
Épijournal de Géométrie Algébrique
epiga.episciences.org

Volume 3 (2019), Article Nr. 15

Coincidence of two Swan conductors of abelian characters
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Abstract. There are two ways to define the Swan conductor of an abelian character of the
absolute Galois group of a complete discrete valuation field. We prove that these two Swan
conductors coincide.
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1. Introduction

1.1. Let K be a complete discrete valuation field, let K̄ be a separable closure of K , and let us consider
χ : Gal(K̄/K)→ C

× a homomorphism which factors through Gal(L/K) for a finite cyclic extension L ⊂ K̄
of K . There are two definitions of the Swan conductor of χ, one is defined by using the logarithmic upper
ramification filtration on Gal(K̄/K) defined geometrically [1], and the other is defined by using the filtrations
on the unit groups of complete discrete valuation fields and cup products in Galois cohomology [6].

We prove that the two Swan conductors coincide.

1.2. We briefly review the two Swan conductors, which we denote in this paper by Sw(χ) and Swab(χ),
respectively.

Sw(χ) is defined as follows. There is a decreasing filtration Gal(K̄/K)tlog indexed by t ∈ Q≥0 on

Gal(K̄/K) by closed normal subgroups called the logarithmic upper ramification groups. Sw(χ) is defined
to be the smallest t ∈Q≥0 such that χ(Gal(K̄/K)slog) = {1} for all s > t (such t exists). See [1, Theorem 3.16]
and Section 4.

Swab(χ) is defined as follows. Fix an injection Q/Z → C
×, say r 7→ exp(2π

√
−1r), and identify χ

with an element of H1(K,Q/Z) = H2(K,Z). Then the cup-product with χ defines a homomorphism
K× → Br(K), denoted by a 7→ {χ,a}, where Br(K) = H2(K,Gm) is the Brauer group of K [13, Chapitre
X.4]. Swab(χ) is defined to be the smallest integer n ≥ 0 such that {χ,1 +mn

KmK ′ } = 0 in Br(K ′) for any
extension K → K ′ of complete discrete valuation fields (such n exists; here m∗ denote the maximal ideals).
See [7].

Theorem 1.3. Sw(χ) = Swab(χ).

1.4. We will also prove the coincidence of refined Swan conductors. Let r = Sw(χ) = Swab(χ) and assume
r > 0. Then we have non-zero elements

rsw(χ) ∈ F̄ ⊗F m−rK /m
−r+1
K ⊗OK Ω

1
OK (log),

rswab(χ) ∈m−rK /m
−r+1
K ⊗OK Ω

1
OK (log)

called the (logarithmic) refined Swan conductors. rsw(χ) is defined in [10] as a refined version of Sw(χ)
and rswab(χ) is defined in [7] as a refined version of Swab(χ). The definition of rsw(χ) is recalled in (4.16).

Theorem 1.5. rsw(χ) = rswab(χ).
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1.6. Theorem 1.3 was known, for example, in the following cases. (The cases (i) and (ii) follow from Section
6.1 of [1] and from [6]. The case (iii) is shown in [2, Corollary 9.12].) The case (ii) is proved by comparing
Propositions 4.11 and 5.2. In the cases (i) and (ii), the ring OL is generated by a single element over OK and
such an extension is also studied in [14].

(i) (The classical case.) The case where the residue field of K is perfect.

(ii) The case where the residue field F of K is of characteristic p such that [F : Fp] = p and χ factors
through Gal(L/K) for a finite cyclic extension L/K whose ramification index e(L/K) is one.

(iii) The case where K is of positive characteristic.

In the positive characteristic case, the results corresponding to Theorems 1.3 and 1.5 in the non-logarithmic
case are proved in [2] and [15].

1.7. Our method to prove Theorem 1.3 is to reduce it to the above case (ii) (not to the classical case (i)).
In Theorem 3.1, we prove that for a finite cyclic extension L/K such that χ factors through Gal(L/K), we
can find an extension of complete discrete valuation fields K → K ′ such that Sw(χK ′ ) = e(K ′/K)Sw(χ),
Swab(χK ′ ) = e(K ′/K)Sw

ab(χ), the residue field F′ of K ′ satisfies [F′ : (F′)p] = p, and e(LK ′/K ′) = 1. The
refined Swan conductors play important roles to find the field K ′ above.

Theorem 1.5 is proved also by the reduction to the case (ii). The authors would like to thank an
anonymous referee for pointing out that almost the same result as the key step Proposition 4.11 is proved in
[5, Theorem 5.9].

One of the authors (K. K.) is partially supported by NSF Award 1601861 and (T. S.) is partially supported
by JSPS Grant-in-Aid for Scientific Research (A) 26247002.

2. On the theorem of Epp

The following theorem is not explicitly written in the paper [4] of Epp, but the arguments there (with a
correction in [8] of an error in [4]) actually prove this.

Theorem 2.1. Let K be a complete discrete valuation field whose residue field F is of characteristic p > 0, and let
L be a finite Galois extension of K . Then there exists a finite extension K ′ of K satisfying the following conditions
(i) and (ii).

(i) e(LK ′/K ′) = 1.

(ii) The residue field of K ′ is a separable extension of that of K .

In Theorem 2.1, we may take K ′ separable over K , although we will not use this fact. To see this, it
suffices to modify the construction of K ′ = K(π′) in the proof of the case where K is of characteristic p > 0
and T is not empty in 2.6.

We use the following lemmas 2.2, 2.3 and 2.4 for the proof of Theorem 2.1.
For a discrete valuation field K , let ordK be the normalized additive valuation of K . In the case the

residue field of K is of characteristic p > 0, let eK = ordK (p). (So, eK =∞ if K is of characteristic p.)

Lemma 2.2. Let K be a complete discrete valuation field whose residue field F is of characteristic p > 0. Let
k =

⋂
r≥0F

pr be the largest perfect subfield of F and let W (k)→OK be the canonical morphism from the ring of
Witt vectors. Then the subring

⋂
r≥0(OK /pOK )p

r ⊂ OK /pOK equals the image of k→OK /pOK (in the case K
is of characteristic p, this means that

⋂
r≥0(OK )p

r
= k).

Proof. Let A =
⋂
r≥0(OK /pOK )p

r
denote the subring. Then, A ⊂ OK /pOK contains the image of k and the

image of A by OK /pOK → F is a subring of k. Hence, the assertion follows from A∩ (mK /pOK ) = 0. �
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We do not give proofs of the following lemmas 2.3 and 2.4 which are straightforward.

