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Isomorphisms between complements of
projective plane curves

Mattias Hemmig

Abstract. In this article, we study isomorphisms between complements of irreducible curves in the
projective plane P2, over an arbitrary algebraically closed field. Of particular interest are rational
unicuspidal curves. We prove that if there exists a line that intersects a unicuspidal curve C ⊂ P

2

only in its singular point, then any other curve whose complement is isomorphic to P
2 \C must

be projectively equivalent to C. This generalizes a result of H. Yoshihara who proved this result
over the complex numbers. Moreover, we study properties of multiplicity sequences of irreducible
curves that imply that any isomorphism between the complements of these curves extends to an
automorphism of P2. Using these results, we show that two irreducible curves of degree ≤ 7
have isomorphic complements if and only if they are projectively equivalent. Finally, we describe
new examples of irreducible projectively non-equivalent curves of degree 8 that have isomorphic
complements.
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Titre. Isomorphismes entre complémentaires de courbes projectives planes

Résumé. Dans cet article, nous étudions les isomorphismes entre complémentaires de courbes
irréductibles dans le plan projectif P2 sur un corps algébriquement clos quelconque. Les courbes
rationnelles unicuspidales sont d’un intérêt tout particulier. Nous montrons que s’il existe une
droite qui intersecte une courbe unicuspidale C ⊂ P

2 seulement en ses points singuliers, alors
toute autre courbe dont le complémentaire est isomorphe à P

2 \C doit être projectivement équiv-
alente à C. Il s’agit d’une généralisation d’un résultat de H. Yoshihara qui l’a démontré sur les
nombres complexes. De plus, nous étudions des propriétés des suites de multiplicités des courbes
irréductibles qui impliquent que tout isomorphisme entre complémentaires de ces courbes s’étend
en un automorphisme de P

2. Faisant usage de ces résultats, nous montrons que deux courbes
irréductibles de degré ≤ 7 ont des complémentaires isomorphes si et seulement si elles sont pro-
jectivement équivalentes. Enfin, nous décrivons de nouveaux exemples de courbes irréductibles de
degré 8 non projectivement équivalentes qui ont des complémentaires isomorphes.
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1. Introduction

Throughout this article, we fix an algebraically closed field k of arbitrary characteristic. Curves in P
2 will

always be assumed to be closed. Let C,D ⊂ P
2 be two irreducible curves. We then call C and D projectively

equivalent if there exists an automorphism of P2 that sends C to D . Our aim is to study isomorphisms
P
2 \C→ P

2 \D and properties of the curves C and D, given such an isomorphism. In 1984, H. Yoshihara
stated the following conjecture.

Conjecture 1.1 ([Yos84]). Let C,D ⊂ P
2 be irreducible curves and ϕ : P2\C→ P

2\D an isomorphism between
their complements. Then C and D are projectively equivalent.

A counterexample to Conjecture 1.1 was given in [Bla09]. The construction given there yields non-
isomorphic (and hence projectively non-equivalent) rational curves C0 and D0 of degree 39 that have
isomorphic complements. Both curves have a unique singular point p0 ∈ C0 and q0 ∈ D0 respectively, such
that C0 \ {p0} and D0 \ {q0} are isomorphic to open subsets of P1, each with 9 complement points. To see
that C0 and D0 are not isomorphic, it is shown that the two sets of 9 complement points, corresponding to
C0 and D0, are non-equivalent by the action of PGL2 = Aut(P1) on P

1.
It is a general fact that if there exists an isomorphism ϕ : P2 \ C → P

2 \ D that does not extend
to an automorphism of P2, then C and D are of the same degree (Lemma 2.1) and there exist points
p ∈ C and q ∈ D such that each C \ {p} and D \ {q} are isomorphic to complements of k ≥ 1 points in
P
1 (Proposition 2.6). Moreover, when the number k of complement points is ≥ 3, the isomorphism ϕ is

uniquely determined, up to a left-composition with an automorphism of P2 (Proposition 2.8).
The case of unicuspidal rational curves (i.e. when the number k of complement points is 1) is of

particular interest since the rigidity of Proposition 2.8 does not hold there. Indeed, by a result of P. Costa
([Cos12], [BFH16, Proposition A.3.]), there exists a family of irreducible rational unicuspidal curves (Cλ)λ∈k∗
in P

2 that are pairwise projectively non-equivalent, but all have isomorphic complements. The first main
result of this article shows that a unicuspidal curve C cannot be part of such a family if there exists a line
L that intersects C only in its singular point.

Theorem 1. Let C ⊂ P
2 be an irreducible curve and L ⊂ P

2 a line such that C\L 'A
1. Let ϕ : P2\C→ P

2\D
be an isomorphism, where D ⊂ P

2 is some curve. Then C and D are projectively equivalent.
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This theorem was already proven by H. Yoshihara [Yos84] over the field of complex numbers. His proof
relies on the theorem of Abhyankar-Moh-Suzuki ([AM75], [Suz74]) and also uses some analytic tools. We
give a purely algebraic proof that works over arbitrary algebraically closed fields.

The counterexamples to Conjecture 1.1 given by P. Costa are of degree 9 and it is thus natural to
ask what happens in lower degrees. This is the second main result of this article. For the definition of
multiplicity sequence used below, see Definition 4.2.

Theorem 2. Let C,D ⊂ P
2 be irreducible curves of degree ≤ 8 and ϕ : P2 \C→ P

2 \D an isomorphism that
does not extend to an automorphism of P2. Then C and D both are either:

(i) lines;

(ii) conics;

(iii) nodal cubics;

(iv) projectively equivalent rational unicuspidal curves;

(v) projectively equivalent curves of degree 6 with multiplicity sequence (3,2(7));

(vi) curves of degree 8 with multiplicity sequence (3(7)) such that

C \ Sing(C) 'D \ Sing(D) 'A
1 \ {0}.

In the proof, we study the diagrams of exceptional curves in the resolutions of the birational transfor-
mations of P2 that are induced by the isomorphisms between the complements, for all types of multiplicity
sequences that can occur. We also use Theorem 1 as an important tool.

As an immediate consequence of Theorem 2, we get the following corollary.

Corollary 1.2. Conjecture 1.1 holds for all irreducible curves of degree ≤ 7.

Finally, we show that Corollary 1.2 is sharp by giving a counterexample of degree 8. The construction
is based on a configuration of conics and is given in Section 4.E.

Theorem 3. There exist irreducible projectively non-equivalent curves C,D ⊂ P
2 of degree 8 with multiplicity

sequence (3(7)) that have isomorphic complements.

1.A. Acknowledgement

This article is the second chapter of the author’s PhD thesis. I am deeply grateful to my advisor Jérémy
Blanc for his excellent support and guidance throughout my PhD. I also thank Adrien Dubouloz and Jean-
Philippe Furter for many helpful comments and interesting discussions.

2. Preliminaries

The following lemma is a well known fact, but included for the sake of completeness.

Lemma 2.1. Let C,D ⊂ P
2 be irreducible curves such that there exists ϕ : P2 \C → P

2 \D an isomorphism.
Then deg(C) = deg(D).
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Proof. Consider the following exact sequence of groups

0→Z

α−→ Pic(P2)
β
−→ Pic(P2 \C)→ 0

where α sends 1 to the class of C in Pic(P2) and β is induced by the map that sends a curve E ⊂ P
2 to

the restriction E ∩ (P2 \C). The exactness at Pic(P2) follows from the irreducibility of C. Since the class
[C] equals deg(C)[L], where L is a line in P

2, we obtain that Pic(P2 \C) 'Z/ deg(C)Z. The isomorphism
ϕ : P2 \ C → P

2 \D induces an isomorphism on the corresponding Picard groups and hence the claim
follows. �

Remark 2.2. The claim of Lemma 2.1 is false for reducible curves. As an example, consider the curves
given by the equations yz = 0 and (x2−yz)z = 0. They have isomorphic complements via the automorphism
of P2 \ {z = 0} that sends [x : y : z] to [xz : x2 − yz : z2] (which is an involution). This example also shows
that it is easy to construct reducible counterexamples to Conjecture 1.1.

Definition 2.3. Let m ∈ Z. A birational morphism π : X → P
2 is called a m-tower resolution of a curve

C ⊂ P
2 if

(i) there exists a decomposition

π : X = Xn
πn−−→ . . .

π2−−→ X1
π1−−→ X0 = P

2

where πi is the blow-up of a point pi , for i = 1, . . . ,n, such that πi(pi+1) = pi , for i = 1, . . . ,n− 1;

(ii) the strict transform of C by π in X is isomorphic to P
1 and has self-intersection m.

We use the following notational conventions throughout this article. Given a m-tower resolution of a
curve C ⊂ P

2 as above and i ∈ {1, . . . ,n}, we denote by Ci the strict transform of C by π1 ◦ . . . ◦πi in Xi .
We usually denote by Ei the exceptional curve of πi , i.e. π

−1
i (pi) = Ei ⊂ Xi . By abuse of notation, we also

denote its strict transforms in Xi+1, . . . ,Xn by Ei .

We will frequently use the following fundamental lemma.

Lemma 2.4 ([Bla09]). Let C ⊂ P
2 be an irreducible curve and ϕ : P2 \C→ P

2 \D an isomorphism, for some
curve D ⊂ P

2. Then either ϕ extends to an automorphism of P2 or the induced birational map ϕ : P2d P
2 has

a minimal resolution
X

η

  
π

~~
P
2 ϕ //

P
2

where π and η are (−1)-tower resolutions of C and D respectively.

Given a resolution as in Lemma 2.4, where π has a decomposition

π : X = Xn
πn−−→ . . .

π2−−→ X1
π1−−→ X0 = P

2

with base-points p1, . . . ,pn and exceptional curves E1, . . . ,En, we make the following observations that are
used throughout this article.

(i) For any i ∈ {1, . . . ,n}, the curve E1 ∪ . . .∪Ei ⊂ Xi has simple normal crossings (SNC) and has a tree
structure, i.e. for any two curves from E1, . . . ,Ei there exists a unique chain of curves from E1, . . . ,Ei
connecting them.
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(ii) For any i ∈ {1, . . . ,n}, the curves E1, . . . ,Ei−1 ⊂ Xi have self-intersection ≤ −2 and Ei ⊂ Xi has self-
intersection −1.

(iii) The contracted locus of η is E1∪ . . .En−1∪Cn ⊂ X and is also a SNC-curve that has a tree structure.
Moreover, En is the strict transform of D by η.

Remark 2.5. We take the notations of Lemma 2.4 and suppose that ϕ does not extend to an automorphism
of P2. We then have a (−1)-tower resolution π = π1 ◦ . . . ◦πn of C with exceptional curves E1, . . . ,En and
a (−1)-tower resolution η = η1 ◦ . . . ◦ ηn of D with exceptional curves F1, . . . ,Fn. We then have the equality
{E1, . . . ,En−1} = {F1, . . . ,Fn−1} and En is the strict transform of D by η and Fn is the strict transform of C
by π. One may ask if such a resolution is always symmetric in the sense that

Ei ·Ej = Fi ·Fj and Ei ·Fn = Fi ·En

for all i, j = 1, . . . ,n. This is in general not the case. For instance, there exists a non-symmetric resolution
of an automorphism of the complement of a line with the following configuration of curves, where the
unlabeled curves are (−2)-curves.

−3

−3−1

−1

Starting with either of the (−1)-curves in this configuration, one can successively contract all curves except
the other (−1)-curve, whose image is a line in P

2.
Similarly, one can find non-symmetric resolutions of automorphisms of the complement of a conic.

However, no example of a non-symmetric resolution of an isomorphism between complements of irreducible
singular curves is known to the author.

Proposition 2.6. Let ϕ : P2 \ C ↪→ P
2 be an open embedding, where C is an irreducible curve and let us

consider D = P
2 \ im(ϕ). If ϕ does not extend to an automorphism of P2, then one of the following holds.

(i) C and D both are lines.

(ii) C and D both are conics.

(iii) C and D each have a unique proper singular point p and q respectively, such that C \ {p} and D \ {q} each
are isomorphic to open subsets of P1, with the same number of complement points.

