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Double spinor Calabi-Yau varieties

Laurent Manivel

Abstract. Consider the ten-dimensional spinor variety S in a projectivized half-spin represen-
tation of Spin10. This variety is projectively isomorphic to its projective dual S∨ in the dual
projective space. The intersection X = S1 ∩S2 of two general translates of S is a smooth Calabi-
Yau fivefold, as well as the intersection of their duals Y = S∨1 ∩ S

∨
2 . We prove that although X

and Y are not birationally equivalent, they are deformation equivalent, Hodge equivalent, derived
equivalent and L-equivalent.
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Titre. Variétés de spineurs doubles de Calabi-Yau

Résumé. Soit S la variété spinorielle de dimension 10 dans le projectivisé d’une représentation
semi-spin de Spin10. Cette variété est projectivement isomorphe à son dual projectif S∨ dans
l’espace projectif dual. L’intersection X = S1 ∩ S2 de deux translatés généraux de S est une
variété lisse de Calabi-Yau de dimension 5, de même que l’intersection Y = S∨1 ∩ S

∨
2 de leurs

duaux. Bien que X et Y ne soient pas birationnellement équivalentes, nous montrons qu’elles sont
équivalentes par déformations, par équivalence de Hodge, par équivalence dérivée et qu’elles sont
également L-équivalentes.
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1. Introduction

There has been a lot of recent interest in the relations, for pairs of Calabi-Yau threefolds, between de-
rived equivalence, Hodge equivalence and birationality. The Pfaffian-Grassmannian equivalence provided
pairs of non birational Calabi-Yau threefolds which are derived equivalent, but with distinct topologies.
Recently, examples were found of non birational Calabi-Yau threefolds which are derived equivalent, and
also deformation and Hodge equivalent. They are constructed from the six-dimensional Grassmannian
G(2,V ) ⊂ P(∧2V ), where V denotes a five-dimensional complex vector space. This Grassmannian is well-
know to be projectively self dual, more precisely its projective dual is G(2,V ∨) ⊂ P(∧2V ∨), where V ∨
denotes the dual space to V . Let Gr1 and Gr2 be two PGL(∧2V )-translates of G(2,V ) in P(∧2V ), and
suppose they intersect transversely. Then Gr∨1 and Gr∨2 also intersect transversely in P(∧2V ∨). Moreover

X = Gr1 ∩Gr2 and Y = Gr∨1 ∩Gr
∨
2

are smooth Calabi-Yau threefolds with the required properties. This was established independently in [22]
and [2], to which we refer for more details on the general background. We should note however that those
remarkable threefolds had already appeared in the litterature, see [6, 11, 12].

The purpose of this note is to show that the very same phenomena occur if we replace the Grassmannian
G(2,V ) ⊂ P(∧2V ) by the ten-dimensional spinor variety S ⊂ P∆, where ∆ denotes one of the two half-spin
representations of Spin10. These representations have dimension 16. Recall that S parametrizes one of the
two families of maximal isotropic spaces in a ten-dimensional quadratic vector space. The projective dual
of S ⊂ P∆ is the other such family S∨ ⊂ P∆∨, which is projectively equivalent to S . Let S1 and S2 be two
PGL(∆)-translates of S in P∆, and suppose that they intersect transversely. Then S∨1 and S∨2 also intersect
transversely in P∆∨. Moreover

X = S1 ∩S2 and Y = S∨1 ∩S
∨
2

are smooth Calabi-Yau fivefolds of Picard number one which are deformation equivalent, derived1 equiv-
alent (Proposition 4.2), Hodge equivalent (Corollary 4.3), but not birationally equivalent (Proposition 4.4).
Also, the difference of their classes in the Grothendieck ring of varieties is annihilated by a power of the
class of the affine line (Proposition 4.5): in the terminology of [16], X and Y are L-equivalent. This con-
firms their conjecture, which also appears as a question in [8], that (at least for simply connected projective
varieties) D-equivalence should imply L-equivalence.

From the point of view of mirror symmetry, X and Y being D-equivalent should have the same mirror,
and in this respect they form a double mirror. Of course, from the projective point of view they are also
(projective) mirrors one of the other.

The close connection between the Grassmannian G(2,5) ⊂ P9 and the spinor variety S ⊂ P15 is classi-
cal, and manifests itself at different levels.

1 ↑ D-equivalent in the sequel.
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1. They are the only two Hartshorne varieties among the rational homogeneous spaces, if we define a
Hartshorne variety to be a smooth variety Z ⊂ PN of dimension n = 2

3N which is not a complete
intersection (recall that Hartshorne’s conjecture predicts that n > 2

3N is impossible) [28, Corollary
2.16].