Lemma 2.3. Let K be a complete discrete valuation field of characteristic p > 0 and let F be its residue field.
Consider the Artin-Schreier extension L = K(α), αp −α = f ∈ K . Let π be a prime element of K . Let E be the
residue field of L.

(1) If f ∈ OK , the extension L/K is unramified, possibly trivial.

(2) Assume that −ordKf = n ≥ 1 is not divisible by p. Then e(L/K) = p and E = F.

(3) Assume that f ∈ uπ−mp +π−mp+1OK for some integer m ≥ 1 and for some u ∈ OK whose residue class ū
does not belong to Fp. Then E = F(ū1/p) and e(L/K) = 1.

Lemma 2.4. Let K be a complete discrete valuation field of mixed characteristic (0,p). Let F be its residue field.
Assume that K contains a primitive p-th root ζp of 1. Consider the Kummer extension L = K(α), αp = a ∈ K×.
Let π be a prime element of K . Let E be the residue field of L.

(1) If a ∈ 1+ (ζp − 1)pOK , the extension L/K is unramified, possibly trivial.

(2) Assume that ordK (a) is not divisible by p. Then e(L/K) = p and E = F.

(3) Assume that a ∈ (OK )× and that the residue class ā of a is not contained in Fp. Then E = F(ā1/p) and
e(L/K) = 1.

(4) Assume that a ∈ (1+πnu)(1+πn+1OK ) for some integer n not divisible by p such that 1 ≤ n < eKp/(p−1)
and for some u ∈ (OK )×. Then e(L/K) = p and E = F.

(5) Assume that a ∈ (1+πmpu)(1+πn+1OK ) for some integer m such that 1 ≤ n =mp < eKp/(p−1) and for
some u ∈ OK whose residue class ū does not belong to Fp. Then E = F(ū1/p) and e(L/K) = 1.

2.5. We start the proof of Theorem 2.1.
First, we reduce the theorem to the case (*) below. Let K1 ⊂ L be the maximum tamely ramified

extension of K . Then, since LK1 = L and the residue field of K1 is a separable extension of that of K , we
may assume that Gal(L/K) equals the inertia subgroup I and is a p-group.

We prove the reduction by induction on the order of I . We may assume that L , K . Then, since
Gal(L/K) is nilpotent, there exists a subextension L′ ⊂ L such that L′ is a Galois extension over K and that
L is a cyclic extension of L′ of degree p. By induction hypothesis, there exists a finite extension K ′1 of K
such that e(L′K ′1/K

′
1) = 1 and satisfying (ii). If e(LK ′1/L

′K ′1) = 1, there is nothing to prove. Otherwise, for
the maximum unramified extension K ′2 of K ′1 inside M ′1 = L′K ′1, the extensions K ′2 ⊂M

′
1 ⊂ LK

′
1 satisfies

the condition (*).

(*) There exists a field M such that K ⊂M ⊂ L, e(M/K) = 1 and that L is a cyclic extension of M of
degree p and e(L/M) = p. The residue field E of M is a purely inseparable extension of the residue
field F of K .

2.6. We prove Theorem 2.1 in the case K is of characteristic p. Let M be as in (*) in 2.5. We may assume
M = E((π)) with π a prime element of K . We can write L = M(α) where αp − α = f = fI + fU with
fI , fU ∈ M such that: fI =

∑
n∈I anπ

−n where I is a finite subset of Z>0 and an ∈ E×, and fU ∈ OM . By
Lemma 2.3 (1) applied to the extension L/M, I is not empty because L/M is not unramified. .

In the following, we use the fact that for u,v ∈M such that u ≡ v mod {wp −w | w ∈M}, the extension
M(β), βp − β = u, of M is the same as that given by v. If n ∈ I is divisible by p and an ∈ Ep, we have

anπ
−n ≡ a1/pn π−n/p mod {wp −w | w ∈M} and hence we can replace anπ

−n by a
1/p
n π−n/p. Hence we may

(and do) assume that if n ∈ I is divisible by p, then an < E
p.



K. Kato and T. Saito, Coincidence of two Swan conductors of abelian characters 5K. Kato and T. Saito, Coincidence of two Swan conductors of abelian characters 5

Let S be the subset of I consisting of all n ∈ I such that an ∈
⋂
r≥0E

pr =
⋂
r≥0F

pr = k, and let T = IrS .
Note that if n ∈ S , then n is not divisible by p. By Lemma 2.2, we have an ∈ k ⊂ OK for n ∈ S . Hence
fS ∈ K .

Assume first T is empty. Then fI = fS ∈ K . For K ′ = K(αS ) with α
p
S −αS = fS , the residue field of K ′

coincides with F by Lemma 2.3 (2) applied to K ′/K , and the extension LK ′/MK ′ is unramified by Lemma
2.3 (1) applied to LK ′/MK ′ .

Assume that T is not empty. For n ∈ T , write an = b
pr(n)
n where bn ∈ E, r(n) ≥ 0, and bn is not a p-th

power in E. Take an integer m such that m > r(n) for any n ∈ T . For n ∈ S , write an = b
pm
n (bn ∈ k ⊂ OK ).

Let K ′ = K(π′) where π′ is a pm-th root of π and let M ′ =MK ′ , L′ = LK ′ . Then

fI ≡ fS + fT mod {wp −w | w ∈M ′},

fS =
∑
n∈S

bn(π
′)−n, fT =

∑
n∈T

bn(π
′)−np

m−r(n)
.

Note that fS ∈ k((π′)) ⊂ K ′ by Lemma 2.2. Let nS := max(S) and nT := max{npm−r(n) | n ∈ T }. If S is
empty, we set nS = 1 so that we have nS < nT . Since nS is not divisible by p and nT is divisible by p, we
have nS , nT . For the proof of Theorem 2.1, it is sufficient to prove the following Claim 1 and Claim 2.

Claim 1. If nS < nT , then e(L′/M ′) = 1.

Claim 2. If nS > nT , let K
′′ = K ′(β) where βp − β = fS and let M ′′ = MK ′′ , L′′ = LK ′′ . Then the

residue field of K ′′ coincides with that of K and e(L′′/M ′′) = 1.

We first prove

Claim 3. There is a unique n ∈ T such that npm−r(n) = nT .

We prove Claim 3. If n,n′ ∈ T , n > n′ and npm−r(n) = n′pm−r(n′), then by n = n′pr(n)−r(n
′) > n′ , we have

p|n. Hence an < Ep and r(n) = 0. This contradicts to r(n) > r(n′).
Claim 1 follows from Claim 3 and Lemma 2.3 (3) applied to the extension L′/M ′ .
We prove Claim 2. We have e(K ′′/K ′) = p by Lemma 2.3 (2) applied to K ′′/K ′ . If τ denotes a prime

element of K ′′ , the residue class of the unit τp(π′)−1 is a p-th power. Claim 2 follows from this and Claim
3, and from Lemma 2.3 (3) applied to the extension L′′/M ′′ .

