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Socle pairings on tautological rings
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Abstract. We study some aspects of the λg -pairing on the tautological ring of Mc
g , the moduli

space of genus g stable curves of compact type. We consider pairing κ-classes with pure boundary
strata, all tautological classes supported on the boundary, or the full tautological ring. We prove
that the rank of this restricted pairing is equal in the first two cases and has an explicit formula in
terms of partitions, while in the last case the rank increases by precisely the rank of the λgλg−1-
pairing on the tautological ring of Mg .
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Titre. Accouplements-socles sur les anneaux tautologiques

Résumé. Nous étudions certains aspects de l’accouplement λg sur l’anneau tautologique de
Mc
g , l’espace de modules des courbes stables de type compact de genre g . Nous considérons

l’accouplement de classes κ avec des strates pures du bord, avec toutes les classes tautologiques
supportées sur le bord ou bien avec l’anneau tautologique dans sa totalité. Nous montrons que le
rang de cet accouplement restreint est le même dans les deux premiers cas et a une expression
explicite en termes de partitions, tandis que dans le dernier cas, le rang augmente précisément du
rang de l’accouplement λgλg−1 sur l’anneau tautologique de Mg .
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1. Introduction

Let Mg,n be the moduli space of smooth curves of genus g with n marked points and let Mg,n be the
Deligne–Mumford compactification, the moduli space of stable n-pointed nodal curves of arithmetic genus
g . Inside this, let Mc

g,n be the subspace of stable pointed curves of compact type, i.e. curves whose dual
graph is a tree.

The intersection theory of these moduli spaces of curves is a subject of fundamental importance in
algebraic geometry. When studying the Chow ring A∗(Mg,n), one is naturally led to consider a subring
consisting of the classes such as the Arbarello–Cornalba κ-classes that are defined via certain tautological
maps between the Mg,n. This subring is the tautological ring R∗(Mg.n). Tautological rings R∗(Mg,n) and
R∗(Mc

g,n) for Mg,n and Mc
g,n can be defined by restriction. We will primarily be interested in R∗(Mc

g ), the
case of compact type with no marked points.

Inside R∗(Mc
g,n) there is the subring κ∗(Mc

g,n) generated by the κ-classes κ1,κ2, . . .. The kappa ring
κ∗(Mc

g,n) has been studied in detail by Pandharipande [6]. In particular, for n > 0 a complete description
of the kappa ring is given. For this reason we concentrate on the case n = 0 in this paper.

When restricted to the moduli space of smooth curves Mg , the tautological ring R∗(Mg ) is actually
equal to the kappa ring κ∗(Mg ). This means that on Mc

g , any tautological class can be written as the sum
of a polynomial in the κ-classes and a class supported on the boundary. We denote by BR∗(Mc

g ) the ideal
of tautological classes supported on the boundary, so the tautological ring R∗(Mc

g ) is linearly spanned by
κ∗(Mc

g ) and BR
∗(Mc

g ).
A general element of BR∗(Mc

g ) is a linear combination of classes obtained by taking the pushforward of
tautological classes via gluing maps

Mc
g1,n1 ×M

c
g2,n2 × · · · ×M

c
gk ,nk →Mc

g .

When the class 1 is pushed forward along such a map, this construction gives a pure boundary stratum.
We let P BR∗(Mc

g ) denote the linear subspace of BR∗(Mc
g ) generated by the pure boundary strata.

There are natural bilinear pairings

Rr(Mc
g )×R2g−3−r(Mc

g )→ R2g−3(Mc
g ) �Q,

Rr(Mg )×Rg−2−r(Mg )→ Rg−2(Mg ) �Q,

given by the product in the Chow ring and the socle evaluations. These pairings are called the λg- and

λgλg−1-pairings respectively because they may be defined by integrating against these classes in Mg .
In this paper we will study the restriction

κd(Mc
g )×Rr(Mc

g )→Q

of the λg-pairing for r+d = 2g−3, for any g ≥ 2. The following theorems, our main results, were previously
conjectured by Pandharipande.
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Housing Theorem. The rank of the λg -pairing of κ-classes against boundary classes

κd(Mc
g )×BRr(Mc

g )→Q

equals the rank of the λg -pairing of κ-classes against pure boundary strata

κd(Mc
g )× P BRr(Mc

g )→Q.

Furthermore, these ranks are equal to the number of partitions of d of length less than r + 1 plus the number of
partitions of d of length r +1 which contain at least two even parts.

Rank Theorem. The rank of the λg -pairing of κ-classes against general tautological classes

κd(Mc
g )×Rr(Mc

g )→Q

equals the sum of the rank of the λg -pairing of κ-classes against boundary classes

κd(Mc
g )×BRr(Mc

g )→Q

and the rank of the λgλg−1-pairing
κr(Mg )×κg−2−r(Mg )→Q.

These theorems will be proven by direct combinatorial analysis of the well known formulae for cal-
culating the integrals arising in the pairings. In particular, we have no geometric explanation of the
Rank Theorem, which connects the compact-type case and the smooth case.

1.A. Consequences

It has been conjectured by Faber [1] that κ∗(Mg ) = R∗(Mg ) is a Gorenstein ring with socle in degree g − 2.
He verified this for g ≤ 23 by computing many relations between the κ-classes and checking that they
produced a Gorenstein ring. However, starting in genus 24, the known methods of producing relations have
failed to give enough relations to yield a Gorenstein ring. In fact, the known relations have all been in the
span of the Faber–Zagier (FZ) relations, and these relations produce a Gorenstein ring if and only if g ≤ 23.

There are therefore mystery relations in R∗(Mg ): formal polynomials in κ-classes which pair to zero with
any κ polynomial in R∗(Mg ) of complementary degree but are not a linear combination of FZ relations.
If one assumes Faber’s Gorenstein conjecture then these relations must hold in R∗(Mg ). Since FZ relations

extend to tautological relations in R∗(Mg ) (this is a consequence of the proof of the FZ relations in [7]),
a possible reason for the existence of mystery relations might be if they do not extend tautologically to
R∗(Mc

g ) or R
∗(Mg ). The Rank Theorem can be interpreted as saying that part of the obstruction to this

extension is zero: the mystery relations at least extend to classes in the tautological ring of Mc
g which pair

to zero with the κ subring. It is an interesting question whether the mystery relations extend to classes in
the tautological ring of Mc

g which are relations in the Gorenstein quotient (i.e. pair to zero with the entire
tautological ring).