2. They are both prime Fano manifolds of index ι = N+1
2 , while their topological Euler characteristic is

also equal to N+1; this allows their derived categories to admit rectangular Lefschetz decompositions
of length ι, based on the similar pairs 〈OZ ,U∨〉, where U denotes their tautological bundle [14].

3. The Grassmannian G(2,5) ⊂ P9 can be obtained from S ⊂ P15 as parametrizing the lines in S
through some given point [18]; conversely, S ⊂ P15 can be reconstructed from G(2,5) ⊂ P9 by a
simple quadratic birational map defined in terms of the quadratic equations of the Grassmannian [17].

That the story should be more or less the same for our double spinor varieties, as for the double
Grassmannians, is therefore not a big surprise. We thought it would nevertheless be useful to check that
everything was going through as expected. For that we essentially followed the ideas of [2] and [22], to
which this note is of course heavily indebted.

Acknowledgements. We thank M. Brion, A. Kanazawa, A. Kuznetsov, J.C. Ottem, A. Perry, J. Rennemo for
their comments and hints.

2. Spinor varieties

2.A. Pure spinors

We start with some basic facts about spin representations. See [20] for more details, and references therein.
Our base field all over the paper will be the field of complex numbers. For convenience we will restrict
to even dimensions, so we let V = V2n be a complex vector space of dimension 2n, endowed with a
non degenerate quadratic form. The variety of isotropic n-dimensional subspaces of V , considered as a
subvariety of the Grassmannian G(n,2n), has two connected components

S+ =OG+(n,2n) and S− =OG−(n,2n),

called the spinor varieties, or varieties of pure spinors. Moreover the Plücker line bundle restricted to S+ or
S− has a square root L, which is still very ample and embeds the spinor varieties into the projectivizations
of the two half-spin representations of Spin2n, the simply connected double cover of SO2n. We denote the
half-spin representations by ∆+ and ∆−, in such a way that

S+ ⊂ P∆+ and S− ⊂ P∆−.

Since the two half-spin representations can be exchanged by an outer automorphism of Spin2n, these two
embeddings are projectively equivalent. Note that the spinor varieties have dimension n(n−1)/2, while the
half-spin representations have dimension 2n−1. The half-spin representations are self dual when n is even,
and dual one to the other when n is odd.

It follows from the usual Bruhat decomposition that the Chow ring of S± is free, and the dimension of
its k-dimensional component is equal to the number of strict partitions of k with parts smaller than n. In
particular the Picard group has rank one, and L is a generator; we therefore denote L = OS±(1). We also
let U be the rank n vector bundle obtained by restricting the tautological bundle of G(n,2n). Then the
tangent bundle to S± is isomorphic to ∧2U∨. Since det(U∨) = L2, this implies that S± is a prime Fano
manifold of index 2n− 2.
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2.B. The ten dimensional spinor variety

From now on we specialize to n = 5, and we simply denote S ⊂ P∆ one of the spinor varieties. This is a
ten-dimensional prime Fano manifold of index eight, embedded in codimension five. This case is specific
for several reasons. First, it admits a very simple rational parametrization.

Proposition 2.1. Let E ⊂ V10 be a maximal isotropic subspace, that defines a point of S . Then S ⊂ P∆ is
projectively isomorphic to the image of the rational map from ∧2E∨ to P(C ⊕∧2E∨ ⊕∧4E∨) that sends ω to
[1,ω,ω∧ω].

Note that this rational map is GL(E)-equivariant, and that GL(E) is a Levi factor of the parabolic
subgroup of Spin10 that stabilizes the base point of S defined by E.

Proof. Let us fix another isotropic subspace F of V10, transverse to E. The quadratic form identifies F with
the dual of E. A general point of S corresponds to a subspace of V10 defined by the graph of a map ω
from E to F ' E∨; the isotropy condition translates to the skew-symmetry of this map. The embedding to
P∆ is then given by the Pfaffians of ω of any even size: that is 1 in size 0, ω itself in size 2, ω∧ω in size
four. See [20, Section 2.3] or [17, Theorem 2.4] for more details. �

A useful consequence is the following. In the preceding description of S , its projectivized tangent space
at the base point is P(C⊕∧2E∨) and the normal space identifies with the remaining factor ∧4E∨. This
identifies the representation of GL(E) that defines the normal bundle as a homogeneous bundle on S and
we deduce our next statement. Recall that U denotes the tautological rank 5 vector bundle on S , and that
det(U ) = OS (−2), where OS (1) is the positive generator of Pic(S).

Proposition 2.2. The normal bundle to S in P∆ is ∧4U∨ 'U (2).

Another nice property that S shares with G(2,5) is that its complement is homogeneous.

Proposition 2.3. The action of Spin10 on P∆−S is transitive.

In particular ∆ admits a prehomogeneous action, not of Spin10, but of GL(1) × Spin10. This is
discussed on page 121 of [24]. In fact, a much stronger result is proved in [7, Proposition 2]: over any field
of characteristic different from two, there are only two orbits of non zero spinors.

