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Rigidity properties of holomorphic Legendrian singularities

Jun-Muk Hwang

Abstract. We study the singularities of Legendrian subvarieties of contact manifolds in the
complex-analytic category and prove two rigidity results. The first one is that Legendrian singu-
larities with reduced tangent cones are contactomorphically biholomorphic to their tangent cones.
This result is partly motivated by a problem on Fano contact manifolds. The second result is the
deformation-rigidity of normal Legendrian singularities, meaning that any holomorphic family
of normal Legendrian singularities is trivial, up to contactomorphic biholomorphisms of germs.
Both results are proved by exploiting the relation between infinitesimal contactomorphisms and
holomorphic sections of the natural line bundle on the contact manifold.
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Titre. Propriétés de rigidité des singularités legendriennes holomorphes

Résumé. Nous étudions les singularités des sous-variétés legendriennes des variétés de contact
dans la catégorie analytique complexe et montrons deux résultats de rigidité. Le premier affirme
que les singularités legendriennes ayant un cône tangent réduit sont contactomorphiquement bi-
holomorphes à ce dernier. Ce résultat est en partie motivé par un problème concernant les
variétés de contact qui sont également de Fano. Le second résultat consiste en la rigidité par dé-
formation des singularités legendriennes normales, ceci signifiant que toute famille holomorphe de
singularités legendriennes normales est triviale, à un germe de biholomorphisme contactomorphe
près. Ces deux résultats sont démontrés en exploitant la relation entre les contactomorphismes
infinitésimaux et les sections holomorphes d’un fibré en droites naturel sur la variété de contact.
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1. Introduction

Singularities of Legendrian varieties in contact manifolds have been studied in singularity theory or sym-
plectic/contact geometry, often in differentiable or real analytic categories. In this article, we study them
in the complex-analytic category. Methods of algebraic geometry can be applied more efficiently to holo-
morphic Legendrian singularities. Using this approach, we present two rigidity results on Legendrian
singularities. Let us start with precise definitions of the terms we use.

Definition 1.1. Let M be a complex manifold of dimension 2m+ 1 for a positive integer m. A subbundle
D ⊂ TM of rank 2m in the holomorphic tangent bundle TM is called a contact structure on M if the
Frobenius bracket homomorphism ∧2D → TM /D is nondegenerate at every point of M . A complex
manifold M equipped with a contact structure D is called a contact manifold. A biholomorphic map
ϕ : M1 → M2 between two contact manifolds (M1,D1) and (M2,D2) is contactomorphic (equivalently, a
contactomorphism) if dϕ(D1) =D2.

Definition 1.2. Let (M,D) be a contact manifold of dimension 2m+ 1. An analytic subvariety Z ⊂M is
Legendrian if dimZ = m and TZ,x ⊂ Dx for each nonsingular point x of Z . This implies that TZ,x ⊂ Dx is
isotropic with respect to the bracket ∧2Dx → TM,x/Dx. A nonsingular Legendrian subvariety is called a
Legendrian submanifold. The germ of a point on a Legendrian subvariety x ∈ Z in a contact manifold (M,D)
is called a Legendrian singularity. Two Legendrian singularities x1 ∈ Z1 ⊂ (M1,D1) and x2 ∈ Z2 ⊂ (M2,D2),
where Zi is a Legendrian subvariety in a contact manifold (Mi ,Di), i = 1,2, are contactomorphic, if there
exist open neighborhoods Ui ⊂Mi of xi , i = 1,2, and a contactomorphism ϕ :U1→U2 such that

ϕ(x1) = x2 and ϕ(Z1 ∩U1) = Z2 ∩U2.

Are there many interesting examples of Legendrian singularities? The following construction provides
lots of them.

Example 1.3. For a complex manifold X, the projectivized cotangent bundle M = PT ∗X has a natural
contact structure (see e.g. Example 1.2 B of [AG] or Example 2.2 of [LB2]). For any complex analytic
subvariety Y ⊂ X, its conormal variety ZY ⊂ M, the closure of the projectivized conormal bundle of the
smooth locus of Y , is a Legendrian subvariety. The conormal variety ZY is usually (but not always) singular
when Y is singular. When Y ⊂ X is a hypersurface, the conormal variety ZY is the Nash blowup of Y .

In Section 3, we give another class of examples of Legendrian singularities, those arising from La-
grangian cones.

Our first rigidity result is in terms of tangent cones. Recall (see Chapter 3, Section 3 of [Mu]) that for
an analytic subvariety Z of a complex manifold M and a point x ∈ Z, if I ⊂ OM,x is the ideal of the germ
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of Z at x, then the tangent cone TCZ,x is the subscheme of the Zariski tangent space TZ,x defined by the
ideal generated by lowest-order terms of the Taylor expansions of elements of I at x. Roughly speaking, the
tangent cone of a singular variety is the lowest order approximation of the singularity. It seldom determines
the singularity. Remarkably, a Legendrian singularity is determined by the tangent cone, if the tangent cone
is reduced.

Theorem 1.4. A Legendrian singularity is contactomorphic to the germ at the origin of its tangent cone if the
tangent cone is reduced. More precisely, a Legendrian singularity is a Lagrangian cone singularity (in the sense of
Definition 3.4) if and only if its tangent cone is reduced.

This is proved in Section 4. Of course, the reducedness of the tangent cone is a strong requirement.
There are many examples of Legendrian singularities with non-reduced tangent cones: for instance, cuspidal
Legendrian curves discussed in Section 4 of [Zh]. One motivation for Theorem 1.4 comes from the study
of Fano contact manifolds. In his investigation [Ke] of Fano contact manifolds, Kebekus studied a certain
Legendrian singularity x ∈ Z (Z = locus(Hx) in the notation of [Ke]). He showed that the projectivized
tangent cone PTCZ,x is nonsingular and asserted that the singularity z ∈ Z is biholomorphic to the germ of
a Lagrangian cone at 0. We believe that the latter assertion, if it is true, would have significant consequences
in the study of Fano contact manifolds. But its proof given in Section 6.1 of [Ke] had a gap. Theorem 1.4
has grown out of our attempt to remedy this gap. But it is not strong enough to fix it, as the smoothness of
PTCZ,x does not imply that TCZ,x is reduced. A technical difficulty here arises from the fact that Z is (a
priori) not normal.

In fact, Legendrian singularities are usually not normal and their normalizations cannot be realized as
Legendrian singularities. This can be seen from the following result on the deformation-rigidity of normal
Legendrian singularities, which is proved in Section 5.

Theorem 1.5. Let ∆ be a neighborhood of the origin 0 in C. Let (M,D) be a contact manifold and consider
{Zt ⊂M,t ∈ ∆} a holomorphic family of Legendrian subvarieties parametrized by ∆. Assume that Zt is normal
for every t ∈ ∆. Then for any x0 ∈ Z0, there exist a neighborhood 0 ∈ ∆′ ⊂ ∆ and a holomorphic arc

{xt ∈ Zt , t ∈ ∆′}

such that the Legendrian singularities x0 ∈ Z0 ⊂M and xt ∈ Zt ⊂M are contactomorphic for each t ∈ ∆′ .

