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M1,n is usually not uniruled in characteristic p

Will Sawin

Abstract. Using étale cohomology, we define a birational invariant for varieties in characteristic
p that serves as an obstruction to uniruledness – a variant on an obstruction to unirationality due
to Ekedahl. We apply this to M1,n and show that M1,n is not uniruled in characteristic p as long
as n ≥ p ≥ 11. To do this, we use Deligne’s description of the étale cohomology ofM1,n and apply
the theory of congruences between modular forms.
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Titre. M1,n n’est généralement pas uniréglée en caractéristique p

Résumé. Faisant usage de la cohomologie étale, nous définissons un invariant birationnel pour
les variétés en caractéristique p qui constitue une obstruction à l’uniréglage – une variante de
l’obstruction à l’unirationalité formulée par Ekedahl. Nous appliquons ce critère à l’espace M1,n
et montrons qu’il n’est pas uniréglé en caractéristique p dès que n ≥ p ≥ 11. Pour cela, nous
utilisons la description de Deligne de la cohomologie étale de M1,n et nous appliquons la théorie
des congruences entre formes modulaires.
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The aim of this paper is to show that M1,n is not uniruled in characteristic p whenever n ≥ p − 1 ≥ 11
or p = 11 and n ≥ 11 (Theorem 3.2). We will also discuss the related concept of unirationality.

For smooth projective varieties X in characteristic zero, H0(X,Ωi
X) is known to be a birational invariant

for all i by [11, Corollary 2 on p. 153]. If f : Y → X is a separable morphism, then

dimH0(Y ,Ωi
Y ) ≥ dimH0(X,Ωi

X),

so if X is unirational in characteristic zero then H0(X,Ωi
X) vanishes for i > 0 and if X is separably uniruled

then H0(X,Ωi
X) vanishes for i = dimX. However X can be inseparably unirational in characteristic p even

if H0(X,Ωi
X) , 0, for instance when X is a supersingular Kummer surface and i = 2 [19, Theorem 1.1].

Using étale cohomology, Ekedahl [8] defined a birational invariant that fixes this problem. This is un-
surprising as étale cohomology is invariant under inseparable morphisms. Roughly speaking, his invariant
measures the multiplicity of all eigenvalues of Frobenius on the étale cohomology with compact supports,
except for those eigenvalues that “look like" the eigenvalues of Frobenius with a lower-dimensional variety
- because we quotient by the contributions of lower-dimensional varieties, we obtain a birational invariant.

We will apply this invariant to M1,n. Due to the close relationship between the cohomology of M1,n
and modular forms, we are able to show that M1,n,Fp is not unirational, or even uniruled, whenever there
is a p-ordinary cusp form of level 1 and weight k for some k ≤ n+1 (Theorem 2.3). Applying the classical
theory of modular forms modulo p, we show that M1,n,Fp is not uniruled for n ≥ p − 1 ≥ 11 or p = 11 and
n ≥ 11 (Theorem 3.2). However, for a given value of p, it is likely possible to get a much better value of n
by explicitly computing coefficients of modular forms until an ordinary one is found, except for p = 2,3,5,7
where no such modular forms exist.

This invariant is defined for varieties that are not necessarily smooth or proper. This enables us to avoid
the use of stacks when working with M1,n, though we do not expect there would be any great difficulty in
extending these results to Deligne-Mumford stacks. In the smooth and projective case, this obstruction to
unirationality is the same as that given by Esnault [9, Theorem 1.1], who also showed it was an obstruction
even to the weaker property of having a trivial Chow group of zero-cycles.

The unirationality ofM1,n was completely understood in characteristic zero. It is unirational for n ≤ 10,
because nine general points in P

2 determine a genus one curve with nine marked points, and the hyperplane
class minus twice the first point gives a tenth marked point [2]. It is not even uniruled for n > 10, because
its Kodaira dimension is zero for n = 11 and one for n > 11 [3, Theorem 3]. In characteristic p, the
Kodaira dimension is not an obstruction to unirationality, so only the n ≤ 10 case remains valid, and to my
knowledge this is all that was known.

I would like to thank Daniel Litt, Bhargav Bhatt, John Lesieutre, and Remy van Dobben de Bruyn for
helpful conversations, and the anonymous referee for useful comments.

We will always take a variety to be a geometrically integral separated scheme of finite type over a field,
and the field will always be a finite field Fq.