In [6] Pandharipande gives a minimal set of generators of κ∗(Mc
g,n) for n > 0 and relates higher genus

relations to genus 0 relations. More precisely, he shows that there is a surjective (graded) ring homomor-
phism

κ∗(Mc
0,2g+n)

ιg,n
→ κ∗(Mc

g,n),

which is an isomorphism for n ≥ 1, or in degrees up to g − 2 when n = 0. The Rank Theorem gives us
information about the n = 0 case in higher degrees.
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Theorem 1. Let g ≥ 2, 0 ≤ e ≤ g − 2, and d = g − 1 + e. Let δd be the rank of the kernel of the map from
κd(Mc

g ) to the Gorenstein quotient of R
∗(Mc

g ). Let γe be the rank of the space of κ-relations of degree e in the
Gorenstein quotient of R∗(Mg ). Let Ne denote the number of partitions of e of length greater than g −1− e. Then
the degree-d part of the kernel of ιg,0 has rank γe − δd −Ne.

Proof. We use the notation |P (m)| for the number of partitions of m and |P (m,k)| for the number of
partitions of m of length at most k, so Ne = |P (e)| − |P (e,g − 1− e)|. By [6], the rank of κd(Mc

0,2g ) is equal

to |P (d,2g − 2− d)|. On the other side, the rank of κd(Mc
g ) is equal to δd plus the rank of the first pairing

appearing in the Rank Theorem. The rank of the second pairing appearing in the Rank Theorem is given
by the Housing Theorem and is equal to |P (d,2g − 2− d)| −X, where X is the number of partitions of d of
length 2g − 2− d with no even parts. By subtracting one from each part and dividing by two, we have that
X = |P (e,g − 1− e)|. The rank of the third pairing appearing in the Rank Theorem is equal to |P (e)| − γe.
Putting all these pieces together gives

dim
Q
κd(Mc

0,2g )−dimQ
κd(Mc

g )

= |P (d,2g − 2− d)| − (δd + |P (d,2g − 2− d)| − |P (e,g − 1− e)|+ |P (e)| −γe)
= γe − δd −Ne,

as desired. �

Remark. The components γe and δd appearing in the above theorem both have conjectural values. The
FZ relations give a prediction for γe (if they are the only relations in the first half of the Gorenstein quotient
and are linearly independent):

γe =

a(3e − g − 1) if e ≤ g−2
2

a(3(g − 2− e)− g − 1) + |P (e)| − |P (g − 2− e)| else,

where a(n) is the number of partitions of n with no parts of sizes 5,8,11,14, . . ..
Although the Gorenstein conjecture in compact type is false (see [8]), it is still reasonable to predict

that the kernel of the map from Rd(Mc
g ) to its Gorenstein quotient will fail to intersect the relatively small

subring κd(Mc
g ). This would imply that δd = 0. Combining this prediction with the FZ prediction for γe

gives a conjecture for all the Betti numbers of κ∗(Mc
g ): we expect that

dim
Q
κd(Mc

g ) = |P (d,2g − 2− d)| − a(3d − 4g +2) if 0 ≤ d ≤
3g − 2

2
,

along with a slightly more complicated formula in the case 3g−2
2 < d ≤ 2g − 3.

1.B. Plan of the paper

In Section 2, we review basic facts about the tautological ring. In Section 3, we prove the Housing
Theorem. Finally, in Section 4, we state and prove a slightly more explicit version of the Rank Theorem
(see Theorem 2).
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2. The tautological ring

2.A. Tautological Classes

The subrings R∗(Mg.n) of tautological classes in the Chow rings A∗(Mg,n) are collectively defined as the

smallest subrings which are closed under pushforward via the maps forgetting markings Mg,n → Mg,n−1
and the gluing maps

Mg1,n1t{?} ×Mg2,n2t{•}→Mg1+g2,n1+n2

and

Mg,nt{?,•}→Mg+1,n

defined by gluing together ? and •. It turns out that nearly all classes on the moduli space of curves that
appear naturally in geometry lie in the tautological ring.

For each i = 1,2, . . . ,n, there is a line bundle Li onMg,n given by the cotangent space at the ith marked

point. The first Chern classes of these line bundles are denoted by ψi = c1(Li) ∈ A1(Mg,n). The κ-classes
are then pushforwards of powers of the ψ classes:

κm = π∗(ψ
m+1
n+1 ) ∈ A

m(Mg,n),

where π is the forgetful map Mg,n+1→Mg,n.
It is well known (see e.g. [5]) that the κ- and ψ-classes combined with pushforward by the gluing

morphisms alone are sufficient to generate the tautological rings. In other words, R∗(Mg,n) is additively
generated by classes of the form

ξΓ ∗

 ∏
v vertex of Γ

θv

 ,
where Γ is a stable graph expressing the data of the gluing map

ξΓ :
∏

v vertex of Γ

Mg(v),n(v)→Mg,n

and the θv ∈ R∗(Mg(v),n(v)) are arbitrary monomials in the ψ- and κ-classes.

The tautological rings R∗(Mc
g,n) and R

∗(Mg,n) are defined as the image of R∗(Mg,n) under restriction.
In the case of R∗(Mc

g,n), this means that the stable graph Γ must be a tree, while R∗(Mg,n) is simply the
subring of polynomials in the κ- and ψ-classes.

The ring R∗(Mc
g,n) has one-dimensional socle, in degree 2g − 3+n:

R2g−3+n(Mc
g,n) �Q.

This gives a canonical (up to scaling) bilinear pairing on R∗(Mc
g,n), which can be realized explicitly by

integrating against the Hodge class λg :

R∗(Mc
g,n)×R∗(Mc

g,n)→Q, (α,β) 7→
∫
Mg,n

αβλg .

Here, the integral is defined by taking any extensions of α and β to R∗(Mg,n). It is independent of which
particular extension one has chosen because λg vanishes on the complement of Mc

g,n.
The λgλg−1-pairing is a similar pairing for the moduli space of smooth curves, given by

R∗(Mg )×R∗(Mg )→Q, (α,β) 7→
∫
Mg

αβλgλg−1.