Theorem 1.5 suggests that it might be possible to classify normal Legendrian singularities to some
extent. In fact, normal Legendrian singularities are not easy to find. Some normal Legendrian singularities
are described in Example 3.8.

Normal Legendrian singularities are interesting from another viewpoint. The following theorem says
that a Legendrian singularity, unless it is nonsingular, has nonzero torsion differentials. This is a special
case of a stronger result, Theorem 2.5 in [Zh]. For the reader’s convenience, we give an elementary proof
(different from the one in [Zh]) at the end of Section 2.

Theorem 1.6. For a Legendrian singularity x ∈ Z ⊂ (M,D), let θ be a germ of 1-form at x ∈M defining D .
Then x is a nonsingular point of Z if and only if θ|Z is zero in the space of Kähler differentials ΩZ,x.

By Theorem 1.6, normal Legendrian singularities provide examples of normal singularities with explicit
nonzero torsion differentials. We mention that some examples of normal singularities with nonzero torsion
differentials were given in [GR] by cohomological methods. One of their examples, the cone over the twisted
cubic curve (d = 3 in Proposition 4.1 of [GR]), is a Legendrian singularity in Example 3.8.

Acknowledgment. I am grateful to Manfred Lehn and Duco van Straten for showing me the subtle
difference between tangent cones and projectivized tangent cones. I would like to thank Go-o Ishikawa for
discussions on Legendrian singularities.
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2. Torsion differentials of Legendrian singularities

Notation 2.1. Fix a linear coordinate system (x1, . . . ,x2m+1) on C
2m+1. Set

θ :=
m∑
i=1

(xm+idxi − xidxm+i)−dx2m+1

Then θ = 0 defines a contact structure on C
2m+1, which we call the standard contact structure.

By Darboux theorem (Chapter 4, Section 1.1 of [AG]), any contact structure is locally equivalent to the
standard contact structure. Thus when studying a Legendrian singularity x ∈ Z ⊂ (M,D), we may assume
that M is a neighborhood of C2m+1 and D is the standard contact structure. We remark that in many
references (like [AG] or [Kb]) the form

∑m
i=1 xidxm+i −dx2m+1 is used as the standard form. When algebro-

geometric tools are used, however, our choice θ is more convenient because it is the expression of a contact
structure on P

2m+1 in affine coordinates.
The following is a standard result in contact geometry. It is essentially given in p. 79 of [AG] or pp. 30-31

of [Kb]. As our standard form θ is slightly different from theirs, we recall the proof for readers’ convenience.

Theorem 2.2. In Notation 2.1, let U be a neighborhood of 0 ∈ C2m+1. For a holomorphic function f on U , let
F ⊂U be the hypersurface defined by f = 0 and let vf be the holomorphic vector field on U defined by

2vf =
m∑
k=1

(
∂f

∂xm+k
−

∂f

∂x2m+1
xk)

∂
∂xk

+
m∑
k=1

(−
∂f

∂xk
−

∂f

∂x2m+1
xm+k)

∂
∂xm+k

+

 m∑
k=1

(
∂f

∂xk
xk +

∂f

∂xm+k
xm+k)− 2f

 ∂
∂x2m+1

.

Then

(i) θ(vf ) = f ;

(ii) vf (f ) = −f ∂f
∂x2m+1

;

(iii) vf is zero at a point y ∈ F if and only if F is singular at y or θ(TF,y) = 0;

(iv) vf is tangent to the hypersurface F;

(v) Lievf θ = − ∂f
∂x2m+1

θ;

(vi) for any nonsingular point y ∈ F and any tangent vector w ∈ TF,y satisfying θ(w) = 0, we have
dθ(vf (y),w) = 0 ; and

(vii) vf is tangent to any Legendrian subvariety Z ⊂U contained in the hypersurface F.

Proof. (i), (ii), (iii) can be checked by straightforward calculation. (iv) is immediate from (ii). (v) can be
checked from Cartan formula,

Lievf θ = d(θ(vf )) + dθ(vf , ·) = df + dθ(vf , ·),

and dθ = 2
∑m
k=1 dxm+k ∧dxk . (vi) follows from Cartan formula again:

dθ(vf ,w) = (Lievf θ)(w)−df (w) = −
∂f

∂x2m+1
θ(w)−df (w).
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It remains to prove (vii). Pick a nonsingular point z ∈ Z . The 2-form dθ induces a nondegenerate 2-form
on the vector space Dz by the definition of the contact structure. The tangent space TZ,z is an isotropic
subspace of Dz with respect to this 2-form dθ|Dz and it is contained in TF,z from Z ⊂ F. By (vi), the
vector vf (z) ∈ Dz satisfies dθ(vf (z),TZ,z) = 0. Thus the linear span 〈vf (z),TZ,z〉 is a subspace of the
2m-dimensional vector space Dz and is isotropic with respect to the nondegenerate 2-form dθ|Dz . Since
dimTZ,z =m, we have vf (z) ∈ TZ,z. �

To see the geometric meaning of Theorem 2.2 (vi), it is convenient to recall the notion of Cauchy
characteristic of a distribution.

Definition 2.3. Let D ⊂ TX be a vector subbundle of corank 1 on a complex manifold and denote by
σ : ∧2D→ TX /D the Frobenius bracket tensor. For each x ∈ X, the Cauchy characteristic of D at x is

Ch(D)x := {v ∈ Dx,σx(v,u) = 0 for all u ∈ Dx}.

In particular, the subbundle D is a contact structure if and only if Ch(D)x = 0 for each x ∈ X.

The following is standard. (1) is straightforward to check and (2) is a special case of Theorem 2.2 in
Chapter 2 of [BCG].

Lemma 2.4. Let (M,D) be a contact manifold and let X ⊂M be a nonsingular hypersurface. Let Xo ⊂ X be
the open subset defined by

Xo := {x ∈ Xo,TX,x ,Dx}

such that D :=D |Xo ∩ TXo is a vector subbundle of corank 1 in TXo . Then

(1) dimCh(D)x = 1 for each x ∈ Xo. In particular, the Cauchy characteristic Ch(D) determines a foliation
of rank 1 on Xo.

(2) For each x ∈ Xo, choose a neighborhood O ⊂ Xo of x equipped with a holomorphic submersion ψ : O→ B
whose fibers are leaves of the foliation in (1). Then there exists a contact structure D ′ on B such that
Dy = (dψ)−1

y (D ′ψ(y)) for each y ∈O.

Theorem 2.2 (vi) says that the leaves of vf are the foliation given by Lemma 2.4 applied to the nonsin-
gular locus X of the hypersurface F. This is used to prove the next proposition, which is a direct translation
of Proposition 1 in [Gi] in symplectic geometry into the setting of contact geometry.