1. A Birational Invariant

We will actually define an invariant that is a slight variant of Ekedahl’s. To make étale cohomology into
a birational invariant, we simply quotient by the maximum subspace which could come from a variety of
lower dimension. We define this using the (geometric) Frobenius action:
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Definition 1.1. Let X be a variety over Fq of dimension d. Let H i
tdF(X) be the quotient of H i

c(XF q
,Q`)

by the maximal Frobq-stable subspace on which the eigenvalues of Frobq all divide qd−1 in the ring of
algebraic integers. (The eigenvalues lie in the ring of algebraic integers by [7, XXI Corollary 5.5.3].)

The notation tdF is short for top-dimensional Frobenius - i.e. the part of cohomology where Frobenius
does not act by eigenvalues that could come from a lower-dimensional variety via the excision exact
sequence.

Ekedahl’s invariant [8, Equation (1)] can be viewed as the formal sum of the eigenvalues of Frobenius
acting on H i

tdF(X) in the free group on the elements ofQ, with multiplicity the multiplicity of the eigenvalue.
This gives the same information as the characteristic polynomial of Frobenius acting on this vector space.
The vector space carries slightly more information, which might prove useful, but analyzing it is not any
more difficult. Indeed, many of our proofs are essentially the same as Ekedahl’s, though some are new.
Because the proofs are so short, we felt it was worth repeating them in this different context.

Proposition 1.2. Let X and Y be two varieties that are birationally equivalent. Then

H i
tdF(X) �H

i
tdF(Y ).

Proof. Since every birational equivalence is the composition of an open immersion and the inverse of an
open immersion, it suffices to prove this when Y is an open subset U of X. Let Z be the complement of U
in X. Excision [1, 5.1.16.3] gives an exact sequence

H i−1
c (Z

F q
,Q`)→H i

c(UF q
,Q`)→H i

c(XF q
,Q`)→H i

c(ZF q
,Q`).

Z has dimension at most d − 1, so by [7, XXI Corollary 5.5.3(iii)], all the eigenvalues of Frobq acting on its
compactly supported cohomology are algebraic integers dividing qd−1. Thus modulo the maximal subspace
on which the eigenvalues are algebraic integers dividing qd−1, the excision map

H i
c(UF q

,Q`)→H i
c(XF q

,Q`)

is an isomorphism, hence the induced map

H i
tdF(U )→H i

tdF(X)

is an isomorphism. �

Furthermore:

Proposition 1.3. Let Y and X be two varieties of the same dimension and let f : Y → X be a dominant rational
map. Then H i

tdF(X) is a summand of H
i
tdF(Y ).

This proposition, and its proof, are a variant of [8, Theorem 2].

Proof. First assume that f is a finite morphism. The composition of the adjunction and trace maps

Q`→ Rf∗f
∗
Q` = Rf!f

∗
Q`→Q`

is multiplication by the degree of f [1, XVI, Proposition 6.2.5], hence nonzero, so Q` is a direct sum-
mand of Rf!f

∗
Q` = Rf!Q` . Therefore H

i
c(XF q

,Q`) is a direct summand of H i
c(XF q

,Rf!Q`), which equals

H i
c(YF q

,Q`) by the Leray spectral sequence [1, XVI, Theorem 5.1.8(a)], hence H i
tdF(X) is a direct summand

of H i
tdF(Y ).
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Next assume that f is a dominant morphism and not just a rational map. Because every dominant map
between varieties of the same dimension is generically finite [20, Tag 02NX], we may pass to an open subset
of X where the map is finite, and also pass to the inverse image of that subset in Y . Using Proposition 1.2,
this does not affect H i

tdF. Thus we may reduce to the previous case.
For general f , by passing to an open subset of X and Y and using Proposition 1.2, we may assume that

f is a morphism and handle it using the previous case. �

Proposition 1.4. Let X be a variety over Fq. Then

H i
tdF(XFqn

) =H i
tdF(X).

Proof. Frobqn acts on H i
c(XF qn

,Q`) = H i
c(XF q

,Q`) by the nth power of Frobq, so its eigenvalues are the

nth powers of the eigenvalues of Frobq. The eigenvalue λn divides (qn)d−1 in the ring of algebraic integers
if and only if λ divides qd in the ring of algebraic integers, because the nth root of an algebraic integer is
an algebraic integer. So these two vector spaces are manifestly isomorphic. �

Using these, we can prove that H i
tdF(X) is an obstruction to unirationality:

Corollary 1.5. Let X be a variety over Fq of dimension d that is unirational over F q. Then H
i
tdF(X) = 0 for

i < 2d.