The next important property also shared with G(2,5) is that the quadratic equations allow to recover
the natural representation.

Proposition 2.4. The quadratic equations of S are parametrized by V10.

These equations can be described in terms of the Clifford product, that defines a map V10⊗∆±→ ∆∓ =
∆∨± . In more down to earth terms, we can use the decomposition ∆ = C ⊕ ∧2E∨ ⊕ ∧4E∨ introduced in
Proposition 2.1: a point [ω0,ω2,ω4] belongs to S , as is readily verified, if and only if

ω0ω4 =ω2 ∧ω2, and ω4 ∗ω2 = 0.

The first equation is in ∧4E∨ ' E. In the second equation, we used this isomorphism in order to identify
ω4 with an element of E; then contracting with ω2 gives an element of E∨ that we denoted ω4 ∗ ω2.
We thus get, as expected, quadratic equations parametrized by E ⊕ E∨ = V10. And this is necessarily an
identification as Spin10-modules since V10 is its only nontrivial ten dimensional representation.

As any equivariantly embedded rational homogeneous variety, the spinor variety is cut out by quadrics.
Moreover the spinor variety S has a beautiful self-dual minimal resolution (necessarily equivariant), which
appears in [13, 5.1]:

0→O(−8)→ V10(−6)→ ∆∨(−5)→ ∆(−3)→ V10(−2)→O→OS → 0. (1)
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For future use let us compute the Hilbert polynomial of S ⊂ P∆. Note that H0(OS(k)) is, by the Borel-Weil
theorem, the irreducible Spin10-module of highest weight kω5 (where ω5 is the fundamental weight corre-
sponding to the half-spin representation ∆∨). Its dimension can thus be computed by a direct application
of the Weyl dimension formula, and we get

HS (k) =
1

2633527
(k +1)(k +2)(k +3)2(k +4)2(k +5)2(k +6)(k +7).

In particular, as is well-known, S has degree 12. Finally the Poincaré polynomial is also easy to compute;
since the Betti numbers are given by numbers of strict partitions, as we already mentioned, we readily get
that

PS (t) = (1 + t3)(1 + t + t2 + t3 + t4 + t5 + t6 + t7).

2.C. Self duality

Our next statement is a well-known direct consequence of Proposition 2.3:

Corollary 2.5. The spinor variety S ⊂ P∆ is projectively self dual.

To be more precise, the dual variety of the spinor variety S ⊂ P∆ is the other spinor variety S∨ ⊂ P∆∨,
in the other half-spin representation.

Note for future use that the self-duality of S is preserved at the categorical level, in the sense that
S ⊂ P∆ and S∨ ⊂ P∆∨ are homologically projectively dual [14, Section 6.2]. As already mentioned in
the introduction, the derived category of coherent sheaves on the spinor variety S has a specially nice
rectangular Lefschetz decomposition, defined by eight translates of the exceptional pair 〈OS ,U∨〉.

Another consequence of Proposition 2.3 is that, up to the group action, there are only two kinds, up
to projective equivalence, of hyperplane sections of S : the smooth and the singular ones. Let us briefly
describe their geometries.

Proposition 2.6. A singular hyperplane section HS sing of S is singular along a projective space of dimension
four. Moreover HS sing admits a cell decomposition and its Poincaré polynomial is

PHS sing (t) = 1+ t + t2 +2t3 +2t4 +2t5 +2t6 +2t7 + t8 + t9.

Proof. Recall that we may consider S and S∨ as the two families of maximal isotropic subspaces of V10.
Moreover, if E and F are two maximal isotropic spaces, they belong to the same family if and only if their
intersection has odd dimension. Given a point of S , that we identify, with some abuse, to such an isotropic
space E, the set of hyperplanes tangent to S at E defines a subvariety of S∨.

Lemma 2.7. A point F ∈ S∨ defines a hyperplane in P∆which is tangent to S at E, if and only if dim(E∩F) = 4.

Proof of Lemma 2.7. It is a consequence of Witt’s theorem that the action of Spin(V10) on S×S∨ has exactly
three orbits, characterized by the three possible values for the dimension of the intersection (recall that this
dimension must be even). Therefore the stabilizer of E in Spin(V10) has also three orbits in S∨, defined
by the three possible values for the dimension of the intersection with E. Geometrically, they have to
correspond to the three possible positions with respect to E, of a hyperplane defined by a point F ∈ S∨:
tangent to S at E, containing E but not tangent, or not containing E. This implies the claim. �

Since an isotropic space E ∈ S such that dim(E∩F) = 4 is uniquely determined by E∩F, the hyperplane
defined by F is tangent to S along a subvariety of S isomorphic to PF∨.