Proposition 2.5. Let 0 ∈ Z ⊂ (C2m+1,D = (θ = 0)) be a Legendrian singularity. Suppose the Zariski tangent
space TZ,0 ⊂ TC2m+1,0 does not contain D0 ⊂ TC2m+1,0. Then there exist

(1) a holomorphic function f in a neighborhood U of 0 in C
2m+1 defining a smooth hypersurface 0 ∈ F ⊂ U

with Z ⊂ F and TF,0 ,D0;

(2) a contact manifold (M ′ ,D ′) with dimM ′ = 2m− 1; and

(3) a submersion ψ : F→M ′ whose fibers are leaves of the vector field vf in the sense of Theorem 2.2,

such that

(a) Dx ∩ TF,x = (dxψ)−1(D ′ψ(x)) for any x ∈ F; and

(b) ψ(Z) is a Legendrian subvariety of (M ′ ,D ′) and Z = ψ−1(ψ(Z)).
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Proof. The assumption D0 1 TZ,0 implies the existence of f and F in (1). Using the vector field vf of
Theorem 2.2, we obtain a submersion ψ : F →M ′ whose fibers are leaves of vf . By (vi) of Theorem 2.2
and Lemma 2.4, there exists a contact structure D ′ on M ′ satisfying (a). It is clear from (vii) of Theorem
2.2 that Z ∩U = ψ−1(ψ(Z ∩U )) and ψ(Z ∩U ) is a Legendrian subvariety of (M ′ ,D ′). �

By Proposition 2.5, the proof of Theorem 1.6 is reduced to the next theorem.

Theorem 2.6. Let 0 ∈ Z ⊂ C
2m+1 be the germ of a Legendrian subvariety with respect to the standard contact

structure such that D0 ⊂ TZ,0. Then the differential θ|Z ∈ΩZ,0 is not zero.

Proof. We define a weight function wt on O
C

2m+1,0 and Ω
C

2m+1,0 in the following way. Set

wt(xi) = wt(dxi) = 1 for 1 ≤ i ≤ 2m and wt(x2m+1) = wt(dx2m+1) = 2.

Define the weight wt(f ) of a function f ∈ O
C

2m+1,0 as the weight of the monomial of lowest weight in the
Taylor series of f at 0 and define the weight of elements of Ω

C
2m+1,0 such that wt(f ξ) = wt(f ) + wt(ξ) for

any ξ ∈Ω
C

2m+1,0. Then

wt(ξ1 + ξ2) = wt(ξ1) if ξ1,ξ2 ∈ΩC
2m+1,0 and wt(ξ1) <wt(ξ2)

and
wt(df ) = wt(f ) if f ∈ O

C
2m+1,0 and f (0) = 0.

Let I be the ideal of Z in O
C

2m+1,0. The space of Kähler differentials of Z at 0 is given by (see e.g.
Definition 1.109 of [GLS])

ΩZ,0 =Ω
C

2m+1,0/(OC
2m+1,0dI + I ·Ω

C
2m+1,0).

Suppose θ|Z = 0, namely,

( the germ at 0 of θ) ∈ O
C

2m+1,0dI + I ·Ω
C

2m+1,0.

The condition D0 ⊂ TZ,0 implies that all elements of I and dI have weight at least 2. Thus all elements of
I ·Ω

C
2m+1,0 have weight at least 3. Since wt(θ) = 2, the lowest order term of θ must be the lowest order

term of some element in O
C

2m+1,0 · dI. To have weight 2, the lowest order term must be d-exact. But θ is
homogeneous and not d-exact. A contradiction. �

3. Lagrangian cones as Legendrian varieties

We use the following terms regarding cones.

Definition 3.1. Let V be a complex vector space, which we regard as an affine space, and let Sym•V ∗ be
the ring of polynomial functions on V . An affine cone in V is a subscheme Y of the affine space V defined
by a homogeneous ideal I ⊂ Sym•V ∗. The corresponding projective subscheme PY ⊂ PV will be called
the projectivization of Y . If the subscheme Y is reduced, i.e., the ideal I is radical ( I =

√
I ), we will call it a

reduced affine cone. If Y is reduced, then so is its projectivization PY ⊂ PV . But the converse is not always
true.

Definition 3.2. Let (V ,ω) be a symplectic vector space, i.e., a vector space V equipped with a nondegen-
erate anti-symmetric 2-form ω ∈ ∧2V ∗. Let 2m be the dimension of V . An m-dimensional reduced affine
cone 0 ∈ Y ⊂ V is called a Lagrangian cone if the restriction of ω to the nonsingular locus of Y is zero.
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Lemma 3.3. In Notation 2.1, let C2m be the hyperplane defined by (x2m+1 = 0) and equipped with the symplectic
form

dθ|
C

2m = 2
m∑
i=1

dxm+i ∧dxi .

Let Z ⊂ C
2m be an m-dimensional subvariety. When regarded as a subvariety of C2m+1 equipped with the

standard contact structure, the variety Z is a Legendrian subvariety if and only if Z is a Lagrangian cone in
(C2m,dθ|

C
2m) in the sense of Definition 3.2.

Proof. We use the radial vector field on C
2m

~R :=
m∑
i=1

(xi
∂
∂xi

+ xm+i
∂

∂xm+i
).

In terms of Theorem 2.2, the radial vector field ~R is the restriction of −2vx2m+1 to C
2m.

Assume that Z ⊂C
2m is a Lagrangian cone. As it is an affine cone, the radial vector field ~R is tangent to

the smooth locus of Z . It is straightforward to check that the contraction ~Rydθ|
C

2m is a constant multiple of
the 1-form θ|

C
2m . It follows that the restriction of θ to the smooth locus of Z is zero. Thus Z is Legendrian

in C
2m+1 with respect to θ.
Conversely, if a subvariety Z ⊂ C

2m is a Legendrian subvariety of C2m+1 with respect to θ, then the
radial vector field ~R = −2vx2m+1 |

C
2m is tangent to Z by Theorem 2.2 (vii). Thus Z is a reduced affine cone.

Since dθ vanishes on the smooth locus of Z, it is a Lagrangian cone with respect to dθ|
C

2m . �

Definition 3.4. We say that a Legendrian singularity x ∈ Z ⊂ (M,D) is a Lagrangian cone singularity, if
it is contactomorphic to the germ at 0 of a Lagrangian cone in (C2m,dθ|

C
2m) regarded as a Legendrian

subvariety of (C2m+1,θ) as in Lemma 3.3.

We skip the proof of the following elementary lemma.

Lemma 3.5. In the setting of Proposition 2.5, the Legendrian singularity 0 ∈ Z in (C2m+1,D) is a Lagrangian
cone singularity if and only if the Legendrian singularity ψ(0) ∈ ψ(Z) in (M ′ ,D ′) is a Lagrangian cone singu-
larity.

There is another way that Lagrangian cones in (V ,ω) give rise to Legendrian subvarieties of a contact
manifold. The symplectic form ω provides the projective space PV with the following contact structure
(Chapter 4, Section 1.2, Example A in [AG], Example 2.1 in [LB2], Section E.1 in [Bu2]).