Proof. By Lemma 2.4 the birational map ϕ has a minimal resolution

X
η

  
π

~~
P
2 ϕ //

P
2

where π and η are (−1)-tower resolutions of C and D respectively. Since C and D have the same degree
the cases (i) and (ii) are clear and we assume that C (and thus also D) has degree ≥ 3. The curves C and
D are both rational since they have a (−1)-tower resolution and hence they have a singular point p and q
respectively, by the genus-degree formula for plane curves. Denote by Ĉ the strict transform of C by π, by
D̂ the strict transform of D by η, and by E be the union of irreducible curves in X contracted by both π
and η. Then Ĉ ∪ E is the exceptional locus of η and its irreducible components form a tree, since η is a
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(−1)-tower resolution. Likewise, D̂ ∪E is the exceptional locus of π and is a tree of irreducible curves. We
thus have isomorphisms C \ {p} ' Ĉ \ (E ∪ D̂) and D \ {q} ' D̂ \ (E ∪ Ĉ) induced by π and η respectively.
Since Ĉ and D̂ are both isomorphic to P

1 and they both intersect E transversely it follows that C \ {p} and
D \ {q} are isomorphic to open subsets of P1. The number of intersection points between Ĉ and E ∪ D̂ is
given by

#(Ĉ ∩E) + #(Ĉ ∩ D̂)−#(Ĉ ∩E ∩ D̂).

For D̂ the same formula holds with Ĉ and D̂ exchanged. It thus suffices to show that #(Ĉ ∩E) = #(D̂ ∩E).
Since the graphs of curves of Ĉ∪E and D̂∪E define a tree, it follows that #(Ĉ∩E) and #(D̂∩E) respectively
is the number of connected components of E. �

As a direct consequence, we get the following observation, which we can already find in [Yos84] and
[Bla09].

Corollary 2.7. Let C,D ⊂ P
2 be irreducible closed curves and ϕ : P2 \C → P

2 \D an isomorphism. If C is
not rational or has more than one proper singular point, then ϕ extends to an automorphism of P2.

Proposition 2.8. Let C ⊂ P
2 be an irreducible curve and ϕ : P2 \C ↪→ P

2 an open embedding that does not
extend to an automorphism of P2. Let p ∈ C be a point such that C \ {p} is isomorphic to P1 \ {p1, . . . ,pk}, where
p1, . . . ,pk ∈ P1 are distinct points. If k ≥ 3, then ϕ is uniquely determined up to a left-composition with an
automorphism of P2.

Proof. By Lemma 2.4 there exists a (−1)-tower resolution π : X = Xn
πn−−→ . . .

π2−−→ X1
π1−−→ P

2 with exceptional
curves E1, . . . ,En and a (−1)-tower resolution η : X → P

2 of some curve D ⊂ P
2 such that ϕ ◦π = η. We

denote by E = E1 ∪ . . .∪ En−1 the union of irreducible curves in X that are contracted by both π and η.
Moreover, we denote by Ĉ = Cn the strict transform of C by π in X, and by D̂ = En the strict transform of
D by η in X. Since π and η are (−1)-tower resolutions, we know that E∪Ĉ and E∪D̂ have a tree structure
such that Ĉ and D̂ each intersect E in 1 or 2 points. It also follows that k = #Ĉ ∩ (E ∪ D̂).

Let us assume first that k ≥ 4. Then it follows that Ĉ and D̂ intersect in at least two points. This implies
that the image of Ĉ after contracting the (−1)-curve D̂ is singular. Hence π is the minimal resolution of
singularities of C, i.e. the blow-up of all the singular points of C. By the same argument η is the minimal
resolution of singularities of D . Thus the base-points of π and η are completely determined by C and D
respectively. But this means that for any other birational map ψ : P2d P

2 that restricts to an isomorphism
P
2 \C→ P

2 \D the composition ψ ◦ϕ−1 is an automorphism of P2. Thus the claim follows in this case.
We now assume that k = 3. Then Ĉ and D̂ intersect in 1,2, or 3 points. Assume first that Ĉ and D̂

intersect in 2 or 3 points. Then the image of Ĉ after contracting D̂ is singular, so π is the minimal resolution
of singularities of C, and analogously η is the minimal resolution of singularities of D . Then for the same
reason as before, any other isomorphism P

2 \C → P
2 \D is just ϕ composed with an automorphism of

P
2.
Finally, we assume that k = 3 and that Ĉ and D̂ intersect in only one point. We can assume that this

intersection is transversal, otherwise, if they were tangent, π and η would again be the minimal resolutions
of the singularities of C and D respectively and we could argue as before. The curve D̂ intersects E in two
distinct components, say Ei and Ej . If we contract the (−1)-curve D̂, there is a triple intersection between
the images of Ĉ, Ei and Ej . But this means that π is the minimal resolution of C such that the pull-back
π∗(C) is a SNC-divisor on X. Hence the base-points of π are again completely determined by the curve
C. Likewise, the base-points of η are determined by D . We then argue as before that any isomorphism
P
2 \C→ P

2 \D is the composition of ϕ with an automorphism of P2. �

Corollary 2.9. Let C ⊂ P
2 be an irreducible curve such that there exists no point p ∈ C such that C \ {p} is

isomorphic to A1 or A1 \ {0}. Then there exists at most one curve D ⊂ P
2, up to projective equivalence, such that

P
2 \C and P2 \D are isomorphic and such that D is not projectively equivalent to C.



M. Hemmig, Isomorphisms between complements of projective plane curves 7M. Hemmig, Isomorphisms between complements of projective plane curves 7

Proof. This is a direct consequence of Proposition 2.8. �

Remark 2.10. P. Costa’s example [Cos12] shows that Corollary 2.9 does in general not hold when there
exists a point p such that C \ {p} ' A

1. On the other hand, there is no known example of pairwise
projectively non-equivalent curves C,D,E ⊂ P

2 such that all 3 curves have isomorphic complements and
there exists a point p ∈ C such that C \ {p} 'A

1 \ {0}.

3. Unicuspidal curves with a very tangent line

3.A. Very tangent lines

Let C ⊂ P
2 be an irreducible curve. A singular point p ∈ C is called a cusp if the preimage of p under

the normalization Ĉ → C consists of only one point. A curve is called unicuspidal if it has one cusp and
is smooth at all other points. We call a line L ⊂ P

2 very tangent to C if there exists a point q such that
(C · L)q = deg(C). By Bézout’s theorem this means that L intersects C in only one point. A line that is
very tangent to C is also tangent in the usual sense, except in the special case where C is a line and the
intersection is transversal.

Lemma 3.1. Let C ⊂ P
2 be an irreducible curve and L ⊂ P

2 a line. Then C \ L 'A
1 if and only if L is very

tangent to C and one of the following holds:

(i) C is a line.

(ii) C is a conic.

(iii) C is rational and unicuspidal and L passes through the singular point of C.

Proof. Assume that L is very tangent to C. If C is a line or a conic, then C is isomorphic to P
1 and thus

C \ L ' A
1. We thus assume that C is rational and unicuspidal with singular point p, where L passes

through p. It follows that C has a normalization η : P1 → C such that η−1(p) consists of only one point
and thus C \ {p} ' P

1 \ η−1(p) 'A
1. Since L is very tangent to C, the intersection C ∩ L consists only of

the point p. It follows that C \L ' C \ {p} 'A
1.

To prove the converse, assume that C \ L ' A
1. It follows that C is rational and Sing(C) ⊂ C ∩ L.

We consider the normalization η : P1 → C and obtain C \ L ⊂ C \ Sing(C) ' P
1 \ η−1(Sing(C)). Since

C \ L ' A
1, it follows that η−1(Sing(C)) consists of at most one point. If η−1(Sing(C)) is empty, then

C ' P
1 is smooth and thus either a line or a conic, by the genus-degree formula. Since C \ L ' A

1, it
follows that L intersects C in only one point and is thus very tangent to C. If η−1(Sing(C)) is not empty,
then it contains exactly one point and thus C is unicuspidal and C \L = C \Sing(C). Since C∩L = Sing(C)
consists of only one point, the line L is very tangent to C. �

If C is unicuspidal and rational and has a very tangent line L through the singular point, then C\L 'A
1.

In other words, C is equivalent to the closure of the image of a closed embedding A
1 ↪→A

2 ' P
2 \L. Note

that not all rational unicuspidal curves admit a very tangent line through the singular point. For instance,
there exists such a unicuspidal quintic curve that is studied in detail in Section 4.B.

We call C \ L ⊂ P
2 \ L ' A

2 rectifiable if there exists an automorphism θ ∈ Aut(P2 \ L) such that
θ(C) = L′ \ L for some line L′ ⊂ P

2 that is distinct from L. Suppose that there exists an open embedding
ϕ : P2\C ↪→ P

2 that does not extend to an automorphism of P2, then the induced birational map P
2d P

2

contracts the curve C to a point. It turns out that C \ L ⊂ P
2 \ L is then rectifiable. This is a consequence

of the following proposition, proven in [BFH16, Proposition 3.16]. It also follows from the work of [KM83]
and [Gan85] (see [BFH16, Remark 2.30]).

Proposition 3.2. Let C ⊂A
2 = P

2 \ L∞ be a closed curve, isomorphic to A1, and denote by C the closure of C
in P

2. Then the following are equivalent:
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(i) There exists an automorphism of A2 that sends C to a line.

(ii) There exists a birational transformation of P2 that sends C to a point.

We call a curve satisfying condition (ii) of Proposition 3.2 Cremona-contractible. Note that condition (i)
is always satisfied if the characteristic of k is 0 by the Abhyankar-Moh-Suzuki theorem ([AM75], [Suz74]),
but in general not in positive characteristic. It follows from Proposition 3.2 that Theorem 1 holds if
C \L ⊂ P

2 \L is not rectifiable.

3.B. Automorphisms of A2 and de Jonquières maps

Definition 3.3. Let L ⊂ P
2 be a line and p ∈ L. We denote by Jon(P2,L,p) the group of automorphisms

of P2 \L that preserve the pencil of lines through p. We call an element in Jon(P2,L,p) a de Jonquières map
with respect to L and p.

We recall the following standard terminology, for instance as used in [Alb02].

Definition 3.4. Let X be a surface and let p ∈ X be a point. Let E be the exceptional curve of the blow-up
of p. We then say that a point q ∈ E lies in the first neighborhood of p. For k > 1, we say that a point lies in
the k-th neighborhood of p if it lies in the first neighborhood of some point in the (k − 1)-th neighborhood
of p. We say that a point is infinitely near to p if it lies in the k-th neighborhood of p, for some k ≥ 1. We
call a point q proximate to p (denoted q � p) if q lies on the strict transform of the exceptional curve of the
blow-up of p. We sometimes call the points of X proper to distinguish them from infinitely near points.

Throughout this section, we fix a line L ⊂ P
2 and a point p ∈ L. Moreover, we fix projective coordinates

[x : y : z] on P
2 and denote the lines

Lx : x = 0 Ly : y = 0 Lz : z = 0.

Lemma 3.5. Let j ∈ Jon(P2,L,p) \ Aut(P2) be of degree d. Then the minimal resolution of j has 2d − 1
base-points with exceptional curves E1, . . . ,E2d−1 as in the following configuration

E2d−1 E2d−2 Ed+1

L E2 Ed−1
Ed

E1[−d]

where the self-intersection numbers are −1 for thick lines, −2 for thin lines, or otherwise are indicated in square
brackets.

Proof. The map j is an automorphism of P2 \ L that does not extend to an automorphism of P2, thus

by Lemma 2.4 there exists a (−1)-tower resolution π : X = Xn
πn−−→ . . .

π2−−→ X1
π1−−→ X0 = P

2 of L with
exceptional curves E1, . . . ,En and a (−1)-tower resolution η : X→ P

2 of L such that j ◦π = η. The unique
proper base-point of j is p, which is thus the base-point of the first blow-up with exceptional curve E1.
Since π is a (−1)-tower resolution of L, the next base-point is the intersection point between E1 and the
strict transform of L. After this blow-up, the strict transform of L has self-intersection −1 and thus there is
no more base-point on this curve. We observe that E1 is the last curve contracted by η, since j preserves
the pencil of lines through p. The next base-point is thus either the intersection point q between E1 and
E2 or a point on E2 \ (E1 ∪ L). Let m ≥ 0 be the number of base-points proximate to q. After blowing up
these m points we have the following resolution.