Notice that the λg-pairing on R∗(Mc
g ) vanishes above degree 2g −3 whereas the λgλg−1-pairing on R∗(Mg )

already vanishes above degree g − 2.
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2.B. Notation concerning partitions

In the following sections we will use the following notation heavily. A partition σ is an unordered collection
of natural numbers (a multiset). We call its elements parts. Its size is the sum of all its parts. The length
`(σ ) of a partition σ is the number of parts in it. For natural numbers n and r, we denote by P (n) the set
of partitions of size n and by P (n,r) the set of partitions of size n and length at most r . Furthermore, let
I(σ ) be a set of `(σ ) elements which we will use to index the parts of σ . For example we could take

I(σ ) = [`(σ )] := {1, . . . , `(σ )}.

For two partitions σ,τ ∈ P (n) and a map ϕ : I(σ )→ I(τ) we say that ϕ is a refining function of τ into σ if
for any i ∈ I(τ) we have

τi =
∑

j∈ϕ−1(i)

σj .

If for given σ and τ there exists a refining function ϕ of τ into σ , we say that σ is a refinement of τ .
For a finite set S , a set partition P of S (written P ` S) is a set P = {S1, . . . ,Sm} of nonempty subsets of

S such that S is the disjoint union of the Si .
For a partition σ and a set S of subsets of I(σ ) we define a new partition σS indexed by the elements

of S by setting (σS )s =
∑
i∈s σi for each s ∈ S . Usually we will take a set partition P of I(σ ) for S . For a

subset T ⊆ I(σ ), we define the restriction σ |T of σ to T by σS , where S is the set of all 1-element subsets of
T ; in other words, σ |T = (σt)t∈T .

2.C. Integral calculations

The basic formula for the evaluation of the integrals arising in the λg-pairing is (see [3])∫
Mg,n

n∏
i=1

ψτii λg =
(
2g − 3+n

τ

)∫
Mg,1

ψ
2g−2
1 λg ,

where τ1, . . . , τn are nonnegative integer numbers with sum 2g − 3 + n. The formula is symmetric with
respect to the sorting of the markings and hence we only need to know the partition corresponding to τ in
order to calculate these integrals. Since we are only interested in the ranks of the pairing, the only thing we
will need to know about the integral on the right hand side is that it is nonzero (see [2]).

We will need to evaluate integrals involving ψ-classes as part of the proof of the housing theorem.
However our main interest lies in the calculation of integrals involving κ-classes. Using the definition of the
κ-classes as push-forwards of powers of ψ-classes, we can find a nice expression for the quotients

ϑ(σ ;τ) :=

∫
Mg,`(τ)

κσψ
τλg

∫
Mg,1

ψ
2g−2
1 λg

−1 .
In this equation we have used κσ as an abbreviation for

∏
i∈I(σ )κσi and ψ

τ for
∏
i∈I(τ)ψ

τi
i indexing the |τ |

marked points by the parts of τ . We will write

ϑ(σ ) := ϑ(σ ;∅)

when we just have κ-classes and no ψ-classes.

Lemma 1. For partitions σ and τ such that 2g − 3+ `(τ) = |σ |+ |τ |, we have

ϑ(σ ;τ) =
∑
P `I(σ )

(−1)|P |+`(σ )
(
2g − 3+ |P |+ `(τ)
((σ P )i +1)i∈P , τ

)
.
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Proof. From the basic socle evaluation formula we see that it suffices to prove the identity

κσψ
τλg =

∑
P `I(σ )

(−1)|P |+`(σ )π∗
(
ψ((σ P )i+1)i∈Pψτλg

)
.

in the Chow ring R(Mg,`(τ)), where by abuse of notation π is the forgetful map Mg,`(τ)+n→Mg,`(τ) for the
appropriate n. Since π∗(λg ) = λg , we can further reduce to

κσψ
τ =

∑
P `I(σ )

(−1)|P |+`(σ )π∗
(
ψ((σ P )i+1)i∈Pψτ

)
.

This follows from the pushforward formula

π∗
(
ψ(σi+1)i∈Pψτ

)
=

∑
P `I(σ )

∏
S∈P

(|S | − 1)!

κσ Pψτ .
and partition refinement inversion. �

To evaluate the more general integrals which arise when we pair κ-classes with arbitrary tautological
classes, we can restrict ourselves to pairing a κ-monomial with the additive set of generators described in
Section 2.A. In this case, we have to sum over the set of possible distributions of the κ-classes to the vertices
of Γ and then multiply the λg-integrals at each vertex.

The λgλg−1-pairing formula is similar:∫
Mg,n

ψσλgλg−1 =
(2g − 3+ `(σ ))!(2g − 1)!!
(2g − 1)!

∏
i∈I(p)(2σi +1)!!

∫
Mg

ψg−2λgλg−1.

The integral on the right hand side is known to be nonzero (see [4]). We can calculate the κ-integrals
analogously to Lemma 1.

3. The Housing Theorem

3.A. Housing Partitions

Let us now study pairing κ-monomials of degree d with pure boundary classes via the λg-pairing. Each
pure boundary stratum in codimension 2g − 3− d is determined by a tree Γ = (V ,E) with |V | = 2g − 2− d
vertices and |E| = 2g − 3 − d edges, and a genus function g : V → Z≥0 with

∑
v∈V g(v) = g . Then, the

class is the push-forward of 1 along the gluing map ξΓ :
∏
v∈V M

c
g(v),n(v) →Mc

g corresponding to the tree
Γ , where n(v) is the degree of the vertex v. From this data, we obtain a partition of∑

v∈V
(2g(v)− 3+n(v)) = 2g − 3(2g − 2− d) + 2(2g − 3− d)

= d

by collecting the socle dimensions 2g(v)−3+n(v) for each vertex v ∈ V and throwing away the zeroes. We
will call this partition the housing data of the pure boundary stratum. From the λg formula, it is easy to see
that the pairing of the κ-ring with a pure boundary stratum is determined by its housing data.

On the other hand, it is interesting to consider which partitions of d can arise as housing data corre-
sponding to a pure boundary stratum. We will call these partitions housing partitions.

Lemma 2. A partition σ of d is a housing partition if and only if it either has fewer than 2g − 2− d parts or
exactly 2g − 2− d parts, at least two of which are even.
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Proof. Only partitions of length at most 2g − 2 − d can be housing partitions because there are only that
many vertices. Furthermore, it is easy to see that no partition of 2g − 2− d parts with fewer than two even
parts can arise since every vertex with only one edge gives an even part (or no part if g(v) = 1).

