
Épijournal de Géométrie Algébrique
epiga.episciences.org

Volume 3 (2019), Article Nr. 7

Irregular Hodge numbers of
confluent hypergeometric differential equations

Claude Sabbah and Jeng-Daw Yu

Abstract. We give a formula computing the irregular Hodge numbers for a confluent hypergeo-
metric differential equation.

Keywords. Irregular Hodge filtration; mixed Hodge module; confluent hypergeometric system;
Laplace transformation

2010 Mathematics Subject Classification. 14F40; 32S35; 32S40

[Français]

Titre. Nombres de Hodge irréguliers des équations différentielles hypergéométriques con-
fluentes

Résumé. Nous donnons une formule calculant les nombres de Hodge irréguliers pour les équa-
tions différentielles hypergéométriques confluentes.

Received by the Editors on December 20, 2018, and in final form on March 20, 2019.
Accepted on May 1, 2019.

Claude Sabbah
CMLS, École polytechnique, CNRS, Université Paris-Saclay, F–91128 Palaiseau cedex, France
e-mail : Claude.Sabbah@polytechnique.edu
http://www.math.polytechnique.fr/perso/sabbah

Jeng-Daw Yu
Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan
e-mail : jdyu@ntu.edu.tw
http://homepage.ntu.edu.tw/~jdyu/

This research was partly supported by the MoST/CNRS grants 106-2911-I-002-539/TWN PRC 1632.
J.-D.Y. was partially supported by the TIMS and the MoST of Taiwan.

© by the author(s) This work is licensed under http://creativecommons.org/licenses/by-sa/4.0/

ar
X

iv
:1

81
2.

00
75

5v
3 

 [
m

at
h.

A
G

] 
 4

 J
un

 2
01

9

http://epiga.episciences.org/
epiga.episciences.org
http://www.math.polytechnique.fr/perso/sabbah
http://homepage.ntu.edu.tw/~jdyu/
http://creativecommons.org/licenses/by-sa/4.0/


2 1. Introduction2 1. Introduction

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Fourier transforms of Kummer pullbacks of hypergeometrics . . . . . . . . . . . . . . . . . . 3

3. Reduction of the proof of the theorem to the case where Assumption B is fulfilled . . . . . 5

4. Nearby cycles for the Kummer pullback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5. The filtered inverse stationary phase formula and irregular Hodge numbers . . . . . . . . . 7

6. End of the proof of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1. Introduction

Differential equations with irregular singularities occur in various branches of Algebraic geometry, like
mirror symmetry or the theory of exponential periods. They are also of interest as providing a complex
analogue of `-adic sheaves with wild ramification in positive characteristic. Irregular Hodge theory, as
initiated by Deligne (see [Del07]), gives, for a large class of such equations, a convenient analogue to Hodge
theory for Picard-Fuchs equations appearing more classically in complex Algebraic geometry. It is proved in
[Sab18] that any rigid irreducible differential equation on the Riemann sphere, having regular singularities
or not, and having real formal exponents at each singular point, underlies a variation of irregular Hodge
structures away from its singular points. In this article, we consider the first and most classical example
of such irregular differential equations, namely that of confluent hypergeometric differential equations, and
we aim at determining the ranks of the irregular Hodge bundles. In the non-confluent case, the Hodge
numbers of this variation, as well as the limiting Hodge numbers at the singularities, have been computed
by R. Fedorov [Fed17], relying on [DS13].

Let α = (α1, . . . ,αn) and β = (β1, . . . ,βm) be finite increasing sequences of length n > 0 and m > 0 (not
both zero) of real numbers in [0,1) (with the convention that a sequence of length zero is empty). We say
that the pair (α,β) is non-resonant if αi , βj for any i ∈ {1, . . . ,n} and j ∈ {1, . . . ,m}. All along this article,
we make the following assumption.

Assumption A. The pair (α,β) is non-resonant.

