 anad µ2 on E = B × F, they are equivalent as

equivariant real forms of E if and only if there exists a G-equivariant automorphism f of B which preserves µB
such that µ1 and f

∗µ2 are equivalent as G-vector bundle real forms.
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Proof. Suppose ψ is a G-equivariant automorphism of E such that ψ◦µ1◦ γψ−1 = µ2. Since ψ is equivariant
for H , ψ(B) = B, where B is identified with the zero section of the trivial vector bundle. ψB = f is therefore
a G-automorphism compatibile with σ and µB. Extending f to f = f × id on E = B × F, (f −1) ◦ψ is a
G-equivariant automorphism of E which fixes pointwise the zero section B. This automorphism therefore
induces a vector bundle automorphism ψ′ of the normal bundle of B in the total space, which is G-
isomorphic to E. Since µ1 and µ2 are linear on the fibers, ψ′µ1

γψ′−1 = f ∗µ2.

5. O2(C)-vector bundles

In [S1] Schwarz gave a description of certain moduli spaces of G-vector bundle equivalence classes for
G = O2(C) = C

∗
o Z/2Z. The irreducible representations of G are given by the one-dimensional ones

and, for every k ∈ N \ {0}, the two dimensional representation Wk where C
∗ acts by weights k and −k,

and G admits an involution which exchanges the two eigenspaces. Schwarz showed in particular that the
set of equivalence classes VEC(W2;W2m+1) of G-vector bundles with base W2 and zero fiber W2m+1 is a
moduli space isomorphic to C

m. All of these vector bundles come from considering the linear action of C∗

on the total space, and then finding a compatible (regular) involution. One can then find non-linearizable
G-actions on four-space.

In [F-MJ] it was shown that, for the case m = 1, one can use a certain involution from a non-linearizable
action formed in this way to construct an equivariant real circle form for the C

∗-action on the total space
(see also [W]). In order to do this, one needed to use that the involution commutes with conjugation. More
precisely, the regular involution coming from a non-linearizable action of G on affine four-space composed
with conjugation defines an anti-holomorphic involution, since they commute. It was shown that the action
given there was not equivalent to the linear circle action.

In the present article, the cases treated come from families of non-equivalent vector bundles. To
show that two real forms are not equivalent in general is more difficult than simply showing they are not
equivalent to the linear one. The key to this calculation was to use that they are all equivalent on the open
set U constructed in Section 3.D.

We describe now how to find examples of real circle actions on complex four-space with a linear action
using G-vector bundles. Denote by s ∈ G an order two element of G which is not in the normal subgroup
C
∗ : G =C

∗
o {1, s}.

A G-vector bundle Wk ×Wn is constructed by defining the linear C∗-action with weights (k,−k,n,−n),
and an action of the element s respecting the conditions that s2 = 1 and st = t−1s. This restriction is very
similar to that of finding real circle forms.

For the trivial G-vector bundle Wk ×Wn the action of s is given by the involution τ0 which exchanges
the coordinates in the base and the zero fiber:

t
(( a

b

)
,

(
x
y

))
=

(( tka
t−kb

)
,

(
tnx
t−ny

))
for t ∈C∗, and

τ0
(( a

b

)(
x
y

))
=

(( b
a

)
,

(
y
x

))
.

Any other G-vector bundle with base Wk and zero fiber Wn is equivalent to one where the C
∗-action

remains the same, and the action of s is given by an involution τ is of the form τ = ϕ ◦ τ0, where ϕ is a
C
∗-vector bundle automorphism, and τ is an involution. Analogously to the study of real forms, one can

define an action of {1, s} on the group of C∗-vector bundle automorphisms on the trivial C∗-vector bundle
Wk ×Wn by conjugation with τ0 : sϕ = τ0 ◦ϕ ◦τ0. The condition for τ to define a G-vector bundle is then
that sϕ−1 = ϕ. Also, two G-vector bundles defined by the involution τ1 = ϕ1 ◦ τ0 and τ2 = ϕ2 ◦ τ0 are
equivalent if and only if there exists a C

∗-vector bundle automorphism ψ such that ψϕ1
sψ−1 = ϕ2.
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Note that the real form µ0 which defines a circle action on the total space is simply τ0◦conj = conj◦τ0,
where conj is the standard complex conjugation on C

4. Now suppose that one restricts to vector bundle
automorphisms ϕ which commute with conjugation. Then µ = ϕ ◦ µ0 defines another (C∗,σ ) equivariant
real form. The question of equivalence, however, is not identical. If ψ can be constructed to give equivalence
of O2(C)-vector bundles in such a way that it commutes with conjugation, then it gives an equivalence of
the corresponding real circle forms. However, if ψ does not commute with conjugation, the situation can
become quite different. In the next section, such an example is treated.