Now suppose σ is a partition of d with either fewer than 2g−2−d parts or exactly 2g−2−d parts with at
least two even. Let (τi)1≤i≤2g−2−d be the tuple of nonnegative integers given by appending 2g −2−d−`(σ )
zeroes to σ , so that the sum of the τi is d, and exactly 2k + 2 of the τi are even for some nonnegative
integer k.

Construct a tree Γ by taking a path of 2g − 2− d − k vertices and adding k additional leaves connected
to vertices 2,3, . . . , k+1 along the path respectively. Thus, Γ has 2g −2−d vertices, each of degree at most
three, and exactly 2k + 2 of the vertices of Γ have odd degree. We now choose a bijection between the
τi and the vertices of Γ such that even τi are assigned to vertices of odd degree. We can then assign a
genus gi = (τi +3−ni)/2 to each vertex, where ni is the degree of the vertex to which τi was assigned. The
resulting stable tree has housing data σ , as desired. �

3.B. Reduction to a combinatorial problem

We have already described the housing data of a pure boundary stratum. Let us now describe a similar
notion for any class in the generating set described in Section 2.A. Such a class is given by a boundary
stratum corresponding to a tree Γ = (V ,E) and a genus assignment g : V → Z≥0, along with assignments
of monomials in κ- and ψ-classes (of degrees r(v) and s(v) respectively) to each component of the stratum.
Let k =

∑
v∈V (r(v)+ s(v)); then we must have |E| = 2g −3−d −k edges in the tree in order to obtain a class

of degree 2g −3−d. If this class does not vanish by dimension reasons, then we can obtain a partition γ of∑
v∈V

(2g(v)− 3+n(v)− r(v)− s(v)) = 2g − 3(2g − 2− d − k) + 2(2g − 3− d − k)− k = d

by assigning to each vertex of V the number 2g(v) − 3 + n(v) − r(v) − s(v). This is exactly the degree
d′(v) such that the λg(v)-pairing of Rd

′(v)(Mc
g(v),n(v)) with the monomial of ψ- and κ-classes at v is not

zero for dimension reasons. Then, the pairing with the boundary class is determined by the partition γ ,
an assignment of degrees r(i) and s(i) to the parts i ∈ I(γ) and partitions τi ∈ P (r(i)) and ρi ∈ P (s(i))
corresponding to the κ- and ψ-monomials. In particular we can leave out classes which were assigned to
vertices with 2g(v)−3+n(v)− r(v)− s(v) = 0 and we do not need to remember which node corresponds to
each ψ. The result of the λg-pairing of this class together with a κ-monomial corresponding to a partition
π of d is (up to scaling) given by ∑

ϕ

∏
j∈I(γ)

ϑ
(
πϕ−1(j), τj ;ρj

)
,

where the sum runs over all refining functions ϕ of γ into π.
When we view Q

P (d) as a ring of formal κ-polynomials, this pairing gives linear forms

vγ,{τi },{ρi } ∈
(
Q
P (d)

)∗
.

We notice that the formulas still make combinatorial sense even if the triple (γ, {τi}, {ρi}) does not come
from pairing with an actual tautological class.

The special case where all the r(i) and s(i) are zero gives the pairing of κ classes with pure boundary
classes. We get |P (d)| linear forms Mλ, which we normalize such that Mλ(λ) = 1:

Mλ(π) =
1

Aut(λ)

∑
ϕ

∏
j∈I(λ)

ϑ
(
πϕ−1(j)

)
. (1)

In this way we obtain a basis of
(
Q
P (d)

)∗
. If we sort partitions in any way such that shorter partitions come

before longer partitions, then the basis change matrix from this basis to the standard basis is triangular
with ones on the diagonal. Note that this basis uses some partitions which are not housing partitions.
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The housing theorem can now be reformulated as follows:

Claim. The span of {Mλ : λ is a housing partition} in
(
Q
P (d)

)∗
equals the span of the vγ,{τi },{ρi } for all choices

of housing data.

To prove this claim, we will first in Section 3.C express the vectors vγ,{τi },{ρi } for any choice of housing

data in terms of the basis of
(
Q
P (d)

)∗
we have described above. We will then in Section 3.D rewrite

the coefficients as counts of certain combinatorial objects. This combinatorial interpretation is proved in
Section 3.E. We conclude in Section 3.F by showing that when expressing vectors v corresponding to actual
housing data in terms of the Mλ, the coefficient is zero whenever λ is not a housing partition.

3.C. A Matrix Inversion

In Section 3.B we have seen that there are formal expansions

vγ,{τi },{ρi } =
∑
λ∈P (d)

cλ,γ,{τi },{ρi }Mλ

for some coefficients cλ,γ,{τi },{ρi }.
We can calculate cλ,γ,{τi },{ρi } explicitly by inverting the triangular matrix given by equation (1). We

obtain

cλ,γ,{τi },{ρi } =
∞∑
l=0

(−1)l
∑

λ0
ϕ1→···

ϕl→λl
ϕl+1→ γ

vγ,{τi },{ρi }(λl)∏l
i=1 |Aut(λi)|

l∏
i=1

∏
j∈I(λi )

ϑ
(
(λi−1)ϕ−1i (j)

)
,

where we sum over chains λ = λ0, . . .λl of refinements of γ with corresponding refining functions ϕi . In
particular, cλ,γ,{τi },{ρi } = 0 if λ is not a refinement of γ .

We can reduce to the special case in which γ = (d) is of length one by splitting this sum based on the
composition ϕ := ϕl+1 ◦ϕl ◦ · · · ◦ϕ1 and examining the contribution of the preimages of the j ∈ I(γ). The
result is

cλ,γ,{τi },{ρi } =
∑
ϕ

∏
j∈I(γ)

cλϕ−1(j),(γj ),{τj },{ρj }, (2)

summed over refining functions ϕ of γ into λ.
When γ = (d), we set τ1 =: τ and ρ1 =: ρ, and we can write more compactly:

cλ,(d),{τ},{ρ} =
∞∑
l=0

(−1)l
∑

λ0
ϕ1→···

ϕl→λl

ϑ(λl , τ ;ρ)∏l
i=1 |Aut(λi)|

l∏
i=1

∏
j∈I(λi )

ϑ
(
(λi−1)ϕ−1i (j)

)
(3)

3.D. Interpreting the coefficients combinatorially

We will interpret the coefficients cλ,(d),{τ},{ρ} as counting certain permutations of symbols labeled by the
parts of the partitions λ,τ , and ρ. We say that a symbol is of kind i if it is labelled by some i belonging to
the disjoint union of the indexing sets of the partitions, I(λ)t I(τ)t I(ρ). There will in general be multiple
symbols of a given kind.