L E2 Em E1[−m]
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The next base-point then lies on Em \ E1. It cannot be the intersection point with Em−1, because then
Em−1 would have self-intersection < −2 in X. But η first contracts L and then the curves E2, . . . ,Em−2.
After these contractions the self-intersection of the image of Em−1 must be −1. Hence the next base-point
lies on Em \ (E1 ∪ Em−1). We observe moreover that after η contracts L,E2, . . . ,Em the image of E1 has
self-intersection −m + 1. Thus there is a chain of (−2)-curves of length m − 1 attached to Em, which are
obtained by successively blowing up points that lie on the last exceptional curve but not on the intersection
with another one. Since E1 is the last curve contracted by η, it follows that E2m−1 is the last exceptional
curve of π.

Let us now determine the degree of j . For this we look at the degree of the image of a line L′ that does
not pass through the base-points of j . The strict transform of L′ is drawn in the diagram on the left below.

E2m−2 Em+1

L E2 Em−1

Em

E1

L′[1]

E2m−2 Em+1 E1[−m]

L′[m+1]

E1(m−1)

L′[2m− 1]

After the curves L,E2, . . . ,Em are contracted the image of L′ has self-intersection m + 1 and L′ intersects
Em+1 and E1, as shown in the diagram in the middle. Next, the curves Em+1, . . . ,E2m−2 are contracted and
the image of L has self-intersection 2m− 1 and L intersects E1 with multiplicity (m− 1). Thus after E1 is
contracted the self-intersection of the image of L is 2m− 1+ (m− 1)2 =m2 and hence the degree d of j is
equal to m. �

We often identify P
2 \ Lz with the affine plane A

2 with coordinates x,y, via the open embedding
(x,y) 7→ [x : y : 1]. We call j ∈ Aut(A2) an affine de Jonquières map if it is the restriction of a de Jonquières
map with respect to Lz and [0 : 1 : 0]. Affine de Jonquières maps then preserve the fibration (x,y) 7→ x.

Lemma 3.6. Let j ∈ Aut(A2) be an affine de Jonquières map. Then j is of the form

(x,y) 7→ (ax+ b,cy + f (x))

where a,c ∈ k∗, b ∈ k, and f ∈ k[x].

Proof. The map j sends (x,y) to (a(x,y),b(x,y)), where a,b ∈ k[x,y]. Since j is an automorphism of A2,
the polynomials a and b are irreducible. Moreover, j preserves the fibration (x,y) 7→ x, thus a is a scalar
multiple of some element x−λ with λ ∈ k. We can then apply an affine coordinate change and may assume
that a = x. But then j induces a k[x]-automorphism of the polynomial ring k[x][y], and thus b is of degree
1 in the variable y. Moreover, the coefficient of y is an element in k[x]∗ = k∗ und thus the claim follows. �

We will use the well known structure theorem of Jung and van der Kulk in the sequel. We denote by
Aff(P2,L) the affine group with respect to L, which consists of the automorphisms of P2 that preserve L.
Moreover, we denote by B(P2,L,p) the intersection Aff(P2,L)∩ Jon(P2,L,p).

Theorem 3.7 ([Jun42], [vdK53]). The group Aut(P2 \ L) is generated by the subgroups Aff(P2,L) and
Jon(P2,L,p). Moreover, Aut(P2 \L) is a free product

Aff(P2,L) ∗B(P2,L,p) Jon(P
2,L,p),

amalgamated over the intersection of these two subgroups.

Remark 3.8. There exist many proofs of Theorem 3.7. The proof in [Lam02] uses blow-ups and contrac-
tions of the line L∞ = P

2 \A2, in the spirit of the methods used in this article. For more proofs with a
similar strategy see [BD11] and [BS15].
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Lemma 3.9. Let θ ∈ Aut(P2 \L) with

θ = a ◦ jn ◦ an ◦ . . . ◦ j1 ◦ a1,

where a1, a ∈
(
Aff(P2,L) \ Jon(P2,L,p)

)
∪ {id}, ai ∈ Aff(P2,L) \ Jon(P2,L,p) for i = 2, . . . ,n and where

ji ∈ Jon(P2,L,p) \Aff(P2,L) for i = 1, . . . ,n. Then θ has unique proper base-point a−11 (p). Moreover, the degree
of θ is

∏n
i=1deg(ji).

Proof. The map j1 has unique proper base-point p, and thus j1◦a1 has unique proper base-point a−11 (p) and
(j1◦a1)−1 has unique proper base-point p. We proceed by induction and assume that jn−1◦an−1◦. . .◦j1◦a1
has unique proper base-point a−11 (p) and its inverse has unique proper base-point p. Moreover, the unique
proper base-point of (jn ◦ an) is a−1n (p), which is different from p since an < Jon(P2,L,p). It then follows
that the composition jn ◦ an ◦ . . . ◦ j1 ◦ a1 again has a−11 (p) as its unique proper base-point. This remains
true after a left-composition with a ∈ Aff(P2,L).

To compute the degree of θ, we observe that deg(ji ◦ai) = deg(ji) for all i, since the maps ai are affine
and hence have degree 1. We use again that (jn−1 ◦ an−1 ◦ . . . ◦ j1 ◦ a1)−1 and jn ◦ an have no common
base-point and obtain the result by induction by using [Alb02, Proposition 4.2.1]. �

Definition 3.10. Let X be a surface and let C ⊂ X be a curve. For a point p ∈ C, let OX,p be the local ring
at p, with unique maximal ideal mp. Let moreover f ∈ OX,p be a local equation of C at p. We then define
the multiplicity mp(C) of C at p to be the largest integer m such that f ∈mm

p .
Let Λ be a linear system of curves on P

2 and let p be a proper or infinitely near point of P2. We then
define the multiplicity of Λ at p to be the smallest multiplicity mp(C) among all curves C in Λ.

For a birational map θ : P2 d P
2, we denote by Λθ the linear system of curves on P

2, given by the
preimage of θ of the linear system of lines on P

2. For a proper or infinitely near point p of P2, we define
the multiplicity mp(θ) of θ at p to be the multiplicity of the linear system Λθ at p.

For a more detailed account of these notions, we refer to [Alb02].

We will use the following well known formula in the sequel.

Lemma 3.11. Let θ : P2d P
2 be a birational map and C ⊂ P

2 a curve that is not contracted by θ. Then the
following formula holds:

degθ(C) = deg(θ)deg(C)−
∑
p

mp(θ)mp(C)

where the sum ranges over all proper and infinitely near points of P2, but only finitely many summands are
different from 0.

Proof. We consider a minimal resolution

X
σ2

  

σ1

~~
P
2 θ //

P
2

where σ1 and σ2 are compositions of blow-ups. We denote by p1, . . . ,pn the base-points of σ1 and by
E1, . . . ,En the total transforms of their exceptional divisors in X. Let moreover L ⊂ P

2 be a line that does
not pass through the base-points of θ and θ−1. We then have

Pic(X) 'Zσ ∗1(L)⊕ZE1 ⊕ . . .⊕ZEn
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with the intersection-numbers Ei ·Ej = −δij and Ei ·σ ∗1(L) = 0 for i, j = 1, . . . ,n and σ ∗1(L)
2 = 1. We find for

the strict transform Ĉ of C by σ1 and the total transform of L by σ2 the following divisor formulas:

Ĉ =deg(C)σ ∗1(L)−
n∑
i=1

mpi (C)Ei ,

σ ∗2(L) =deg(θ)σ ∗1(L)−
n∑
i=1

mpi (θ)Ei .

The degree of θ(C) is equal to the intersection number θ(C) · L. Using the projection formula, we then
obtain

deg(θ(C)) = θ(C) ·L = Ĉ · σ ∗2(L) = deg(C)deg(θ)−
n∑
i=1

mpi (C)mpi (θ).

�

Lemma 3.12. Let θ ∈ Aut(P2 \Lx)\Aut(P2) and let C ⊂ P
2 be a curve different from Lx. Then the following

holds.

(i) θ has a unique proper base-point and contracts Lx to a point p ∈ Lx.

(ii) deg(θ(C)) ≤ deg(θ)deg(C), and equality holds if and only if p < C.

(iii) If L is a line and θ ∈ Jon(P2,Lx, [0 : 1 : 0]), then θ−1(L) is a line if and only if [0 : 1 : 0] ∈ L.

Proof. To prove (i), consider the induced birational map θ : P2 d P
2. Since θ does not extend to an

automorphism of P2, it follows from Lemma 2.4 that θ has a minimal resolution

X
σ2

  

σ1

~~
P
2 θ //

P
2

where σ1 and σ2 are (−1)-tower resolutions of Lx. In particular, θ has a unique proper base-point. The
strict transform of Lx in X by σ1 is the exceptional curve of the last blow-up in the tower of σ2. This
means that θ contracts Lx to a point of Lx, which is moreover the unique proper base-point of θ−1. The
statements (ii) and (iii) follow directly from the formula

degθ(C) = deg(θ)deg(C)−
∑
q

mq(θ)mq(C)

of Lemma 3.11, since θ has a unique proper base-point (which is [0 : 1 : 0] if θ ∈ Jon(P2,Lx, [0 : 1 : 0])). �

3.C. Isomorphisms between complements of unicuspidal curves

Lemma 3.13. Let C ⊂ P
2 be a unicuspidal curve such that

Θ = {θ ∈ Aut(P2 \Lx) | θ(C) = Lz}

is non-empty. Then for any θ ∈Θ and any minimal resolution

X
σ2

  

σ1

~~
P
2 θ //

P
2

the following are equivalent.
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(i) degθ ≤ degθ′ for all θ′ ∈Θ.

(ii) The unique proper base-point of θ−1 is different from [0 : 1 : 0].

(iii) deg(θ) = deg(C).

(iv) The strict transform of C by σ1 intersects the strict transform of Lx by σ2 in X.

(v) The strict transform of C by σ1 in X has self-intersection 1.

Proof. Let θ ∈ Θ. We first prove (i) ⇒ (ii) and thus assume that θ has minimal degree in Θ. We use
Theorem 3.7 to write

θ−1 = an+1 ◦ jn ◦ an ◦ . . . ◦ j1 ◦ a1,

where a1, an+1 ∈ (Aff(P2,Lx) \ Jon(P2,Lx, [0 : 1 : 0])) ∪ {id}, ai ∈ Aff(P2,Lx) \ Jon(P2,Lx, [0 : 1 : 0]) for
i = 2, . . . ,n, and ji ∈ Jon(P2,Lx, [0 : 1 : 0]) \Aff(P2,Lx) for i = 1, . . . ,n. If (j1 ◦ a1)(Lz) is a line, we can
find a′1 ∈ Aff(P2,Lx) such that a′1(Lz) = (j1 ◦ a1)(Lz). But then θ′ B (an+1 ◦ jn ◦ an ◦ . . . ◦ j2 ◦ a2 ◦ a′1)−1
lies in Θ and deg(θ′) < deg(θ) by Lemma 3.9, which contradicts the minimality of the degree of θ in
Θ. It follows moreover from Lemma 3.12 that (j1 ◦ a1)(Lz) is a line if and only if [0 : 1 : 0] ∈ a1(Lz), i.e.
a−11 ([0 : 1 : 0]) ∈ Lz. Thus by the minimality of the degree of θ, we have that a−11 ([0 : 1 : 0]) < Lz. Since
a−11 ([0 : 1 : 0]) is the unique proper base-point of θ−1, it follows that it is different from [0 : 1 : 0] and hence
(ii) is proved.

Assume now that the unique proper base-point of θ−1 is different from [0 : 1 : 0]. From Lemma 3.11
we obtain the formula

deg(θ) = deg(θ−1) = deg(C) +
∑
p

mp(θ
−1)mp(Lz).

Since the unique proper base-point of θ−1 lies on Lx and is different from [0 : 1 : 0], we then have
deg(θ) = deg(C). This shows (ii) ⇒ (iii). Moreover, if we assume that deg(θ) = deg(C), then θ has
minimal degree in Θ. Thus the implication (iii)⇒ (i) is also proved.

Finally, we show that (iv) and (v) are both equivalent to (ii). We consider a minimal resolution of the
induced birational map by θ:

X
σ2

  

σ1

~~
P
2 θ //

P
2.