This is not exactly stated in [8] but is very similar to [8, Corollary 3(iii)].

Proof. Because X is unirational over F q, it is unirational over Fqn for some n.

When i = 2k for 0 ≤ k ≤ d, H i
c(P

d
F q
,Q`) is one-dimensional and Frobenius acts on it with eigenvalue

qk , and H i
c(P

d
F q
,Q`) vanishes for all values of i not of this form (see e.g. [15, Example 16.3]). For k < d this

eigenvalue divides qd−1. Hence H i
tdF(P

d) is 0 for i < 2d. Thus by Proposition 1.3 and Proposition 1.4, the
same is true for H i

tdF(XF
n
q
) and H i

tdF(X). �

Remark 1.6. For X a smooth projective simply-connected surface over Fq satisfying the Tate conjecture,
the converse to Corollary 1.5 would follow from Shioda’s conjecture [19, Conjecture on p. 167]. Indeed,
recall that all eigenvalues of Frobq on H2(X

F q
,Q`) are algebraic integers of absolute value q. Let λ

be an eigenvalue of Frobq on H2(X
F q
,Q`). If H2

tdF(X) = 0 then λ divides q so q/λ is an algebraic

integer. Because all Galois conjugates σ (λ) of λ are also eigenvalues, they also have absolute value |q|, so
|σα| = |q/σ (λ)| = q/q = 1 for all σ . Because α is an algebraic integer all whose conjugates have norm 1, it
is a root of unity. Hence every eigenvalue of Frobq is q times a root of unity. Let n be the lcm of the orders
of these roots of unity. Then the eigenvalues of Frobqn on H2(X

F q
,Q`) are all equal to qn. Under the Tate

conjecture, that implies the cohomology group H2(X
F q
,Q`) is generated by classes of cycles defined over

Fqn , so X is supersingular in Shioda’s sense. Under Shioda’s conjecture, because X is supersingular and
simply-connected, it is unirational [19, Conjecture on p. 167].

We can even show Hd
tdF(X) is an obstruction to uniruledness:

Corollary 1.7. Let X be a variety over Fq of dimension d that is uniruled over F q. Then H
d
tdF(X) = 0.

Proof. Because X is uniruled over F q, it is uniruled over Fqn for some n.
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Because X
Fqn

is uniruled, it is dominated by Y × P1 for some Y . By repeatedly taking a general
hyperplane slice of Y , we may assume that Y has dimension d − 1. By the Künneth formula [1, XVII
Theorem 5.4.3]

Hd
c (YF q

×P1
F q
) =

d∑
i=0

H i
c(YF q

,Q`)⊗Hd−i
c (P1

F q
,Q`).

Because H0
c (P

1
F q
,Q`) = Q` , H

2
c (P

1
F q
,Q`) = Q`(−1), and all other cohomology groups of P1 vanish (see

e.g. [15, Example 16.3]) we have

Hd
c (YF q

×P1
F q
) =Hd

c (YF q
,Q`) +H

d−2
c (Y

F q
,Q`(−1)).

By [7, XXI Corollary 5.5.3(iii)], the eigenvalues of Frobenius on Hd
c (YF q

,Q`) divide qd−1 in the ring of

algebraic integers and the eigenvalues of Frobenius on Hd−2
c (Y

F q
,Q`) divide qd−2 in the ring of algebraic

integers. Hence the eigenvalues of Frobenius on Hd−2
c (Y

F q
,Q`(−1)), which are q times the eigenvalues of

Frobenius on Hd−2
c (Y

F q
,Q`), also divide qd−1. Thus all eigenvalues of Frobenius on Hd

c (YF q
×P1

F q
) divide

qd−1 in the ring of algebraic integers and so Hd
tdF(Y ×P

1,Q`) = 0.
Thus by Proposition 1.3 and Proposition 1.4, the same is true for Hd

tdF(XF
n
q
) and Hd

tdF(X). �

For smooth varieties, we can express H i
tdF(X) in a different way using Poincaré duality. This connects

it to an argument of [9] and implies that H i
tdF(X) is an obstruction, not just to unirationality, but to some

weaker conditions, the weakest of which is that X admits a decomposition of the diagonal.