We consider the possibly confluent hypergeometric differential equation

H =H(α,β) =
n∏
i=1

(t∂t −αi)− t
m∏
j=1

(t∂t − βj ), (1)

with the usual convention that a product indexed by the empty set is equal to 1. We know that the associated
meromorphic flat bundle H (α,β) on P

1 is irreducible (see [Kat90, Cor. 3.2.1]), that its index of rigidity is
equal to 2 (see [Kat90, Th. 3.7.1 &Th. 3.7.3]), and that it is rigid (see [BE04, Th. 4.7 &Th. 4.10]). If n = m, it
has singularities at 0,1,∞, and they are regular. If n > m, it has an irregular singularity at t =∞, a regular
singularity at t = 0, and no other singularity. If n < m, the roles of 0 and ∞ are exchanged.

Since the αi ’s and βj ’s are real, the local monodromy of H (α,β) at its regular singularities is unitary
and the formal monodromy at its irregular singular point is also unitary. If n = m (regular singularities),
there exists a variation of polarizable Hodge structure on C

∗ that H (α,β) underlies, which is unique up to
a shift of the Hodge filtration.
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In this article, we consider the confluent case n > m (the case n < m can be obtained by a change
of variable t 7→ 1/t), so we fix two integers n > m > 0 and we set µ = n −m > 0. Then H (α,β) has a
regular singularity at t = 0, an irregular singularity of pure slope 1/µ at t =∞, and no other singularity.
By [Sab18, Th. 0.7], the minimal extension H min(α,β) at t = 0 of H (α,β) underlies a unique pure object
T min(α,β) of the category IrrMHM(P1

t ) of irregular mixed Hodge modules on P
1, and it comes equipped

with a irregular Hodge filtration. In contrast with the non-confluent case, this filtration is indexed by a set
A +Z, where A is a finite set in R, and this filtration is unique up to a shift of A by a real number. We
determine these numbers and their multiplicities in term of the pair (α,β).

Theorem. The jumps of the irregular Hodge filtration F•irrH (α,β) occur (up to a global R-shift) at

ρ(k) := µαk − k +#{i | βi < αk}, (2)

and for any p ∈R we have
rkgrpFirrH (α,β) = #ρ−1(p). (3)

Remarks.

(i) Recall that the irregular Hodge filtration is unique up to a shift by a real number, so the formula (3)
above is understood up to an R-shift of the filtration.

(ii) The statement and proof of the theorem hold under the assumption that n > m. However, the formula
remains meaningful when m = n, and it gives back the formula of R. Fedorov [Fed17] (if we notice that
R. Fedorov considers the local system of solutions of H, while we consider the dual one of horizontal
sections1). Another proof is given in [Mar18, Th. 3.4], where the vanishing cycle Hodge number at t = 1
is also made explicit. Notice that our proof of the theorem relies on the previous result by R. Fedorov.

(iii) The case where m = 0 is due to A. CastañoDomínguez and C. Sevenheck [CDS17, Th. 4.7], and an-
other proof in this case is given by both authors in [Sab18, §3.2.c]. Moreover, A. CastañoDomínguez,
Th. Reichelt and C. Sevenheck have also obtained the case n > m = 1 [CDRS18, Th. 5.8] with different
methods, relying on their results on GKZ systems.

2. Fourier transforms of Kummer pullbacks of hypergeometrics

We recall here a useful result of N. Katz (see [Kat90, Th. 6.2.1]) which reduces the study of confluent hyper-
geometric differential equations to that of regular ones. Recall that we set µ := n−m. We denote by β the
sequence of length n obtained by concatenating and reordering the sequences β and 0,1/µ, . . . , (µ − 1)/µ.
We also have

0 6 β1 6 · · · 6 βn < 1.

In the remaining part of this section, we will make the following assumptions, the first one being mainly
for convenience.

Assumption B.

(i) We have αi ,βj ∈ (0,1).

(ii) The pair (α,β) is non-resonant (in particular, µαi <Z for any i = 1, . . . ,n).
1 ↑ This remark is due to Nicolas Martin, see [Mar18, Lem. 3.6].
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The theorem of N. Katz relates the confluent H (α,β) to the non-confluent H (β,α). We recall below
this correspondence.

The confluent hypergeometric differential system H := C[t]〈∂t〉/C[t]〈∂t〉 ·H defined by (1) is localized
at t = 0 because αi < Z. We will also consider it as a C[t, t−1]〈∂t〉-module. We denote by ρµ : C∗v → C

∗
t

the cyclic covering v 7→ t = vµ. Then ρ+µH is a well-defined C[v,v−1]〈∂v〉-module, defined as such by the
operator

Hµ =
n∏
i=1

(1µv∂v −αi)− v
µ
m∏
j=1

(1µv∂v − βj ).

