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Abstract. We show that if a Fano manifold does not admit Kihler-Einstein metrics then the Kihler
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confirming an expectation of Tian-Yau.
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1. Introduction

Let X" be a Fano manifold, i.e. a compact complex manifold with c¢;(X) > 0. A Kihler-Einstein metric on
X is a Kdhler metric w which satisfies
Ric(w) = w.

This implies that [w] = ¢;(X). We assume throughout this paper that X does not admit a Kihler-Einstein

metric. This is known to be equivalent to K-unstability by [13] (see also [40]), but we will not use this fact.
We fix a Kihler metric w with [w] = ¢;(X), with Ricci potential F defined by Ric(w) = w + V=190F

(normalized by L((elD —1)w" = 0). We consider Kéhler metrics w; with [w;] = ¢1(X) which satisfy

We can write w; = w + V—lag(pt and the functions ¢; solve the complex Monge-Ampére equation [46]
Wl =1 ", (L1)

A solution ¢; exists on [0,R(X)) where R(X) < 1 is the greatest lower bound for the Ricci curvature of
Kéhler metrics in ¢1(X) [36]. It is known [35, 38] that since X does not admit Kihler-Einstein metrics, we
must have that lim;_,g(x)supy ¢; = +oo. We fix a sequence t; — R(X) and write @; := ¢; and w; := wy..
Using this result, together with multiplier ideal sheaves, Nadel [29, Proposition 4.1] proved that (up to
passing to a subsequence) the measures w; converge to zero (as measures) on compact sets of X\V for
some proper analytic subvariety V C X, and in [44] the second-named author improved this to uniform
convergence.

By weak compactness of closed positive currents in a fixed cohomology class, up to subsequences we
can extract a limit p of ¢; —supy ¢; (which may depend on the subsequence), which is an unbounded
w-psh function, and the convergence happens in the L! topology.

In their work [41, p.178], Tian-Yau expressed the expectation that p should have logarithmic poles along
a proper analytic subvariety V C X, and that it should satisfy (w + V-1 agp)” =0 on X\V, so that p could
be thought of as a kind of pluricomplex Green’s function (see also [38, p.238] and [39, p.109]).

In this note we confirm Tian-Yau’s expectation:

Theorem 1.1. Let X be a Fano manifold without a Kihler-Einstein metric, and let w; = w + V=190, be the
solutions of the continuity method (1.1). Given any sequence t; € [0, R(X)) with t; — R(X), choose a subsequence
such that @, —supy ¢, converge in LY(X) to an w-psh function p. Then we can find m > 1 and an w-psh
Sfunction Y on X with analytic singularities

p
1
¢ =—log ZA]?|S]~|,3,,,, (1.2)
=1



N. McCleerey and V. Tosatti, Pluricomplex Green’s functions and Fano manifolds 3

or some A: € (0,1] and some sections S; € HY(X, K3™), with nonempty common zero locus V .C X such that
] j X ply
p — P is bounded on X, and on X\V we have

(w+V-19dp)" =0, (1.3)
where the Monge-Ampére product is in the sense of Bedford-Taylor [6].

In particular, Theorem 1.1 implies that the non-pluripolar Monge-Ampére operator of p (defined in [12])
vanishes identically on X. On the other hand, there is another meaningful Monge-Ampére operator that
can be applied to p. Indeed, the fact that p—1 € L*°(X) implies that p itself has analytic singularities. In [3]
Andersson-Blocki-Wulcan defined a Monge-Ampére operator for w-psh functions with analytic singularities
(generalizing earlier work of Andersson-Wulcan [4] in the local setting). In general, applying this Monge-
Ampére operator to p will produce a Radon measure p on X (which may be identically zero in some
cases), which by Theorem 1.1 is supported on the analytic set V, thus providing geometrically interesting
examples of unbounded quasi-psh functions on compact Kédhler manifolds with Monge-Ampére operator
concentrated on a subvariety (see also [1, 2] for related results in the local setting). In particular, this answers
[11, Question 1 (c)], an open problem raised at the AIM workshop “The complex Monge-Ampére equation”
in August 2016 (cf. the related [23, Question 12]).

Note that in general a formula for the total mass of y is proved in [3, Theorem 1.2], and it satisfies

Joref
X X

with strict inequality in general (but it is not hard to see that if dim X = 2 and V is a finite set then equality
holds). Therefore, the measure y is in general different from the measures that one obtains as weak limits

of (w+ V—lag(pi)” (up to subsequences), whose total mass is always equal to JX w".