2.7. We prove Theorem 2.1 in the case K is of mixed characteristic (0,p). We may assume that K contains
a primitive p-th root ζp of 1. Note that ordK (ζp − 1) = eK /(p − 1). Let M be as in (*) in 2.5. We have
L =M(α), αp = a for a ∈M×.

The proof consists of two steps. In Step 1, we show that we may assume a ∈ 1+pOM . In Step 2, we give
the proof assuming a ∈ 1+ pOM .

Let E be the residue field of M and take a ring homomorphism E→OM /pOM such that the induced
map E→OM /mM = E is the identity map, and its lifting ι : E→OM . Let π be a prime element of K .

Step 1. Write a ≡ c
∏
n∈T cn mod 1 + pOM where T is a subset of {0, . . . , eM − 1} and cn (n ∈ T ) and c

are elements of M× of the following form. If 0 ∈ T , c0 = ι(b) for some b ∈ E such that b < Ep. If n ∈ T and
n ≥ 1, cn = 1+πnι(b) for some b ∈ E such that b < Ep. The first term c is a product of a power of π and
elements of the form 1+πmι(b) with b ∈ Ep for some integer m = 0.

Let K ′ = K(π1/p), M ′ =MK ′ , L′ = LK ′ . Then we have c ∈ ((M ′)×)p(1 + pOM ′ ) since the map x 7→ xp

on OM ′ /pOM ′ is a ring homomorphism. Hence if T , ∅, we have e(L′/M ′) = 1 by Lemma 2.4 (3) and (5)
applied to the extension L′/M ′ . If T = ∅, we also have L′ =M ′(β) with βp ∈ 1+pOM ′ . Thus, the assertion
is reduced to the case where L =M(α), αp = a for a ∈ 1+ pOM .

Step 2. Assume L =M(α), αp = a ∈ 1+ pOM . We have an isomorphism

(ζp − 1)−1OM /OM → (1 + pOM )/((1 + (ζp − 1)pOM ) ; x 7→ 1+ (ζp − 1)px
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(from the additive group to the multiplicative group). This isomorphism maps xp − x for x ∈ (ζp − 1)−1OM
such that xp ∈ (ζp − 1)−1OM to a p-th power because

(1 + (ζp − 1)x)p ≡ 1+ (ζp − 1)p(xp − x) mod 1+ (ζp − 1)pOM .

Hence we have a situation similar to the theory of Artin-Schreier extension, and the rest of the proof, which
is given below, is similar to the proof of the case where K is of characteristic p in 2.6.

We have a = aIaU with aI = 1+
∑
n∈I ((ζp−1)pπ−n)ι(an) where I is a subset of {n ∈Z | 1 ≤ n ≤ eM /(p−1)}

and an ∈ E× and aU ∈ 1+ (ζp −1)pOM . Note that we have (ζp −1)pπ−n ∈ pOM for n ∈ I . By Lemma 2.4 (1)
applied to the extension L/M, I is not empty. We may assume that if n ∈ I and n is divisible by p, then an
is not a p-th power in E. Let k =

⋂
r≥0F

pr =
⋂
r≥0E

pr , S = {n ∈ I | an ∈ k} and let T = I r S .
If T is empty, by Lemma 2.2, we have aI ≡ c mod (M×)p where c = 1+

∑
n∈S((ζp − 1)pπ−n)[an] for the

Teichmüller lifting [an] ∈W (k)× ⊂ O×K . Let K
′ = K(c1/p). Then the residue field of K ′ is F by Lemma 2.4

(4) applied to the extension K ′/K and the residue field of K ′ is the same as that of K , and the extension
LK ′/MK ′ is unramified by Lemma 2.4 (1) applied to LK ′/MK ′ .

Assume now that T is not empty. For n ∈ T , define bn ∈ E rEp and r(n) ≥ 0 as in 2.6. Further take an
integer m such that m > r(n) for any n ∈ T and bn ∈ k for n ∈ S as in 2.6.

Let K ′ = K(π′) where π′ is a pm-th root of π and let M ′ =MK ′ , L′ = LK ′ Then by Lemma 2.2,

aI ≡ aSaT mod (1+ (ζp − 1)pOM ′ ),

K ′ 3 aS = 1+
∑
n∈S

((ζp − 1)p(π′)−n)[bn], aT = 1+
∑
n∈T

((ζp − 1)p(π′)−np
m−r(n)

)ι(bn)

where [bn] ∈W (k)× ⊂ O×K for n ∈ S is the Teichmüller lifting of bn. Let nT := max{npm−r(n) | n ∈ T } and
nS := max(S). Since nS is not divisible by p and nT is divisible by p, we have nS , nT . For the proof of
Theorem 2.1, it is sufficient to prove the following Claim 1 and Claim 2.

Claim 1. If nS < nT , then e(L′/M ′) = 1.

Claim 2. If nS > nT , let K
′′ = K ′(a1/pS ). Then the residue field of K ′′ coincides with that of K and

e(L′′/M ′′) = 1 where L′′ = LK ′′ and M ′′ =MK ′′ .

We first prove

Claim 3. There is a unique n ∈ T such that npm−r(n) = nT .

The proof of Claim 3 is similar to that of Claim 3 in 2.6. Claim 1 follows from Claim 3 and Lemma
2.4 (5) applied to the extension L′/M ′ . We prove Claim 2. The residue field of K ′′ is F by Lemma 2.4 (4)
applied to the extension K ′′/K ′ and we have e(K ′′/K ′) = p. If τ denotes a prime element of K ′′ , the residue
class of the unit τp(π′)−1 is a p-th power. Claim 2 follows from this and Claim 3 and from Lemma 2.4 (5)
applied to the extension L′′/M ′′ .

3. Some extensions of complete discrete valuation fields

Theorem 3.1. Let K be a complete discrete valuation field whose residue field F is of characteristic p > 0. Let
L/K be a finite Galois extension. Then there is an extension K ′/K of complete discrete valuation fields satisfying
the following conditions (i)–(iii). Let F′ be the residue field of K ′ .

(i) e(LK ′/K ′) = 1.

(ii) [F′ : (F′)p] = p.

(iii) The map Ω1
F(log)→Ω1

F′ (log) is injective (here and in the following Ω
1
F(log) = F ⊗OK Ω

1
OK (log)).
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If F is finitely generated over a perfect subfield k, we can replace (ii) by the following stronger condition (ii)’.