Definition 3.6. For a symplectic vector space (V ,ω), for a point [v] ∈ PV corresponding to v ∈ V \ 0,
define Dω[v] ⊂ TPV ,[v] by

Dω[v] := {h ∈Hom(Cv,V /(Cv)) = T
PV ,[v],ω(v,h(v)) = 0}.

Then the subbundle Dω ⊂ T
PV is a contact structure on PV .

The following is well-known (see e.g. Proposition E.2 in [Bu2]).

Proposition 3.7. In Definition 3.6, for a reduced affine cone Y ⊂ V , its projectivization PY ⊂ PV is a Legen-
drian subvariety with respect to Dω if and only if Y is Lagrangian with respect to ω.

Legendrian subvarieties of (PV ,Dω) are studied in [Bu], [Bu2] and [LM].
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Example 3.8. Subadjoint varieties (see Theorem 11 in [LM]) are Legendrian subvarieties of (PV ,Dω) that
are homogeneous under the action of the symplectic automorphisms of (V ,ω). There exists one subadjoint
variety corresponding to each complex simple Lie algebra, as listed in Table 1 of [Bu]. For example, the
twisted cubic curve in P

3 is the subadjoint variety corresponding to the simple Lie algebra of type G2. As
subadjoint varieties are projectively normal, their affine cones become normal Legendrian subvarieties.

Example 3.9. Landsberg-Manivel [LM] and Buczynski (Chapters G, H, I of [Bu2]) have discovered many
examples of nonsingular Legendrian subvarieties in PV , different from the subadjoint varieties of Example
3.8. They are not projectively normal, so the Legendrian singularities of their affine cones are not normal.

For later use, we recall the following proposition, which is just a reformulation of Corollary 5.5 and
Lemma 5.6 of [Bu].

Proposition 3.10. Let (V ,ω) be a symplectic vector space of dimension 2m. Fix a symplectic coordinate system
(y1, . . . , y2m) on V satisfying

ω(
∂

∂ym+i
,
∂
∂yj

) = δij , 1 ≤ i, j ≤m,

and define a homomorphism
ω† :H0(PV ,O(2)) −→H0(PV ,T

PV )

by sending a homogeneous quadratic polynomial q(y1, . . . , y2m) to the vector field on PV given by the linear vector
field

ω†(q) :=
m∑
k=1

(
∂q

∂ym+k

∂
∂yk
−
∂q

∂yk

∂
∂ym+k

).

Let PY be a Legendrian subvariety in (PV ,Dω) as in Proposition 3.7. Then the vector field ω†(q) is tangent to
PY ⊂ PV if and only if Y is contained in the quadric hypersurface q = 0.

Proof. The symplectic form ω gives an isomorphism

ω] : Sym2V ∗ � sp(V ) ⊂ sl(V )

such that for a symmetric bilinear form Q ∈ Sym2V ∗, the endomorphism A := ω](Q) ∈ sl(V ) of V sends
v ∈ V to A(v) ∈ V satisfying Q(v,u) = ω(A(v),u) for all u ∈ V . Corollary 5.5 and Lemma 5.6 of [Bu]
say that ω] identifies quadrics vanishing on Y with elements of sp(V ) which are tangent to Y . Our
homomorphism ω† is, up to a scalar multiple, just an expression of ω] in terms of linear vector fields on
V , thus the proposition follows. �

4. Legendrian singularities with reduced tangent cones

In this section, we prove Theorem 1.4. The following local result in contact geometry is a key step of the
proof.

Theorem 4.1. In Notation 2.1, let m0 be the maximal ideal of the local ring OC
2m+1,0. Then the germ of a

hypersurface at 0 defined by an equation of the form

x2m+1 = h(x1, . . . ,x2m), h ∈m3
0

is contactomorphic to the germ of the hyperplane x2m+1 = 0 at 0.

To prove Theorem 4.1, we use the following two classical results. The first one is Poincaré’s result on the
normal forms of holomorphic vector fields (see Ch.4, Sec. 2.1 in [AI]) and the second one is Arnold-Givental’s
relative Darboux theorem (see Ch. 4, Section 1.3, Theorem A in [AG] or Theorem 1.1 in [Zh]).
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Theorem 4.2. Let ~v be a germ of holomorphic vector fields at the origin in C
d that vanishes at the origin.

Assume that the eigenvalues (λ1, . . . ,λd) of the linear part of ~v satisfy the non-resonant condition that the convex
hull of {λ1, . . . ,λd} ⊂ C does not contain 0. Then ~v can be expressed as a linear vector field

∑d
i=1λiwi

∂
∂wi

under

suitable holomorphic coordinates (w1, . . . ,wd) in a neighborhood of the origin in C
d .

Theorem 4.3. In Notation 2.1, let X,H be two germs of complex submanifolds at 0 of the same dimension.
Assume there exists a biholomorphic map ϕ : X→H such that

ϕ(0) = 0 and ϕ∗θ|H = g ·θ|X

for some nowhere-vanishing holomorphic function g ∈ O∗X,0 on X. Then the germ of X at 0 and the germ of H at
0 are contactomorphic.

Proof of Theorem 4.1. Put f := h− x2m+1 and let H be the germ at 0 of the hypersurface defined by f = 0.
The expression for vf in Theorem 2.2 gives

2vf =
m∑
k=1

(
∂h

∂xm+k
+ xk)

∂
∂xk

+
m∑
k=1

(− ∂h
∂xk

+ xm+k)
∂

∂xm+k

+

 m∑
k=1

(
∂h
∂xk

xk +
∂h

∂xm+k
xm+k)− 2f

 ∂
∂x2m+1

.

Choose coordinates zi = xi |H ,1 ≤ i ≤ 2m, on H such that

∂
∂zi

=
∂
∂xi

+
∂h
∂xi

∂
∂x2m+1

, 1 ≤ i ≤ 2m. (4.1)

Viewing h|H as a function h(z1, . . . , z2m) and using (4.1), the restriction of 2vf to the hypersurface H becomes

2vf |H =
m∑
k=1

(
(
∂h

∂zm+k
+ zk)

∂
∂zk

+ (− ∂h
∂zk

+ zm+k)
∂

∂zm+k

)
. (4.2)

Since h ∈m3
0, the linear part of 2vf |H has eigenvalues λ1 = · · · = λ2m = 1. By Theorem 4.2, we can find a

new coordinate system (w1, . . . ,w2m) on a neighborhood of 0 in H such that up to replacing H by a smaller
open subset,

2vf |H =
m∑
k=1

(wk
∂
∂wk

+wm+k
∂

∂wm+k
).

In particular, the vector field vf does not vanish on H \ 0. By Theorem 2.2 (iii), this implies that the
restriction D |H\0 is a vector subbundle of TH\0 with rank 2m− 1.