For the last assertions, note that a singular hyperplane section of S is just a Schubert divisor. By general
results on the Bruhat decomposition, we know that its complement in S is precisely the big cell. So HS sing
has a cell decomposition given by all the cells of S except the big one, and PHS sing (t) = PS (t)− t

10. �
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Proposition 2.8. A smooth hyperplane section HS reg of S admits a quasi-homogeneous action of its automor-
phism group, which is isomorphic to (Spin7×Gm) nG

8
a . Moreover HS reg admits a cell decomposition and its

Poincaré polynomial is

PHS reg (t) = 1+ t + t2 +2t3 +2t4 +2t5 +2t6 + t7 + t8 + t9.

Proof. For the first statement, we refer to [5, Proposition 3.9]. As observed in [5], HS reg coincides with
the horospherical variety that appears as case 4 of [23, Theorem 1.7]. In particular, being horospherical it
admits an algebraic cell decomposition. Finally the Betti numbers are given by the Lefschetz hyperplane
theorem. �

3. Double spinor varieties

In this section we introduce our main objects of interest, the double spinor varieties

X = S1 ∩S2,

where S1 = g1S and S2 = g2S are translates of S by g1, g2 ∈ PGL(∆). Up to projective equivalence, we can
of course suppose that X = S ∩ gS for g ∈ PGL(∆).

By the Eagon-Northcott generic perfection theorem [3, Theorem 3.5], the resolution (1) gives a free
resolution of OX as an OS1-module:

0→OS1(−8)→ V10(−6)→ ∆∨(−5)→ ∆(−3)→ V10(−2)→OS1 →OX → 0. (2)

3.A. Local completeness

Let G = PGL(∆), with its subgroup H = Aut(S) ' PSO10 (as follows from [4]). The family of double spinor
varieties is by definition the image of a rational map

ξ : G/H ×G/H dHilb(P∆),

where ξ(g1, g2) = g1S ∩ g2S . Moreover the diagonal left action of G is by projective equivalence, hence
factors out when we consider local deformations of a given X. At the global level, the quotient [(G/H ×
G/H)/G] should be thought of as the moduli stack of double spinor varieties. One could reproduce the
analysis of the similar stack made in [2] for the double Grassmannians, but we will not do that. We will
only check the local completeness of our family.

Proposition 3.1. The family of smooth double spinor varieties is locally complete.

Proof. We first observe that H1(X,T S1|X) = 0. Because of (2), this is a direct consequence of the vanishing
of H1(S1,T S1), of Hq(S1,T S1(−k)) for 0 < k < 8 and q > 1, and of H6(S1,T S1(−8)), which are all
consequences of Bott’s theorem. (Alternatively, the vanishing of Hq(S1,T S1(−k)) follows from the Kodaira-
Nakano vanishing theorem, since this group is Serre dual to H10−q(S1,ΩS1(k − 8)).) Hence the map

H0(X,NX/S1) 'H
0(X,NS2/P|X) −→H1(X,TX)

is surjective. Here we abbreviated P∆ by P. What remains to prove is that the composition

H0(P,TP)
r−→H0(X,TP|X)

s−→H0(X,NS2/P|X)

is also surjective. In order to prove that r is surjective, it is convenient to use the Euler exact sequence on P
and its restriction to X; from (2) we easily get that H1(X,OX) = 0 and H0(P,OP(1)) ' H0(X,OX(1)), and
the surjectivity of r readily follows. The surjectivity of s follows from the vanishing of H1(X,T S2|X), which
we already verified. �
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The following observation (already made in [12, Proposition 4.7] for the double Grassmannian varieties)
will be useful: when g goes to identity, X = S ∩ gS deforms smoothly to the zero locus in S of a global
section of its normal bundle ∧4U∨ =U (2). In our situation the discussion of [22, section 5] applies almost
verbatim.

The normal bundle is generated by global sections, being homogeneous and irreducible, with

H0(S ,∧4U∨) = ∧4V ∨10 = Vω4+ω5

by the Borel-Weil theorem. So the zero locus of a general section, which we call a normal degeneration,
is a smooth Calabi-Yau fivefold which is deformation equivalent to the smooth double spinor varieties; in
particular the family of those zero-loci is not locally complete, something that seems to be quite exceptional.

Remark. Note that other kinds of degenerations of double Grassmannians, this time singular, were con-
sidered in [6]: typically, they are joins of two elliptic quintics (which are linear sections of the Grassmannian)
in two disjoint P4’s in P9. Such degenerations were studied in connection with the Horrocks-Mumford vec-
tor bundle, in order to describe the moduli space of (1,10)-polarized abelian surfaces. It would certainly
be interesting to study the similar story in our setting. The analogous singular degenerations are of course
the joins of two K3 surfaces of degree 12 (which are linear sections of the spinor variety) in two disjoint
P7’s in P15.