(ii)’ There is a perfect subfield k′ of F′ such that F′ is finitely generated and of transcendence degree 1 over k′ .

We will deduce Theorem 3.1 from Theorem 2.1 and the following Propositions 3.2 and 3.3.

Proposition 3.2. Let K be a complete discrete valuation field whose residue field F is of characteristic p > 0.
Let π be a prime element of K , let OK ′ be the completion of the discrete valuation ring which is the local ring of
OK [T ,U±1]/(UT p −π) at the prime ideal generated by T , let K ′ be the field of fractions of OK ′ , and let F′ be
the residue field of K ′ . Then we have:

(i) The map Ω1
F(log)→Ω1

F′ (log) is injective.

(ii) The image of this map is contained in Ω1
F′ .

Proof. Straightforward. �

Proposition 3.3. Let K be a complete discrete valuation field whose residue field F is of characteristic p > 0.
Then there is an extension K → K ′ of complete discrete valuation fields satisfying the following conditions (i)–(iii).
Let F′ be the residue field of K ′ .

(i) e(K ′/K) = 1.

(ii) [F′ : (F′)p] = p.

(iii) The map Ω1
F →Ω1

F′ is injective.

If F is finitely generated over a perfect field k, we can replace (ii) by the following stronger condition (ii)’.

(ii)’ There is a perfect subfield k′ of F′ such that F′ is finitely generated and of transcendence degree 1 over k′ .

Proof. Let (bi)i∈I be a lifting of a p-base of F to OK . Let A0 = OK [Ti ,U ; i ∈ I] be the polynomial
ring and set Si = bi −UTi ∈ A0. The residue field F0 of A0 at the prime ideal p0 generated by mK is
F0 = F(Ti ,U ; i ∈ I) and (Si ,Ti ,U ; i ∈ I) is a p-base. For integers n ≥ 0, writing Ti = Ti,0 and Si = Si,0,
define An+1 = An[Ti,n+1,Si,n+1 ; i ∈ I]/(T

p
i,n+1 −Ti,n,S

p
i,n+1 −Si,n ; i ∈ I) inductively and A = lim−−→n

An. Then
A is an integral domain, the ideal p of A generated by mK is a prime ideal and the local ring Ap is a
discrete valuation ring. Hence, the residue field F′ of A at p is the extension of F0 obtained by adding

T
1/pn

i and S
1/pn

i for all i,n. Let OK ′ be the completion of the discrete valuation ring Ap and let K ′ be the
field of fractions of OK ′ .

Then K ′ satisfies the conditions (i)–(iii). For (i) and (ii), this is clear. We prove that (iii) is satisfied. The
F′-vector space Ω1

F′ is one-dimensional with base dU . The F-vector space Ω1
F is with base dbi (i ∈ I ). In

Ω1
F′ , we have dbi = TidU . Since Ti (i ∈ I ) are linearly independent over F, we have the injectivity.
Assume that F is finitely generated over a perfect field k. Then I is finite and F is a finite extension of

k(bi ; i ∈ I). Let k′ ⊂ F′ be the extension of the rational function field k(Si ,Ti ; i ∈ I) ⊂ F0 = F(Ti ,U ; i ∈ I)
given by k′ :=

⋃
n≥0 k(S

1/pn

i ,T
1/pn

i ). Then k′ is perfect and F′ is a finite extension of k′(U ). �

3.4. We prove Theorem 3.1.
Let K1/K be the extension in Proposition 3.2. By taking K1 as K in Proposition 3.3, let K2/K1 be the

extension K ′/K of Proposition 3.3. Let K3/K2 be the maximal unramified subextension of LK2/K2. Then
the extension K3/K satisfies (ii) and (iii) of 3.1 and (ii) of Proposition 3.2.

By applying Theorem 2.1 to LK3/K3, we obtain a finite extension K ′/K3 such that e(LK ′/K ′) = 1 and
the residue field of K ′ is a separable extension of that of K3. The extension K

′/K has the desired properties.
If F is finitely generated over a prime field k, the condition (ii)’ is satisfied.
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4. Review and complements on ramification groups

We briefly recall the definition and basic properties of ramification groups. For more detail, we refer to
[1, 2, 9, 10, 12]. We introduce the refined logarithmic conductor for a finite Galois extension of a henselian
valuation field in (4.15), as a generalization of the refined Swan conductor of an abelian character in the case
where the extension is cyclic. We recall the definition of the Swan conductor of an abelian character at the
end of Section 4.3. In the case where the residue field is a function field of one variable over a perfect field
and the ramification index of the extension is one, we compute explicitly the refined logarithmic conductor
in Proposition 4.11 using Lemma 4.6.

4.1. Let K be a henselian discrete valuation field and F be the residue field of the valuation ring OK . Let
K̄ be a separable closure of K and GK = Gal(K̄/K) be the absolute Galois group. The residue field F̄ of K̄
is an algebraic closure of F.

Let L be a finite étale K-algebra and r > 0 be a rational number. Let SpecOL → Q be a closed
immersion to a smooth scheme Q over OK . Let K ′ ⊂ K̄ be a finite extension of K of ramification index e

such that er is an integer. Then, we define a dilatation Q[er]
OK′ →QOK ′ =Q×OK OK ′ by blowing up the closed

subscheme SpecOL⊗OK OK ′ /m
er
K ′ and by removing the proper transform of the closed fiber. After replacing

K ′ by a separable extension if necessary, the normalization Q
(er)
OK′ of Q

[er]
OK′ has geometrically reduced closed

fiber and the geometric closed fiber Q
(r)
F̄

=Q(er)
OK ′ ×OK ′ F̄ is independent of such K ′ .

The finite set Fr(L) = π0(Q
(r)
F̄
) of connected components is independent of Q. If F(L) = MorK (L,K̄),

the mapping F(L) → Fr(L) induced by the canonical morphism Spec(OL ×OK OK ′ )
− → Q

(er)
OK ′ from the

normalization is also independent of the choice and is a surjection. We say that the ramification of L over K
is bounded by r if the surjection F(L)→ Fr(L) is a bijection. The ramification group GrK ⊂ GK = Gal(K̄/K)
is defined to be the unique closed normal subgroup such that the surjection F(L) → Fr(L) induces a
bijection F(L)/GrK → Fr(L).