Remark 1.2. [Remark added in proof] After this work was posted on the arXiv, and partly prompted by
it, Blocki [10] modified the definition of the Monge-Ampére operator for w-psh functions with analytic
singularities of [4, 3], and with his definition the total mass is always equal to IX w". It is an interesting

question to determine whether this Monge-Ampére operator equals the weak limit of (w + V—18§¢i)”.

Remark 1.3. As in the second-named author’s previous work [44], Theorem 1.1 has a direct counterpart
for solutions of the normalized Kihler-Ricci flow, instead of the continuity method (L.1). The statement is
identical to Theorem 1.1, except that now the sequence t; goes to +oco. The proof is also almost verbatim
the same, and the partial C” estimate along the flow is proved in [I4, 15] (see also [5]). All other ingredients
used also have well-known counterparts for the flow (see [44]). We leave the simple details to the interested
reader.

Remark 1.4. The behavior of the solutions w; of (L1) as t — R(X) has been investigated in the past. If
the manifold is K-stable, [20] show that w; converge smoothly to a Kihler-Einstein metric. If on the other
hand no such metric exists, the blowup behavior of w; has been investigated in [29, 44| in the setting of
this paper, and also in [20, 26, 33] by allowing reparametrizations of the metrics by difftomorphisms.

The proof of Theorem LI relies on the partial C® estimate for solutions of (1.1) which was established
by Székelyhidi [37]. We recall this in section 2, together with a well-known reformulation of this estimate
(Proposition 2.1). In section 3 we observe that this gives us the singularity model function ¢ in (1.2), and
it also implies that p has the same singularity type as . In section 4 we show the general fact that every
w-psh function on X with the same singularity type as i has vanishing Monge-Ampére operator outside
V, thus proving Theorem 1.1. This relies on a geometric understanding of the rational map defined by the
sections {S;} as in Theorem 11. Lastly, in section 5 we discuss the pluricomplex Green’s function with the
same singularity type as 1.
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2. The partial C° estimate

To start we fix some notation. We choose a Hermitian metric / on K;(l with curvature Ry, = w (such h is
unique up to scaling), and let h™ be the induced metric on K;™, for all m > 1. Let N, = dim H%(X, Ky"),
and for any m > 1 define the density of states function

Nm
Pu(@) =) IS;l7m,
j=1

where Sl,...,SNm are a basis of HO(X, K)_(m) which is orthonormal with respect to the L? inner product
fX(51,52>hmw”. Clearly p,,(w) is independent of the choice of basis, and is also unchanged if we scale h
by a constant. The integral IX pm(w)w™ equals N, and if m is sufficiently large so that K™ is very ample,
then p,,(w) is strictly positive on X. If we apply this same construction to the metrics w; and Hermitian
metrics h, = he™® we get a density of states function p,,(w;). Following [39], we say that a “partial C°
estimate” holds if there exist 72 > 1 and a constant C > 0 such that

infpu(w) > C™, (2.1)

holds for all t € [0,R(X)). The reason for this name is explained by the following proposition, which
is essentially well-known (see [39, Lemma 2.2] and [43, Proposition 5.1]), but we provide the details for
convenience:

Proposition 2.1. If a partial C° estimate holds then there exists m > 1, such that for all € > 0 we can find
a constant C > 0 so that for all t € [¢,R(X)) we can find real numbers 1 = Ai(t) > ... > Ay, (t) > 0 and a
basis {S;(t)}1<j<n,, of HO(X, K3™), orthonormal with respect to the L? inner product of w,h™, such that for all
t €[0,R(X)) we have
1 Ny,
sup ¢ —sup ¢y ~ - log Y APIsi 0| < C. (22)
j=1

In the rest of the paper we will fix a value of ¢ > 0 once and for all, for example ¢ = R(X)/2. The
precise choice is irrelevant, since we are only interested in the behavior as t — R(X).