Proposition 1.8. Let X be a smooth variety of dimension d. Then H i
tdF(X) is dual to the quotient of

H2d−i(X
F q
,Q`) by the maximal subspace on which Frobq acts by eigenvalues not divisible by q.

Proof. By Poincaré duality [1, XVIII, Theorem 3.2.5], H i
c(XF q

,Q`) and H2d−i(X
F q
,Q`) are dual, with Frobq

acting on the pairing by multiplication by qd .
By Jordan normal form, the maximal Frobq-stable subspace of H i

c(XF q
,Q`) with all eigenvalues of

Frobenius dividing qd−1 is the complement of the maximal Frobq-stable subspace of H i
c(XF q

,Q`) without

any eigenvalues of Frobenius dividing qn−1. Thus H i
tdF(X) is isomorphic to the maximal Frobq-stable

subspace of H i
c(XF q

,Q`) with eigenvalues λ algebraic integers not dividing qd−1.

Hence H i
tdF(X) is dual to the maximal Frobq-stable quotient space of H2d−i(X

F q
,Q`) with eigenvalues

qd/λ where λ does not divide qd−1, i.e. eigenvalues that are not multiples of q.
That is the same as the quotient by the maximal subspace with eigenvalues that are multiples of q. �

Remark 1.9. Katz’s “Newton above Hodge" conjecture, proved by Mazur [14, Theorem 1] and Ogus [16,
Theorem 4.5], and the comparison between étale and crystalline cohomology together imply that, if X is
a smooth projective variety over Fq and H i(X,OX) = 0, then all eigenvalues of Frobq on H i(X,Q`) are
divisible by q. Thus the invariant H2d−i

tdF (X) is closely connected to H i(X,OX).

Proposition 1.10. Let X be a smooth projective variety over Fq. Assume one of the following conditions holds:

• Ch0(Xk(X)) =Z.

• X admits a decomposition of the diagonal.

Then H i
tdF(X) = 0 for i < 2d .
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Proof. Assume that X admits a decomposition of the diagonal. By [9, Theorem 1.1], this implies that the
p-adic slopes of the eigenvalues of Frobq on H i(X

F q
,Q`) are at least 1 for i > 0. Because every Galois

conjugate of an eigenvalue of Frobq is also an eigenvalue of Frobq, and because an algebraic integer all
whose Galois conjugates have p-adic valuation at least the p-adic valuation of q is divisible by q, this implies
that the eigenvalues must be divisible by q. Hence H2d−i

tdF (X) = 0 for i > 0 by Proposition 1.8.
The first condition implies the second condition by [4, Appendix to Lecture 1, Exercise 1A.4]. �

2. Application to the Moduli Space of Elliptic Curves

We will apply H i
tdF to the Deligne-Mumford moduli space M1,n of genus 1 curves with n marked points, a

singular projective variety. (We will avoid the use of Deligne-Mumford stacks as they are unnecessary for
this problem).

It turns out that H i
tdF(M1,n) is controlled by modular forms:

We say an algebraic integer is prime to p if some coefficient of its characteristic polynomial other than
the first is nonzero modulo p. We say a Hecke eigenform is ordinary at p if its pth Hecke eigenvalue is
prime to p.

Proposition 2.1. Let k be a natural number with k ≤ n+1. If the space Sk(Γ (1)) of cusp forms of weight k and
level 1 contains an eigenform that is ordinary at p, then

H2n+1−k
tdF (M1,n,Fp ) , 0.

First we sketch the proof. Deligne, in [6], constructed two-dimensional Galois representations associated
to modular forms. These representations are defined as subspaces of a certain sheaf cohomology group on a
modular curve. The Frobenius eigenvalues of these representations can be related to the Hecke eigenvalues
of the modular forms. Using the Leray spectral sequence, we may write the étale cohomology of M1,n in
terms of sheaf cohomology on a modular curve, and by comparing the relevant sheaves we can show that
the two-dimensional Galois representations defined by Deligne occur as subquotients of the cohomology of
M1,n. To show that the Frobenius eigenvalues on these Galois representations are prime to p, and thus to
show via Proposition 1.8 that H i

tdF(M1,n,Fp ) , 0, it suffices to show that the Hecke eigenvalues are prime
to p.