4.2. A logarithmic variant is defined as follows. Let L be a finite separable extension of K . Let m be an
integer divisible by the ramification index eL/K and π be a prime element of K . We define an extension
Km to be the tamely ramified extension K[t]/(tm − π) if m is invertible in F and to be the fraction field
of the henselization of OK [u±1, t]/(utm − π) at the prime ideal (t). Then, the finite set Fmr(L ⊗K Km) is
independent of such m and we define Frlog(L) to be Fmr(L⊗K Km). We say that the log ramification of L
over K is bounded by r if the surjection F(L)→ Frlog(L) is a bijection. The ramification group Grlog,K ⊂ GK
is defined to be the unique closed normal subgroup such that the surjection F(L) → Frlog(L) induces a
bijection F(L)/Grlog,K → Frlog(L)

Define closed normal subgroups Gr+K ⊂ G
r
K and Gr+log,K ⊂ G

r
log,K to be the closures of the unions

⋃
s>rG

s
K

and
⋃
s>rG

s
log,K and set Fr+(L) = F(L)/Gr+K and Fr+log(L) = F(L)/G

r+
K,log. We say that the ramification (resp.

the log ramification) of L over K is bounded by r+ if the surjection F(L)→ Fr+(L) (resp. F(L)→ Fr+log(L)) is
a bijection.

4.3. We call the largest rational number r such that the ramification (resp. the log ramification) of L over
K is not bounded by r the conductor (resp. the logarithmic conductor) of L over K . The conductor (resp.
the logarithmic conductor) of L over K is the smallest rational number r such that the ramification (resp.
the log ramification) of L over K is bounded by r+. The conductor c and the logarithmic conductor clog
satisfies the inequality clog 5 c. For an extension K ′ of a henselian discrete valuation field K of ramification
index e, the conductor c′ and the logarithmic conductor c′log of a composition field L′ = LK ′ over K ′ satisfy
c′log 5 e · clog and c′ 5 e · c. If L is the cyclic extension defined by an abelian character χ of GK , the Swan
conductor Sw(χ) is defined as the logarithmic conductor of L over K .
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Lemma 4.4. Assume that the ramification index eL/K is 1. Then, for every rational number r > 0, the canonical
surjections Frlog(L)→ Fr(L) and Fr+log(L)→ Fr+(L) are bijections.

Proof. Since we may take m = 1, the assertion follows. �

4.5. Let Q→ P be a quasi-finite and flat morphism of smooth schemes over OK and let

Q ←−−−−− SpecOLy �
y

P ←−−−−− SpecOK

(4.1)

be a cartesian diagram. Then, by the functoriality of the construction of dilatations, we obtain a finite

morphism Q
(r)
F̄
→ P

(r)
F̄

of geometric closed fibers. Define ideals mr+
K̄
⊂mr

K̄
⊂ OK̄ by

mr+
K̄

= {x ∈ K̄ | v(x) > r} ⊂mr
K̄
= {x ∈ K̄ | v(x) = r}.

For a k-vector space V , let V(V ) denote the associated covariant scheme SpecS•kV
∨. Then, since

SpecOK → P is a section of a smooth morphism, the conormal sheaf NSpecOK /P is canonically isomor-

phic to the restriction of Ω1
P /OK and hence the geometric closed fiber P

(r)
F̄

is canonically identified with

V(HomF(Ω
1
P /OK ⊗OP F,m

r
K̄
/mr+

K̄
)).

The fiber Q
(r)
F̄
×
P
(r)
F̄

0 of the origin is canonically identified with the quotient Fr+(L) = F(L)/Gr+K . The

ramification of L over K is bounded by r+ if and only if the finite morphism Q
(r)
F̄
→ P

(r)
F̄

is étale. Assume
that L is a Galois extension of K of Galois group G and fix a morphism L→ K̄ . Let r = c be the conductor

of L over K . Then, the connected component Q
(r)◦
F̄

of Q
(r)
F̄

containing the point corresponding to L→ K̄ is

a Gr-torsor over P
(r)
F̄

. The conductor r = c of L over K is characterized by the condition that the morphism

Q
(r)◦
F̄
→ P

(r)
F̄

is finite étale but is not an isomorphism.

Lemma 4.6. Assume that OL is generated by one element v ∈ OL over OK , set d = lengthOLΩ
1
OL/OK and let

ordL be the normalized valuation. Let v′ , v be a conjugate of v such that the valuation s = ordL(v′ − v) is the
largest.

1. The rational number r = d/[L : K] + s/eL/K equals the conductor of L over K .

2. Let ϕ ∈ OK [X] be the minimal polynomial of v and define the left vertical arrow of the cartesian diagram

A1
OK= SpecOK [V ] =Q ←−−−−− SpecOL

U 7→ϕ(V )

y y
A1
OK= SpecOK [U ] = P ←−−−−− SpecOK

(4.2)

by ϕ and the bottom horizontal arrow by U 7→ 0. Assume that L is a Galois extension of Galois group G

and that Gr = 〈σ〉 is cyclic of order p. Define isomorphisms Fp→ Gr by σ and A1
F̄
→ P

(r)
F̄

=mr
K̄
/mr+

K̄
by

ϕ′(v)(v − σ (v)). Then, there is an isomorphism

0 −−−−−→ Fp −−−−−→ A1
F̄

T 7→T p−T−−−−−−−−→ A1
F̄
−−−−−→ 0y y y

0 −−−−−→ Gr −−−−−→ Q
(r)◦
F̄

−−−−−→ P
(r)
F̄
−−−−−→ 0

(4.3)

of extensions of smooth group schemes by étale group schemes.
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The proof is similar to the computation in [12, Example 3.3.3].

Proof. The left vertical arrow Q→ P in (4.2) is finite flat. Let v1, . . . , vn ∈ L be the conjugates of v. We fix a
numbering so that vn = v,vn−1 = σ (v) and ordL(vi−vn) is increasing. Setting X−vn = (vn−1−vn)T , we have
ϕ(X) =

∏n
i=1(X−vi) =

∏n
i=1(vn−vi +(vn−1−vn)T ). By the assumption that Gr is cyclic of order p, we have

ordL(vi − vn) < ordL(vn−1 − vn) for i 5 n− p and we may assume that (vn−i − vn)/(vn−1 − vn) ≡ i mod mL

for i = 0, . . . ,p − 1. Hence, we have

ϕ(X) ≡
n−1∏
i=1

(vn − vi) ·
p−1∏
i=1

(1 + iT ) · (vn−1 − vn)T = ϕ′(v)(v − σ (v))(T p − T ) (4.4)

mod mr+1
L . Thus the assertion 1 follows from the characterization of the conductor at the end of 4.5. The

assertion 2 also follows from (4.4). �

Lemma 4.7. Let P1, P2,Q1,Q2 be smooth schemes over OK and

Qi ←−−−−− SpecOL
fi

y �
y

Pi ←−−−−− SpecOK

(4.5)

for i = 1,2 be cartesian diagrams of schemes over OK such that the vertical arrows are quasi-finite and flat. Let

Q1 ×OK F ←−−−−− Q2 ×OK F ←−−−−− SpecOL ⊗OK F

f̄1

y f̄2

y y
P1 ×OK F ←−−−−− P2 ×OK F ←−−−−− SpecF

(4.6)

be a commutative diagram where the right square is induced by (4.5). Then for a rational number r > 0, the
diagram (4.6) induces a commutative diagram

Q
(r)
1,F̄ ←−−−−− Q

(r)
2,F̄

f̄
(r)
1

y yf̄ (r)2

P
(r)
1,F̄ ←−−−−− P

(r)
2,F̄ .