3.B. Invariants

Proposition 3.2. Any smooth double spinor variety X = S1 ∩ S2 (of the expected dimension) is a Calabi-Yau
fivefold. Moreover:

1. Pic(X) =ZOX(1), and Hp(X,Ωp
X) = C for 0 ≤ p ≤ 5;

2. Hq(X,Ωp
X) = 0 for p , q and p+ q , 5;

3. H5(X,Z) is torsion free.

Proof. The hypothesis that X is smooth of the expected dimension is equivalent to the fact that S1 and S2
meet transversely. Then X has dimension five. Suppose to simplify notations that S1 = S .

Since ωS = OS(−8), the line bundles OS (−k) are acyclic for 0 < k < 8. Moreover hq(OS (−8)) = 0 for
q ≤ 9. Then (2) yields that h0(OX) = 1, so that X is connected. Moreover, the relative dualizing sheaf

ωX/S = detNX/S = detNS2/P|X = OX(8),

and since ωS = OS (−8), we conclude that X has trivial canonical bundle.
As was done in [22, Lemma 3.3], we now apply [26, Corollary b)] to A = S1 and B = S2 in P15: we get

that the relative homotopy groups πi(S1,X) = 0 for i ≤ 5. In particular X is simply connected, and by the
Bogomolov decomposition theorem, it is Calabi-Yau. Moreover, after passing from homotopy to homology,
we deduce that Hi(S1,X,Z) = 0 for i ≤ 5. Since the cohomology of S1 is pure and torsion free, this implies
the remaining assertions. �

Knowing the Hilbert polynomial of S , we also deduce that the Hilbert polynomial of X is

HX(k) =
2
5
k(k2 +1)(3k2 +17).

Proposition 3.3. The non zero Hodge numbers of a smooth double spinor variety are hp,p = 1 for 0 ≤ p ≤ 5, and

h0,5 = h5,0 = 1, h1,4 = h4,1 = 165, h2,3 = h3,2 = 7708.
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Proof. The missing Hodge number are h4(ΩX) = 1+χ(ΩX) and h3(Ω
2
X) = 1−χ(Ω2

X). In order to compute
them, we may suppose that X is a normal degeneration of a double spinor variety, that is, the zero locus
of a general section of ∧4U∨ = U (2) on S . Then the bundle of forms on X is resolved by the conormal
sequence, and the bundle of two-forms by its skew-symmetric square, that is

0→ S2U∨X (−4)→∧
2UX ⊗U∨X (−2)→∧

2(∧2UX)→Ω2
X → 0.

This allows to compute χ(ΩX) as χ(∧2UX) − χ(U∨X (−2)), and χ(Ω2
X) as χ(∧2(∧2UX)) − χ(∧2UX ⊗

U∨X (−2)) + χ(S
2U∨X (−4)). Using the Koszul complex, this reduces once again to computations on the

spinor variety. Finally, on the latter we can use the Borel-Weil-Bott theorem (whose concrete application is
illustrated in the proof of Lemma 3.5 below). �

3.C. Uniqueness

In this section we prove that the only translates of S that contain X = S ∩ gS are S itself, and gS . In
particular there is a unique way to represent X as an intersection of two translates of the spinor variety. We
follow the approach of [2].

Proposition 3.4. Let N denote the normal bundle to S in P∆. Then the restriction of N to X is slope stable.

Proof. Recall that we denoted by U the rank five tautological bundle on S . By Proposition 2.2 there is an
isomorphism N ' ∧4U∨ = U (2), so we just need to prove that U∨X is stable. Since the Picard group of X
is cyclic by Proposition 3.2, we can apply Hoppe’s criterion [9, Proposition 1], following which it is enough
to check that

H0(X,U∨X (−1)) =H
0(X,∧2U∨X (−1)) =H

0(X,∧3U∨X (−2)) =H
0(X,∧4U∨X (−2)) = 0.

This easily follows from the resolution (2) and the following statement. �

Lemma 3.5. Suppose that 1 ≤ e ≤ 4, 0 ≤ q ≤ 5 and t > 0. Then Hq(S ,∧eU∨(−t)) = 0, except for the following
cohomology groups:

1. H1(S ,∧3U∨(−2)) = C,

2. H0(S ,∧4U∨(−1)) = ∆.

Proof. This is a straightforward application of the Borel-Weil-Bott theorem (see e.g. [1, Theorem 2.1] and
references therein). Let us prove the first identity, to explain how this theorem applies in our setting. The
root system D5 can be described in terms of a lattice with orthonormal basis ε1, . . . ,ε5. The simple roots
of D5 can be chosen to be

α1 = ε1 − ε2, α2 = ε2 − ε3, α3 = ε3 − ε4, α4 = ε4 − ε5, α5 = ε4 + ε5.