We need the following lemma, which is surely well-known, though we did not find a suitable reference
in the literature:

Lemma 2.2. Let X be a variety and G a finite group acting on X. Let X/G be the quotient space. Then for all
i, H i

c(X/G,Q`) =H i
c(X,Q`)G.

Proof. Let π be the projection X → X/G. The morphism π is finite, so Rπ∗Q` � Rπ!Q` , and the fiber of
π over any point consists of a single orbit. To check that the adjunction map Q`→ (Rπ∗Q`)G = (Rπ!Q`)G

of sheaves on X/G is an isomorphism, it suffices to check it on stalks, so by proper base change [1, XIII,
Corollary 5.2(iii)] it suffices to check when X is a single orbit and X/G is a single point, where it is obvious.
Therefore

H i
c(X/G,Q`) =H

i
c(X/G,Rπ!Q`)

G =H i
c(X/G, (Rπ!Q`)

G) =H i
c(X,Q`)

G

by the Leray spectral sequence with compact support [1, XVII, Proposition 5.2.9]. �

Proof of Proposition 2.1. Assume H2n+1−k
tdF (M1,n,Fp ) = 0. We will show that all eigenforms in Sk(Γ (1)) have

Hecke eigenvalue divisible by p. If they are divisible by p, they cannot be prime to p, giving the desired
contradiction.

Let m ≥ 3 be prime to p. Following Deligne [6, p. 151], let Mm,Fp be the fine moduli space of elliptic
curves with full level m structure over Fp, and let fm : Em,Fp →Mm,Fp be the universal family. These spaces
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exist and they form a smooth proper family of elliptic curves over a smooth scheme, see e.g. [12, Corollary
4.7.2]. The group GL2(Z/m) acts on Mm,Fp ,Em,Fp , and the n− 1st power En−1m,Fp

of En−1m,Fp
over Mm,Fp . The

quotient En−1m,Fp
/GL2(Z/m) loses the level structure and becomes simply the coarse moduli space of elliptic

curves with n−1 additional marked points (not necessarily distinct), hence is birational toM1,n,Fp , because

M1,n,Fp is an open subset of both M1,n,Fp and E
n−1
m,Fp

/GL2(Z/m).

As H2n+1−k
tdF (M1,n,Fp ) = 0, by Proposition 1.2, H2n+1−k

tdF (En−1m,Fp
/GL2(Z/m)) = 0. By definition, all eigen-

values of Frobp on H2n+1−k
c (En−1

m,F p
/GL2(Z/m),Q`) divide pn−1 in the ring of algebraic integers. That

cohomology group is the same as the GL2(Z/m)-invariant part H2n+1−k
c (En−1m,Fp

,Q`)GL2(Z/m) by Lemma 2.2,

so all eigenvalues of Frobp on that divide pn−1. Because En−1m,Fp
is smooth, by Poincaré duality [1, XVIII,

Theorem 3.2.5], all eigenvalues of Frobenius acting on Hk−1(En−1
m,F p

,Q`)GL2(Z/m) are divisible by p in the

ring of algebraic integers.
By the degeneration of the Leray spectral sequence [5, Proposition 2.4 and 2.6.4],

Hk−1
(
En−1
m,F p

,Q`

)GL2(Z/m)

contains as a summand

H1
(
Mm,F p

,Rk−2
(
f n−1m

)
∗
Q`

)GL2(Z/m)
.

This, by the Künneth formula, [1, XVII, Theorem 5.4.3] contains as a summand

H1
(
Mm,F p

, (R1fm∗Q`)
⊗k−2 ⊗ (R0fm∗Q`)

(n−1)−(k−2)
)GL2(Z/m)

=H1
(
Mm,F p

, (R1fm∗Q`)
⊗k−2

)GL2(Z/m)
.

This contains as a summand

H1
(
Mm,F p

,Symk−2(R1fm∗Q`)
)GL2(Z/m)

,

which has as a quotient the parabolic cohomology

H̃1
(
Mm,F p

,Symk−2(R1fm∗Q`)
)GL2(Z/m)

.