(4.7)

Proof. For i = 1,2, we consider the unions Q′i = (Qi ×OK F)∪ SpecOL ⊂Qi as reduced closed subschemes.
Then by the commutative diagram (4.6), the morphism Q1 ×OK F→Q2 ×OK F and the identity of SpecOL
define a morphism Q′1 ← Q′2. Since Q1 is smooth over OK , after replacing Q2 by an étale neighborhood
of SpecOL if necessary, we may lift Q′1←Q′2 to a morphism Q1←Q2 over OK .

The morphism Q1 ← Q2 induces a morphism of conormal modules NSpecOL/Q1
→ NSpecOL/Q2

and
defines a commutative diagram

Q
(r)
1,F̄ ←−−−−− Q

(r)
2,F̄y y

V(HomF(NSpecOL/Q1
⊗OL F̄,m

r
K̄
/mr+

K̄
)) ←−−−−− V(HomF(NSpecOL/Q2

⊗OL F̄,m
r
K̄
/mr+

K̄
)).

(4.8)

By the cartesian diagram (4.5), the conormal modules NSpecOL/Qi are the tensor products NSpecOK /Pi ⊗OKOL
for i = 1,2. Hence by the commutative diagram (4.6), we may replace V(HomF(NSpecOL/Qi⊗OL F̄,m

r
K̄
/mr+

K̄
))

by P
(r)
i,F̄

to get (4.7). �
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By slightly enlarging the terminology, we say that the henselization of a local ring of a scheme of finite
type is essentially of finite type.

Lemma 4.8 (cf. [2, Lemma 4.4, 4.5]). Let OK be a henselian discrete valuation ring essentially of finite type
and flat over W =W (k) for a perfect field k of characteristic p > 0.

1. There exist a smooth scheme P0 over W , a divisor D0 ⊂ P0 smooth overW , a divisor X0 ⊂ P0 flat over over
W meeting D0 transversely and an isomorphism OhX0,ξ

→OK over W from the henselization of the local
ring at a generic point ξ of the intersection X0 ∩D0.

2. Let L be a finite separable extension of K of ramification index e. Let P0,D0,X0 be as in 1. Further
let Q0 be a smooth scheme over W , E0 ⊂ Q0 a smooth divisor over W , Y0 ⊂ Q0 a divisor flat over W
meeting E0 transversely and OhY0,η → OL an isomorphism over W . Then, after replacing X0 and Y0 by
étale neighborhoods of SpecOK and SpecOL, there exists a cartesian diagram

e ·E0 −−−−−→ Q0 ←−−−−− Y0 ←−−−−− SpecOLy f

y �
y �

y
D0 −−−−−→ P0 ←−−−−− X0 ←−−−−− SpecOK

(4.9)

such that the vertical arrows are finite flat.

Proof. 1. Let u1, . . . ,un ∈ OK be liftings of a transcendental basis ū1, . . . , ūn ∈ F over k such that F is a finite
separable extension of k(ū1, . . . , ūn) and π be a prime element of K . If we set An+1W = SpecW [u1, . . . ,un, t],
the morphism OK → An+1W defined by u1, . . . ,un,π ∈ OK is formally unramified. Hence, there exists an
étale neighborhood P0 → An+1W of the image ξ of the closed point of SpecOK , a regular divisor X0 ⊂ P0
and an isomorphism OhX0,ξ

→OK . It suffices to define D0 by t.

2. Take a function on P0 defining D0 and take an étale morphism P0 → An+1W = SpecW [u1, . . . ,un, t]
such that D0 ⊂ P0 is defined by t. Let π ∈ OK be the image of t.

Let s be a function on Q0 defining E0 and let π′ ∈ OL be the image of s. Define v ∈ O×L by π = vπ′e and
lift it to a unit ṽ on Q0. We define a morphism Q0→ An+1W satisfying t 7→ ṽse and lifting the composition
SpecOL → SpecOK → An+1W . By replacing Q0 by an étale neighborhood, we may lift Q0 → An+1W to
f : Q0→ P0 satisfying f ∗D0 = e ·E0.

We show that the middle and the right squares are cartesian after replacing Q0 and P0 by étale neigh-
borhoods. Since the residue fields F and E of K and L are the function field of the closed fibers D0,k and
E0,k , we may assume E0→D0 and hence Q0→ P0 are quasi-finite and hence flat. Further, we may assume
that Q0 → P0 is finite flat and the right square is cartesian. Then, the morphism Q0 → P0 is of degree
[L : K] and hence the middle square is cartesian. �

4.9. Assume that OK is essentially of finite type and flat over W =W (k) for a perfect field k of character-
istic p > 0 and let the notation be as in Lemma 4.8.2. We define a dilatation

P ∼ = (P0 ×W OK )∼→ P = P0 ×W OK

by blowing-up D0 ×W F = (D0 ×W OK )∩ (P0 ×W F) ⊂ P0 ×W OK and by removing the proper transforms of
D0 ×W OK and of P0 ×W F. We consider a cartesian diagram

Q0 ←−−−−− Q ←−−−−− Q∼ ←−−−−− SpecOLy �
y �

y �
y

P0 ←−−−−− P ←−−−−− P ∼ ←−−−−− SpecOK .

(4.10)

We consider OK as a log scheme with the log structure defined by the closed point. With respect to the
log structure of Q∼ defined by the pull-back of E0, the log scheme Q∼ is log smooth over OK . Let K ′ be
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a finite separable extension such that the ramification index eK ′/K is divisible by e = eL/K . Then, the log

product Q∼OK′ =Q
∼ ×logOK OK ′ is classically smooth over OK ′ and we have a cartesian diagram

Q∼OK ′ ←−−−−− Spec(OL ×
log
OK OK ′ )y �

y
P ∼OK′ ←−−−−− SpecOK ′ .