Main Claim. The coefficient cλ,(d),{τ},{ρ} counts the number of permutations of

• λi +1 symbols of kind i for each i ∈ I(λ),

• τi +1 symbols of kind i for each i ∈ I(τ), and
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• ρi symbols of kind i for each i ∈ I(ρ)

such that:

(1) If the last symbol of some kind i is immediately followed by the first symbol of kind j with i, j ∈ I(λ)tI(τ),
then we have i < j .

(2) For i ∈ I(λ), the last symbol of kind i is not immediately followed by a symbol of kind j for any j ∈ I(λ),

averaged over all total orders < of I(λ)t I(τ) such that elements of I(τ) are smaller than elements of I(λ).

It follows in particular that the coefficient cλ,γ,{τi },{ρi } is non-negative.

3.E. Proof of the Main Claim

3.E.a. Refinements of permutations of symbols

For given natural numbers d, n and a partition τ ∈ P (d), we will study permutations S of τi + 1 symbols
of kind i for i ∈ I(τ) and n symbols of kind c. (The permutations of symbols appearing in the previous
section are an instance of this.) We will need to construct refined permutations of this type for partition
refinements ϕ : I(σ )→ I(τ). For this, we need additional refinement data: for each i ∈ I(τ), let Ti be a
permutation of σj +1 symbols of kind j for j ∈ ϕ−1(i).

Given S and the refinement data, we can obtain a permutation S ′ of σi + 1 symbols of kind i and n
symbols of kind c in the following way: For each i ∈ I(τ) and each j ∈ ϕ−1(i), modify Ti by gluing the last
symbol of kind j with the immediately following symbol; the result is a permutation T ′i of τi + 1 symbols.
To construct S ′ from S , for each i we replace the symbols of kind i by T ′i and then remove the glue.

3.E.b. Reinterpretation

We start with a combinatorial interpretation of the number ϑ(σ ;τ) for partitions σ and τ .

Lemma 3. Given an arbitrary total order < on I(σ ), the number ϑ(σ ;τ) is equal to the number of permutations of

• σi +1 symbols of kind i for each i ∈ I(σ ) and

• τi symbols of kind i for each i ∈ I(τ)

such that the following property holds:
If the last symbol of kind i is immediately followed by the first symbol of kind j for i, j ∈ I(σ ), then we have

i < j .

Proof. For each permutation S of symbols as above, but not necessarily satifying the property, we can assign
a set partition QS ` I(σ ) which measures in what ways it fails to satisfy the property: QS is the finest set
partition such that if i > j and the last symbol of kind i is immediately followed by the first symbol of kind
j in S , then i and j are in the same part of QS . Thus S satisfies the given property if and only if QS is the
set partition with all parts of size 1.

The multinomial coefficient in the summand in the formula for ϑ(σ ;τ) given by Lemma 1 corresponding
to a set partition P ` I(σ ) counts the number of permutations S such that for p = {p1, . . . ,pk} ∈ P with
p1 > · · · > pk , the last symbol of kind pi is immediately followed by the first symbol of kind pi+1 in S for
i = 1, · · · , k − 1. These are precisely the S such that QS can be obtained by combining parts of P such that
the largest element in one part is smaller than the smallest element of the other part.

This means that if we split the formula for ϑ(σ ;τ) given by Lemma 1 into a sum over permutations S ,
the contribution of a permutation with failure set partition Q = {Q1, . . . ,Qk} is precisely

k∏
i=1

|Qk |−1∑
j=0

(−1)j
(
|Qk | − 1
j

)
,

which is 1 for Q the set partition with all parts of size 1, and 0 otherwise. �
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Equipped with Lemma 3, the next step in the proof of the Main Claim is to split the coefficient
cλ,(d),{τ},{ρ} into a sum over the set Sλ,τ,ρ of permutations of λi +1 (respectively, τi +1, ρi ) symbols of kind
i for i ∈ I(λ) (respectively, i ∈ I(τ), i ∈ I(ρ)). For this, we introduce the notion of the composite permutation.

Consider the following data:

• a chain of partitions λ0 = λ,λ1, . . . ,λl with refining maps ϕi as in (3),

• the additional data of an order < on I(λl)t I(τ) such that elements of I(τ) appear before elements
of I(λl),

• the additional data of orders on ϕ−1i (j) for 1 ≤ i ≤ l and j ∈ I(λi).

With this data, we identify each κ socle evaluation factor

ϑ
(
(λi−1)ϕ−1i (j)

)
with the number of permutations of (λi−1)k + 1 symbols of kind k ∈ ϕ−1i (j) such that if the last symbol
of kind k is immediately followed by the first symbol of kind k′ , then k < k′ . We can interpret each such
permutation as refinement data corresponding to the refining function ϕi of λi+1 into λi .

Furthermore, we interpret the factor
ϑ (λl , τ ;ρ)

as the number of permutations Sl of (λl)k +1, τk +1 and ρk symbols of kind k with k ∈ I(λl), k ∈ I(τ) and
k ∈ I(ρ), respectively, such that if the last symbol of kind k is immediately followed by the first symbol of
kind k′ for k,k′ ∈ I(λl)t I(τ), then k < k′ .

Given all this data, we can build the composite permutation by repeatedly refining the collection of
symbols of kind k with k ∈ I(λl) using the construction from Section 3.E.e and keeping the order of the
other symbols intact. The result is a permutation of λk + 1, τk + 1 and ρk symbols of kind k for k ∈ I(λ),
k ∈ I(τ) and k ∈ I(ρ) respectively.

Using the combinatorial interpretations of ϑ
(
(λi−1)ϕ−1i (j)

)
and ϑ (λl , τ ;ρ), and the notion of the compos-

ite permutation, we may therefore write cλ,(d),{τ},{ρ} as a sum over the set Sλ,τ,ρ. To remove the dependence
on the chosen orders, we will average over all choices of them.

We note that any composite permutation has the property that the last symbol of any kind j ∈ I(λ)
is not immediately followed by the first symbol of some kind j ′ ∈ I(τ). Also, with the natural induced
ordering, any composite partition satisfies condition (1) in the Main Claim.