Since θ ∈ Aut(P2 \ Lx) \Aut(P2) both σ1 and σ2 are (−1)-tower resolutions of Lx. We denote by L̂x the
strict transform of Lx by σ2 in X and by Ĉ the strict transform of C by σ1 (which is also the strict transform
L̂z of Lz by σ2). Suppose that the unique proper base-point of θ−1 is different from [0 : 1 : 0]. Then L̂x
intersects L̂z = Ĉ and Ĉ has self-intersection 1. This shows that (ii) implies (iv) and (v). On the other
hand, if we blow up the point [0 : 1 : 0], then the strict transforms of Lx and Lz do not intersect and have
self-intersection < 1. Thus the implications (iv)⇒ (ii) and (v)⇒ (ii) also follow. �

Proposition 3.14. Let ϕ : P2 \ C → P
2 \D be an isomorphism, where C,D ⊂ P

2 are curves such that C is
rational and unicuspidal with singular point [0 : 1 : 0] and has very tangent line Lx. Let θC be an automorphism
of P2 \Lx such that θC(C) = Lz and suppose that θC is of minimal degree with this property.

Then D is also rational and unicuspidal and, after a suitable change of coordinates, has singular point
[0 : 1 : 0] and very tangent line Lx. Moreover, there exists an automorphism θD of P2 \Lx such that θD(D) = Lz
and ψ ∈ Aut(P2 \Lz) that preserves the line Lx such that the following diagram commutes:

P
2

θC
��

ϕ //
P
2

θD
��

P
2 ψ //

P
2.
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Furthermore, θD can be chosen such that in the chart z = 1, the map ψ has the form

(x,y) 7→
(
x,y + x2f (x)

)
for some polynomial f ∈ k[x].

Proof. The map θC induces a birational map P
2 d P

2. It does not extend to an automorphism of P2

since C is singular but its image by θC is a line. Thus θC contracts Lx and no other curves. We consider a
minimal resolution of θC :

X
σ2

  

σ1

~~
P
2 θC //

P
2.

By Lemma 2.4, the morphisms σ1 and σ2 are (−1)-tower resolutions of Lx. In particular, θC has a unique
proper base-point. Since the image of C is a line, the unique proper base-point of θC is the singular point
[0 : 1 : 0] and the strict transform of C by σ1 in X is smooth. Hence σ1 factors through the minimal
SNC-resolution of C. Moreover, by the minimality of the degree of θC , it follows from Lemma 3.13 that the
strict transform of C by σ1 intersects the strict transform of Lx by σ2 in X, i.e. the last exceptional curve of
σ1. It follows that the strict transform of C by σ1 in X has self-intersection 1 by Lemma 3.13. In fact, σ1
is the minimal 1-tower resolution of C that factors through the SNC-resolution of C.

We now consider the induced birational map ϕ : P2 d P
2. We assume that ϕ does not extend to

an automorphism of P2, otherwise the proof is finished. Thus by Lemma 2.4 the map ϕ has a minimal
resolution

Y
η

  
π

~~
P
2 ϕ //

P
2

where π and η are (−1)-tower resolutions of C and D respectively. Hence ϕ has a unique proper base-
point, which is the singular point [0 : 1 : 0] of C. Since C is unicuspidal, it follows that after each blow-up
in the resolution π, the strict transform of C and the exceptional curve intersect in a unique point. Since
σ1 is the minimal 1-tower resolution of C that factors through the SNC-resoltion, it follows that π factors
through σ1. We then get the following commutative diagram:

Y

~~ η

��

X
σ2

~~

σ1

  
P
2 oo θC

P
2 ϕ //

P
2.

The morphism Y → X is given by a tower of blow-ups. For i ∈ {0, . . . ,n}, we denote the intermediate
surfaces by Xi , where X0 = X and Xn = Y and Xi is obtained after the i-th blow-up in this tower. The
corresponding exceptional curves, as well as their strict transforms, are denoted by Ei . Moreover, we denote
by Ci the strict transform of C in Xi . In the surface X = X0, the curves Lx and C0 intersect transversely
in a unique point and have self-intersections −1 and 1 respectively. Since π is a (−1)-tower resolution of
C, the base-point in X0 lies on the previous exceptional curve, which is the strict transform of Lx by σ2.
Moreover, since the self-intersection of C0 is 1, the base-point in X0 also lies on C0, otherwise Cn would
have self-intersection 1 in Y . Thus the base-point of π in X0 is the intersection point between C0 and
Lx. We argue similarly that the base-point in X1 is the intersection point between C1 and E1. In X2 we
then have the minimal (−1)-resolution of C and thus have the following configuration of curves, where the
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dashed line represents the remaining exceptional curves, the unlabeled curves have self-intersection −2,
and the thick lines represent (−1)-curves:

Lx E1 E2 C2

Since C2 has self-intersection −1, none of the subsequent base-points of π lie on C2, respectively its strict
transforms, otherwise Cn would have self-intersection < −1. Since the curves E1 and C2 are not connected
in X2 via the other exceptional curves (except E2), it follows that π has another base-point in X2, which
must lie on E2. This base-point is either the intersection point p between E1 and E2 or lies on E2\(E1∪C2).
Let k ≥ 0 denote the number of base-points proximate to p. After blowing up these points, we obtain the
following configuration in Xk+2:

Lx E1[−k − 2] Ek+2 Ek+1 E2 Ck+2

Again, we see that E1 is not connected to Ek+1 ∪ . . . ∪ E2 ∪ Ck+2 and thus π has a base-point on Ek+2,
which now lies on Ek+2 \ E1. This base-point is not the intersection point between Ek+2 and Ek+1 since
the morphism η first contracts Cn and then the chain of curves E2, . . . ,Ek . This implies that Ek+1 is a
(−2)-curve in X. Thus the next base-point lies on Ek+2 \ (E1 ∪Ek+1).

We observe that η first contracts the chain of curves Cn,E2, . . . ,Ek+2. After contracting this chain, the
image of E1 has self-intersection −(k + 1). This implies that there is a chain of k (−2)-curves attached
to Ek+2, which then are contracted by η, so the image of E1 has self-intersection −1 after this chain is
contracted. It follows that we have the following configuration in X2k+3:

Lx E1[−k − 2] Ek+2 Ek+1 E2 C2k+3

Ek+3 E2k+2 E2k+3

We now argue that this resolution is in fact π itself. Suppose it were not, then there would be another
base-point on E2k+3 \ E2k+2, and thus E2k+3 is also contracted by η. We observe that η first contracts
Cn, followed by E2, . . . ,Ek+2, and then Ek+3, . . . ,E2k+2. After these contractions, the image of E1 has self-
intersection −1 and is contracted next. After that, Lx and all the exceptional curves of σ1 are contracted.
The next contracted curve must then be the image of E2k+3. But we observe that the image of E2k+3 after
these contractions is singular. This follows from the fact that C is singular and from the symmetry of the
configuration in X2k+3. But then E2k+3 cannot be contracted by η and we have a contradiction. It follows
that E2k+3 is the last exceptional curve in the (−1)-tower resolution π.

We observe moreover, also by the symmetry of the configuration, that η(Lx) is a line in P
2 that is very

tangent to D = η(E2k+3) at the singular point. In fact, using the symmetry of the resolution, we obtain a
diagram

Y
π′

vv

η′

((
X

σ2

~~

σ1

  

X ′

τ1

~~

τ2

  
P
2 oo θC

P
2 ϕ //

P
2 θD //

P
2
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such that η = τ1 ◦ η′ where τ1 is the minimal 1-tower resolution of D, η′ is the contraction of the curves
C,E1, . . . ,E2k+3, and θD is an automorphism of P2 \Lx that sends D to Lz.

We now consider the birational map ψ = θD ◦ ϕ ◦ (θC)−1, which is an automorphism of P
2 \ Lz.

With the resolution above, we see that ψ preserves Lx. Hence, in the affine chart z = 1, the map ψ
has the form (x,y) 7→

(
ax,by + cx+ x2f (x)

)
, where a,b ∈ k∗, c ∈ k and f ∈ k[x]. Let α be the map

[x : y : z] 7→ [a−1x : b−1(y − cx) : z], which is an automorphism of P2 \ (Lx ∪Lz). We define ψ′ B α ◦ψ and
θ′D B α ◦θD . Then ψ′ has the form (x,y) 7→

(
x,y + x2f (x)

)
, as claimed. �

Definition 3.15. Let X be an irreducible surface, C ⊂ X an irreducible curve, and p ∈ C a point. Let a be
the kernel of the restriction homomorphism OX,p →OC,p, f 7→ f |C . Then we denote by Loc(X,C,p) the
group of birational maps ϕ : Xd X fixing p, such that ϕ∗ induces

(i) an automorphism of OX,p,

(ii) a bijection a→ a,

(iii) the identity on OX,p/a2,

(iv) the identity on a/a3.

Remark 3.16. If ϕ ∈ Loc(X,C,p), then ϕ induces a local isomorphism in a neighborhood of p in X and
C. Thus for a birational map θ : X d Y that is a local isomorphism in a neighborhood of p ∈ X, the
conjugation ψ 7→ θ−1 ◦ψ ◦θ induces an isomorphism Loc(Y ,θ(C),θ(p))→ Loc(X,C,p).

Lemma 3.17. For any λ ∈ k, Loc(A2,Lx, (0,λ)) coincides with the group of birational maps ϕ : A2dA
2 such

that ϕ and ϕ−1 each can be written of the form

(x,y) 7→
(
x+ x3α(x,y), y + x2β(x,y)

)
for some α,β ∈ O

A
2,(0,λ).

Proof. Let ϕ be a birational map of A2 of the proposed form. Then ϕ is defined at (0,λ) and fixes (0,λ).
The same is true for ϕ−1, so it is a local isomorphism at (0,λ) and thus satisfies (i) of Definition 3.15.
One then checks points (ii) − (iv) for the ideal a = (x) ⊂ k[x,y](x,y−λ) = OA

2,(0,λ). It follows that ϕ ∈
Loc(A2,Lx, (0,λ)).

To prove the converse, let us consider ϕ ∈ Loc(A2,Lx, (0,λ)). Since ϕ∗ induces an automorphism
of O

A
2,(0,λ) = k[x,y](x,y−λ) we can write ϕ∗(x) = f and ϕ∗(y) = g for some f ,g ∈ O

A
2,(0,λ). As ϕ∗

preserves the ideal (x) and induces the identity on O
A

2,(0,λ)/(x2), we can express f (x,y) = x + x2α(x,y)
and g(x,y) = y + x2β(x,y), for some α,β ∈ O

A
2,(0,λ). Finally, since ϕ

∗ induces the identity on (x)/(x3), it
follows that x divides α and hence ϕ is of the desired form. Since Loc(A2,Lx, (0,λ)) is a group, also the
inverse of ϕ can be written in this form. �

Proposition 3.18. Let L ⊂ P
2 be a line and q1,q2 ∈ L with q1 , q2. Let ψ ∈ ∩p∈L\{q2}Loc(P

2,L,p) and
θ ∈ Aut(P2 \ L) \Aut(P2) such that θ−1 has base-point q1 and θ has base-point q2. Then θ−1 ◦ψ ◦θ lies in
∩p∈L\{q2}Loc(P

2,L,p).

Proof. Since the base-point of θ−1 is q1 and the base-point of θ is not q1 we can by Theorem 3.7 write
θ = jn ◦ an ◦ . . . ◦ j1 ◦ a1 with ji ∈ Jon(P2,L,q1) \ Aff(P2,L) and ai ∈ Aff(P2,L) \ Jon(P2,L,q1) for i =
1, . . . ,n. By induction, it suffices to prove the claim for θ = j ◦ a with j ∈ Jon(P2,L,q1) \Aff(P2,L) and
a ∈ Aff(P2,L) \ Jon(P2,L,q1).
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We then find a minimal resolution

X
π

  

η

~~
P
2 j◦a //

P
2

where π−1 has the same base-points as j−1 ∈ Jon(P2,L,q1). Let d ≥ 2 be the degree of j−1, so we can

write π as a composition of 2d − 1 blow-ups π : X = X2d−1
π2d−1−−−−→ . . .

π2−−→ X1
π1−−→ X0 = P

2, as described in
Lemma 3.5. We denote the exceptional curve of πi by Ei for i = 1, . . . ,2d − 1.