Proof. First, it is well-known that for all m > 1 and € > 0 there is a constant C such that for all t € [¢, R(X))
we have

Pm(w) < C. (2.3)

To see this, first observe for every S € H(X,Ky™) we have
A ISl = IVSIF = 2mlS | > =2mIS|}, (24)

and that since Ric(w;) > tw; > ew;, Myers” Theorem gives a uniform upper bound for diam(X, w;) and
then Croke [19] and Li [27] show that the Sobolev constant of (X, w;) has a uniform upper bound. We can
then apply Moser iteration to (2.4) to get

sup|S[2, < CJ ISI2nw) < C, (2.5)
X ! x
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provided we assume that jX |S|}21m(1):l = 1. Taking now an orthonormal basis of sections and summing we
t
obtain (2.3).
Thanks to (2.3) we know that for t € [¢, R(X)) a partial C? estimate is equivalent to

sup|log p(wy)l < C. (2.6)
X

We now take a basis {gj(f)}stNm of H(X,Ky™) orthonormal with respect to the L? inner product of
wy, hy" and notice that since hi' = e7"?*h"™ we clearly have

N, &
Z]’:l |S](t)|im

o
Ny 2’
Z]‘:1 |Sj(t)|h7n

_1
(Pt—m

which is equivalent to
N,
1 m _ 2 1
¢~ log ;ls]-u)lhm =~ logpy(a). (27)
]:

It follows from (2.6) and (2.7) that that for t € [¢, R(X)) a partial C° estimate is equivalent to an estimate

m

N,
1 ~
sup|¢i =7 log Y ISi(Blm| < C.
j=1

We now choose another basis {S;};<j<n,, of HO(X, K5™) orthonormal with respect to the L? inner product
of w,h™. After modifying S; and gj(t) by t-dependent unitary transformations, we obtain orthonormal

bases {S;(t)}1<j<n,, with respect to w, h™, and {S;(¢)}1<j<n,, With respect to w;, h" such that

S;(t) = uj(t)S;(1),

for some positive real numbers p;(t), with p1(¢) > ... > py, (t) > 0. We then let A;(t) = p;()/p; (¢) and we
see that a partial C? estimate is equivalent to

N,
2 1 m
SUp |1 - o logpu(t) - log ZAj(t)ZISj(t)Iim <C. (2.8)
j=1

We now claim that if a partial C estimate holds, then for all ¢ € [¢,R(X)) we also have

<C. (2.9)

E10 (t)—su
m 08 H XP(Pt

Once this is proved, combining (2.8) and (2.9) we get (2.2). To prove (2.9), first use (2.5) to get

C> Sl)l(plgl(t)ﬁ;n > ’,{l(t)z 5;1(P|31(t)|;21me_msupxqj"
and the fact IX |Sl(t)|i,,,a)” =1 implies that supy |Sl(t)|im > 1/Vol(X, w), and so
2
—logpi(t) —supg; | < C.
m X

On the other hand the partial C” estimate (2.1) implies that

C < pml@) =) IS0l <pr (1)) 18j(1)7ue ™, (2.10)
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and we clearly have that
supsup|S;(t)[r. <C, (2.11)
;X

since the sections {S;(t)} are just varying in a compact unitary group (or one can also repeat the Moser
iteration argument of (2.3) for the fixed metric w). This together with (2.10), evaluated at the point where
@; achieves its maximum, gives the reverse inequality

2
sup@; — —logu (1)< C,
X m

which completes the proof of (2.9). O

3. The singularity model function

The next goal is to use the partial C° estimate in Proposition 2.1 to construct a singular w-psh function ¢
which will have the same singularity type of any weak limit of the normalized solutions ¢; —supy ¢; of the
continuity method.

Let the notation be as in Proposition 2.1, and in particular we fix once and for all a value of m > 1
given there. We can find a sequence t; — R(X) and an w-psh function p with supyp = 0 such that
@; —supy ¢; — p in L!(X), and pointwise a.e. Passing to a subsequence, we can find a basis {Sitigj<n,
of H(X,K3™) orthonormal with respect to the L? inner product of w, ™, such that S;(t;) — S; smoothly
as i — oo, for all 1 <j < N,. The change of basis matrix from {S;};<j<n, to {S;(t)}1<j<n, induces an
automorphism o (t) of CIPN»~!, such that o(t;) — Id smoothly as i — co.