The fundamental weights are then ω1 = ε1, ω2 = ε1 + ε2, ω3 = ε1 + ε2 + ε3 and

ω4 =
1
2
(ε1 + ε2 + ε3 + ε4 − ε5), ω5 =

1
2
(ε1 + ε2 + ε3 + ε4 + ε5).

The sum of the fundamental weights is

ρ =ω1 +ω2 +ω3 +ω4 +ω5 = 4ε1 +3ε2 +2ε3 + ε4.

The weights of U∨ are the εi ’s, so the weights of ∧3U∨ are the sums of three distinct εi ’s, and the highest
one is ε1 + ε2 + ε3. Thus the highest weight of ∧3U∨(−2) is ω3 − 2ω5. Bott’s theorems states that in
order to find the cohomology groups of our bundle, we first need to add ρ to this weight, which gives
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τ = ω1 +ω2 +2ω3 +ω4 −ω5. No root of D5 is orthogonal to τ , so there will be one non zero cohomology
group. To find it, we choose a simple root with negative scalar product with τ ; there is only one, α5; so
we apply the associated simple reflection, which yields s5(τ) = τ +α5 = ω1 +ω2 +ω3 +ω4 +ω5. Since no
coefficient is negative we do not need to repeat this operation; we just subtract ρ. This yields the weight
zero, so we get a cohomology group isomorphic to the trivial representation C, in degree one because we
just needed to apply one simple reflection. (Note by the way that ∧3U∨(−2) ' ∧2U 'ΩS , which explains
why we obtain H1(S ,∧3U∨(−2)) =H1(S ,ΩS ) = C.) �

The next step is to prove the following statement:

Proposition 3.6. Suppose X ⊂ S1, where S1 is a translate of S . Let N1 be the normal bundle to S1 in P∆.
Then from its restriction to X one can reconstruct the embeddings X ⊂ S1 ⊂ P(∆).

Proof. Suppose S1 = S to simplify the notations. Since S is cut out by quadrics, our strategy will be to
reconstruct its quadratic equations from NX , or equivalently, from UX . Then we simply recover S as the
zero locus of its quadratic equations.

Step 1. The key observation is that there is a natural isomorphism

H0(S ,U (1)) 'H0(S ,OS (1))∨. (3)

Indeed, U∨ is the irreducible bundle associated to the representation of highest weight ω1 = ε1. The
highest weight of its dual U is −ε5 =ω4−ω5. Therefore the highest weight of U (1) is ω4, and the assertion
follows from the Borel-Weil theorem.

Step 2. There are natural morphisms

H0(S ,U∨)⊗H0(S ,U (1)) −→H0(S ,U∨ ⊗U (1)) −→H0(S ,OS (1)),

the right hand side being induced by the trace map U∨⊗U →OS . This determines the quadratic equations
of S , as the image of the induced map

V10 = V
∨
10 =H

0(S ,U∨) −→H0(S ,U (1))∨ ⊗H0(S ,OS (1)) 'H0(S ,OS (1))⊗2 −→ Sym2H0(S ,OS (1)).

(The composition is non zero because ∧2H0(S ,OS (1)) does not contain any direct factor isomorphic to
V10.)

With the help of these observations, we now need to prove that we can recover the quadratic equations
of S just starting from UX . We will show we can follow exactly the same argument as above, using only
spaces of sections of bundles defined on X only.

Step 3. We deduce from (2) and the Borel-Weil-Bott theorem that the restriction morphism

resF :H
0(S ,F) −→H0(X,FX)

is an isomorphism for either F = OS (1),U∨,U (1),U (2),Sym2U∨.

Step 4. We recover the quadratic form (up to scalar) on V ∨10 = H0(X,U∨X ) as a generator of the one
dimensional kernel of the map Sym2H0(X,U∨X ) −→H0(X,Sym2U∨X ); hence the isomorphism V ∨10 ' V10.
Step 5. We have ∆∨+ = H0(X,OX(1)) and we want to identify its dual with ∆∨− = H

0(X,UX(1)). First note
that we have a natural map η : V ∨10 ⊗∆∨− −→ ∆∨ obtained by multiplying sections and contracting:

η :H0(X,U∨X )⊗H
0(X,UX(1)) −→H0(X,U∨X ⊗UX(1)) −→H0(X,OX(1)).

Step 6. From η we get a map χ : ∆∨− −→ ∆∨ ⊗V10, hence also a map

ξ : ∆∨ ⊗∆∨− −→∧2∆∨ ⊗V10.
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We claim that we can recover the duality between ∆ and ∆− as being given by the one-dimensional kernel
K ⊂ ∆∨ ⊗∆∨− of the ξ . Because of the results of Step 3, it is enough to check this claim when we consider
the same maps as defined on S rather than on X. We use the following decompositions into irreducible
Spin10-modules [19]:

∆∨ ⊗∆∨− = Vω4+ω5
⊕Vω2

⊕C,

∧2∆∨ ⊗V10 = Vω4+ω5
⊕Vω2

⊕Vω1+ω3
.