We set Hµ :=C[v]〈∂v〉/(Hµ). Since µαi <Z, we have Hµ =Hµ(!0) =Hµ(∗0) =Hmin
µ . It also follows that Hµ

does not have any nonzero constant C[v]〈∂v〉-submodule or quotient module.
Let Ĥµ be the Fourier transform of Hµ by the Fourier correspondence τ = ∂v , ∂τ = −v. We have

Ĥµ =C[τ]〈∂τ〉/(Ĥµ), with

Ĥµ =
n∏
i=1

(1µτ∂τ +αi +
1
µ )− (∂τ )

µ
m∏
j=1

(1µτ∂τ + βj +
1
µ ).

As a consequence, Ĥµ does not have any nonzero constant sub or quotient C[τ]〈∂τ〉-module, and it does
not have either any sub or quotient C[τ]〈∂τ〉-module supported at the origin, i.e., it is a minimal extension
at the origin.

We set
α′i = αi +1/µ, β′j = βj +1/µ,

With the change of variable ι : C∗ → C
∗ given by ι(τ) = τ ′ = 1/τ , and the choice of the generator τ ′−1

instead of 1, ι∗(Ĥµ(∗0)) is defined by the operator

H′µ =
n∏
i=1

(1µτ
′∂τ ′ +1/µ−α′i)−µ

µτ ′µ
µ−1∏
`=0

(1µτ
′∂τ ′+1/µ+ `/µ)

m∏
j=1

(1µτ
′∂τ ′ +1/µ− β′j )

=
n∏
i=1

(1µτ
′∂τ ′ −αi)−µµτ ′µ

µ∏
`=1

(1µτ
′∂τ ′ + `/µ)

m∏
j=1

(1µτ
′∂τ ′ − βj )

Clearly, we have Ĥµ(∗0) ' ι∗ρ∗µ(H ′(∗0)) with H ′(∗0) = C[x,x−1]〈x∂x〉/(H′) and

H′ =
n∏
i=1

(x∂x −αi)−µµx
µ∏
`=1

(x∂x + `/µ)
m∏
j=1

(x∂x − β′j ).

Let us consider H′′ obtained by reducing the exponents −`/µ modulo Z. We obtain the sequences of
exponents α1, . . . ,αn, β1, . . . ,βm and (1− `/µ)`=1,...,µ, the latter two being grouped as β1, . . . ,βn. Hence,

H′′ =
n∏
i=1

(x∂x −αi)−µµx
n∏
i=1

(x∂x − βi). (4)

We set H ′′(∗0) = C[x,x−1]〈x∂x〉/(H′′) 'H ′(∗0). We have obtained that

Ĥµ(∗0) ' ι∗ρ∗µ(H ′′(∗0)).

In conclusion, H =H(∗0) =H (α,β) is obtained from H ′′(∗0) 'H (β,α) by the following operations:2

(a) Kummer pullback ρµ : τ ′ 7→ x = τ ′µ,

(b) change of variables τ ′ = 1/τ ,

(c) Fourier transform v = −∂τ , ∂v = τ ,

(d) Kummer descent by ρµ : v 7→ t = vµ.
2 ↑ We neglect here to take into account the coefficient in front of the right-hand term, that is, we consider hypergeometrics up

to isomonodromy deformations.
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3. Reduction of the proof of the theorem to the case where Assumption B
is fulfilled

Recall that we assume that the pair (α,β) is non-resonant (Assumption A). Then for γ > 0 small enough,
setting α′′i = γ + αi and β′′j = γ + βj , the sequences α′′ ,β′′ are in (0,1), increasing, and remains non-

resonant. Moreover, one can choose γ such that the pair (α′′ ,β′′) is non-resonant, i.e., Assumption B is
fulfilled for it. Moreover, since the irregular Hodge filtration is defined up to an R-shift, we can add µγ
to Formula (2). In order to reduce the proof of the theorem to the case where Assumption B is fulfilled,
we apply the following general lemma to the case of the rank-one local system L on C

∗ with monodromy
exp(−2πiγ) around 0.