For ease of notation, write

N,
1 m
Y= —log ) A(tIS;(D)lf.
j=1
These functions are Kihler potentials for w since

w+V-109y, = w >0, (3.0)

where 1 : X < CIPN» 7! is the Kodaira embedding map given by the sections {S;},<j<n,,, the map 7(t) is

the automorphism of CIPN»1

induced by the diagonal matrix with entries {1;(f)}1<j<n,, and wps is the
Fubini-Study metric on CPN»~!. The identity in (3.1) follows directly from the definition of the Fubini-Study
metric wpg on CIPN"~! which on CNn\{0} is given explicitly by wpg = \/jaglog Zi\i”l |Z]-|2, and from the
fact that the curvature of / is w.

Up to passing to a subsequence of t;, we may assume that A;(¢;) — A; as i — oo for all j, and we have
I=42...24,>0=,1 ==y

Wl,

for some 1 < p < N,,,. The case p = N,,, is impossible because by (2.2) it would imply a uniform L* bound
for ¢; and so X would admit a Kéhler-Einstein metric. For the same reason, the set V :={S; =---=§, = 0}
must be a nonempty proper analytic subvariety of X.

Note that thanks to (2.2) we can write

w? — eF—t((p,—supX (pt)e—tsupX Pt " < Ce“l’te—tsqu (p,wn’

and since the term e’¥ is uniformly bounded on compact sets of X\V, we see immediately that

w} — 0, (3.2)
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uniformly on compact sets of X\V (this result was proved in [44] without using the partial C estimate,
which was not available at the time, with weaker results established earlier in [29]).
Let then

p
1
p=—log) AlIS;
=1

which is a smooth function on X\V which approaches —co uniformly on V. Since e”¥: — ¢"¥ smoothly
on X, and since 1; are smooth and w-psh, it follows that ¢ is w-psh. This will be our singularity model
function in the rest of the argument, as we now explain:

Lemma 3.1. Define the class
C={yePSH(X,w) | - € L*(X)),

of w-psh functions with the same singularity type as . Then we have that p € C.
Proof. Recall that we have @; —supy ¢; — p a.e. on X. Thanks to (2.2), the function p satisfies
lp-9l<C, (3.3)

a.e. on X, which implies the same inequality on all of X by elementary properties of psh functions (cf. [25,
Theorem K.15]), thus showing that p € C. O

4. Understanding the class C

We now exploit the geometry of our setting to gain a better understanding of the class of functions C.

The sections {1;S;}1<j<p define a rational map @ : X --> CIPP~!, with indeterminacy locus Z C V (this
inclusion is in general strict, since codimZ > 2 while V may contain divisorial components). Let Y be the
image of @, i.e. the closure of ®(X\Z) in CIPP~!, which is an irreducible projective variety. By resolving
the indeterminacies of @ we get a modification y : X — X, obtained as a sequence of blowups with smooth
centers, and a holomorphic map W : X — Y such that W = ® o y holds on X\p~!(Z). We may also assume
without loss of generality that p principalizes the ideal sheaf generated by {S;}1<j<p, so that we have

Wilw+ \/3851711) =0 +[E],

where E is an effective R-divisor with y(E) C V, and 6 is a smooth closed semipositive (1,1) form on X.

We will denote by wrs , the Fubini-Study metric on CIP? ~1. To identify 6, note that on X\V we have by
q\’*(u}:s’p

definition w + V=199 = —%2 and so on X\p~' (V) we have

— R OM) Y
wiw+ \/—_1881/J) = K - ESp _ mFS'p,

and so O = # on X\p~!(V), and hence everywhere since both sides of this equality are smooth forms
on all of X. This proves the key relation

(0 +V-19yp) = % +[E]. (4.1)

~ -~ q .

Let X 5 ¥ — Y be the Stein factorization of W, where Y is an irreducible projective variety, the map
v has connected fibers, and g is a finite morphism.

We have that q*wps,, is a smooth semipositive (1,1) form on Y, in the sense of analytic spaces. Since

W
v has compact connected fibers, a standard argument shows that the set of — sy

—L-psh functions on X
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can be identified with the set of (weakly) ——psh functions on Y via v* (indeed the restriction of every

pr
&—psh function to any fiber of v is plurisubharmonic and hence constant on that fiber). We will use

this standard argument several other times in the following.

Here and in the following, as in [21], a weakly quasi-psh function on a compact analytic space means a
quasi-psh function on its regular part which is locally bounded above near the singular set. As shown in
[21, 81], weakly quasi-psh functions are the same as usual quasi-psh functions if the analytic space is normal,
and otherwise they can be identified with quasi-psh functions on its normalization.

