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p-adic lattices are not Kähler groups

Bruno Klingler

Abstract. We show that any lattice in a simple p-adic Lie group is not the fundamental group of
a compact Kähler manifold, as well as some variants of this result.
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Titre. Les réseaux p-adiques ne sont pas des groupes kählériens

Résumé. Dans cette note, nous montrons qu’un réseau d’un groupe de Lie p-adique simple n’est
pas le groupe fondamental d’une variété kählérienne compacte, ainsi que des variantes de ce
résultat.
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1. Results

1.A. A group is said to be a Kähler group if it is isomorphic to the fundamental group of a connected
compact Kähler manifold. In particular such a group is finitely presented. As any finite étale cover of a
compact Kähler manifold is still a compact Kähler manifold, any finite index subgroup of a Kähler group
is a Kähler group. The most elementary necessary condition for a finitely presented group to be Kähler is
that its finite index subgroups have even rank abelianizations. A classical question, due to Serre and still
largely open, is to characterize Kähler groups among finitely presented groups. A standard reference for
Kähler groups is [ABCKT96].

1.B. In this note we consider the Kähler problem for lattices in simple groups over local fields. Recall that
if G is a locally compact topological group, a subgroup Γ ⊂ G is called a lattice if it is a discrete subgroup
of G with finite covolume (for any G-invariant measure on the locally compact group G).

We work in the following setting. Let I be a finite set of indices. For each i ∈ I we fix a local field ki
and a simple algebraic group Gi defined and isotropic over ki . Let G =

∏
i∈IGi(ki). The topology of the

local fields ki , i ∈ I , makes G a locally compact topological group. We define rkG :=
∑
i∈I rk kiGi .

We consider Γ ⊂ G an irreducible lattice: there does not exist a disjoint decomposition I = I1
∐
I2 into

two non-empty subsets such that, for j = 1,2, the subgroup Γj := Γ ∩GIj of GIj :=
∏
i∈Ij Gi(ki) is a lattice

in GIj .
The reference for a detailed study of such lattices is [Mar91]. In Section 2 we recall a few results for the

convenience of the reader.

1.C. Most of the lattices Γ as in Section 1.B are finitely presented (see Section 2.C). The question whether Γ
is Kähler or not has been studied by Simpson using his non-abelian Hodge theory when at least one of the
ki ’s is archimedean. He shows that if Γ is Kähler then necessarily for any i ∈ I such that ki is archimedean
the group Gi has to be of Hodge type (i.e. admits a Cartan involution which is an inner automorphism),
see [Si92, Corollary 5.3 and 5.4]. For example SL(n,Z) is not a Kähler group as SL(n,R) is not a group of
Hodge type. In this note we prove:

Theorem 1.1. Let I be a finite set of indices and G be a group of the form
∏
j∈IGj(kj ), where Gj is a simple

algebraic group defined and isotropic over a local field kj . Let Γ ⊂ G be an irreducible lattice.
Suppose there exists an i ∈ I such that ki is non-archimedean. If rkG > 1 and char(ki) = 0, or if rkG = 1

(i.e. G = G(k) with G a simple isotropic algebraic group of rank 1 over a local field k) then Γ is not a Kähler
group.

Remark 1.2. Notice that the case rkG = 1 is essentially folkloric. As we did not find a reference in this
generality let us give the proof in this case.

If Γ is not cocompact in G (this is possible only if k has positive characteristic) then Γ is not finitely
generated by [L91, Corollary 7.3], hence not Kähler.

Hence we can assume that Γ is cocompact. In that case it follows from [L91, Theorem 6.1 and 7.1] that
Γ admits a finite index subgroup Γ ′ which is a (non-trivial) free group. But a non-trivial free group is never
Kähler, as it always admits a finite index subgroup with odd Betti number (see [ABCKT96, Example 1.19
p.7]). Hence Γ ′ , thus also Γ , is not Kähler.
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On the other hand, to the best of our knowledge not a single case of Theorem 1.1 in the case where
rkG > 1 and all the ki , i ∈ I , are non-archimedean fields of characteristic zero was previously known.
The proof in this case is a corollary of Margulis’ superrigidity theorem and the recent integrality result of
Esnault and Groechenig ([EG17, Theorem 1.3], whose proof was greatly simplified in [EG17-2]).