Let X be the germ at 0 of the hyperplane x2m+1 = 0 in C
2m+1. Consider the biholomorphic map ϕ

from X to H defined by ϕ∗wi = xi ,1 ≤ i ≤ 2m. Then ϕ sends the vector field

2v−x2m+1 |X =
m∑
k=1

(xk
∂
∂xk

+ xm+k
∂

∂xm+k
)

to the vector field 2vf |H . Let α : Bl0(X)→ X and β : Bl0(H)→ H be the blowups of the hypersurfaces at
0. We have submersions

α′ : Bl0(X)→ PD0 and β′ : Bl0(H)→ PD0

whose fibers are the leaves of the radial vector fields v−x2m+1 |X and vf |H , respectively. By Theorem 2.2
(vi) and Lemma 2.4, the distribution D |X\0 descends by α′ to a contact structure DX on PD0 and the
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distribution D |H\0 descends by β′ to a contact structure DH on PD0. Recall that any two contact structures
on P

2m−1 are related by a projective linear transformation (Proposition 2.3 in [LB2]). Thus by a linear
coordinate change of w1, . . . ,w2m, we may assume that DX = DH , i.e., the biholomorphism ϕo := ϕX\0
sends D |X\0 to D |H\0. Then

ϕ∗o(θ|H\0) = g ·θ|X\0
for some nowhere-vanishing holomorphic function g on X \0. By Hartogs extension, we can assume that g
is a nowhere-vanishing holomorphic function on F such that

ϕ∗(θ|H ) = g ·θ|X .

So the condition of Theorem 4.3 is satisfied and the germs of X and H at 0 are contactomorphic. �

To prove Theorem 1.4, we need the following two propositions.

Proposition 4.4. Let 0 ∈ Z ⊂ (C2m+1,D = (θ = 0)) be a Legendrian singularity whose projectivized tangent
cone PTCZ,0 ⊂ PT

C
2m+1,0 is reduced. Then PTCZ,0 is contained in PD0 ⊂ PT

C
2m+1 .

Proof. Recall that the projectivized tangent cone PTCZ,0 is the exceptional divisor of the blowup of Z at
0 (see e.g. [Mu] Ch.3, Sec.3). Thus we can realize each point of PTCZ,0 as the limit of the tangent lines
to an arc {xt ∈ Z,t ∈ ∆}, where ∆ ⊂ C is an open neighborhood of 0 ∈ C, such that x0 = 0 ∈ Z and xt is
a nonsingular point of Z if t ∈ ∆ \ {0} (see Exercise 20.3 in [Ha]). Since Z is Legendrian, TZ,xt ⊂ Dxt for
all t , 0. It follows that the limit of the tangent lines to the arc at t = 0 is contained in PD0. Thus each
(closed) point of PTCZ,0 is contained in PD0. As PTCZ,0 is reduced, this implies the proposition. �

Proposition 4.5. Let 0 ∈ Z ⊂ (C2m+1,D = (θ = 0)) be a Legendrian singularity whose tangent cone
TCZ,0 ⊂ TC2m+1,0 is reduced. Then the tangent cone TCZ,0 is contained in D0 ⊂ TC2m+1,0 and is a Lagrangian
cone with respect to the symplectic form ω = dθ|D0

. Consequently, the projectivized tangent cone PTCZ,0 is a
Legendrian subvariety of PD0 with respect to D

ω.

Proof. Let us regard all tangent spaces of Z ⊂C
2m+1 as affine subspaces in C

2m+1.
Since TCZ,0 is reduced, it is contained in D0 from Proposition 4.4. To show that it is a Lagrangian

cone, denote by σx := dθ|Dx the symplectic form on Dx ⊂ TC2m+1,x for each x ∈C2m+1. To show that TCZ,0
is a Lagrangian cone, it suffices by Proposition 3.7 to show that σ0(u,v) = 0 for a general point u ∈ TCZ,0
and any vector

v ∈ TTCZ,0,u ⊂D0, v <Cu.

Note that P(Cu + Cv) is a tangent line to PTCZ,0 ⊂ PD0 at the nonsingular point [u] ∈ PTCZ,0. Let
β : Bl0(Z) → Z be the blowup of Z at 0. Identify PTCZ,0 with the exceptional divisor of β (see e.g.
[Mu] Ch.3, Sec.3). The assumption that PTCZ,0 is reduced implies that Bl0(Z) is nonsingular at the point
[u] ∈ PTCZ,0. Thus we can find an arc {xt ∈ Z,t ∈ ∆} for a neighborhood ∆ ⊂C of 0 ∈C such that

(1) x0 = 0 ∈C2m+1;

(2) xt is a nonsingular point of Z if t , 0; and

(3) the derivative ∂
∂t |t=0xt ∈Cu.

The vector v gives a tangent vector ~v0 ∈ TPTCZ,0,[u] ⊂ TBl0(Z),[u]. Since both PTCZ,0 and Bl0(Z) are
nonsingular at [u], we can find a holomorphic family of tangent vectors

{~vt ∈ TBl0(Z),xt , t ∈ ∆ \ {0}}

converging to ~v0. Let
vt = dβ(~vt) ∈ TZ,xt , t , 0,
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be the corresponding tangent vector to Z . When s , 0, the plane

〈 ∂
∂t
|t=sxt ,vs〉 ⊂ Dxs

is tangent to the smooth locus of Z ⊂C
2m+1. Thus σxs(

∂
∂t |t=sxt ,vs) = 0 for all s , 0 because Z is Legendrian.

Then by continuity, we obtain σ0(u,v) = 0. �

Proof of Theorem 1.4. It is immediate that the tangent cone of a Lagrangian cone Y ⊂ C
2m at 0 (in Definition

3.2) is isomorphic to itself. In particular, the tangent cone of a Lagrangian cone at 0 is reduced. So one
direction of Theorem 1.4 is trivial.

To prove the other direction, let us use the notation of Proposition 4.5. We are to show that the germ
0 ∈ Z ⊂ C

2m+1 is a Lagrangian cone singularity in the sense of Definition 3.4, assuming that its tangent
cone TCZ,0 is reduced.

To start with, we can assume that the tangent cone TCZ,0 spans D0. For otherwise, the Zariski tangent
space TZ,0, which is the linear span of the tangent cone, does not contain D0. Then we can choose a
nonsingular hypersurface F containing Z such that TF,0 , D0 and apply Proposition 2.5 to obtain a a
submersion ψ : F→M ′ to a manifold of dimension 2m−1 with a contact structure D ′ such that ψ(Z) is a
Legendrian subvariety of (M ′ ,D ′) and Z = ψ−1(ψ(Z)). This implies that the tangent cone of ψ(Z) at ψ(0)
is reduced. Thus by induction, we can assume that ψ(0) ∈ ψ(Z) is a Lagrangian cone singularity. Thus by
Lemma 3.5, the Legendrian singularity 0 ∈ Z is a Lagrangian cone singularity. Thus from now, we assume
that TCZ,0 spans D0.

By Proposition 4.5, the germ of 0 ∈ Z is contained in a germ of a nonsingular hypersurface Γ with
TΓ ,0 = D0. We can view Γ as the graph of an element of O

C
2m,0, where C

2m = (x2m+1 = 0). In other
words, in the notation of Theorem 4.1, there exists a homogeneous quadratic polynomial q(x1, . . . ,x2m) and
a holomorphic function h(x1, . . . ,x2m) ∈m3

0 such that

x2m+1 = q(x1, . . . ,x2m) + h(x1, . . . ,x2m)

is the defining equation of Γ . Set

f := q(x1, . . . ,x2m) + h(x1, . . . ,x2m)− x2m+1 ∈ OC
2m+1,0.