The explicit automorphisms used in this article were obtained by calculating the non-equivalent vector
bundles using the descriptions from [K-S] and from [MP1] .

6. The (1,2) case

There are also non-trivial O2(C)-vector bundles whose base is W1. These, however, do not in general lead
to non-equivalent real circle forms of C4 with the corresponding C

∗ actions. First of all, the argument of
Masuda and Petrie does not apply. But more than that, there are explicit examples where an involution
coming from a non-trivial equivariant vector bundle leads to a linearizable real circle action. (See also
[F-MJ].)

We present here the following case. Consider the O2(C)-vector bundle whose total space in C
4 with

weights (1,−1,2,−2) for the C
∗-action.

Consider the involution τ defined by

τ
(( a

b

)(
x
y

))
=

(( b
a

)
,Φ

(
y
x

))
where

Φ =
(
1− T a4

−b4 1+ T + T 2 + T 3

)
.

(Here, as before, T = ab.) It is known that this involution together with the C
∗ linear action defines an

O2(C)-vector bundle which is non-trivial. (It is not known whether the O2(C)-action on the total space is
linearizable or not.)

Let τ0 be the involution which exchanges a and b, and exchanges x and y. Then τ = ϕ ◦ τ0, where ϕ

is a vector bundle involution: ϕ
(( a

b

)
,

(
x
y

))
=

(( a
b

)
,Φ

(
x
y

))
.

Now consider the total space Y as a C∗-variety. Since ϕ commutes with complex conjugation, ϕ◦µ0 = µ
defines a circle form on Y .

Proposition 6.1. The circle form µ = ϕµ0 on Y =W1 ×W2 is equivalent to the linear circle action µ0.

Proof. Let N ∈ GL2(C[a,b]) be the matrix:

N =

 1− (1−i)
2 T − (1+i)

4 T 2 a4
4 (1− i)

−b4
4 (3− i + (1+ i)T ) 1 + 1−i

4 (2T + T 2 + T 3)

 .
Then

ψ
(( a

b

)
,

(
x
y

))
=

(( a
b

)
,N

(
x
y

))
is a C

∗-automorphism.
Also ψµ0ψ

−1 = µ, since N γN−1 = Φ . Therefore, µ0 is equivalent to µ.

Note that the coefficients of N are not real, that is, ψ does not commute with complex conjugation.
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7. Questions

7.A. Quotients

An interesting question to consider is the real forms of the quotients. Given Y = W2 ×Wn, the algebraic
quotient Z = Y //(C∗) is a singular threefold. Set T = ab, W = xy, U = any2 and V = bnx2. These
polynomials generate the invariant ring, and they satisfiy the equation UV − T nW 2 = 0. More precisely,
Z � V (UV − T nW 2) ⊂ C

4. Any circle form on Y induces a real form on Z . Thus it is natural to ask
if inequivalent circle forms on Y induce inequivalent real forms on Z . In fact, in Theorem 1.12 of [S2]1,
Schwarz showed that any automorphism of Z lifts to an automorphism of Y which is either equivariant or
quasi-equivariant for the automorphism t→ t−1 of the group C

∗. This is an important step in understanding
how to approach this question. However, it is not clear when an equivalence of real forms on Z would lift
to an equivalence of equivariant real forms on Y .

Note also, that one can show that the real forms are all equivalent in the diffeomorphic category.

7.B. Other examples

In this article, all the real forms that are considered come from a very particular type. They are constructed
from regular involutions of non-trivial equivariant vector bundles, and these involutions all commute with
complex conjugation C

4 (as a variety).
It would be interesting to consider other cases. In particular, it is possible that, in comparison to

the case presented in Section 6, there are examples of equivalent equivariant O2(C)-bundles that lead
to inequivalent real circle forms. The techniques applied using O2(C)-vector bundles would have to be
adapted to study this case.
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