There is a unique irreducible factor K = C that appears in the first decomposition and not in the second
one. Elementary computations, left to the reader, allow to check that K is exactly the kernel of ξ . Note
that since ∆ and ∆− are irreducible, K must define a perfect duality between these modules.

Step 7. Once we have the duality defined by K ⊂ ∆∨ ⊗∆∨− , we can argue exactly as in Step 2 to realize
V10, just starting from X, as a system of quadrics on P(∆). We finally recover S as the base locus of this
system. �

Remark. The key isomorphism (3) can be explained as follows. Recall that S ⊂ P∆ and S∨ ⊂ P∆∨

parametrize the two families of maximal isotropic spaces of V10. Two such spaces belong to different
families if and only if they intersect in even dimension. Moreover, any isotropic four-plane is contained in
exactly two maximal isotropic subspaces, one from each family. We can therefore identify the orthogonal
Grassmannian OG(4,V10) with the incidence variety I ⊂ S × S∨ of pairs (U,U ′) such that L = U ∩U ′
has dimension four, and denote by p,p∨ the two projections. By the preceding observations, the projection
p identifies I with the projective bundle PU∨. Moreover, with the previous notations, we have det(U ) =
det(L)⊗U/L, det(U ′) = det(L)⊗U ′/L, and the quadratic form induces a natural duality between U/L and
U ′/L. From this one easily deduces that p∗∨OS∨(1) = OPU∨(1)⊗ p∗OS (1). And then

H0(S ,OS (1))∨ =H0(S∨,OS∨(1)) =H0(I ,p∗∨OS∨(1)) =H0(I ,OPU∨(1)⊗ p∗OS (1)) =H0(S ,U (1)).

By the same argument as in [2, Proposition 2.3], we deduce from the previous Proposition that:

Proposition 3.7. If X = S1 ∩S2 is a transverse intersection, then the only translates of S that contain X are
S1 and S2.

4. Double mirrors

Recall that the spinor variety S ⊂ P∆ is projectively dual to the other spinor variety S∨ ⊂ P∆∨. We may
therefore associate to X = S1 ∩S2 ⊂ P∆, the other double spinor variety Y = S∨1 ∩S

∨
2 ⊂ P∆∨. When X is

smooth, its presentation as the intersection of two translated spinor varieties is unique, and therefore Y is
uniquely defined.

4.A. Derived equivalence

Proposition 4.1. The double spinor varieties X and Y are simultaneously smooth of expected dimension.

Proof. Suppose S1 = g1S and S2 = g2S and let x ∈ X. Then x = g1E1 = g2E2 for some E1,E2 in S . The
intersection of S1 and S2 fails to be transverse at x if and only if there is a point y ∈ P∆∨ such that the
corresponding hyperplane Hy in P∆ is tangent to both S1 and S2 at x. By Lemma 2.7, this means that
y = gt1F1 = g

t
2F2 for some F1,F2 in S∨, such that dim(E1∩F1) = dim(E2∩F2) = 4. In particular y belongs

to gt1S∨∩g
t
2S∨ = S

∨
1 ∩S

∨
2 = Y and by symmetry, the intersection of S∨1 and S∨2 fails to be transverse at y.

This implies the claim. �

Proposition 4.2. When they are smooth, the double spinor varieties X and Y are derived equivalent.
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From the point of view of mirror symmetry, X and Y being D-equivalent should have the same mirror:
they form an instance of a double mirror.

Proof. This is a direct application of the results of [15], or of the Main Theorem in [10]. As we already
mentioned, the fact that (S1,S∨1 ) and (S2,S∨2 ) are pairs of homologically projectively dual varieties was
established in [14, Section 6.2]. �

Remark. In fact the results of [10, 15] imply the stronger statement that X and Y are derived equivalent
as soon as they have dimension five, even if they are singular. Since the smoothness of a variety can be
detected at the level of its derived category, this provides another proof of Proposition 4.1.

Applying Proposition 2.1 of [22], we deduce (recall from Proposition 3.2 that H5(X,Z) and H5(Y ,Z)
are torsion free):

Corollary 4.3. The polarized Hodge structures on H5(X,Z) and H5(Y ,Z) are equivalent.

4.B. Non birationality

Now we sketch a proof of the following result, according to the ideas of [22, Proof of Lemma 4.7].

Proposition 4.4. Generically, the mirror double spinors X and Y are not birationally equivalent.