We want to lift ψ to a birational transformation of X by conjugation with π. To do this, we choose
coordinates on P

2 such that L = Lx and q1 = [0 : 0 : 1] and q2 = [0 : 1 : 0]. By Lemma 3.17, we can locally
express ψ as

(x,y) 7→
(
x+ x3α(x,y), y + x2β(x,y)

)
for some α,β ∈ ∩λ∈kOA

2,(0,λ). We proceed by conjugating ψ step-by-step with the blow-ups πi .
The first blow-up has base-point (0,0) and is locally given by π1 : (x,y) 7→ (xy,y). We thus obtain:

π−11 ψπ1(x,y) =
(
xy + x3y3α(xy,y)
y + x2y2β(xy,y)

, y + x2y2β(xy,y)
)

=
(
x+ x3y

(yα(xy,y)− b(xy,y))
1 + x2yβ(xy,y)

, y + x2y2β(xy,y)
)

C
(
x+ x3yα1(x,y), y + x

2y2β1(x,y)
)
C ψ1(x,y)

In local coordinates ofA2 ⊂ X1, the exceptional curve E1 of π1 is given by y = 0 and α1,β1 ∈ ∩λ∈kOA
2,(0,λ).

The base-point of π2 is then the point (0,0) ∈ E1. Indeed, the base-points of π2, . . . ,πd all lie on
E1, hence each of these blow-ups is of the form (x,y) 7→ (x,xy), in local coordinates. We can thus write
π2 ◦ . . . ◦πd : (x,y) 7→ (x,xd−1y) and thus conjugation with this map yields:

ψd(x,y) =

x+ xd+2yα1(x,xd−1y), xd−1y + x2dy2β1(x,xd−1y)(
x+ xd+2yα1(x,xd−1y)

)d−1


=

x+ xd+2α1(x,xd−1y), y + xd+1y2 xd−1y2β1(x,xd−1y) + . . .(
1+ xd+1yα1(x,xd−1y)

)d−1


In local coordinates of A2 ⊂ Xd , we can write

ψd(x,y) =
(
x+ xd+2αd(x,y), y + x

d+1βd(x,y)
)

for some αd ,βd ∈ ∩λ∈kOA
2,(0,λ).

The base-point of the blow-up πd+1 is a point on Ed but not Ed−1. In local coordinates, this means
that πd+1 can be expressed as (x,y) 7→ (x,xy +µ), for some µ ∈ k∗. The conjugated map is then:

ψd+1(x,y) =
(
x+ xd+2αd(x,xy +µ),

xy + xd+1βd(x,xy +µ)
x+ xd+2αd(x,xy +µ)

)
=

(
x+ xd+2αd(x,xy +µ), y + x

d βd(x,xy +µ)− xyαd(x,xy +µ)
1 + xd+1αd(x,xy +µ)

)
and thus we can find αd+1,βd+1 ∈ ∩λ∈kOA

2,(0,λ) such that

ψd+1(x,y) =
(
x+ xd+2α2d−1(x,y), y + x

dβ2d−1(x,y)
)
.
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After conjugating with the d − 2 remaining blow-ups πd+2, . . . ,π2d−1, we thus obtain

ψ2d−1(x,y) =
(
x+ xd+2α2d−1(x,y), y + x

2β2d−1(x,y)
)

for some α2d−1,β2d−1 ∈ ∩λ∈kOA
2,(0,λ) and hence it follows that ψ2d−1 ∈ Loc(X,E2d−1, (0,λ)) for all λ ∈ k

by Lemma 3.17.
We now consider the following commutative diagram:

P
2 (j◦a)−1◦ψ◦(j◦a) //

j◦a

%%

P
2

j◦a

yy

X
ψ2d−1 //

π
��

η

OO

X

π
��

η

OO

P
2 ψ //

P
2

For any p ∈ Lx \ [0 : 1 : 0], it follows that η induces a local isomorphism η−1(p)→ p and we thus have
(j ◦ a)−1 ◦ψ ◦ (j ◦ a) = η ◦ψ2d−1 ◦ η−1 ∈ Loc(P2,Lx,p). �

Proof of Theorem 1. By Lemma 2.1 the curves C and D have the same degree. Thus the claim of the
theorem is clear for lines and conics and we can assume that C has degree at least 3 and is hence singular,
in fact unicuspidal. The isomorphism ϕ : P2 \C→ P

2 \D induces a birational map P
2d P

2. If ϕ extends
to an automorphism of P2, then C and D are projectively equivalent. We thus assume that ϕ does not
extend to an automorphism of P2, i.e. C is contracted by ϕ. Since C\L 'A

1, we can apply Proposition 3.2
by identifying P

2 \L 'A
2, so there exists an automorphism of P2 \L that sends C to a line. We can then

use Proposition 3.14 and for suitable coordinates obtain the diagram

P
2

θC
��

ϕ //
P
2

θD
��

P
2 ψ //

P
2

where θC ,θD ∈ Aut(P2 \ Lx) with θC(C) = θD(D) = Lz and ψ ∈ Aut(P2 \ Lz) has the following form
(x,y) 7→ (x,y + x2f (x)); it thus lies in Loc(P2,Lx, [0 : λ : 1]) for all λ ∈ k. The base-point p of θC is
different from [0 : 1 : 0] and is thus of the form [0 : λ : 1] for some λ ∈ k. We then define the map
ρ = (θC)−1 ◦ψ ◦θC , which is an automorphism of P2 \ (Lx∪C). It follows from Proposition 3.18 that ρ lies
in Loc(P2,Lx, [0 : 0 : 1]) and in particular preserves the line Lx. Thus ρ is an automorphism of P2 \C and
consequently ϕ′ B ϕ ◦ρ−1 is an isomorphism P

2 \C→ P
2 \D . On the other hand, ϕ′ = (θD )−1 ◦θC is an

automorphism of P2 \ Lx and hence does not contract C. We conclude that ϕ′ contracts no curves and is
indeed an automorphism of P2, making the curves C and D projectively equivalent. �

4. Curves of low degree

In this section we study Conjecture 1.1 for curves of low degree, i.e. degree ≤ 8. It is a case study on the
multiplicity sequences that occur (see Definition 4.2).

4.A. Cases by multiplicity sequences

Lemma 4.1. Let C ⊂ P
2 be an irreducible curve of degree d ≥ 3 such that there exists an open embedding

P
2 \C ↪→ P

2 that does not extend to an automorphism of P2. Then C is a rational curve, where all the proper
and infinitely near singular points of C can be ordered from p1 to pk , with multiplicities m1 ≥ . . . ≥ mk ≥ 2,
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such that p1 ∈ C is a proper point and pi+1 lies in the first neighborhood of pi , for i = 1, . . . , k − 1. Moreover, the
multiplicities satisfy the following relations:

d2 − 3d +2 =
k∑
i=1

mi(mi − 1), (A)

d2 +1 ≥
k∑
i=1

m2
i . (B)

Proof. Let ϕ : P2 \C ↪→ P
2 be an open embedding that does not extend to an automorphism of P2. Then

by Lemma 2.4 there exists a (−1)-tower resolution π : X = Xn
πn−−→ . . .

π2−−→ X1
π1−−→ X0 = P

2 of C with base-
points p1, . . . ,pn and exceptional curves E1, . . . ,En, and a (−1)-tower resolution η : X → P

2 of some curve
D ⊂ P

2 such that ϕ ◦π = η. For i ∈ {1, . . . ,n}, we denote by mi the multiplicity of Ci at pi , so we have
m1 ≥ . . . ≥ mn. The strict transform Cn in X is smooth, thus π factors through the minimal resolution of
singularities of C and blows up all its k ≤ n singular points, hence the first part of the claim follows.

For equation (A), we observe that C is a rational curve since Cn ' P
1 and thus has genus g(C) = 0. By

the genus-degree formula for plane curves we get

0 = g(C) =
(d − 1)(d − 2)

2
−

k∑
i=1

mi(mi − 1)
2

and hence identity (A) follows. To see the inequality (B), it is enough to observe that for a blow-up πi with
exceptional curve Ei , we get

π∗i (Ci) = Ci+1 +miEi

and hence (Ci+1)2 = (Ci)2 −m2
i , using the identities (Ei)2 = −1 and Ci+1 · Ei = mi . We then inductively

obtain

−1 = (Cn)
2 = d2 −

n∑
i=1

m2
i .

The claim then follows from the fact that the number k of singular points is ≤ n. �

The previous lemma motivates the following definition.

Definition 4.2. Let C ⊂ P
2 be a curve and let m1 ≥ . . . ≥ mk ≥ 2 be some integers. We say that C

has multiplicity sequence (m1, . . . ,mk) if C has (proper or infinitely near) singular points p1, . . . ,pk with
multiplicities m1, . . . ,mk such that p1 ∈ C is a proper point and pi+1 lies in the first neighborhood of pi for
i ≥ 1, and moreover C is smooth at all other points. For a constant subsequence (m,. . . ,m) of length l ≥ 1,
we also use the short notation (m(l)).

Remark 4.3. It is not known to the author whether there exist irreducible curves C,D ⊂ P
2 that have

isomorphic complements but have different multiplicity sequences.

Lemma 4.4. Let C ⊂ P
2 be an irreducible curve of degree d ≥ 3 with multiplicity sequence (m1, . . . ,mk), where

we set m2 B 1 if k = 1. If there exists an open embedding P2 \C ↪→ P
2 that does not extend to an automorphism

of P2, then the following inequalities hold:

m1 +m2 ≤ d < 3m1.
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Proof. We use the set-up of the proof of Lemma 4.1 and extend the multiplicity sequence (m1, . . . ,mk) by
mk+1 = . . . = mn = 1 such that both (A) and (B) from Lemma 4.1 become equalities. We then subtract (A)
from (B) for the extended multiplicity sequence and obtain

3d − 1 =
n∑
i=1

mi .

We then multiply this equation by d
3 and subtract (B), so we get

−
(
1+

d
3

)
=

n∑
i=1

mi

(
d
3
−mi

)
.

Since the right-hand side of this equation is negative, so is the left-hand side. Thus, at least one of the
terms d

3 −mi is negative. The inequality d < 3m1 now follows from the fact that the multiplicity sequence
is non-increasing.

The inequality m1 +m2 ≤ d follows from Bézout’s theorem, where we intersect C with a line going
through points p1 and p2 of multiplicity m1 and m2 respectively. �

Corollary 4.5. Let C ⊂ P
2 be an irreducible curve of degree ≤ 8 such that there exists an open embedding

P
2 \ C ↪→ P

2 that does not extend to an automorphism of P2. Then C has one of the multiplicity sequences
shown in the following table.

degree multiplicity sequences
3 (2)
4 (3); (2(3))
5 (4); (3,2(3)); (2(6))
6 (5); (4,2(4)); (3(3),2); (3(2),2(4)); (3,2(7))
7 (6); (5,2(5)); (4,3(3)); (4,3(2),2(3)); (4,3,2(6)); (3(4),2(3))
8 (7); (6,2(6)); (5,3(3),2(2)); (5,3(2),2(5)); (4(3),3); (4(3),2(3)); (4(2),3(3));

(4(2),3(2),2(3)); (4(2),3,2(6)); (4,3(5)); (4,3(4),2(3)); (3(7))

Table 1: Multiplicity sequences for degree ≤ 8.

Proof. This follows from computations using Lemma 4.1 and Lemma 4.4, but we need to look at one case
more carefully. In degree 7 the multiplicity sequence (3(5)) is consistent with the inequalities in Lemma 4.1
and Lemma 4.4. Suppose that there exists such a curve C and denote by p1,p2,p3 the first 3 singular
points, all of multiplicity 3. By Bézout’s theorem these points are not collinear. Moreover, p3 is not
proximate to p1 as the sum of the multiplicities of the strict transform of C at p2 and p3 is larger than the
multiplicity at p1. Thus there exists a quadratic transformation q with base-points p1,p2,p3. The degree of
q(C) is then 2 ·7−3−3−3 = 5 by Lemma 3.11 and q(C) has two singular points of multiplicity 3. But this
is not possible by Lemma 4.4. Hence no curve of of degree 7 with multiplicity sequence (3(5)) exists. �

The case of cubic curves is then straightforward.

Lemma 4.6. Let C ⊂ P
2 be a cubic curve and let ϕ : P2 \C→ P

2 \D an isomorphism, where D ⊂ P
2 is some

curve. Then C and D are projectively equivalent.