Lemma 1. Let M be a rigid irreducible holonomic D
P

1-module and let L be a rank-one meromorphic flat
bundle on P

1 with poles along Σ ⊂ P
1, which is locally formally unitary. Let M′ be the image of the map

Γ[!Σ](M⊗L)→ Γ[∗Σ](M⊗L), which is also rigid irreducible holonomic. Then the jumping indices and ranks of
the irregular Hodge filtration forM andM′ are the same, up to an R-shift of the indices.

Proof. We use, in the statement and the proof of the lemma, the notation as in the proof of [Sab18,
Prop. 2.69]. We can write L = (O

P
1(∗Σ),d+dψ +ω), where Σ is the pole divisor of L, ψ is a global section

of O
P

1(∗Σ) and ω is a one-form with at most simple poles at Σ (in the application to hypergeometrics we
have in mind, we have ψ = 0). Moreover, L is locally formally unitary if and only if Lreg := (O

P
1(∗Σ),d+ω)

is unitary, i.e., the residues of ω at Σ are real.
It is shown in loc. cit. that there exists

• a proper morphism f : X→ P
1, with X smooth projective,

• a normal crossing divisor D in X and a subdivisor H ⊂D,

• a regular holonomic DX-module N underlying a mixed Hodge module,

• a meromorphic function ϕ with poles in H ,

such that M is the image of
f 0† (E

ϕ ⊗ Γ[!H]N) −→ f 0† (E
ϕ ⊗ Γ[∗H]N).

Set D1 = f −1(Σ). By a suitable change of data as above, we can assume that the pole and zero divisors
of ϕ +ψ ◦ f do not intersect, and that D ∪D1 is a normal crossing divisor. Then (see loc. cit.) M′ is
obtained as the image of

f 0†
(
Eϕ

′
⊗ Γ[!H ′](f +Lreg ⊗N)

)
−→ f 0†

(
Eϕ

′
⊗ Γ[∗H ′](f +Lreg ⊗N)

)
.

The irregular Hodge filtration on M is obtained by pushing forward by f 0† the irregular Hodge filtrations
on Eϕ ⊗ Γ[!H]N and Eϕ ⊗ Γ[∗H]N, and by considering the image of it by the morphism above, and similarly
for M′ . We notice that, away from Σ, both constructions possibly differ only because the irregular Hodge
filtrations on N and f +Lreg ⊗N possibly differ. Since the only choice involved is that of the jumping index
of the irregular Hodge filtration of Lreg, which can be an arbitrary real number, they actually do not differ,
and we obtain the desired result. �

4. Nearby cycles for the Kummer pullback

We take up here the notation as in [DS13]. Let (V ,F•V ,∇) be a filtered flat vector bundle on the punctured
disc ∆∗x with coordinate x underlying a variation of polarized complex Hodge structure. We denote by V a

the Deligne extension of V on ∆x on which the residue of ∇ has eigenvalues in [a,a + 1), and we set
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V −∞ =
⋃
aV

a, which is a free O∆(∗0)-module of finite rank. For any p ∈ Z we set FpV a = j∗FpV ∩ V a,
where j : ∆∗ ↪→ ∆ denotes the inclusion. This is a locally free O∆-module and multiplication by x induces an
isomorphism FpV a

∼−→ FpV a+1, so that for fixed p and a, grpF gr
a+k(V ) := FpV a+k/(Fp+1V a+k + FpV >a+k)

has dimension independent of k ∈Z. For χ = exp−2πia with a ∈R, we set

ν
p
χ(V ) = dimgrpF gr

a(V ).

For µ ∈N∗, let ρ : ∆y → ∆x be the cyclic ramification y→ x = yµ of order µ. The data (ρ∗V ,ρ∗F•V ,ρ∗∇)
underlies a variation of polarized complex Hodge structure.

Lemma 2. We have
ν
p
λ(ρ
∗V ) =

∑
χ|χµ=λ

ν
p
χ(V ).