1.D. Let us mention some examples of Theorem 1.1:
– Let p be a prime number, I = {1}, k1 =Qp , G = SL(n). A lattice in SL(n,Qp), n ≥ 2, is not a Kähler

group. This is new for n ≥ 3.
– I = {1;2}, k1 = R and G1 = SU(r, s) for some r ≥ s > 0, k2 = Qp and G2 = SL(r + s). Then any

irreducible lattice in SU (r, s) × SL(r + s,Qp) is not Kähler. In Section 2 we recall how to construct such
lattices (they are S-arithmetic). The analogous result that any irreducible lattice in SL(n,R)×SL(n,Qp) (for
example SL(n,Z[1/p])) is not a Kähler group already followed from Simpson’s theorem.

1.E. I don’t know anything about the case not covered by Theorem 1.1: can a (finitely presented) irreducible
lattice in G =

∏
i∈IGi(ki) with rkG > 1 and all ki of (necessarily the same, see Theorem 2.1) positive

characteristic, be a Kähler group? This question already appeared in [BKT13, Remark 0.2 (5)].

2. Reminder on lattices

2.A. Examples of pairs (G,Γ ) as in Section 1.B are provided by S-arithmetic groups: let K be a global field
(i.e a finite extension of Q or Fq(t), where Fq denotes the finite field with q elements), S a non-empty set
of places of K , S∞ the set of archimedean places of K (or the empty set if K has positive characteristic),
OS∪S∞ the ring of elements of K which are integral at all places not belonging to S ∪ S∞ and G an
absolutely simple K-algebraic group, anisotropic at all archimedean places not belonging to S . A subgroup
Λ ⊂ G(K) is said S-arithmetic (or S ∪ S∞-arithmetic) if it is commensurable with G(OS∪S∞) (this last
notation depends on the choice of an affine group scheme flat of finite type over OS∪S∞ , with generic fiber
G; but the commensurability class of the group G(OS∪S∞) is independent of that choice).

If S is finite the image Γ in
∏
v∈SG(Kv) of an S-arithmetic groupΛ by the diagonal map is an irreducible

lattice (see [B63] in the number field case and [H69] in the function field case). In the situation of Section
1.B, a (necessarily irreducible) lattice Γ ⊂ G is called S-arithmetic if there exist K , G, S as above, a bijection
i : S −→ I , isomorphisms Kv −→ ki(v) and, via these isomorphisms, ki-isomorphisms ϕi : G −→ Gi such
that Γ is commensurable with the image via

∏
i∈I ϕi of an S-arithmetic subgroup of G(K).

2.B. Margulis’ and Venkataramana’s arithmeticity theorem states that as soon as rkG is at least 2 then
every irreducible lattice in G is of this type:

Theorem 2.1 (Margulis, Venkataramana). In the situation of Section 1.B, suppose that Γ ⊂ G is an irreducible
lattice and that rkG ≥ 2. Suppose moreover for simplicity that Gi , i ∈ I , is absolutely simple. Then:

(a) All the fields ki have the same characteristic.

(b) The group Γ is S-arithmetic.

Remark 2.2. Margulis [Mar84] proved Theorem 2.1 when char(ki) = 0 for all i ∈ I . Venkatarama [V88]
had to overcome many technical difficulties in positive characteristics to extend Margulis’ strategy to the
general case.

On the other hand, if rkG = 1 (hence I = {1}) and k = k1 is non-archimedean, there exist non-arithmetic
lattices in G, see [L91, Theorem A].
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2.C. With the notations of Section 2.A, an S-arithmetic lattice Γ is always finitely presented except if K
is a function field, and rkKG = rkG = |S | = 1 (in which case Γ is not even finitely generated) or rkKG > 0
and rkG = 2 (in which case Γ is finitely generated but not finitely presented). In the number field case see
the result of Raghunathan [R68] in the classical arithmetic case and of Borel-Serre [BS76] in the general
S-arithmetic case; in the function field case see the work of Behr, e.g. [Behr98]. For example the lattice
SL2(Fq[t]) of SL2(Fq((1/t))) is not finitely generated, while the lattice SL3(Fq[t]) of SL3(Fq((1/t))) is
finitely generated but not finitely presented.

3. Proof of Theorem 1.1

Thanks to Remark 1.2 we can assume that rkG > 1. In this case the main tools for proving Theorem 1.1 are
the recent result of Esnault and Groechenig and Margulis’ superrigidity theorem.