In terms of the coordinates (z1, . . . , z2m) on Γ defined by zi = xi |Γ ,1 ≤ i ≤ 2m, the same computation as in
the proof of Theorem 4.1 gives

2vf |Γ =
m∑
k=1

(
(
∂h

∂zm+k
+ zk)

∂
∂zk

+ (− ∂h
∂zk

+ zm+k)
∂

∂zm+k

)

+
m∑
k=1

(
∂q

∂zm+k

∂
∂zk
−
∂q

∂zk

∂
∂zm+k

)
.

Let Bl0(Γ ) be the blowup of Γ at 0. Since vf |Γ vanishes at 0, it induces a vector field ṽ on the blowup
Bl0(Γ ). The first line in the expression of 2vf |Γ induces a vector field on Bl0(Γ ) that vanishes on the
exceptional divisor. In fact, the vector field on the blowup induced by

m∑
k=1

(
∂h

∂zm+k

∂
∂zk
− ∂h
∂zk

∂
∂zm+k

)
vanishes on the exceptional divisor because h ∈m3

0, while the one induced by the radial vector field

m∑
k=1

(
zk

∂
∂zk

+ zm+k
∂

∂zm+k

)
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obviously vanishes on the exceptional divisor. The restriction of ṽ to the exceptional divisor PTΓ ,0 ⊂ Bl0(Γ )
comes thus from the second line in the expression of 2vf |Γ , which is precisely ω†(q) in the notation of
Proposition 3.10. Since vf is tangent to Z by Theorem 2.2, we know that ṽ is tangent to Bl0(Z) ⊂ Bl0(Γ )
and also tangent to PTCZ,0 ⊂ PTΓ ,0 = PD0. Thus by Proposition 3.10 and Proposition 4.5, the quadratic
polynomial q must vanish on the Legendrian subvariety PTCZ,0 of PD0.

Let mΓ ,0 be the maximal ideal of the local ring OΓ ,0 and let J ⊂ OΓ ,0 be the ideal of Z inside Γ . Recall
that the projective tangent cone PTCZ,0 ⊂ PTΓ ,0 is defined by the homogeneous ideal J∗ ⊂ Sym•T ∗

Γ ,0
generated by lowest order terms of elements of J . Since the projective scheme PTCZ,0 ⊂ PD0 is reduced,
the homogeneous ideal J∗ defining the scheme PTCZ,0 is a radical ideal, which implies that q ∈ J∗. Since
we have assumed that TZ,0 spans D0 = TΓ ,0, the homogeneous ideal J∗ contains no elements of degree 1.
Thus q is an element of minimal degree in J∗. Consequently, it is the leading term of some element of J ,
i.e., there exists some

c(z1, . . . , z2m) ∈m3
Γ ,0

such that
q(z1, . . . , z2m)− c(z1, . . . , z2m) ∈ J.

Thus the hypersurface in C
2m+1 defined by

x2m+1 = q+ h− (q − c) = c(x1, . . . ,x2m) + h(x1, . . . ,x2m) ∈m3
0

contains Z . By Theorem 4.1, this hypersurface is contactomorphic to the hyperplane x2m+1 = 0. Thus the
germ at 0 of Z is contactomorphic to that of a Lagrangian cone by Lemma 3.3. �

5. Deformation-rigidity of normal Legendrian singularities

In this section, we prove Theorem 1.5. Throughout, we fix a linear coordinate t on C and denote a point
of C simply by its coordinate t ∈ C. Sometimes, we use another linear coordinate τ on C to distinguish it
from t. We begin with recalling a few standard facts on time-dependent vector fields. As some algebraic
geometers may not be familiar with them, we will provide most of the proofs.

Definition 5.1. Let ∆ ⊂C be a neighborhood of 0 ∈C. Let M be a complex manifold. Denote by

πM :M ×∆→M and π∆ :M ×∆→ ∆

the natural projections.

(i) WhenW is a complex manifold and Ψ :W ×∆→M×∆ is a holomorphic map, define for each t ∈ ∆
and w ∈W ,

Ψt(w) := πM ◦Ψ (w,t) ∈M

Ψ̇t(w) := dπM ◦dΨ (
∂
∂t
|(w,t)) ∈ TM,Ψt(w).

They define a holomorphic map Ψt :W →M and a holomorphic section Ψ̇t ∈H0(W,Ψ ∗t TM ).

(ii) Let ~B be a holomorphic vector field on M × ∆ such that dπ∆(~B) = 0. For each t ∈ ∆, denote by
~Bt ∈H0(M,TM ) the vector field dπM ◦ ~B|M×{t}.

The following lemma on time-independent vector fields is a straightforward holomorphic translation of
the standard result on differentiable manifolds (see e.g. Theorem 8.1 of [St]).
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Lemma 5.2. Let X be a complex manifold and let ~A ∈H0(X,TX) be a holomorphic vector field. Then for each
x ∈ X, there exist neighborhoods Ox ⊂ X of x and ∆x ⊂C of 0 with a holomorphic map

Φ
~A :Ox ×∆x→ X ×∆x

which is biholomorphic over its image such that

π∆
x
◦Φ ~A = π∆

x
|Ox×∆x , Φ

~A|Ox×{0} = IdOx×{0} and dΦ ~A(
∂
∂τ

) =
−→
A +

∂
∂τ
,

where
−→
A denotes the vector field on X ×∆x that is sent to ~A by the projection πX and τ is the restriction of the

coordinate t to ∆x ⊂C. Moreover, the germ of Φ ~A at (x,0) is uniquely determined by the above properties.

Definition 5.3. Let M be a complex manifold and let D ⊂ TM a subbundle. We say that a vector field
~A ∈H0(M,TM ) preserves D if for each x ∈M and Φ ~A as in Lemma 5.2,

dΦτ (D) ⊂ D for each τ ∈ ∆x.

If D is a contact structure on M, a vector field ~A on M which preserves D is called an infinitesimal contac-
tomorphism. The Lie algebra of all infinitesimal contactomorphisms of (M,D) is denoted by cont(M,D).

We have the following time-dependent contact version of Lemma 5.2.

Lemma 5.4. Let (M,D) be a contact manifold and let π∆ : M × ∆ → ∆ be the projection. Let ~B be a
holomorphic vector field on M×∆ such that dπ∆(~B) = 0 and ~Bt ∈ cont(M,B) ⊂H0(M,TM ) in the terminology
of Definition 5.1 and Definition 5.3. For each z ∈M, there exist neighborhoods U z ⊂M of z and ∆z ⊂ ∆ of 0
with a holomorphic map

Ψ
~B :U z ×∆z→M ×∆z

which is biholomorphic over its image such that

(a) π∆ ◦Ψ ~B = π∆|U z×∆z ;

(b) Ψ ~B|U z×{0} = IdU z×{0}; and

(c) dΨ ~B( ∂∂t ) = ~B+ ∂
∂t at points where both sides make sense; and

(d) the map Ψ ~B
t :U z→M is contactomorphic over its image for each t ∈ ∆z.