FSp

Proposition 4.1. Given any function 1 € C, there is a unique bounded weakly -psh function u on Y such

that
=g+ viu (4.2)

FSp

Conversely, given any bounded weakly -psh function u on Y there is a unique function n € C such that (4.2)

holds.

The relation in (4.2) thus allows us to identify the class C with the class of bounded weakly WTFS”’-psh
functions on Y.
Next, we observe that

Proposition 4.2. We have that
dimY <dim X.

This is a consequence of our assumption that X does not admit a Kéhler-Einstein metric.

Lastly, every function 77 € C belongs to LS (X\V), and so its Monge-Ampére operator (@ + V-1ddn)"
is well-defined on X\V thanks to Bedford-Taylor [6]. Combining the results in Propositions 4.1 and 4.2 we
will obtain:

Theorem 4.3. For every 11 € C we have that

(w+ \/:8517)” =
on X\V.

In particular, this holds for the function p, thanks to Lemma 3.1, and Theorem 1.1 thus follows from
these.

Proof of Proposition 4.1. If 1 is an w-psh function on X with # — 1 € L*°(X), i.e. 1 is an element of C, then

using (4.1) we can write

1w+ V=1991) = — 2 4 NZ199u" (1 - ) + [E),

where E is as in (4.1) and p*(17 — 1) € L*(X). Applying the Siu decomposition, we see that

g _
% +V=199p* (11— ) > 0,

weakly, and so

I"*(W - lnb) = V*I/l,,,

for a bounded weakl
view as fixed).

5 on Y which is uniquely determined by # (and 1, which we
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*

WES,p
m

. - v
Conversely, given a bounded weakly WTFS*-psh function u on Y, we have that v*u is
bounded on X and so

-psh and

Y*w — —
0< TFS’p +[E]+ V-1d9v'u = p'w + N-1d9(y*p + v*u),
and so " + v*u descends to an w-psh function 77, on X with 7, —1p € L*(X), i.e. 17, € C.

These two constructions are inverses to each other, and so we obtain the desired bijective correspon-

dence between functions in C and bounded weakly qw%—psh functions on Y. O
Proof of Proposition 4.2. On X we have the estimate

* t * t *
w;>C! M, (4.3)
m
which is a direct consequence of the partial C® estimate (see e.g. [24, Lemma 4.2]). We can also give a

direct proof by calculating

ro(t)T(t) wrs

m

A, (logtrwt( W#) _c

)—A((Pt —51)1<P Pt — ¢t)) 2 trwt(

if A is sufficiently large, and applying the maximum principle together with the partial CY estimate (2.2)
(for this calculation we used that the bisectional curvature of the metrics w have a uniform upper
bound independent of ).

If we had dimY = dim X then the rational map @ would be generically finite, so there would be a
nonempty open subset U € X\ V such that @[ is a biholomorphism with its image. Recall that @ is the
rational map defined by the sections {A;S;}1<j<p, while 1: X < CIPN»"! is the embedding defined by the
sections {S;}1<j<n,,, and so @ = 7o P o where P : CPN»~! —> CIPP7! is the linear projection given by

[zy:- 2y, ] [z10 0 2p] and T CIPP~! — CIPP! is the automorphism given by
(210 zp] > [Ayzg 10 Apz, ).

In particular, on the embedded open n-fold ((U), we have that P|,y) is also a biholomorphism with its
image. The automorphisms 7(t;) descend to automorphisms 7(¢;) on CIP? ~1 and now as i — oo these
converge smoothly to the automorphism 7. Thus P o 7(t;) o 0(t;) o1 = ©(t;) o P 0 6(t;) o 1, which converge
smoothly as maps to ToPoi1=® on U as i — oo.