(4.11)

By the cartesian diagram (4.10), the conormal modules NSpecOL/Q and NSpecOL/Q∼ are the pull-backs
of NSpecOK /P = Ω1

P0/W
⊗OP0 OK and NSpecOK /P ∼ = Ω1

P0/W
(logD0) ⊗OP0 OK . We have an exact sequence

0→ND0/P0 →Ω1
P0/W
⊗OP0 OD0

→Ω1
D0/W

→ 0 and a commutative diagram

Ω1
D0/W

⊗OD0 F −−−−−→ Ω1
Fy y

Ω1
P0/W

(logD0)⊗OD0 F −−−−−→ Ω1
F(log)

where the horizontal arrows are canonical isomorphisms. Hence the diagram (4.10) and (4.11) define a
commutative diagram

Q
(r)
F̄
←−−−−− Q∼(r)

F̄y y
P
(r)
F̄
←−−−−− P

∼(r)
F̄

(4.12)

of the reduced closed fibers of dilatations. The bottom arrow is the linear mapping

P
(r)
F̄

=V(HomF(Ω
1
P0/W
⊗OD0F,m

r
K̄
/mr+

K̄
)) (4.13)

← P
∼(r)
F̄

=V(HomF(Ω
1
F(log),m

r
K̄
/mr+

K̄
))

of F̄-vector spaces and its image is V(HomF(Ω
1
F ,m

r
K̄
/mr+

K̄
)).

Assume that L is a Galois extension of K of Galois group G and let r = clog > 0 be the logarithmic
conductor of L over K . We fix a morphism L→ K̄ over K . By [10, Theorem 2], the right vertical arrow of

(4.12) restricted to the connected component Q
∼(r)◦
F̄

⊂ Q∼(r)
F̄

containing the point corresponding to L→ K̄
defines an extension

0 −−−−−→ Grlog −−−−−→ Q
∼(r)◦
F̄

−−−−−→ P
∼(r)
F̄

=V(HomF(Ω
1
F(log),m

r
K̄
/mr+

K̄
)) −−−−−→ 0 (4.14)

of an F̄-vector space by an Fp-vector space. By [11, Proposition 1.20], the class of the extension (4.14) defines
an element

ω ∈ Grlog ⊗Fp Ω
1
F(log)⊗F m

−r
K̄
/m−r+

K̄
. (4.15)

This is independent of the choice of the diagram (4.10) and is called the refined logarithmic conductor of L
over K . If G is cyclic and χ : G→ C

× is an injective abelian character of G and an injection Z/p→ C
× is

fixed, the image of ω in Ω1
F(log)⊗F m

−r
K̄
/m−r+

K̄
is the refined Swan conductor

rsw(χ) ∈Ω1
F(log)⊗F m

−r
K̄
/m−r+

K̄
. (4.16)

Lemma 4.10. Let L be a finite Galois extension of K of Galois group G. Let r be the logarithmic conductor of L
over K and ω ∈ Grlog ⊗Fp Ω

1
F(log)⊗F m

−r
K̄
/m−r+

K̄
be the refined logarithmic conductor.
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1. If the conductor of L over K is the same as the logarithmic conductor r of L over K , then the refined
logarithmic conductor ω is in the image of Grlog ⊗Fp Ω

1
F ⊗F m

−r
K̄
/m−r+

K̄
.

2. Let K ′ be an extension of henselian valuation fields of K of ramification index e and of residue field F′ .
Assume that the image ω′ ∈ Grlog ⊗Fp Ω

1
F′ (log)⊗F′ m

−r
K̄ ′
/m−r+

K̄ ′
of the refined logarithmic conductor ω of L

over K is non-trivial.

Then, the logarithmic conductor r ′ of a composition field L′ over K ′ equals er and ω′ is the image of the
refined logarithmic conductor of L′ over K ′ by the morphism induced by the injection Gal(L′/K ′)r

′

log→ Grlog.

Proof. 1. We may assume that the residue field F of K is of finite type over a perfect subfield k. Then, the
assertion follows from the commutative diagram (4.12).

2. By the functoriality of construction, the logarithmic ramification of L′ over K ′ is bounded by er+.
We may assume that the residue fields F and F′ of K and K ′ are of finite type over perfect subfields k ⊂ k′ .
Then, further by the functoriality of construction, we obtain a morphism Q

′(er)
F̄′
→Q

(r)
F̄

compatible with the
injection G′ = Gal(L′/K ′)→ G and a commutative diagram

0 −−−−−→ G′erlog −−−−−→ Q
′(er)◦
F̄′

−−−−−→ V(HomF′ (Ω
1
F′ (log),m

er
K̄ ′
/mer+

K̄ ′
)) −−−−−→ 0y y y

0 −−−−−→ Grlog −−−−−→ Q
(r)◦
F̄

−−−−−→ V(HomF(Ω
1
F(log),m

r
K̄
/mr+

K̄
)) −−−−−→ 0

(4.17)

of extensions. Since ω′ is the extension class of the pull-back of the lower line by the right vertical arrow,
the assumption ω′ , 0 means that the pull-back is non-trivial and G′erlog , 0. Hence er is the logarithmic
conductor of L′ over K ′ . The last assertion also follows from the diagram (4.17). �

Proposition 4.11. Assume that the residue field F of K is a function field of one variable over a perfect subfield
k of characteristic p > 0 and that the characteristic of K is 0. Let u ∈ OK be a lifting of an element ū ∈ F such
that F is a finite separable extension of k(ū).

Let L be a finite Galois extension of K of Galois group G. Assume that the ramification index is 1 and that
the residue field E is a purely inseparable extension of F. Let v ∈ OL be a lifting of a generator v̄ ∈ E = F(v̄) and
let ϕ ∈ OK [T ] be the minimal polynomial of v. Assume that ϕ ≡ T q − ū mod mK .

Let r be the logarithmic conductor of L over K . Assume that Gr is cyclic of order p and identify Gr = 〈σ〉
with Fp by fixing a generater σ . Then, r = ordLϕ′(v)(v − σ (v)) and the refined logarithmic conductor of L over
K is

dū
ϕ′(v)(v − σ (v))

∈Ω1
F ⊗F m

−r
K̄
/m−r+

K̄
.

Almost the same result as Proposition 4.11 is proved in [5, Theorem 5.9] in a similar way. Although we
assume that K is of mixed characteristic in Proposition 4.11, the same assertion is proved more easily in the
equal characteristic case.

Proof. By Lemma 4.4, the logarithmic conductor equals the conductor. The equality r = ordLϕ′(v)(v−σ (v))
follows then from Lemma 4.6. We use the notation in Lemma 4.8.2. Since D0 ⊂ P0 is smooth over W , there
exists a smooth morphism P0→ A1

W such that D0 is the pull-back of the 0-section SpecW → A1
W . By the

assumption that e = 1, the divisor E0 ⊂Q0 is also the pull-back of the 0-section SpecW →A1
W .