Proof. If ϕ extends to an automorphism of P2, the claim is clear. If not, then C is rational and hence
singular with a point of multiplicity 2. It is a well known fact that can be checked by simple computations
that there are only two singular cubic curves, up to projective equivalence. One class is represented by the
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cuspidal cubic curve x2z−y3 = 0 and the other class by the nodal cubic curve x2z−y3−y2z = 0. It follows
from Lemma 2.1 that D is again a cubic curve and by Proposition 2.6 that the singularity of D is of the
same type as the singularity of C, i.e. D \ Sing(D) 'A

1 if C is unicuspidal or D \ Sing(D) 'A
1 \ {0} if C

is nodal. Hence C and D are projectively equivalent. �

Remark 4.7. The complement of a nodal cubic curve has infinitely many automorphisms, up to composi-
tion with automorphisms of P2. For a description, see for instance [Yos85, Lemma 2.24]. The automor-
phism group of the complement of a cuspidal cubic is even infinite dimensional, see [Yos85, Theorem A
(6)].

We will frequently use the following formula for intersection numbers.

Lemma 4.8. Let C ⊂ P
2 be a curve and π : Xn

πn−−→ . . .
π2−−→ X1

π1−−→ X0 = P
2 a (−1)-tower resolution of C with

base-points p1, . . . ,pn and exceptional curves E1, . . . ,En. For i ≤ k ≤ n, we then have

Ck ·Ei =mpi (Ci)−
∑

pj�pi ,j≤k
mpj (Cj ).

Proof. Let i,k ∈ N with i ≤ k ≤ n. We denote by Ej the total transform of Ej in Xk for j = 1, . . . , k. By
[Alb02, Corollary 1.1.25], we can then write

Ei = Ei −
∑

pj�pi ,j≤k
Ej .

By [Alb02, Corollary 1.1.27], we have Ck ·Ej =mpj (Cj ) and the claim follows. �

Lemma 4.9. Let C ⊂ P
2 be an irreducible curve that has multiplicity sequence (m1, . . . ,mk). If there exist

r < s ≤ k − 2 such that

mr+1 +mr+2 > mr > mr+1,

ms+1 +ms+2 > ms > ms+1,

ms +ms+1 > ms−1,

then every open embedding P2 \C ↪→ P
2 extends to an automorphism of P2.

Proof. Suppose that there exists an open embedding ϕ : P2 \ C ↪→ P
2 that does not extend to an auto-

morphism of P2. Then by Lemma 2.4 there exists π : X = Xn
πn−−→ . . .

π2−−→ X1
π1−−→ X0 = P

2 a (−1)-tower
resolution of C with base-points p1, . . . ,pn and exceptional curves E1, . . . ,En, and a (−1)-tower resolution
η : X → P

2 of some curve D ⊂ P
2 such that ϕ ◦π = η. For any i ∈ {1, . . . , k}, we obtain from Lemma 4.8

the equation
Cn ·Ei =mi −

∑
pj�pi

mj .

The point pr+1 is proximate to pr , but pr+2 is not, as Cn · Er ≥ 0 and mr+1 +mr+2 > mr . Hence we have
Cn · Er = mr −mr+1 > 0. Analogously we get Cn · Es > 0. The curve E1 ∪ . . . ∪ En−1 ∪ Cn in X is the
exceptional locus of η and thus has a tree structure. By the same argument as before, the point ps+1 is
not proximate to ps−1, hence it follows that the curves Er and Es are connected in E1∪ . . .∪En−1 via some
chain of curves. Since Er and Es are also connected via Cn, this yields a contradiction to the tree structure
of E1 ∪ . . .∪En−1 ∪Cn. �

Corollary 4.10. Let C ⊂ P
2 be an irreducible rational curve with one of the multiplicity sequences (4,3,2(6)),

(4,3(2),2(3)), (4,3(4),2(3)), (4(2),3,2(6)), (4(2),3(2),2(3)), (5,3(2),2(5)), or (5,3(3),2(2)). Then any open embed-
ding P2 \C ↪→ P

2 extends to an automorphism of P2.

Proof. This follows directly from Lemma 4.9. �
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4.B. The unicuspidal case and a special quintic curve

If C ⊂ P
2 is a unicuspidal curve that admits a very tangent line through the singular point, then Theorem 1

gives an affirmative answer to Conjecture 1.1. In low degrees this is often the case, as we will see using the
following lemma, which we can already find in [Yos84].

Lemma 4.11. Let C ⊂ P
2 be a curve with multiplicity sequence (m1, . . . ,mk), where we set m2 = 1 if k = 1. If

deg(C) =m1 +m2, then there exists a very tangent line to C through the proper singular point.

Proof. Let p1 ∈ C be the proper singular point of multiplicity m1 and p2 a point infinitely near to p1
with multiplicity m2. Then there exists a line L through p1 and p2. We then get the local intersection
(C · L)p1 ≥ m1 +m2 = deg(C). By Bézout’s theorem L intersects C in no other point and we have equality
(C ·L)p1 = deg(C), and thus L is very tangent to C. �

In Table 1, we find the multiplicity sequence (2(6)) for quintic curves. It follows from Bézout’s theorem
that such curves do not admit a very tangent line through the singular point and hence Theorem 1 does
not apply. We thus have to study this case separately. This seems to be a well known class of curves and
was already considered in [Yos84] and [Yos79], but without full proofs. Over the field of complex numbers,
unicuspidal quintic curves were classified in [Nam84, Theorem 2.3.10.]. For the sake of completeness, we
give a self-contained treatment of the case of unicuspidal curves with multiplicity sequence (2(6)) below.

Lemma 4.12. Let C and D ⊂ P
2 be irreducible unicuspidal quintic curves with multiplicity sequence (2(6)) with

singular points p1, . . . ,p6 and q1, . . . , q6 respectively. Then there exists α ∈ Aut(P2) such that α(pi) = qi for
i = 1, . . . ,6.

Proof. Let L ⊂ P
2 be the line through p1 and p2. The singular points p1,p2,p3 of C all have multiplicity 2,

thus they are not collinear by Bézout’s theorem. It follows that there exists a quadratic map θ1 : P2d P
2

with base-points p1,p2,p3 and exceptional curves E1,E2,E3. The map θ1 is then given by first blowing
up p1,p2,p3 and then contracting L3,E2,E1, as shown below. We denote by p′1,p

′
2,p
′
3 the base-points of

(θ1)−1 and by p′4,p
′
5,p
′
6 the singular points of C′ B θ1(C).

E2

E1 L3

E3

C3

p4

p′3

p′2

C′

p′1 p′4

By Lemma 3.11, the degree of C′ is 2 · 5 − 1 · 2 − 1 · 2 − 1 · 2 = 4 and hence C′ is a unicuspidal quartic
curve. Likewise, there exists a quadratic map θ2 that sends D to a unicuspidal quartic curve D ′ , where we
analogously denote the points q′1, . . . , q

′
6.

We show that there exists an automorphism α′ ∈ Aut(P2) such that α′(p′i) = q
′
i for i = 1, . . . ,6, which

implies that the map α = (θ2)−1 ◦ α′ ◦ θ1 is an automorphism of P2 that sends pi to qi , for i = 1, . . . ,6,
since the base-points of (θ1)−1 are sent to the base-points of (θ2)−1.

We can assume that we have p′1 = q′1 = [0 : 0 : 1] and p′4 = q′4 = [0 : 1 : 0] (after a linear change of
coordinates). By Bézout’s theorem the points p′1,p

′
4,p
′
5 are not collinear, thus we can moreover assume that

p′5, respectively q
′
5, corresponds to the tangent direction Lz.

The points p′1,p
′
2,p
′
4 are in fact collinear and thus p′2 corresponds to the tangent direction Lx, and the

same is the case for q′2. The linear maps fixing p′1,p
′
2,p
′
4,p
′
5 then correspond to matrices in PGL3 of the

form 
a 0 0
b c 0
0 0 1


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where a,b,c ∈ k and ac , 0. We now consider the action of these linear maps on the points p′3 and p′6. We
thus blow up the point p′1 = [0 : 0 : 1]. In local coordinates, this blow-up is given by (u,v) 7→ [uv : v : 1]
and moreover p′2 = (0,0). With a linear map of the above form, we get [uv : v : 1] 7→ [auv : buv + cv : 1]
and the induced map in the blow-up is locally given by (u,v) 7→

(
au
bu+c , (bu + c)v

)
. The induced map on

the exceptional curve is then [u : v] 7→ [acu : cv] = [ ac2u : v]. We observe that p′3 is not proximate to p′1 and
that p′3 is not collinear with p′1,p

′
2 and p′4 by Bézout’s theorem. Thus p′3 is neither of the points [0 : 1] or

[1 : 0] on the exceptional curve and we can assume that p′3 = q
′
3 = [1 : 1]. From this we obtain the condition

a = c2.
For the point p′6, we consider the blow-up of p′4 = [0 : 1 : 0], given by (u,v) 7→ [u : 1 : uv] in local

coordinates, and p′5 = (0,0). Applying a linear map of the form above, we get [u : 1 : uv] 7→ [au : bu+c : uv]
and the induced map on the blow-up is given by (u,v) 7→

(
au
bu+c ,

v
a

)
, in local coordinates. The induced map

on the exceptional curve is [u : v] 7→ [acu : 1
av] = [a

2

c u : v] = [c3u : v]. As before, we see that p′6 is not
proximate to p′4 and is not collinear with p′4 and p′5. Hence we can also assume that p′6 = q

′
6 = [1 : 1] and

get the condition c = 1.
We have thus found a linear map that sends p′i to q

′
i for i = 1, . . . ,6 and the claim follows. �

Proposition 4.13. Let C ⊂ P
2 be an irreducible unicuspidal quintic curve with multiplicity sequence (2(6)).

Then C is projectively equivalent to the curve

Q : (xz+ y2)
(
(xz+ y2)z+2x2y

)
− x5 = 0.

Proof. We start by constructing a birational map P
2 d P

2 that sends the line Lz to the quintic curve
Q. To do this we consider first the quadratic map θ1 : [x : y : z] 7d [x2 : xy : xz + y2]. This map is an
automorphism of P2 \Lx and sends the line Lz to the conic xz+ y2 = 0. Next, consider the quadratic map
θ2 : [x : y : z] 7d [xz : x2−yz : z2], which induces an automorphism of P2\Lz. We compute the composition
ψB (θ1)−1 ◦θ2 ◦θ1 and obtain

[x : y : z] 7d [x(xz+ y2)2 : (xz+ y2)
(
x3 − y(xz+ y2)

)
: (xz+ y2)

(
z(xz+ y2) + 2x2y)

)
− x5].

The map ψ is an automorphism of the complement of the conic xz + y2 = 0 in P
2 and is moreover an

involution. Hence both ψ and ψ−1 contract the conic xz + y2 = 0 and have a unique proper base-point
[0 : 0 : 1]. The image of the line Lz by ψ is exactly the quintic curve Q. The degree of ψ is 5 and the linear
system of ψ contains the curve Q whose only proper singular point is [0 : 0 : 1] with multiplicity 2, thus by
the Noether equations ψ has 6 base-points of multiplicity 2, which then must be the same as the singular
points of Q.

Let C be any unicuspidal quintic curve with multiplicity sequence (2(6)). We can assume by Lemma 4.12
that after a change of coordinates the 6 (proper and infinitely near) singular points of C and Q coincide.
Hence by Lemma 3.11 the birational map ψ−1 sends the curve C to a curve of degree 5 ·5−2 ·2−2 ·2−2 ·
2−2 ·2−2 ·2−2 ·2 = 1, i.e. a line. This line is tangent to the conic xz+ y2 = 0 since C is unicuspidal and
the line does not pass through the base-point [0 : 0 : 1] of ψ. The tangents to the conic xz+ y2 = 0 that do
not pass through [0 : 0 : 1] are parametrized by the family Lα : α2x + 2αy − z = 0, where α ∈ k. We then
compute the equation of the image of Lα under ψ and get

Qα : (xz+ y
2)

(
(xz+ y2)(α2x − 2αy − z) + 2x2(αx − y)

)
+ x5 = 0.

Thus C =Qα , for some α ∈ k. A short computation shows that the automorphism of P2 given by

[x : y : z] 7→ [x : αx+ y : −α2x − 2αy + z]

sends the curve Qα to the curve Q0 =Q. �
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Corollary 4.14. Let Q ⊂ P
2 be an irreducible unicuspidal quintic curve with multiplicity sequence (2(6)) and

ϕ : P2 \Q→ P
2 \D an isomorphism, where D ⊂ P

2 is some curve. Then D is projectively equivalent to Q.