Moreover, the germ of Ψ ~B at (z,0) is uniquely determined by the properties (a), (b) and (c).

Proof. Equip X :=M ×∆ (resp. X ×∆) with the subbundle D ⊂ TX (resp. D̃ ⊂ TX×∆) given by

D(z,t) = (dπM |(z,t))−1(Dz)
(
resp. D̃(x,τ) = (dπX |(x,τ))

−1(Dx)
)
,

where πM :M ×∆→M and πX : X ×∆→ X are the natural projections. Then the vector field ~B preserves
D and so do ∂

∂t and
~A := ~B+ ∂

∂t . Applying Lemma 5.2 with x = (z,0), we obtain two holomorphic maps

Φ
∂
∂t ,Φ

~A : Ox ×∆x→ X ×∆x

satisfying the properties in Lemma 5.2, in particular,

dΦ
∂
∂t (

∂
∂τ

) =
∂
∂t

+
∂
∂τ

and dΦ ~A(
∂
∂τ

) = ~A+
∂
∂τ
. (5.1)
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Furthermore,

dΦ
∂
∂t (D̃) ⊂ D̃ and dΦ ~A(D̃) ⊂ D̃ (5.2)

at points where they make sense. Let

γ :M ×∆(= X)→M ×∆×∆

be the diagonal embedding γ(v, t) = (v, t,τ = t). We have

dγ(
∂
∂t

) = (
∂
∂t

+
∂
∂τ

)|γ(X). (5.3)

and
dγ(D) ⊂ D̃. (5.4)

Set
Ψ
~B := πX ◦Φ ~A ◦ (Φ

∂
∂t )−1 ◦γ

which is defined on U z ×∆z ⊂M ×∆ for a suitable choice of the neighborhoods U z and ∆z. It is easy to
see that the conditions (a) and (b) are satisfied. The condition (c) follows from (5.1), (5.3) and

dΨ ~B(
∂
∂t

) = dπX ◦dΦ ~A ◦d(Φ
∂
∂t )−1(

∂
∂t

+
∂
∂τ

)

= dπX ◦dΦ ~A(
∂
∂τ

)

= dπX(
−→
A +

∂
∂τ

)

= ~A = ~B+
∂
∂t
.

Finally, (d) is from dΨ ~B(D) ⊂ D, which follows from (5.2) and (5.4). The uniqueness of the germ of Ψ ~B

follows from the uniqueness theorem on solutions of ordinary differential equations. �

The next lemma is a direct consequence of the uniqueness of the integral curve of a vector field through
a given point on a manifold, applied to the vector field ~B+ ∂

∂t .

Lemma 5.5. In Lemma 5.4, assume that there exists a complex submanifold W ⊂M and a holomorphic map
F :W ×∆→M ×∆, which is biholomorphic over its image, such that

(i) π∆ ◦F = π∆|F(W×∆);

(ii) F|W×{0} = IdW×{0}; and

(iii) dF( ∂∂t ) = ~B+ ∂
∂t at points where both sides make sense.

For a point z ∈ W ⊂ M, let Ψ ~B : U z ×∆z → M ×∆z be as in Lemma 5.4. Then, shrinking U z and ∆z if
necessary, we have

Ψ
~B((U z ∩W )×∆z) ⊂ F(W ×∆z).

In other words, for any y ∈ W in a neighborhood of z and any t ∈ ∆ in a neighborhood of 0, we have

Ψ
~B
t (y) = Ft(y).
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Definition 5.6. Let M be a complex manifold and S ⊂M ×∆ be a submanifold such that the restriction
π∆|S is submersive with connected fibers. Then we can view S as a family of submanifolds {St ⊂M,t ∈ ∆}
parametrized by ∆. For each t ∈ ∆, there exists a section Ṡt ∈ H0(St ,NSt ) of the normal bundle NSt of
St ⊂M, called the infinitesimal deformation of the family of submanifolds at t, which can be described in
the following way for t close to 0 (this is a reformulation of the standard definition, e.g., pp. 148-150 of
[Kd]).

For a point z ∈ S0, we can pick neighborhoods Wz ⊂ S0 of z and ∆z ⊂ ∆ of 0 with a holomorphic map
G :Wz ×∆z→S ∩ (M ×∆z), which is biholomorphic over its image, such that

(1) Gt(w) ∈ St , i.e., G(w,t) ∈ S ∩ (M × {t}) for any w ∈Wz and t ∈ ∆z; and

(2) G|Wz×{0} = IdWz×{0}, i.e., G0 = IdWz
.

Then for any w ∈Wz and t ∈ ∆z, the value Ṡt of the section Ṡt ∈H0(St ,NSt ) at the point y = Gt(w) ∈ St is
given by

Ṡt(y) = dπM ◦
(
dG(

∂
∂t
|(w,t))−

∂
∂t
|(y,t)

)
modulo TSt ,y .

This is independent of the choice of G.

Lemma 5.7. In Definition 5.6, assume that there exists a vector field ~B on M ×∆ such that dπ∆(~B) = 0 and

Ṡt(y) = ~Bt(y) modulo TSt ,y for each t ∈ ∆ and y ∈ St .

For z ∈ S0 ⊂ M, let Ψ
~B : U z ×∆z → M ×∆z be the map defined in Lemma 5.4. Then Ψ ~B

t (y) ∈ St for any
t ∈ ∆z close to 0 and any y ∈ S0 close to z.

Proof. For a fixed z ∈ S0, let G :Wz ×∆z→S be as in Definition 5.6. By the assumption on Ṡt , we can find
a holomorphic vector field ~E on Wz ×∆z satisfying dπ∆(~E) = 0 and

dG(~E) = ~B−
(
dG(

∂
∂t

)− ∂
∂t

)
,

in other words,

dG(~E +
∂
∂t

) = ~B+
∂
∂t
, (5.5)

on the image of G.
Let us apply Lemma 5.4 to the vector field ~E on Wz ×∆z. We have neighborhoods W ⊂Wz of z ∈Wz

and ∆z ⊂ ∆z of 0 ∈ ∆z with a holomorphic map Ψ ~E :W ×∆z→Wz ×∆z such that

dΨ ~E(
∂
∂t

) = ~E +
∂
∂t
. (5.6)

Set F := G◦Ψ ~E :W ×∆z→M ×∆z. We claim that F satisfies the conditions of Lemma 5.5. The conditions
(i) and (ii) of Lemma 5.5 are immediate from the properties of (1) and (2) of G in Definition 5.6, while (iii)
follows from

dF(
∂
∂t

) = dG ◦dΨ ~E(
∂
∂t

)

= dG(~E +
∂
∂t

) by (5.6)

= ~B+
∂
∂t

by (5.5).