3.A. Recall that a linear representation ρ : Γ −→ GL(n,k) of a group Γ over a field k is cohomologically
rigid if H1(Γ ,Adρ) = 0. A representation ρ : Γ −→ GL(n,C) is said to be integral if it factorizes through
ρ : Γ −→ GL(n,K), K ↪→ C a number field, and moreover stabilizes an OK -lattice in C

n (equivalently, see
[Ba80, Corollary 2.3 and 2.5]: for any embedding v : K ↪→ k of K in a non-archimedean local field k the
composed representation ρv : Γ −→GL(n,K) ↪→GL(n,k) has bounded image in GL(n,k)). A group will be
said complex projective if is isomorphic to the fundamental group of a connected smooth complex projective
variety. This is a special case of a Kähler group (the question whether or not any Kähler group is complex
projective is open).

In [EG17-2, Theorem 1.1] Esnault and Groechenig prove that if Γ is a complex projective group then any
irreducible cohomologically rigid representation ρ : Γ −→ GL(n,C) is integral. This was conjectured by
Simpson.

3.B. A corollary of [EG17-2, Theorem 1.1] is the following:

Corollary 3.1. Let Γ be a complex projective group. Let k be a non-archimedean local field of characteristic zero
and let ρ : π1(X) −→ GL(n,k) be an absolutely irreducible cohomologically rigid representation. Then ρ has
bounded image in GL(n,k).

Proof. Let k be an algebraic closure of k. As ρ is absolutely irreducible and cohomologically rigid there
exists g ∈GL(n,k) and a number field K ⊂ k such that ρg(Γ ) := g · ρ · g−1(Γ ) ⊂GL(n,k) lies in GL(n,K).

Let k′ be the finite extension of k generated by K and the matrix coefficients of g and g−1. This is still
a non-archimedean local field of characteristic zero, and both ρ(Γ ) and ρg(Γ ) are subgroups of GL(n,k′).
As ρ : Γ −→ GL(n,k) ⊂ GL(n,k′) has bounded image in GL(n,k) if and only if ρg : Γ −→ GL(n,k′) has
bounded image in GL(n,k′), we can assume, replacing ρ by ρg and k by k′ if necessary, that ρ(Γ ) is
contained in GL(n,K) with K ⊂ k a number field.

Let σ : K ↪→ C be an infinite place of K and consider ρσ : Γ
ρ
−→ GL(n,K)

σ
↪→ GL(n,C) the associated

representation. As ρ is absolutely irreducible, the representation ρσ is irreducible. As

H1(Γ ,Ad ◦ ρσ ) =H1(Γ ,Ad ◦ ρ)⊗K,σ C = 0

the representation ρσ is cohomologically rigid.
It follows from [EG17, Theorem 1.3] that ρσ is integral. In particular, considering the embedding K ⊂ k,

it follows that the representation ρ : Γ −→GL(n,k) has bounded image in GL(n,k). �

3.C. Notice that we can upgrade Corollary 3.1 to the Kähler world if we restrict ourselves to faithful
representations:

Corollary 3.2. The conclusion of Corollary 3.1 also holds for Γ a Kähler group and ρ : π1(X) −→ GL(n,k) a
faithful representation.
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Proof. As the representation ρ is faithful, the group Γ is a linear group in characteristic zero. It then follows
that the Kähler group Γ is a complex projective group (see [CCE14, Theorem 0.2] which proves that a finite
index subgroup of Γ is complex projective, and its refinement [C17, Corollary 1.3] which proves that Γ itself
is complex projective). The result now follows from Corollary 3.1. �

3.D. Let us apply Corollary 3.1 to the case of Theorem 1.1 where rkG > 1. Renaming the indices of I if
necessary, we can assume that I = {1, · · · , r} and k1 is non-archimedean of characteristic zero. Let us choose
an absolutely irreducible k1-representation ρG1

:G1 −→GL(V ). Let

ρ : Γ −→ G
p1−→G1(k1) −→GL(V )

be the representation of Γ deduced from ρG1
(where p1 : G −→G1(k1) denotes the projection of G onto its

first factor). As p1(Γ ) is Zariski-dense in G1 it follows that ρ is absolutely irreducible.
As rkG > 1, Margulis’ superrigidity theorem applies to the lattice Γ of G: it implies in particular

that H1(Γ ,Ad ◦ ρ) = 0 (see [Mar91, Theorem (3) (iii) p. 3]). Hence the representation ρ : Γ −→ GL(V ) is
cohomologically rigid.