Proof. By a standard argument, it is enough to prove that X and Y in P(∆) are not projectively equivalent.
Indeed, suppose X and Y are birational. Since they are Calabi-Yau, X and Y are minimal models, and
this implies that the birational equivalence must be an isomorphism in codimension two. Since their Picard
groups are both cyclic, the birational equivalence identifies their (very ample) generators, and induces an
isomorphism between their spaces of sections, yielding a projective equivalence as claimed.

So suppose that X and Y are projectively equivalent. Since they are both contained in a unique pair
of translates S1 and S2 of the spinor variety, there would exist a projective isomorphism u : P(∆) ' P(∆∨)
such that either u(S1) = S∨1 and u(S2) = S∨2 , or u(S1) = S

∨
2 and u(S2) = S∨1 .

Let us fix once and for all a linear isomorphism u0 : P(∆) ' P(∆∨) such that u0(S1) = S∨1 . There is a
linear automorphism g of P(∆) such that S1 = g(S2). It is easy to check that the existence of u is equivalent
to the existence of v,w in Aut(S1) such that either

u0g
tu−10 = vg−1w or u0g

tu−10 = vgw.

We follow the approach of [22] to prove that for a general g , such elements of H = Aut(S1) do not exist.

First case. In order to exclude the possibility that u0g
tu−10 = vg−1w, one might exhibit an H ×H-invariant

function on G = PGL(∆) such that F(g−1) , F(u0gtu
−1
0 ). To do this, recall that the quadratic equations

of the spinor variety S ⊂ P(∆) are parametrized by V10 ' V ∨10 ⊂ S2∆∨. The invariant quadratic form
q ∈ S2V ∨ is thus mapped to an invariant element Q ∈ S2∆∨ ⊗ S2∆∨. (In fact this element belongs to the
kernel of the product map to S4∆∨, since the latter contains no invariant.) Dually there is an invariant
element Q∨ ∈ S2∆ ⊗ S2∆, and the function we use is F(g) = 〈Q∨, gQ〉. (This is actually a function on
SL(∆), but a suitable power will descend to G = PGL(∆).) Indeed, restricted to a maximal torus of
SL(∆), F(u0gtu

−1
0 ) is a polynomial function of degree four, and it cannot coincide with F(g−1) which is a

polynomial of degree four in the inverses of the variables – even modulo the condition that the product of
the sixteen variables is one.

Second case. As observed in [22, Proof of Lemma 4.7], it suffices to show that there exists some partition
λ such that the space of H-invariants in Sλ∆ is at least two-dimensional (Sλ denotes the Schur functor
associated to the partition λ). We provide an abstract argument for that. Suppose the contrary. Let
G = SL(∆). By the Peter-Weyl theorem, the multiplicity of Sλ∆ inside C[G/H] is the dimension of its
subspace of H-invariants. If this dimension is always smaller or equal to one, C[G/H] is multiplicity free,
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which means that H is a spherical subgroup of G. Then by [27, Theorem 1], H has an open orbit in the
complete flag variety Fl(∆). But the dimension of H is just too small for that to be true, and we get a
contradiction. �

4.C. L-equivalence

Recall that L denotes the class of the affine line in the Grothendieck ring of complex varieties.

Proposition 4.5. The double spinor varieties X and Y are such that

([X]− [Y ])L7 = 0

in the Grothendieck ring of varieties.

Note that when X and Y are not birational, [X]− [Y ] , 0 in the Grothendieck ring (see [16, Proposition
2.2]).

Proof. The proof is the same as for Theorem 1.6 in [2]. We consider the incidence correspondence

Q
p2

��

p1

��
S1 S∨2

where Q is the variety of pairs x ∈ S1, y ∈ S∨2 such that x belongs to the hyperplane Hy . The fiber of
p2 over y is S1 ∩Hy ; it is singular if and only if y also belongs to S∨1 , hence to Y . In this case the fiber
is isomorphic to HS sing , otherwise it is isomorphic to HS reg . This yields two fibrations with constant
fibers, which may not be Zariski locally trivial but must be piecewise trivial, like in [21, Lemme 3.3]. Indeed,
by [25, Theorem 4.2.3], this follows from the already mentioned result of Igusa that over any field (not of
characteristic two) over which the spinor group splits, in particular over any field containing C, there are
only two orbits of non zero spinors [7, Proposition 2].

We deduce that in the Grothendieck ring of varieties,

[Q] = [Y ][HS sing ] + [S∨2 −Y ][HS reg ].

The same analysis for the other projection yields the symmetric relation

[Q] = [X][HS sing ] + [S1 −X][HS reg ].

Taking the difference (recall that S1 and S∨2 are isomorphic varieties), we get

0 = ([X]− [Y ])([HS sing ]− [HS reg ]).

But HS sing and HS reg both have cell decompositions (Propositions 2.6 and 2.8), with the same numbers
of cells except that HS reg has one less in dimension seven. Hence [HS sing ]− [HS reg ] = L7. �
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