3.E.c. Simplification

For any permutation in Sλ,τ,ρ, we assign a set partition P ` I(λ), which measures in what way it fails to
satisfy condition (2) in the Main Claim. We define P to be the finest set partition such that if the last symbol
of kind i is immediately followed by a symbol of kind j for i, j ∈ I(λ) then i and j lie in the same set of P .

Now, suppose we are given a chain of partitions λ,λ1, . . . ,λl along with additional refining data, order-
ings and base permutation Sl as above. Let P be the failure set partition of the composite permutation. Let
λl+1 := λP be the partition formed by merging parts of λ according to P , so there is a canonical refining
function I(λ)→ I(λP ). By the construction of the composite permutation, this function actually factors
through a refining function ϕ′ : I(λl)→ I(λl+1). Suppose that this refining function ϕ′ is nontrivial, i.e.
λl , λ

P .
We note that if we change the order on I(λl)t I(τ) such that the order on I(τ) and each inverse image

of ϕ′ is preserved, the failure partition P does not change. We will therefore group these orderings together.
On the other hand, consider the following data:

• the chain λ,λ1, . . . ,λl ,λl+1 with refining maps ϕi and ϕ
′ as before,

• the orders and refining data corresponding to the ϕi as before,



12 3. The Housing Theorem12 3. The Housing Theorem

• in addition, an order on each preimage of ϕ′ which is induced by the order on I(λl)t I(τ),

• refining data corresponding to ϕ′ induced from the permutation corresponding to λl , τ and ρ,

• any order on I(λl+1)tI(τ) such that the restriction to I(τ) is the restriction of the order on I(λl)tI(τ)
and such that elements of I(τ) appear before elements of I(λl+1),

• permutations of (λl+1)i+1, τi+1, ρi symbols of kind i for i ∈ I(λl+1), i ∈ I(τ) and i ∈ I(ρ) respectively,
defined from the permutation corresponding to λl by leaving out the last symbol of any kind i ∈ I(λl)
which is not the last one in a level set of ϕ′ and identifying symbols according to ϕ′ .

It is easy to check that the refining data and the permutation still satisfy the order conditions. Further-
more, the failure set partition of the composite partition of this new data is still P , so that now λl+1 = λP .

The original chain with additional data giving failure set partition P and the extended chain with
additional data contribute to cλ,(d),{τ},{ρ} in formula (3) with opposite signs since the extended chain is one
element longer. We claim these contributions cancel.

For the original chain, we have
(`(λl))!∏

j∈I(λl+1) |ϕ
′−1(j)|!

choices of orders on I(λl)t I(τ) in the above construction. For the extended chain, we made

|Aut(λl+1)|(`(λl+1))!

choices in the above construction.
However, the contributions are also weighted by averaging over choices of orders and by the automor-

phism factors in (3). For the original chain, the weight is

((`(λl))!)
−1,

and for the extended chain, the weight is|Aut(λl+1)|(`(λl+1))! ∏
j∈I(λl+1)

|ϕ′−1(j)|!


−1

.

Thus, the two contributions cancel.
The only remaining contributions occur when l = 0 and P is the set partition into one-element sets.

Since they are weighted with coefficient one, this finishes the proof of the Main Claim.

3.F. Proof of the Housing Theorem

We begin with a simple lemma.

Lemma 4. Suppose r + s+ `(γ) < `(λ). Then cλ,γ,{τi },{ρi } = 0.

Proof. We examine the summand in formula (2) corresponding to some ϕ. A factor in this summand can
only be nonzero if r(i)+s(i)+1 ≥ `(ϕ−1(i)). Therefore each summand will vanish unless r+s+`(γ) ≥ `(λ). �

Now let us suppose that (γ , {τi}, {ρi}) is the housing data of a boundary class of the generating set. We
need to show that cλ,γ,{τi },{ρi } = 0 for each λ which is not a housing partition.

Let us first study the case `(λ) > 2g−2−d. Since γ is derived from a boundary stratum of codimension
at most 2g−3−d−r−s (we are missing the ψ- and κ-classes from the components, which do not contribute
to γ ) by diminishing parts by their κ- and ψ-degrees, we have the inequality `(γ) ≤ 2g −2−d − r − s. Then
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by Lemma 4 we are done in this case. The same argument settles also the case where there are components
of the boundary stratum we are considering which do not appear in γ and `(λ) = 2g − 2− d.

Now assume that `(λ) = 2g − 2− d and that λ contains no even part. Then by the same arguments if
the coefficient is nonzero, we must have `(γ) = 2g − 2− d − r − s. Furthermore, from the proof of Lemma 4
we see that r(i) + s(i) = `(ϕ−1(i)) − 1 for each i ∈ I(γ). This implies `(ϕ−1(i)) + r(i) + s(i) ≡ 1 (mod 2),
and therefore for each i ∈ I(γ), we have γi + r(i) + s(i) ≡ 1 (mod 2). Hence each part of the housing data
(for the underlying boundary stratum), which γ was obtained from by subtraction of r(i) + s(i) from each
part, is odd. This is a contradiction, so the coefficient must be zero, as desired.

4. The Rank Theorem

4.A. Reformulation

Let us first formulate a stronger version of the Rank Theorem.

Theorem 2. For any κ-polynomial F in degree r := 2g − 3− d, the following two statements are equivalent:

(1) For any π ∈ P (g − 2− r), we have
∫
Mg
Fκπλgλg−1 = 0.

(2) There is a B ∈ P BRr(Mc
g ) such that for any π

′ ∈ P (2g − 3− r) we have
∫
Mg

(F −B)κπ′λg = 0.

It will be convenient to show that we can replace the first condition in Theorem 2 by

(3) For any π ∈ P (g − 2− r) of length at most r +1 we have
∫
Mg
Fκπλgλg−1 = 0.

Then Theorem 2 will follow from the following simple argument. Consider an F satisfying the second
condition and we want to show that

∫
Mg
Fκπλgλg−1 = 0 for some given π ∈ P (g − 2− r). Notice that then

also Fκπ satisfies the second condition since Bκπ lies in BRg−2(Mc
g ) and by the Housing Theorem can be

replaced by some B′ ∈ P BRg−2(Mc
g ). We then find that

∫
Mg
Fκπλgλg−1 = 0 since in this case the length

condition is trivial.
Let vF ∈ (QP (d))∗ be defined by the λg-pairing of F with the kappa ring. The linear forms Mλ (defined

in Section 3.B) form a basis for (QP (d))∗, so vF can be written as a linear combination of them. The second
condition in the theorem is then equivalent to the condition that only theMλ coming from actual boundary
strata (those where λ is a housing partition) are used in this expansion of F. Notice that by Lemma 4 we
can assume that the λ are partitions of 2g −3− r of length at most r +1. By Lemma 2, this means that the
only non-housing partitions that might occur are of length exactly r +1 with only odd parts. For the proof
of the Rank Theorem we will need to understand the coefficients corresponding to these partitions better.