By the claim, we can apply Lemma 5.5 to see Ψ ~B
t (y) = Ft(y) ∈ St for any t ∈ ∆z close to 0 and any y ∈ S0

close to z ∈ S0. �
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To prove Theorem 1.5, we recall some basic facts from contact geometry. The following lemma is from
Example 1.2.C in Chapter 4 of [AG].

Lemma 5.8. Let S be a complex manifold and let L be a line bundle on S . Then the underlying complex
manifold of the 1-jet bundle J1

SL satisfying the exact sequence

0→ T ∗S ⊗L→ J1
SL

j
→L→ 0

has a natural contact structure. Moreover, a section Σ ⊂ J1
SL is a Legendrian submanifold if and only if it is

the 1-jet of the section j(Σ) ∈H0(S,L).

The next lemma is classical. See Theorem 7.1 in [Kb] for (i) and Lemma 7.1 in [LB] for (ii).

Lemma 5.9. For a contact manifold (M,D), let L = TM /D be the quotient line bundle and ϑ : TM → L be
the quotient homomorphism.

(i) The homomorphism
cont(M,D) ⊂H0(M,TM )→H0(M,L)

induced by ϑ : TM → L gives an isomorphism of vector spaces η : cont(M,D) �H0(M,L).

(ii) For a Legendrian submanifold S ⊂M, let L := L|S and let j : J1
SL→L be as in Lemma 5.8. Then there

is a natural isomorphism ζ : NS � J
1
SL between the normal bundle NS of S ⊂M and the 1-jet bundle

J1
SL such that

j ◦ ζ = ϑ|S :NS →L.

In particular, the underlying manifold of NS has a natural contact structure via Lemma 5.8.

Proposition 5.10. Let us use the terminology of Lemma 5.9.

(1) Let {St ⊂ M,t ∈ ∆} be a family of Legendrian submanifolds of M with S0 = S , parametrized by a
neighborhood ∆ ⊂C of 0. Let

ϑ(Ṡ0) ∈ H0(S,L)

be the image of the infinitesimal deformation Ṡ0 ∈H0(S,NS ) under the map induced by ϑ, and let

ζ(Ṡ0) ∈ H0(S,J1
SL)

be the image of Ṡ0 under the isomorphism ζ : NS � J
1
SL of Lemma 5.9 (ii). Then ζ(Ṡ0) is the 1-jet of

ϑ(Ṡ0).

(2) For an element ~A ∈ cont(M,D), let
η(~A)|S ∈ H0(S,L)

be the restriction of its image under η in Lemma 5.9 (i), and let

ζ(~A) ∈ H0(S,J1
SL)

be the image of the element
(~A modulo TS ) ∈ H0(S,NS )

under ζ in Lemma 5.9 (ii). Then ζ(~A) is the 1-jet of η(~A)|S .
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Proof. For (1), we compute the infinitesimal deformation Ṡ0 in a neighborhood of u ∈ S in the following way.
Choose a biholomorphic map between a neighborhood UM ⊂M of u in M and a neighborhood UN of
u in the normal bundle NS such that S ∩UM corresponds to the zero section of NS∩UM in UN . We can
shrink ∆ and UM , if necessary, so that the family of submanifolds {St , t ∈ ∆} gives a family of sections st of
the normal bundle NS∩UM . Then

dst
dt
|t=0 ∈H0(S ∩UM ,NS∩UM )

gives the value of Ṡ0 at u. This is because we can choose G in Definition 5.6 to respect the bundle structure
on UM induced by the bundle structure of NS .

Now by the relative Darboux Theorem (Theorem 4.3 or Theorem A in Chapter 4, Section 1.3 of [AG]),
we may choose the biholomorphic map UM � UN to be contactomorphic with respect to the contact
structure D on UM ⊂M and the contact structure on UN defined by ζ in (ii) of Lemma 5.9 combined with
Lemma 5.8. Then the sections {st , t ∈ ∆} corresponds to Legendrian sections of NS � J

1
SL. Thus they are

the 1-jets of sections
ϑ(st) = j ◦ ζ(st) of L|S∩UM ,

by Lemma 5.8. Consequently, the derivative dst
dt |t=0, which represents Ṡ0, is the 1-jet of the section

ϑ(
∂st
∂t
|t=0) = j ◦ ζ(

∂st
∂t
|t=0) of L|S∩UM .

This proves (1).

(2) follows from (1) by considering the deformation of S induced by the local contactomorphisms Φ ~A

generated by ~A in the sense of Definition 5.3. �

Proof of Theorem 1.5. As the problem is local, we replace M by a Stein neighborhood of x0 ∈ Z0 in M and
assume that M is Stein. Set L = TM /D .

Let St ⊂ Zt be the smooth locus of the Legendrian subvariety Zt . For each t ∈ ∆, we have the
infinitesimal deformation Ṡt ∈H0(St ,NSt ) and the corresponding element

ϑ(Ṡt) ∈H0(St ,L|St )

from Proposition 5.10 (1). As Zt is a normal variety, we have the extension at ∈ H0(Zt ,L|Zt ) for each t ∈ ∆
such that at |St = ϑ(Ṡt). Since H1(M,L⊗ I ) = 0 for any ideal sheaf I by our assumption that M is Stein,
we have bt ∈H0(M,L) for each t ∈ ∆ such that at = bt |Zt .

We have ~Bt ∈ cont(M,D) satisfying η(~Bt) = bt from Lemma 5.9 (i) for each t ∈ ∆. The family of vector
fields {~Bt , t ∈ ∆} defines a vector field ~B on M × ∆ satisfying dπ∆(~B) = 0. Applying Lemma 5.4 to the

vector field ~B on M ×∆ at the point x0 ∈M, we obtain Ψ ~B :Ux0 ×∆x0 →M ×∆x0 for some neighborhoods

x0 ∈ Ux0 ⊂M and 0 ∈ ∆x0 ⊂ ∆ such that Ψ ~B
t : Ux0 →M is a contactomorphism over its image for each

t ∈ ∆x0 .
We claim that

Ṡt(y) = ~Bt(y) modulo TSt ,y

for each t ∈ ∆ and y ∈ St . By the isomorphism ζ in Lemma 5.9 (ii), we may check that ζ(~Bt |St ) = ζ(Ṡt)
using the notation of Proposition 5.10 (1). But ζ(Ṡt) is the 1-jet of ϑ(Ṡt) by Proposition 5.10 (1) and ζ(~Bt |St )
is the 1-jet of η(~Bt |St ) by Proposition 5.10 (2). Since

η(~Bt |St ) = bt |St = at |St = ϑ(Ṡt),

we obtain ζ(~Bt |St ) = ϑ(Ṡt). This proves the claim.

By the claim, we can apply Lemma 5.7 to conclude Ψ ~B
t sends an open subset in S0 into an open subset

in St for any t close to 0. Consequently, the contactomorphism Ψ
~B
t sends the germ of Z0 at x0 into Zt for

t close to 0. Setting xt = Ψ ~B
t (x0), we obtain Theorem 1.5. �
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