Proof. Considering the germs at the origin, we have a natural identification

ρ∗V −∞ =
µ−1⊕
j=0

yj ⊗V −∞

with a natural structure on the right-hand side, which leads to

(ρ∗V )b =
µ−1⊕
j=0

yj ⊗V (b−j)/µ (b ∈R),

and similarly

Fp(ρ∗V )b := (j∗ρ
∗Fp)∩ (ρ∗V )b =

µ−1⊕
j=0

yj ⊗FpV (b−j)/µ.

The lemma follows. �

Let us apply this formula to H ′′(∗0) defined by (4) and its pullback ι∗Ĥµ(∗0). Assumption B is supposed
to hold. We consider nearby cycles at x = 0 and τ ′ = 0. We set χk = exp(−2πiαk) and λk = exp(−2πiµαk).
The formula of [Fed17, Th. 3(b)] reads, since the nilpotent part for each eigenvalue of the monodromy of
H ′′(∗0) at x = 0 consists of one Jordan block,

ν
p
0,χ

k
(H′′) =

1 if p = pk := #{i | βi < αk} − k,
0 otherwise.

Note that
#{j ∈ {0, . . . ,µ− 1} | j/µ < αk} = [µαk],

so that
pk = [µαk] + #{i | βi < αk} − k.

Lemma 2 gives:

ν
p
0,λk

(ι∗Ĥµ(∗0)) =

#{j | µαj ≡ µαk mod Z and pj = pk} if p = pk ,

0 otherwise.

Let us denote by {µαj} ∈ [0,1) the fractional part of µαj (it belongs to (0,1), due to Assumption B). Since
ρ(j) = {µαj}+ pj , the previous formula can be rewritten as

ν
p
0,λk

(ι∗Ĥµ(∗0)) =

#{j | ρ(j) = ρ(k)} if p = pk ,

0 otherwise,

and, after applying ι, it reads

ν
p
∞,λk (Ĥµ(∗0)) =

#{j | ρ(j) = ρ(k)} if p = pk ,

0 otherwise.
(5)
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5. The filtered inverse stationary phase formula and irregular Hodge
numbers

By [Sab18, Prop. 2.61], the general fibre of the Laplace transform of a mixed Hodge module on A
1 carries

a canonical irregular Hodge structure. We will give a formula for the irregular Hodge numbers in terms of
the limit mixed Hodge structure at infinity of the mixed Hodge module.

We start by recalling some of the results in [Sab10], since the way we formulate them is implicit in
loc. cit.

Let (M,F•M) be a well-filtered regular holonomic C[τ]〈∂τ〉-module underlying a polarizable pure
complex Hodge module. For the sake of simplicity, and since we will only use the result in this setting,
we assume that the monodromy of M around τ =∞ does not have 1 as an eigenvalue. We associate with
(M,F•M)

• the Rees module RFM,

• the localized Laplace transform G, that we regard as a C[v,v−1]-module, and which is free of finite
rank as such,

• the Brieskorn lattice G0 = G0
(F) associated to the filtration, which is a free C[u]-module (u = v−1) with

an action of u2∂u (see e.g. [SY15, App.]),

• the Rees module RG(F)
(G) attached to the decreasing filtration G

p
(F) = u

pG0.

Let M be the D
P

1-module such that M = M(∗∞) and M = Γ (P1,M). Our assumption above implies
that M is equal to its minimal extension at τ =∞. We denote by τ ′ = 1/τ the coordinate centered at∞ and
by V •M the V -filtration of M with respect to τ ′ . For α ∈R and λ = exp(−2πiα), we set ψτ ′ ,λM = grαV M.

The Hodge filtration F•M extends naturally to V αM, as indicated in Section 4. In such a way, (M,F•M)
is strictly specializable at τ ′ = 0. The space ψτ ′ ,λM comes equipped with the induced filtration given by
F•ψτ ′ ,λM = F•grαV M, from which we construct the Rees module RFψτ ′ ,λM.

On the other hand, let V •G be the V -filtration of G with respect to the function v. We set similarly
ψv,λG = grαV G, and the filtration G•(F) induces on it the filtration G•(F)ψv,λG, form which we construct the
Rees module RG(F)

ψv,λG.
The “inverse stationary phase formula” of [Sab06, Prop. 4.1(iv)] applied to M = RFM, together with

[Sab10, Lem. 5.20 (∗)∞] give, for λ , 1,

RG(F)
ψv,λG ' RFψτ ′ ,λM, (6)

that we can regard in each degree p as an isomorphism G
p
(F)ψv,λG ' F

pψτ ′ ,λM.