Observe that partitions of 2g −3− r of length exactly r +1 with only odd parts correspond to partitions
of g − 2− r of length at most r + 1. So for any σ ∈ P (g − 2− r, r + 1) we can look at ησ ,µσ ∈ (QP (r))∗ with
ησ (τ) := cλ,(d),{τ},{∅}, where λ is the partition of 2g − 3− r of length r +1 corresponding to σ , and µσ (τ) is
up to a factor the integral

∫
Mg
κσκτλgλg−1, namely

µσ (τ) =
∑

P `I(σ )tI(τ)
(−1)`(σ )+`(τ)+|P |

(2g − 3+ |P |)!∏
i∈P (2(σ,τ)

P
i +1)!!

.

So what we need to show is the following:

Claim. The Q-subspaces of (QP (r))∗ spanned by ησ and µσ for σ ranging over all partitions of g −2−r of length
at most r +1 are equal.

Recall from Section 3.E.e that ησ (τ) is the number of all permutations S of λi + 1 symbols of kind
i ∈ I(λ) and τi +1 symbols of kind i ∈ I(τ) satisfying
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(1) The last symbol of kind i for some i ∈ I(λ) is either at the end of the sequence or immediately
followed by a symbol of kind j for some j ∈ I(τ) which is not the first of its kind.

(2) The successor of the last element of kind i is not the first element of kind j for any i, j ∈ I(τ) with
i < j, where we fix some order on I(τ).

Before coming to the main part of the proof we apply an invertible transformation Φ to (QP (r))∗ to
simplify the definitions of η and µ. The inverse of the transformation we want to apply sends a linear form
ϕ′ ∈ (QP (r))∗ to the linear form ϕ defined by

ϕ(τ) =
∑
P `I(τ)

(−1)`(τ)+|P |ϕ′(τP ).

The transformation Φ defined in this way is clearly invertible. By a similar argument as in the proof of
Lemma 3, we can show that the image η′σ of ησ under Φ is defined in the same way as ησ but leaving out
Condition (2) on the permutations.

To study the action of Φ on µ, we use the following lemma:

Lemma 5. Let F be a function F : P (n+m)→ Q and define for any σ ∈ P (n) functions Gσ ,G′σ : P (m)→ Q

in terms of F by

Gσ (τ) =
∑

P `I(σ )tI(τ)
F((σ t τ)P )

G′σ (τ) =
∑

P `I(σ )tI(τ)
P separates I(τ)

F((σ t τ)P ),

where the second sum just runs over set partitions P such that each element of I(τ) belongs to a separate part.
Then

Gσ (τ) =
∑
P `I(τ)

G′σ (τ
P ).

Proof. Given set partitions P of I(τ) and Q of I(σ )t I(τP ), with Q separating I(τP ), we can alter Q by
replacing each element of I(τP ) by the elements in the corresponding part of P . Each set partition of
I(σ )t I(τ) is obtained exactly once by this construction. �

Using this lemma and keeping track of the sign factors, we have that µ′σ (τ) is

µ′σ (τ) =
∑

P `I(σ )tI(τ)
P separates I(τ)

(−1)`(σ )+`(τ)+|P |
(2g − 3+ |P |)!∏

i∈P (2(σ t τ)Pi +1)!!
.

We can use the lemma again with the roles of σ and τ interchanged to replace the generators of the span
of µ′σ by µ′′σ with

µ′′σ (τ) :=
∑

P `I(σ )tI(τ)
P separates I(τ)
P separates I(σ )

(−1)`(σ )+`(τ)+|P |
(2g − 3+ |P |)!∏

i∈P (2(σ t τ)Pi +1)!!
. (4)

Therefore we have reduced the proof of the Rank Theorem to proving the following claim.

Claim. The Q-subspaces of (QP (r))∗ spanned by η′σ and µ
′′
σ for σ ranging over all partitions of g −2−r of length

at most r +1 are equal.
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4.B. Further strategy of proof

In order to prove the claim we will establish interpretations for η′σ (τ) and µ
′′
σ (τ) as counts of symbols of

different kinds satisfying some ordering constraints. This enables us to find nonzero constants F(i) for each
i ∈ I(σ ) independent of τ such that

µ′′σ (τ) =
∑
P `I(σ )

∏
i∈P

F(i)
η′σ P (τ)

(r +1− |P |)!
,

giving a triangular transformation.
For the interpretations the notion of a comb-like order plays an important role. We say that symbols

i1 . . . i2m+1 are in comb-like order if we have the relations i1 < i3 < · · · < i2m+1 and i2j < i2j+1 for j ∈ [m].
This is illustrated in Figure 1.

i1 i2

i3 i4

i5

i2m−1 i2m

i2m+1

Figure 1: A comb-like order

Note that the number of comb-like orderings of 2m+1 symbols is (2m+1)!/(2m+1)!!. More generally
the number

(2|π|+ `(π))!∏
i∈I(π)(2πi +1)!!

corresponding to a partition π counts the number of permutations of the 2|π|+`(π) symbols
⋃
i∈I(π){i1, . . . ,

i2πi+1} such that symbols corresponding to the same part of π appear in comb-like order.

4.C. Combing orders

We obtain a first reinterpretation of η′σ (τ) by numbering the symbols of the same kind:

Interpretation A1. η′σ (τ) is the number of all permutations of symbols i1, . . . , iτi+1 for i ∈ I(τ) and i1, . . . , iλi+1
for i ∈ I(λ) such that for fixed i ∈ I(τ)t I(λ) the ij appear in order and for all i ∈ I(λ) the symbol iλi+1 is
either at the end of the sequence or immediately followed by some jk for j ∈ I(τ) and k , 1.

Since λ has length r + 1 and |τ | = r, such a permutation gives a bijection between the jk for j ∈ I(τ)
with k , 1 and all but one of the iλi+1 for i ∈ I(λ). After picking this bijection, we can remove the iλi+1.