Since @ is an isomorphism on U, smooth convergence gives us that P o 7(t;) o 0(t;) ot is a local
isomorphism. Thus, after possibly shrinking U,

P:(t(t;)oo(t;)ot)(U)—> (Pot(t;)oo(t;)or)(U)=(T(tj)oPoa(t;)or)(U)

is an isomorphism, and for i large the open sets (7(t;)o P o o(t;)o1)(U) C Ccrpr! converge to the open
set (fo Po1)(U) in the Hausdorff sense. Up to shrinking U, there is an open subset V  CPP~! that
contains ((t;) o Poa(t;)o1)(U) for all i large, and still P~! is well-defined on V (and P: P~}(V) - V is a
biholomorphism), so that P~!(V) contains (7(t;) o o(t;) o 1)(U) for all i large, and on P~! (V) we have
P*a)ps’p < Ca)ps, (44-)
On U we also have that —l*g(ti)*T(::l)*P*wFs'p
Thanks to (4.3) and (4.4), on U we have

*
(D C‘)FS,p
m

converges smoothly to , which is a Kéhler metric on U.

ro(t)t(t)w ro(t) () Prwrs, D*wes,
wi>C‘1 (1) (1) FS >C_1 1 1 p?C_l p,
m m m

for all i large, which implies that fU w] > C~!, which is absurd thanks to (3.2). O
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Remark 4.4. In particular we see that if dimY =0 (i.e. Y is a point) then we have C = {1 + s};cg. On the
other hand as long as dim Y > 0 the class C is always rather large.

Proofof T/zeorem 4.3. Thanks to Proposition 4.1, every 1 € C satisfies y*y = p*1p + v*u for some bounded
weakly 2 _psh function u on Y. Then using (4.1) we have

(@ +V=199n) = ——>P 4+ N“199v*u + [E]
:v(q “rsp «/_aau)ws

and so if K is any compact subset of X\V, since y is an isomorphism on y~!(K), we get
j (a)+\/—18§11)" :J y*(w+\/—18§11)"
K pH(K)
*Cl) _ n
:J v*(—q Fop +\/—188u) =0,
oK) "
since dim Y = dim Y < dim X by Proposition 4.2. O

5. The pluricomplex Green’s function
We can also consider the pluricomplex Green’s function with singularity type determined by 1, namely
G=sup{u |uePSH(X,w),u<0,u<p+0O(1)}, (5.)

which is the compact manifold analog of the construction in [31], and has been studied in detail in [18, 30, 32]
and references therein. In particular, since ¢ has analytic singularities, it follows from [31, 32| that G € C.
Thanks to Proposition 4.1 we can write

wWG=up+v'F, (5.2)

for a bounded weakly 2 _psh function F on Y. The function F is itself given by a suitable envelope.

Proposition 5.1. The pluricomplex Green’s function G satisfies (5.2) where F is the envelope on Y given by
F =sup{w | we PSH(Y, q s, p/m), w < v, )Py, (5.3)

and where we are writing

v(f)y)= sup f(x)

xevi(y)

for any function f on X,y €Y.
In other words, F is given by a quasi-psh envelope with obstacle —v,u*1 on Y.

Proof.- Write E = ) ; \;E; for E; prime divisors and A; € R, and for each i fix a defining section s; of

O(E;) and a smooth metric h; on O(E;) with curvature form R;. For brevity, we will write |S|h =11;lsi |i/\

and Ry, = ) ; A;R;. Then the Poincaré-Lelong formula gives

E]=V-1ddlog IsI? + Ry,
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and we obtain that y*w — Ry, is cohomologous to and

Y w —
Ww-Ry= % + \/—_188(10g|5|i -1y),

and p*1p —logls|? is smooth on all of X. Note that if we denote by
G =supfu | u e PSH(X, p*w), u < 0,u <log|s|? + O(1)}",

then we have that G = y*G (this is again because every y*w-psh function on X is in fact the pullback of an
w-psh function on X).
As in [28], we use a trick from [8, Section 4] (see also [31]), to show that

G =log |s|i +sup{v |ve PSH(X, w'w—Ry),v < —log|s|i}*.

For the reader’s convenience, we supply the simple proof. Denote the right hand side by G. For one
direction, if v is (4w —Ry,)-psh and satisfies v < —log |s|£, then u :=v+log |s|i satisfies u < 0 but also since
v < C on X, we see that u < 10g|s|}2l + C, and also

W+ V-19du = o+ \/39510g |S|i +V-1ddv
= i'w—Ry +[E]+V-1ddv
>pw—-Ry+ V-199v =0,

and so G < G. Conversely, if u is y*w-psh and satisfies # < 0 and u < log|5|ﬁ + C for some C, then the Siu
decomposition of y*w + V—1ddu contains [E] and so