Let P1 = P0 ×A1
W
OK and Q1 = Q0 ×A1

W
OK be the fiber products with respect to the composition

OK → P0→A1
W . Then P1 and Q1 are also smooth over OK and we have a cartesian diagram

Q ←−−−−− Q1 ←−−−−− SpecOLy y y
P ←−−−−− P1 ←−−−−− SpecOK .
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By this and Lemma 4.10, the refined logarithmic Swan conductor is the image of the class of the extension

0→ Gr →Q
(r)◦
1,F̄ → P

(r)
1,F̄ =V(Ω1

F ⊗F m
−r
K̄
/m−r+

K̄
)→ 0 (4.18)

defined as the restriction of the Gr-torsor Q
(r)◦
F̄

over P
(r)
F̄

.
We compute the extension (4.18) by comparing it using Lemma 4.7 with that defined by the cartesian

diagram (4.2) in Lemma 4.6. Since the diagram

Q0 ×A1
W
k ←−−−−− SpecEy y

P0 ×A1
W
k ←−−−−− SpecF

is commutative and the horizontal arrows are the canonical morphisms of the generic points, we have a
commutative diagram

Speck[V ] =A1
k ←−−−−− Q0 ×A1

W
k

U 7→V q

y y
Speck[U ] =A1

k ←−−−−− P0 ×A1
W
k

where the horizontal arrows are étale. This induces a commutative diagram

SpecF[V ] =A1
F ←−−−−− Q1 ×OK F ←−−−−− SpecE

U 7→V q

y y y
SpecF[U ] =A1

F ←−−−−− P1 ×OK F ←−−−−− SpecF.

By comparing this with the cartesian diagram

SpecF[V ] =A1
F −−−−−→ A1

OK ←−−−−− SpecOL

U 7→V q

y U 7→ϕ(V )

y y
SpecF[U ] =A1

F −−−−−→ A1
OK ←−−−−− SpecOK

obtained by (4.2), we obtain a commutative diagram

A1
F̄
−−−−−→ Q

(r)
1,F̄y y

A1
F̄
−−−−−→ P

(r)
1,F̄

by Lemma 4.7. Since the left vertical arrow is as in Lemma 4.6.2 and the bottom isomorphism is defined
by U −u, the assertion follows. �

5. Coincidence of Swan conductors and of refined Swan conductors

We prove properties of Swab and rswab similar to Lemma 4.10.2 and Proposition 4.11.

Proposition 5.1. Let K be a complete discrete valuation field and let χ : Gal(L/K)→ C
× be a character for a

finite abelian extension L of K . Let K ′ over K be an extension of complete discrete valuation fields of ramification
index e = e(K ′/K) and let χ′ : Gal(LK ′/K ′) → C

× be the composition of χ with the canonical morphism
Gal(LK ′/K ′)→Gal(L/K).
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1. We have Swab
K ′χ
′ ≤ e · Swab

K χ.

2. Assume that r = Swab
K χ ≥ 1. Then, the following conditions are equivalent:

(1) We have Swab
K ′χ
′ = e · Swab

K χ.

(2) The image of rswabχ by the canonical morphism

m−rK /m
−r+1
K ⊗OK Ω

1
OK (log)→m−erK ′ /m

−er+1
K ′ ⊗OK′ Ω

1
OK ′ (log)

is non-zero.

If the equivalent conditions hold, rswabχ′ equals the image of rswabχ.

Proof. 1. Let r = Swab
K χ and π be a prime element of K . By [7, Proposition (6.3)], we have {χ′ ,1+πrmK ′ } = 0

and the assertion follows.
2. The condition (2) is equivalent to that {χ′ ,1 +πrT } , 0 in Br(L′) where L′ is the field of fractions

of the henselization of OK ′ [T ](π′) for a prime element π′ of K ′ . Hence, this is equivalent to (1). Further,
since the equality {χ,1+πrT } = λπ(T α,T β) is compatible with base change, rswabχ′ equals the image of
rswabχ. �

Proposition 5.2. Let K be a complete discrete valuation field such that the residue field F is of characteristic
p > 0 and [F : Fp] = p. Let χ : Gal(L/K)→ C

× be a faithful character for a cyclic extension L of K of degree
q = pe such that e(L/K) = 1 and that the residue field E of L is a purely inseparable extension of F.

Let v ∈ OL be a lifting of a generator v̄ ∈ E = F(v̄) and let ϕ ∈ OK [T ] be the minimal polynomial of v. Let
σ ∈Gal(L/K) be an element of order p and set ū = v̄q ∈ F and r = ordLϕ′(v)(v − σ (v)).

Then, we have Swabχ = r and

rswabχ =
dū

ϕ′(v)(v − σ (v))
∈m−rK /m

−r+1
K ⊗FΩ1

F ⊂m
−r
K /m

−r+1
K ⊗OK Ω

1
OK (log).

Proof. The assertion follows from [7, Proposition (6.3)] and [6, Theorem (3.6)]. �

5.3. We prove Theorems 1.3 and 1.5.
Let K be a complete discrete valuation field with residue field of characteristic p > 0. We may assume

that K is of characteristic 0. Let L be a finite cyclic extension of K and χ : Gal(L/K)→ C
× be a faithful

character. We may assume that L is not tamely ramified. We may further assume that the residue field F of
K is of finite type over a perfect subfield k, by a standard limit argument.

By Theorem 3.1, there exists an extension K ′ over K of complete discrete valuation fields satisfy-
ing the conditions (i), (ii)’ and (iii) in Theorem 3.1. Let e = e(K ′/K) be the ramification index and
χ′ : Gal(LK ′/K ′)→ C

× be the character induced by χ. Then, by the condition (iii), the images of rsw(χ)
and rswab(χ) are non-zero.

Hence by Proposition 5.1 and Lemma 4.10.2, we have Sw(χ′) = e · Sw(χ) and Swab(χ′) = e · Swab(χ).
Further rsw(χ′) and rswab(χ′) are the images of rsw(χ) and rswab(χ) respectively. Thus the equality
Sw(χ) = Swab(χ) is equivalent to Sw(χ′) = Swab(χ′). Further by the condition (iii) in Theorem 3.1, the
equality rsw(χ′) = rswab(χ′) is equivalent to rsw(χ) = rswab(χ). Thus, we may assume that the conditions
(i) and (ii)’ in Theorem 3.1 are satisfied. In this case, the assertion follows from Propositions 5.2 and 4.11.
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