So all eigenvalues of Frobenius on H̃1
(
Mm,F p

,Symk−2(R1fm∗Q`)
)GL2(Z/m)

are divisible by p. Note that we

need the assumption n ≥ k +1 so that (n− 1)− (k − 2) ≥ 0.
Deligne [6, p. 156] defines an action of the Hecke operator Tp on H̃1(Mm,F p

,Symk−2(R1fm∗Q`)), and
shows that Tp acts as F + I ∗pV where F is the geometric Frobenius, V is its transpose, and I ∗p is the action

of the diagonal element

(
p 0
0 p

)
∈ GL2(Z/m) [6, Proposition 4.8]. The action of I ∗p factors through the

action of GL2(Z/m), so on the GL2(Z/m)-invariant subspace, Tp = F +V . Note that all eigenvalues of F
are divisible by p, and V is the transpose of F so all eigenvalues of V are divisible by p. Thus because F
and V commute [6, Proposition 4.8(3)], all eigenvalues of Tp on H̃1(Mm,F p

,Symk−2(R1fm∗Q`))GL2(Z/m) are
divisible by p.

By [6, Corollary 4.2], the sheaf R1ã(Mm,Sym
k−2(R1fm∗Q`)) on SpecZ[1/m`] is lisse, and its stalk at the

geometric point F p is H̃
1(Mm,F p

,Symk−2(R1fm∗Q`)). The Hecke operators and GL2(Z/m) also act on this

sheaf. Because the sheaf is lisse, the stalks at F p and Q are isomorphic as vector spaces with a GL2(Z/m)
and Hecke operator action. Because all Hecke eigenvalues on the GL2(Z/m)-invariant part the stalk of
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H̃1(Mm,F p
,Symk−2(R1fm∗Q`)) at F p are divisible by p, all Hecke eigenvalues on the GL2(Z/m)-invariant

part of the stalk of H̃1(Mm,F p
,Symk−2(R1fm∗Q`)) at Q are divisible by p.

Deligne [6, pp. 154-158] uses several different spaces W of modular forms, indexed by subscripts and
superscripts. The upper-left index is the weight, which is equal to the usual weight of modular forms minus
two. The lower-left index is the level (where we always take modular forms for the full congruence subgroup
Γ (n) of that level). The lower-right index defines the coefficient field, where ` represents Q` , ∞ represents
C, and an omitted subscript represents Q. The upper-right superscript may be used to denote the invariants
under a group action (a standard notation, which we have used previously in this proof).

By [6, Corollary 4.2], the stalk of H̃1(Mm,F p
,Symk−2(R1fm∗Q`)) at Q is k−2m W` , and the GL2(Z/m)-

invariant part is k−2m W
GL2(Z/m)
` , which is the tensor product of k−2m WGL2(Z/m) with Q` . By definition [6, p.

158], k−2m WGL2(Z/m) is k−21 W , which tensored up with C is k−21 W∞. So all eigenvalues of Tp on k−2
1 W∞ are

algebraic integers divisible by p. By [6, Proposition 3.19], k−21 W∞ contains Sk(Γ (1)) as a summand, so all
eigenvalues of Tp on Sk(Γ (1)) are divisible by p, as desired. �

Theorem 2.3. Let k be a natural number and let n ≥ k −1. If the space Sk(Γ (1)) of cusp forms of weight k and
level 1 contains an eigenform that is ordinary at p, then M1,n,Fp is not uniruled.

Proof. By Proposition 2.1, in this case
Hk−1

tdF (M1,k−1,F p
) , 0.

hence by Corollary 1.7, M1,k−1,Fp is not uniruled. Because M1,n,Fp dominates M1,k−1,Fp via the map that
forgets n − (k − 1) points (whose general fiber is an abelian variety and thus contains no rational curves),
M1,n,Fp is not uniruled. �

3. Calculations with Modular Forms

For any particular p and k we can compute the eigenvalues of the Hecke operator Tp acting on Sk(Γ (1)) and
determine whether any eigenforms are ordinary. For instance it appears that for almost all p, the Ramanujan
∆ function, a cusp form of weight 12, is ordinary. This is true for all p < 1010 except p = 2,3,5,7,2411,
and 7758337633 [13]. For all such p, M1,11,Fp is not uniruled. This is best possible in those characteristics

as M1,10 is always unirational (as mentioned earlier). However a method based only on modular forms of
weight 12 is unlikely to work in general, as it is not even known that there are infinitely many p at which
∆ is ordinary. Yet we can still prove a general existence result for an ordinary form, albeit of considerably
higher weight than 12:

Proposition 3.1. Let p > 11 be a prime. Then the space Sp−1(Γ (1)) of cusp forms of weight p − 1 and level 1
contains a p-ordinary eigenform.