O<p'w+ V-199u - [E]=p'w—Ry+ \/jaé(u —loglsli),

and so v := u —log |s|% is (4w — Ry,)-psh and satisfies v < —log |s|£, and it follows that G < G, which proves
our claim.
But finally note that for all x € X we have

log |s|i(x) +supf{v(x) | ve PSH(X, 'w - Ry),v < —loglsli}
= W' p(x) +sup{v(x) | v € PSH(X, W wpg p/m),v < -}
= () + supfw(v(x) | w e PSH(Y, g wps p/m),w < —v,ji'p)

and taking the upper-semicontinuous regularization and using the claim above gives p*G = y*¢ + v*F,
which completes the proof. O

Using Proposition 5.1 we can see that F is continuous on a Zariski open subset of Y, using the following
argument. Let ¢: Y’ — Y be a resolution of the singularities of Y. Then we have:

§'F =sup{w | we PSH(Y',g"q" wps p/m), w < —g v,y P}".

Note that ¢*g* wFs ,/m is semi-positive and big, and that —¢g* v, "1 is continuous offof g L (v(u~ L (™1 (~0)))),
where it is unbounded. Using the trick in [28], we can replace the obstacle —g*v,p*1p with a globally
continuous obstacle 1 without changing ¢*F. Now, approximate h uniformly by smooth functions h]-. It is
easy to see that the envelopes:

*

Fj:=sup{w | w € PSH(Y’,&"q" wgs p/m), w < hj}".

converge uniformly to ¢*F. But then by [8], the F; are continuous away from the non-Kéhler locus of
§'q*wrs,,/m (a proper Zariski closed subset, see e.g. [12]), so we are done.
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Remark 5.2. One is naturally led to wonder about what the optimal regularity of G is. The sharp C!'!
regularity (on a Zariski open subset) of envelopes of the form (5.3) has been recently obtained in [17, 45]
in Kihler classes and in [16] in nef and big classes (see also [7, 8, 9]) when the obstacle is smooth (or at
least C1'!), but in our case the regularity of —v,*1) does not seem to be very good, especially near the
points where v is not a submersion.

On the other hand, the first-named author [28] has very recently obtained C L1 regularity (on a Zariski
open subset) of envelopes with prescribed analytic singularities, which include those of the form (5.1),
generalizing results in [32] in the case of line bundles. In our situation, the results of [28, 32] do not apply
since in (5.1) the functions # and 1 are both w-psh (while for these results one would need them to be
quasi-psh with respect to two different (1,1)-forms such that the cohomology class of their difference is
big). Moreover, the main result of [28] also allows for # and i) being both w-psh, but then needs the
condition that the total mass of the non-pluripolar Monge-Ampére operator of ¢ be strictly positive. This
is obviously not the case in our situation however, by Theorem 4.3.

Remark 5.3. One possibly interesting approach to studying higher regularity of functions v € C which are
already continuous on X \ V is the following. Suppose supy v = 0. Fix an M > 0 and let () be the open
set () := {v <—-M]}. Then one can easily show using the comparison principle and Theorem 4.3 that we
have:

max{v,-M} =Vy -M,

where here Vq, is the global (Siciak) extremal function for (). In particular, one sees that () is regular.
There is then a well-developed theory about Holder continuous regularity for such functions (the so called
HCP property), see e.g. [34]. It may be possible to use this theory to study G, if one can first show that
it is continuous in at least a neighborhood of V. Another possibility may be to study regularity of the
boundary of () - see the very end of [28].

Remark 5.4. On can also naturally ask whether the function p (and therefore also its singularity type 1))
in Theorem 1. is actually independent of the choice of subsequence ¢;, and also how regular p is on X\V.
Our guess is that p is indeed uniquely determined, and is smooth on X\V. These properties would both
follow if one could show that the map @ : X --> Y is independent of the chosen subsequence, and that the
corresponding function # on Y given by Lemma 3.1 and Proposition 4.1 which satisfies

wo=pip+viu

actually solves a suitable complex Monge-Ampére equation on Y. In a related setting of Calabi-Yau
manifolds fibered over lower-dimensional spaces, such a limiting equation after collapsing the fibers was
obtained by the second-named author in [42, Theorem 4.1].

Remark 5.5. Lastly, we can also ask whether the limit p (if it is unique) is necessarily equal to the
pluricomplex Green’s function G up to addition of a constant. By remark 4.4 this is the case if the rational
map P is constant, so that Y is a point. In general though this seems rather likely false.
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