On the other hand, let us set G|u=1 = G0/(u − 1)G0. The irregular Hodge filtration is the filtration
induced on G|u=1 by the V -filtration of G with respect to the coordinate v = 1/u (see [Sab18, Def. 3.2]). In
the decreasing version, we have

F
γ
irrG|u=1 = (V γ ∩G0)/(V γ ∩G0)∩ (u − 1)G0.

By [Sab10, (1.3)] we have (by replacing there z with v and taking zo = 0)

dimgrγFirrG|u=1 = dim
(
(V γ ∩G0)/[(V >γ ∩G0) + (V γ ∩G1)]

)
.

Let us set α = {γ} := γ − [γ] ∈ [0,1), so that v−[γ](V γ ∩G0) = V α ∩G[γ]. Then, for p ∈ Z and α ∈ [0,1),
we find

dimgrα+pFirr
G|u=1 = dimgrpG(F)

ψv,λG.
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Together with (6) we obtain:

dimgrα+pFirr
G|u=1 = dimgrpFψτ ′ ,λM (α ∈ [0,1), λ = exp(−2πiα)). (7)

The previous relation was proved by means of the results of [Sab06, Sab10], provided (M,F•M) underlies
a pure polarizable Hodge module. Let us remark that it also holds if (M,F•M) underlies a mixed Hodge
module: this is proved by induction on the weight by considering short exact sequences 0 → Wk−1 →
Wk → grWk → 0. Indeed, these exact sequences for mixed Hodge module are F-strict, and their Laplace
transforms are Firr-strict, because they underlie exact sequences of irregular mixed Hodge modules.

6. End of the proof of the theorem

We use the notation of Section 2. We first argue as in [Sab18, §3.2.c] to relate the irregular Hodge filtration
of H and that of Hµ. Moreover, we have already seen that we can reduce the proof of the theorem to the
case where Assumption (B) holds, so that in particular µαk <Z and thus αk <Z.

By [Sab18, Th. 0.7], the minimal extension H min(α,β) at t = 0 underlies a unique object T min(α,β)
of IrrMHM(P1

t ), and it comes equipped with a unique (up to an R-shift) irregular Hodge filtration. We
also denote by T min(α,β) the associated pure polarizable twistor D -module on P

1
t and by T (α,β) the

localized object in MTMint(P1
t , [∗0]). With Assumption (B), we have T min(α,β) = T (α,β).

The pullback Tµ(α,β) of T (α,β) endows Hµ(α,β) with the structure of an integrable mixed twistor
D -module on P

1
v localized at v = 0, and its minimal extension T min

µ (α,β) at v = 0 is a polarizable twistor

D -module which is pure, with associated C[v]〈∂v〉-module H min
µ (α,β). With Assumption (B), we have

T min
µ (α,β) = Tµ(α,β). Since the covering ρµ is a smooth morphism, the rank and jumping indices of

the irregular Hodge filtrations are not altered by the pullback by ρµ, hence those of H (α,β) coincide with
those of Hµ(α,β).

Moreover, as a polarizable pure twistor D -module, T min
µ (α,β) is obtained as the Fourier-Laplace

transform, in the twistor sense, of the polarizable variation of Hodge structure that Ĥµ underlies. Therefore,
we can apply to it [Sab18, Prop. 2.61], and also the results of Section 5.

We apply Formula (7) withM = Ĥµ and G =Hµ, both defined in §2. Since the right-hand term concerns

the behaviour at τ =∞, we can replace Ĥµ with Ĥµ(∗0). We note that the assumption used in (7) is satisfied
here, since the eigenvalues λk = exp(−2πiµαk) are not equal to one, as a consequence of Assumption (B).

Formula (5) then gives

dimgr
{µαk}+p
Firr

H = dimgr
{µαk}+p
Firr

Hµ =

#{j | ρ(j) = ρ(k)} if p = pk ,

0 otherwise,

which is equivalent to (3). �
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