Suppose by contradiction that Γ is a Kähler group. By Theorem 2.1 (a) and the assumption that k1 has
characteristic zero it follows that Γ is linear in characteristic zero. As in the proof of Corollary 3.2 we
deduce that Γ is a complex projective group. It then follows from Corollary 3.1 that ρ has bounded image
in GL(V ), hence that p1(Γ ) is relatively compact in G(k1). This contradicts the fact that Γ is a lattice in
G =G(k1)×

∏
j∈I\{1}G(kj ). �

References

[ABCKT96] J. Amoros, M. Burger, K. Corlette, D. Kotschick, and D. Toledo, Fundamental groups of compact
Kähler manifolds, Mathematical Surveys and Monographs, vol. 44, American Mathematical Society,
Providence, RI, 1996. MR-1379330

[Ba80] H. Bass, Groups of integral representation type, Pacific J. Math. 86 (1980), no. 1, 15–51. MR-0586867

[Behr98] H. Behr, Arithmetic groups over function fields. I. A complete characterization of finitely generated and
finitely presented arithmetic subgroups of reductive algebraic groups. J. Reine Angew. Math. 495 (1998),
79–118. MR-1603845

[B63] A. Borel, Some finiteness properties of adeles groups over number fields, Inst. Hautes Études Sci. Publ.
Math. 16 (1963), 5–30. MR-0202718

[BS76] A. Borel and J-P. Serre, Cohomologie d’immeubles et de groupes S-arithmétiques, Topology 15 (1976), no.
3, 211–232. MR-0447474

[BKT13] Y. Brunebarbe, B. Klingler, and B. Totaro, Symmetric differentials and the fundamental group, Duke
Math. J. 162 (2013), no. 14, 2797–2813. MR-3127814

[CCE14] F. Campana, B. Claudon, and P. Eyssidieux, Représentations linéaires des groupes kählériens et de
leurs analogues projectifs, J. Éc. Polytech. Math. 1 (2014), 331–342. MR-3322791

[C17] B. Claudon, Smooth families of tori and linear Kähler groups, Ann. Fac. Sci. Toulouse Math. (6) 27 (2018)
no. 3, 477–496 MR-3869072

[EG17] H. Esnault and M. Groechenig, Rigid connections and F-isocrystals, preprint 2017. arXiv:1707.00752

[EG17-2] H. Esnault and M. Groechenig, Cohomologically rigid local systems and integrality, Selecta Math.
(N.S.) 24 (2018), no. 5, 4279–4292. MR-3874695

http://www.ams.org/mathscinet-getitem?mr=1379330
http://www.ams.org/mathscinet-getitem?mr=0586867
http://www.ams.org/mathscinet-getitem?mr=1603845
http://www.ams.org/mathscinet-getitem?mr=0202718
http://www.ams.org/mathscinet-getitem?mr=0447474
http://www.ams.org/mathscinet-getitem?mr=3127814
http://www.ams.org/mathscinet-getitem?mr=3322791
http://www.ams.org/mathscinet-getitem?mr=3869072
https://arxiv.org/abs/1707.00752
http://www.ams.org/mathscinet-getitem?mr=3874695


6 References6 References

[H69] G. Harder, Minkowskische Reduktionstheorie über Funktionenkörpern, Invent. Math. 7 (1969), 33–54.
MR-0284441

[L91] A. Lubotzky, Lattices in rank one Lie groups over local fields, Geom. Funct. Anal. 1 (1991), no. 4, 406–431.
MR-1132296

[Mar84] G. A. Margulis, Arithmeticity of the irreducible lattices in the semisimple groups of rank greater than 1,
Invent. Math. 76 (1984), 93–120. MR-0739627

[Mar91] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer
Grengebiete (3), vol. 17, Springer-Verlag, Berlin, 1991. MR-1090825

[R68] M. S. Raghunathan, A note on quotients of real algebraic groups by arithmetic subgroups, Invent. Math 4
(1968), 318–335. MR-0230332

[Si92] C. T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5-95.
MR-1179076

[V88] T. N. Venkataramana, On superrigidity and arithmeticity of lattices in semisimple groups over local fields
of arbitrary characteristic, Invent. Math. 92 (1988), no. 2, 255–306. MR-0936083

http://www.ams.org/mathscinet-getitem?mr=0284441
http://www.ams.org/mathscinet-getitem?mr=1132296
http://www.ams.org/mathscinet-getitem?mr=0739627
http://www.ams.org/mathscinet-getitem?mr=1090825
http://www.ams.org/mathscinet-getitem?mr=0230332
http://www.ams.org/mathscinet-getitem?mr=1179076
http://www.ams.org/mathscinet-getitem?mr=0936083

	1. Results
	2. Reminder on lattices
	3. Proof of Theorem 1.1