Proof. In [17, 1.2], Serre defines M̃k as the space of power series mod p that are the reductions mod p of
modular forms of weight k and level 1 with integer coefficients. So the lattice inside Sp−1(Γ (1)) consisting of
modular forms of weight p − 1 and level 1 with integer coefficients maps to M̃p−1, and this map commutes
with the Hecke operator Tp.

On M̃p−1, the action of Tp is the same as the action of U [17, 2.2], which acts bijectively [17, Theorem
6(ii)], so all its eigenvalues are nonzero (mod p). Hence to show that one of the eigenvalues of Tp on
Sp−1(Γ (1)) is nonzero mod p, it suffices to show that the image of this map is nonzero. This follows from
the existence of any cusp form of weight p − 1 with integral coefficients, since we can always divide it by p
until at least one coefficient is nonzero mod p.

The dimension of the space of cusp forms of weight k and level 1 is bk/12c, unless k ≡ 2 mod 12, in
which case it is bk/12c − 1. This is easily seen to be greater than 1 if k > 14 or k = 12, and so is greater
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than 1 when k = p−1 for any primes p > 11. Since there is an integral basis for the space of cusp forms (for
an elementary proof, observe that the basis for all modular forms constructed in [10, Chapter 5, Proposition
1] restricts to a basis of cusp forms), there exists a cusp form of weight p − 1 with integer coefficients for all
such k. �

Theorem 3.2. Let p be a prime and n a natural number. If p > 11 and n ≥ p − 2 or p = 11 and n ≥ 11, then
M1,n,Fp is not uniruled.

Proof. If p > 11, then by Proposition 3.1, Sp−1(Γ (1)) contains a p-ordinary eigenform. If p = 11, then
S12(Γ (1)) contains a p-ordinary eigenform (the Ramanujan ∆ function) by direct computation (e.g. [13,
abstract]). Hence by Theorem 2.3, M1,n,Fp is not uniruled. �

We suggest two open questions that may be interesting:

Question 3.3. For any p, is M1,n,Fp uniruled (or even unirational) for infinitely many n?

We have given a negative answer for p > 7, so the remaining possibilities are p = 2,3,5,7. A tantalizing
fact is that our proof does not just fail by random chance - using the theory of congruences between
modular forms, one can show without calculation that for p < 11 there are no p-ordinary cusp forms of
level 1 and any weight k and thus Theorem 2.3 will never prove that M1,n,Fp is not uniruled.

Indeed, Hida showed that the dimension of the space of p-ordinary cusp forms of weight k on Γ0(p)
depends only on p mod k − 1 for k ≥ 2 [10, Chapter 7, Theorem 1], and is equal to the dimension of the
space of p-ordinary cusp forms on Γ (1) for k ≥ 3 [10, Chapter 7, Proposition 2]. Since for each residue class
mod p − 1, we may find a representative in the interval [3,p + 1], it follows that if there is any p-ordinary
cusp form at all, then there is one of weight ≤ p +1. But the cusp form of smallest weight is 12, so if there
are any p-ordinary cusp forms then p ≥ 11.

If this reason can be turned into a “geometric" explanation of the p-divisibility of the eigenvalues some-
how, then that geometric explanation might prove a stronger statement as well, possibly even unirationality.
Alternatively, if a plausible higher-dimensional analogue of Shioda’s conjecture [19, Conjecture on p. 167]
is made, this argument could be used to show that M1,g is unirational in characteristic p < 11 for all g
conditionally on that conjecture.

The next question was actually the original question that motivated this work. We were not able to
solve it but in considering related problems we were led to the study of M1,n:

Question 3.4. For any p, is Mg,Fp uniruled for infinitely many g?

We could also ask about the validity of the characteristic p analogue of Severi’s conjecture [18, p. 880],
which would be that Mg,Fp is unirational for all g .

Applying the same method to this problem would require intensive study of the non-tautological coho-
mology of Mg , so one might seek other methods to resolve the problem. However, we are not aware of any
other method for showing non-unirationality of a space in characteristic p, nor any method for showing
that spaces are in fact uniruled that could conceivably apply to Mg for large g .
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