Proof. By Lemma 2.1 and Proposition 2.6, the curve D is also a rational unicuspidal quintic. It thus has
one of the multiplicity sequences (4), (3,2(3)), or (2(6)) by Corollary 4.5. In the first two cases, D admits a
very tangent line through the singular point by Lemma 4.11, and thus by Theorem 1, this would also hold
for the curve Q. Since Q does not admit a very tangent line through the singular point, it follows that D
has multiplicity sequence (2(6)) and is hence projectively equivalent to Q by Proposition 4.13. �

To conclude the case of unicuspidal curves, we need two more observations.

Lemma 4.15. Let C ⊂ P
2 be a rational irreducible curve with one of the multiplicity sequences (3(4),2(3)),

(4,3(5)), (4,3(4),2(3)), or (5,2(5)). Then C is not unicuspidal.

Proof. Let π : X = Xk
πk−−→ . . .

π2−−→ X1
π1−−→ X0 = P

2 be a minimal resolution of singularities of C, where πi is
the blow-up of the singular point pi ∈ Xi of multiplicity mi and has exceptional curve Ei for i = 1, . . . , k. It
follows that Ck intersects Ek with multiplicity mk . If there exists some i ≤ k − 2 such that mi −mi+1 = 1, it
follows from Lemma 4.8 that

Ck ·Ei =mi −
∑
pj�pi

mj =mi −mi+1 = 1

since Ck ·Ei ≥ 0 and mi+2 ≥ 2. If Ei does moreover not intersect Ek , it follows that C is not unicuspidal, as
Ck intersects the exceptional locus E1 ∪ . . .∪Ek of π in at least two points, one on Ei and one on Ek . We
observe that this is the case for the multiplicity sequences (3,2(7)), (3(4),2(3)), (4,3(5)), and (4,3(4),2(3)),
since in each case the exceptional curves in their minimal resolution of singularities form a chain where Ei
and Ek do not intersect, as one checks with Lemma 4.8.

Similarly, we see with Lemma 4.8 that for the multiplicity sequence (5,2(5)), either p3 is proximate to
p1 or not, but in both cases the curve C7 intersects E1 and E7 in distinct points and thus C is again not
unicuspidal. �

Lemma 4.16. Let C ⊂ P
2 be a rational, unicuspidal curve of degree d and multiplicity sequence (m1, . . . ,mk).

There exists an open embedding P2 \ C ↪→ P
2 that does not extend to an automorphism of P2 if and only if

exactly one of the following possibilities holds.

(i) d2 −
∑k
i=1m

2
i = −1 and mk−1 −mk = 1.

(ii) d2 −
∑k
i=1m

2
i −mk = −2 and mk = 2, mk−1 , 3.

(iii) d2 −
∑k
i=1m

2
i −mk ≥ −1.

Proof. We first prove the direction (⇒) and suppose that there exists an open embedding ϕ : P2 \C ↪→ P
2

that does not extend to an automorphism of P2 and show that we are in one of the cases (i), (ii), or (iii).

It follows by Lemma 2.4 that there exists a (−1)-tower resolution π : X = Xn
πn−−→ . . .

π2−−→ X1
π1−−→ X0 = P

2

of C with base-points p1, . . . ,pn and exceptional curves E1, . . . ,En, and a (−1)-tower resolution η : X→ P
2

of some curve D ⊂ P
2 such that ϕ ◦π = η. Then E1 ∪ . . .∪En−1 ∪Cn is the exceptional locus of η, being

the support of an SNC-divisor that has a tree structure. The minimal resolution of singularities of C is
π1 ◦ . . . ◦πk . The curve Ck intersects Ek and since C is unicuspidal this intersection is in a single point
with multiplicity mk (see Figure 1 on the left). Since π is a (−1)-tower resolution of C, the self-intersection
of Ck is ≥ −1.

Suppose that (Ck)2 = −1. Then π has no other base-point, as this point would lie on Ek \ Ck , and
this would imply that Cn and Ek do not intersect transversely in X. Moreover, the configuration of the
curves E1, . . . ,Ek−1,Ck is connected, i.e. Ck transversely intersects exactly one curve E ∈ {E1, . . . ,Ek−1} in
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its intersection point with Ek . We observe that Ck intersects E1 ∪ . . .∪Ek−1 only in the curve E, and thus
E1 ∪ . . .∪Ek−1 is connected. But this implies that Ek intersects only one curve from E1, . . . ,Ek−1, and thus
E = Ek−1. Now it follows from the fact that Ek−1 ·Ck = 1 and from Lemma 4.8 that mk−1 − 1 =mk and we
are thus in case (i).

Ek(mk)

Ck

Ek

Ck+mk−1

Ek+1Ek+mk−1

Figure 1: Blow-up of the points pk , . . . ,pk+mk−2.

Suppose now that (Ck)2 , −1. Then π has a base-point on Ek ∩Ck . Thus k < n and the union of the
curves E1, . . . ,En−1,Cn is SNC in X. It follows that the base-point pi+1 is the intersection point between Ci
and Ek for i = k, . . . , k +mk − 2. The configuration of curves in Xk+mk−1 is shown in the diagram on the

right in Figure 1. The self-intersection of Ck+mk−1 is then d2−
∑k
i=1m

2
i − (mk −1), and this number is ≥ −1,

since π is a (−1)-tower resolution of C.
Assume that d2 −

∑k
i=1m

2
i −mk = −2, i.e. there is no base-point on Ck+mk−1. But this means that there

is no more base-point at all, since there is a triple intersection between Ek ,Ek+mk−1 and Ck+mk−1, which
would violate the SNC structure of the exceptional divisor of η if Ek+mk−1 was not the last exceptional curve
of π. Since the union of E1, . . ., Ek+mk−2, Ck+mk−1 is connected, it follows that mk = 2 (see Figure 1). It also
follows that the union of E1, . . . ,Ek+mk−1 is connected and hence Ck does not intersect any other exceptional
curve apart from Ek in Xk . It then follows from Lemma 4.8 that mk−1 −mk , 1 and thus mk−1 , 3. We are
thus in case (ii).

The last remaining case is when d2 −
∑k
i=1m

2
i −mk , −2, but then this expression is ≥ −1 and we are

in case (iii). We observe moreover that the cases (i), (ii), (iii) are mutually exclusive.
We now prove the direction (⇐). In each case we first blow up the k singular points of C (with

exceptional curves E1, . . . ,Ek ). In case (i), this yields the resolution in Figure 2. By the symmetry of the
configuration, there exists a morphism from this surface to P

2 contracting Ck ,Ek−1, . . . ,E1.

Ek−1

Ek

Ck

Figure 2: Case (i).

In case (ii), we also blow up the the intersection point of Ck and Ek and obtain the diagram in Figure 3.
Again, by the symmetry of the configuration, there exists a morphism to P

2 that contracts Ck+1,Ek , . . . ,E1.

Ek

Ek+1

Ck+1

Figure 3: Case (ii).

Finally, in case (iii), we blow up mk points, with exceptional curves Ek+1, . . . ,Ek+mk
, all proximate to the

intersection point between Ck and Ek . Then Ck+mk
intersects Ek+mk

transversely and the self-intersection
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of Ck+mk
is ≥ −1. We can thus continue to blow up points until we have a (−1)-tower resolution of C,

where Cn−1 intersects En−1 transversely. We then blow up any point on En−1 that does not lie on Cn−1
or any other exceptional curve. We then obtain the configuration in Figure 4. By the symmetry of this
configuration, there exists a morphism to P

2 by contracting the curves Cn,En−1, . . . ,E1.

En−1

En Cn

Figure 4: Case (iii).

�

Remark 4.17. Lemma 4.16 allows us to determine for a unicuspidal curve C ⊂ P
2, whether there exists an

open embedding P
2 \C ↪→ P

2 that does not extend to an automorphism of P2, simply by looking at the
multiplicity sequence of C.

Corollary 4.18. Let C ⊂ P
2 be an irreducible unicuspidal curve of degree ≤ 8 and let ϕ : P2 \C→ P

2 \D be
an isomorphism, where D ⊂ P

2 is some curve. Then C and D are projectively equivalent.

Proof. If ϕ extends to an automorphism of P2, the claim is trivial. If not, then C has one of the multiplicity
sequences in Table 1, by Corollary 4.5. In the case of the multiplicity sequence (2(6)), the claim follows
from Corollary 4.14. For the multiplicity sequences (3,2(7)), (3(4), 2(3)), (4,3(5)), (4,3(4),2(3)) the claim
follows from Lemma 4.15 and for (3(7)) from Lemma 4.16, since 82 − 7 · 32 − 3 = −2 < −1. In all other
cases, there exists a very tangent line through the proper singular point of C by Lemma 4.11. Then the
claim follows from Theorem 1. �

4.C. Some special multiplicity sequences

In this section we present some extension results for isomorphisms between curves that are not unicuspidal
and have a multiplicity sequence of a special form. Together with the previous results this will lead to the
proof of Theorem 2.

Proposition 4.19. Let C be an irreducible rational curve of degree d ≥ 4 and multiplicity sequence (m(k)), where
m ≥ 2 and k ≥ 1, and let ϕ : P2\C ↪→ P

2 be an open embedding that does not extend to an automorphism of P2.
If C is not unicuspidal, then C \ Sing(C) is isomorphic to A1 \ {0} and C has either degree 8 with multiplicity
sequence (3(7)) or degree 16 with multiplicity sequence (6(7)).

Proof. Suppose that C is not unicuspidal. By Lemma 2.4, there exists a (−1)-tower resolution of C given by

π : X = Xn
πn−−→ . . .

π2−−→ X1
π1−−→ X0 = P

2 with base-points p1, . . . ,pn and exceptional curves E1, . . . ,En, and a
(−1)-tower resolution η : X→ P

2 of some curve D ⊂ P
2 such that ϕ ◦π = η. Then E1 ∪ . . .∪En−1 ∪Cn is

the exceptional locus of η, being the support of an SNC-divisor that has a tree structure. The composition
πk ◦ . . .◦π1 is the minimal resolution of singularities of C. By Lemma 4.8 we obtain that in the surface Xk ,
we have the intersection numbers Ck ·Ei = 0, for i = 1, . . . , k−1, and Ck ·Ek =m. Since E1∪ . . .∪Ek−1∪Ck
is not connected, we know that n > k, hence more points are blown up to obtain the (−1)-tower resolution
π. Since we assumed C not to be unicuspidal, the curves Ck and Ek intersect in at least two points in Xk .
If Ck and Ek intersect in at least 3 points, then it follows that Cn and Ek intersect in at least two points
in X, which is not possible by the tree structure of E1 ∪ . . .∪ En−1 ∪Cn. It thus follows that Ck and Ek
intersect in exactly two points and hence C \ Sing(C) = C \ {p1} 'A

1 \ {0}. Moreover, it follows (again by
the tree structure) that Cn intersects Ek transversely in one point in the surface X, thus Ck intersects Ek in
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one point transversely and in the point pk+1 with intersection multiplicity m− 1 in Xk . The configuration
of curves is illustrated in the diagram on the left in Figure 5, where the dashed lines represent chains of
(−2)-curves. Again by the fact that Cn and Ek intersect only in one point, the base-points of the blow-ups
πk+1, . . . ,πk+m−1 are proximate to pk+1 (i.e. all lie on Ek ) and we obtain E2

k = −m in Xk+m−1, as illustrated
in the diagram on the right of Figure 5. We denote the self-intersection of Ck+m−1 by δ and thus have
δ = d2 − km2 − (m− 1). Since π is a (−1)-tower resolution of C we have δ ≥ −1.

E1 Ek−1

Ek pk+1

Ck
E1 Ek−1

Ek [−m]

Ek+m−1 Ek+1

Ck+m−1[δ]

Figure 5: Minimal SNC-resolution of C.

To simplify the later cases we first prove the following.

Claim (1). If k = 1, we reach a contradiction.

Proof of Claim (1). Since the degree of C is d ≥ 4, we obtain m = d − 1 ≥ 3 by the rationality of C and the
genus-degree formula and hence we have δ = d + 1 ≥ 5. Since Cn has self-intersection −1, the base-point
pi+1 is the unique intersection point between Ci and Ei in Xi for i =m,. . . ,m+1+δ, as shown in Figure 6.