Interpretation A2. η′σ (τ) is the sum over bijections

ϕ : I(λ)→ {ij | i ∈ I(τ), j , 1} t {End}

of the number of permutations of symbols i1, . . . , iτi+1 for i ∈ I(τ) and i1, . . . , iλi for i ∈ I(λ) such that
symbols of the same kind appear in order and all symbols ij for i ∈ I(λ) appear before ϕ(i) (this condition
is empty if ϕ(i) = End).

We can then add new symbols immediately following each iλi for i ∈ I(λ) and reindex the ij for i ∈ I(τ)
to create comb-like orderings.
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Interpretation A3. η′σ (τ) is the sum over bijections

ϕ : I(λ)→ {ij | i ∈ I(τ), j even} t {End}

of the number of permutations of symbols i1, . . . , i2τi+1 for i ∈ I(τ), i1, . . . , iλi for i ∈ I(λ), and an additional
symbol End such that the ij for i ∈ I(τ) appear in comb-like order, the ij for i ∈ I(λ) appear in order, and
iλi for i ∈ I(λ) is immediately followed by ϕ(i).

Recall that λ is defined in terms of σ by taking the numbers 2σi + 1 for each i ∈ I(σ ) and adding as
many ones as needed to reach length r + 1. There is only one symbol i1 of kind i for i ∈ I(λ) \ I(σ ) in
Interpretation A3 of η′σ (τ) and it must be immediately followed by ϕ(i). For convenience set (r+1−`(σ ))! ·
η′′σ := η′σ . Removing these symbols i1 gives an interpretation of η′′σ .

Interpretation A4. η′′σ (τ) is a sum over all injections

ϕ : I(σ )→ {ij | i ∈ I(τ), j even} t {End}

of the number of permutations of symbols i1, . . . , i2τi+1 for i ∈ I(τ), i1, . . . , i2σi+1 for i ∈ I(σ ), and an
additional symbol End such that the ij for i ∈ I(τ) appear in comb-like order, the ij for i ∈ I(σ ) appear in
order, and i2σi+1 for i ∈ I(σ ) is immediately followed by ϕ(i).

We now switch to the interpretation of µ′′σ (τ), which was defined in (4). The coefficient corresponding
to a set partition P can be interpreted as the number of permutations of symbols i1, . . . , i2(σtτ)Pi +1 for

i ∈ I((σ t τ)P ) and one additional symbol ? such that all i1, . . . , i2(σtτ)Pi +1 for i ∈ I((σ t τ)P ) appear in
comb-like order.

Because of the restrictions in the sum, the parts of P are either singletons or contain exactly one element
from each of I(σ ) and I(τ). This defines a function ψ : I(σ )→ I(τ)t {?}, injective when restricted to the
preimage of I(τ). Interpreting the summands as counting comb-like orders and cutting combs into two
pieces for each part of P of size two gives the following:

Interpretation B1. µ′′σ (τ) is the sum over functions

ψ : I(σ )→ I(τ)t {?}

such that ψ|ψ−1(I(τ)) is injective, of a sign of (−1)|ψ−1(I(τ))| times the number of permutations of symbols
i1, . . . , i2τi+1 for i ∈ I(τ), i1, . . . , i2σi+1 for i ∈ I(σ ) and one additional symbol ? such that all i1, . . . , i2τi+1 for
i ∈ I(τ) and all i1, . . . , i2σi+1 for i ∈ I(σ ) appear in comb-like order and such that i2σi+1 for i ∈ I(σ ) with
ψ(i) , ? is immediately followed by ψ(i)1.

Now we split the set of such permutations depending on the symbols immediately following symbols
i2σi+1 for i ∈ I(σ ). We notice that the signed sum exactly kills those permutations where some i2σi+1 for
i ∈ I(σ ) is immediately followed by some j1 for j ∈ I(τ) since if such a summand appears for some ψ with
ψ(i) , j we must have ψ(i) = ? and we find the same summand with opposite sign in the sum corresponding
to the map ψ′ defined by ψ′(i) = j and ψ′(k) = ψ(k) for k , i and vice versa.

Interpretation B2. µ′′σ (τ) is the number of permutations of symbols i1, . . . , i2τi+1 for i ∈ I(τ), i1, . . . , i2σi+1 for
i ∈ I(σ ) and one additional symbol ? such that all i1, . . . , i2τi+1 for i ∈ I(τ) and all i1, . . . , i2σi+1 for i ∈ I(σ )
appear in comb-like order and such that i2σi+1 for i ∈ I(σ ) is not immediately followed by a symbol of the
form j1 with j ∈ I(τ).

Interpretations A4 and B2 are very close. The differences between the two of them are that the σ -type
symbols are in total order rather than comb-like order in A4 and that the conditions on the elements
immediately following the i2σi+1 are different.
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We now break µ′′σ (τ) into a sum over set partitions P of I(σ ). Given a permutation of the symbols
appearing in Interpretation B2, define a function

ϕ : I(σ )→ {ij | i ∈ I(τ), j even} t {End}

recursively by

ϕ(i) =



j2k if i2σi+1 for i ∈ I(σ ) is immediately followed by a symbol

of the form j2k or j2k+1 with j ∈ I(τ),
End if i2σi+1 for i ∈ I(σ ) is immediately followed by ?

or at the end of the sequence,

ϕ(j) if i2σi+1 for i ∈ I(σ ) is immediately followed by a symbol

of the form jk with j ∈ I(σ ).

Then let P be the set partition of preimages under ϕ. We will identify the summand of µ′′σ (τ) corre-
sponding to such a set partition P as η′′σ P (τ) times a factor depending only on σ and P .

This factor is equal to ∏
i∈P

F(i),

where

F(i) =
(2σ Pi + |i|+1)!∏
j∈i(2σj +1)!!

.

Here, F(i) should be interpreted as the number of permutations of 2σj + 1 symbols of kind j for each
j ∈ i and one additional symbol End such that the symbols of each kind appear in comb-like order. If
these permutations are interpreted as refinement data, then the permutations counted by the P -summand
of µ′′σ (τ) are the refinements by this data of the permutations counted by η′′σ P (τ).

Thus we have the identity
µ′′σ =

∑
P `I(σ )

∏
i∈P

F(i)η′′σ P .

This is a triangular change of basis with nonzero entries on the diagonal, so the µ′′ and η′′ span the same
subspace in (QP (r))∗. This completes the proof of the Rank Theorem.
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