E1[−m]

Em E2Em−1

Em+1
Em+1+δ

Cm+1+δ

Figure 6: Case (m).

If π has another base-point in Xm+1+δ, then it lies on Em+1+δ \ Cm+1+δ. We know that δ ≥ 5 and thus
the curves Em and Em+1 have self-intersection −2 in X. Moreover, the curves E1, . . . ,En−1,Cn have a tree
structure in X, thus Cn and Em are uniquely connected via E1 in this tree. The map η successively contracts
the curves in this tree, starting with Cn. The chain of curves that connects Cn to Em−1, respectively Em+1,
contains Em, thus η contracts E1 before Em−1 and Em+1. But this is not possible since after contracting
Em, the images of both Em−1 and Em+1 have self-intersection −1. We thus get a contradiction and conclude
that k ≥ 2. �

In the sequel, we separately study the cases δ ≥ 1, δ = 0, and δ = −1.

Claim (2). If δ ≥ 1, we reach a contradiction.

Proof of Claim (2). Since π is a (−1)-tower resolution of C the base-point pi+1 is the unique intersection
point between Ci and Ei in Xi for i = k +m− 1, . . . , k +m+ δ (see Figure 7).
Since δ ≥ 1, it follows that the curve Ek+m−1 has self-intersection −2 in X. Moreover, we know that k ≥ 2
(i.e. there is a (−2)-curve Ek−1 as pictured in Figure 7). The map η contracts the curves Ek−1 and Ek+m−1
after Ek , since in the tree of curves E1, . . . ,En−1,Cn the curves Cn and Ek−1, respectively Ek+m−1, are
connected via Ek . But after contracting Ek , the self-intersections of the images of Ek−1 and Ek+m−1 are both
−1, which is not possible. We thus conclude that δ ≥ 1 is not possible. �
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E1 Ek−1

Ek [−m]

Ek+m−1 Ek+1

Ek+m

Cn

Figure 7: Case δ ≥ 1.

Claim (3). If δ = 0, we reach a contradiction.

Proof of Claim (3). Since δ = 0, the base-point of the next blow-up πk+m is the unique intersection point
between Ck+m−1 and Ek+m−1 and we obtain the configuration of curves in the left part of Figure 8.

E1 Ek−1

Ek [−m]

Ek+m−1 Ek+1

Ek+m

Ck+m

E1 Ek−1

Ek [−m]

Ek+m−1 Ek+1

Ek+m

Cn

Figure 8: Case δ = 0.

In the surface X, the curves Ek+m, . . . ,En all lie in a chain (not necessarily in this order) between Cn
and Ek+m−1, i.e. the base-points always lie on the intersection points of the chain between Cn and Ek+m−1,
as otherwise there would be a loop in the configuration of the curves E1, . . . ,En−1,Cn in X (see the right
part of Figure 8). Moreover, Ek+m intersects Cn in this chain. The map η first contracts Cn and after this
contraction the image of Ek has self-intersection −m+1. It follows that in the chain of curves between Cn
and Ek+m−1, after Cn there is a chain of (−2)-curves of length m− 2, such that the image of Ek is −1, after
this chain is contracted. This means that the base-points pi+1 for i = k +m,. . . , k +m + (m − 3) all lie on
Ek+m−1. Denote the next curve in the chain after the m − 2 (−2)-curves by E. After Cn and the chain of
m−2 (−2)-curves are contracted, the images of Ek and E intersect. Moreover, the self-intersection of Ek is
−1 in this surface and thus η then contracts Ek , . . . ,E1. Since we assume k ≥ 2, it follows that the image of
E is tangent to Ek+m−1. But this means that E is not contracted by η and must in fact be En = Ek+m+(m−2).
Since the base-points pk+m+1, . . . ,pk+m+(m−2) all lie on Ek+m−1, the self-intersection of Ek+m−1 in X is −m.
We observe that after η contracts Cn and the chain Ek , . . . ,E1 the image of Ek+m−1 has self-intersection
−m+ k, which has to be equal to −1, and thus k = m− 1. From the condition δ = 0 and the genus-degree
formula we obtain the equations

0 = d2 − (m− 1)m2 −m+1,

0 = d2 − 3d +2− (m− 1)m2.

Subtracting the second equation from the first then yields 3d−m2−1 = 0. We can then substitute d = m2+1
3

in the first equation and obtain

0 =
(m2 +1)2

9
− (m− 1)m2 − (m− 1) = (m2 +1)

(
m2 +1

9
−m+1

)
,

which has no integer solutions in m. We conclude that δ = 0 is not possible. �
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Claim (4). If δ = −1, then C is of degree 8 or 16 with multiplicity sequence (3(7)) or (6(7)) respectively.

Proof of Claim (4). We already have a (−1)-tower resolution of C in this case (see Figure 9). We observe
that blowing up the intersection point between Ek and Ek+m−1 yields a symmetric diagram and thus there
exists a morphism X→ P

2 whose contracted locus is exactly E1 ∪ . . .∪Ek+m−1 ∪Ck+m.

E1 Ek−1

Ek [−m− 1]

Ek+m Ek+m−1 Ek+1

Ck+m

Figure 9: Case δ = −1.

The condition δ = −1 and the genus-degree formula give us the following equations for the values of d,m,k:

0 = d2 − km2 −m+2,

0 = d2 − 3d +2− km2 − km.

We see from the first equation that any integer factor of d and m also divides 2. Hence the greatest common
divisor of d and m is 1 or 2. Subtracting the equations yields 3d −m − km = 0, from which we conclude
that m divides 3d. It thus follows that m divides 6. Next, we replace k = 3d−m

m in the first equation above
and get d2 − 3dm −m2 −m + 2 = 0. We then check for natural solutions in d for m ∈ {2,3,6} and find
(d,m) = (8,3) or (16,6) (both with k = 7) as the only possibilities. �

This concludes the proof of Proposition 4.19. �

Remark 4.20. The assumption that d = deg(C) ≥ 4 in Proposition 4.19 is necessary since the the comple-
ment of a nodal cubic has non-extendable automorphisms (see Remark 4.7).

Corollary 4.21. Let C ⊂ P
2 be an irreducible rational curve with one of the multiplicity sequences (2(3)), (3),

(4), (2(6)), (5), (6), or (7). If C is not unicuspidal, then any open embedding P
2 \ C ↪→ P

2 extends to an
automorphism of P2.

Proof. This is a direct consequence of Proposition 4.19. �

Proposition 4.22. Let C ⊂ P
2 be an irreducible rational curve of degree d and multiplicity sequence(

m(k), (m− 1)(l)
)
, where m ≥ 3 and k, l ≥ 1 and let ϕ : P2 \C ↪→ P

2 be an open embedding that does not extend

to an automorphism of P2. Then either C is unicuspidal or of degree 6 with multiplicity sequence (3,2(7)) or of
degree 13 with multiplicity sequence (5(6),4).

Proof. We suppose that C is not unicuspidal. Since ϕ does not extend to an automorphism of P2, it follows

by Lemma 2.4 that there exists a (−1)-tower resolution π : X = Xn
πn−−→ . . .

π2−−→ X1
π1−−→ X0 = P

2 of C with
base-points p1, . . . ,pn and exceptional curves E1, . . . ,En, and a (−1)-tower resolution η : X → P

2 of some
curve D ⊂ P

2 such that ϕ◦π = η. Then E1∪ . . .∪En−1∪Cn is the exceptional locus of η, being the support
of an SNC-divisor on X that has a tree structure. The composition πk+l◦. . .◦π1 is the minimal resolution of
the singularities of C. By Lemma 4.8 we obtain that in the surface Xk+l , we have the intersection numbers
Ck+l ·Ek = 1 and Ck+l ·Ei = 0 for i = 1, . . . , k − 1 and i = k +1, . . . , k + l − 1.
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E1 E2 Ek−1 Ek Ek+1

Ek+l

Ck+l

Figure 10: Minimal resolution of singularities of C.

Claim (1). If k ≥ 2 and l ≥ 2, we reach a contradiction.

Proof of Claim (1). By Lemma 4.8 we have Ck+l · Ek+l = m − 1. The configuration is shown in Figure 10,
where the dashed lines represent chains of (−2)-curves.
If π has a base-point in Xk+l , then it lies on the intersection with Ck+l and Ek+l , otherwise there would
be a loop formed by Ek , . . . ,Ek+l and Cn in Xn, which is not possible by the tree structure of the curves
E1, . . . ,En−1,Cn. Since Ek+l does not intersect the (−2)-curves Ek−1, Ek , and Ek+1, it follows that their self-
intersections in X are also −2. We observe that the map η contracts the curve Ek before Ek−1 and Ek+1,
since Cn and Ek−1, respectively Ek+1, are connected via Ek in the graph of the curves E1, . . . ,En−1,Cn. But
after contracting Ek , the images of Ek−1 and Ek+1 both have self-intersection −1, which is a contradiction
since η is a (−1)-tower resolution. �

In the sequel, we separately look at the more involved cases where k = 1 or l = 1 (parts (A) and (B)
below).

(A) We assume that k = 1.

Claim (A.1). If (Cl+1)2 = −1, then C has degree 6 and multiplicity sequence (3,2(7)).

Proof of Claim (A.1). By Lemma 4.8 we have Cl+1 ·El+1 = m− 1. If Cl+1 has self-intersection −1, then by
the symmetry of the configuration (see Figure 11), there exists a morphism X→ P

2 whose contracted locus
is E1 ∪ . . .∪El ∪Cl+1.

E1 E2 E3 E4 El−1 El

El+1

Cl+1

Figure 11: Case k = 1, (Cl+1)2 = −1.

From (Cl+1)2 = −1 and the genus-degree formula we obtain the following two identities:

0 = d2 −m2 − l(m− 1)2 +1,

0 = d2 − 3d +2−m(m− 1)− l(m− 1)(m− 2).

Subtracting the second equation from the first yields 3d − 1 −m − l(m − 1) = 0. We then substitute the
equality l(m−1) = 3d−1−m in the first equation and obtain d2 = 3d(m−1) and thus d = 3(m−1). Finally,
we get

0 = 3d − 1−m− l(m− 1) = (9− l)(m− 1)− (m+1)
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and for positive integer values this equation is only satisfied with m = 2 and l = 7 since 1 < 9− l = m+1
m−1 < 2,

for m ≥ 3. This leads to the multiplicity sequence (3,2(7)) in degree 6. The corresponding resolution
diagram is shown in Figure 11, where the dashed line represents one (−2)-curve. �

We suppose from now on that we are not in the case of the multiplicity sequence (3,2(7)). We then
have (Cl+1)2 > −1. This implies that π has a base-point in the intersection of Cl+1 with El+1. In fact,
the curves Cn and El+1 do not intersect in X, otherwise there would be a loop in the graph of the
curves E1, . . . ,En−1,Cn. Thus Cl+1 and El+1 intersect in a single point in Xl+1, and hence the intersection
multiplicity is m− 1. We have thus the configuration of curves shown in the left part of Figure 12.

E1 El

El+1

Cl+1

E1 El

El+1[−m]

El+m El+2

Cl+m[δ]

Figure 12: Minimal SNC-resolution of C for k = 1.

Since Cn and El+1 do not intersect in X, it follows that the base-point pi+1 for i = l +1, . . . , l +m− 1 is
the unique intersection point between Ci and Ei , which also lies on El+1. The configuration of curves in
Xl+m is shown in the right part of Figure 12. We denote the self-intersection number of Cl+m by δ and this
number is equal to d2 −m2 − l(m− 1)2 − (m− 1). Since π is a (−1)-tower resolution we have that δ ≥ −1.

Claim (A.2). If δ = −1, we reach a contradiction.

Proof of Claim (A.2). From δ = −1 and the genus-degree formula we obtain

0 = d2 −m2 − l(m− 1)2 −m+2,

0 = d2 − 3d +2−m(m− 1)− l(m− 1)(m− 2).

Subtracting the second equation from the first yields 3d − 2m− l(m− 1) = 0. We then replace l = 3d−2m
m−1 in

the first equation and obtain the identity

0 = d2 −m2 − (3d − 2m)(m− 1)−m+2 = d2 − (m− 1)(3d −m+2).

It follows that m− 1 divides d2. Let p be a prime number that divides m− 1. Then p divides d2 and thus
also d. From the equality l(m−1) = 3d−2m it follows that p divides 2m. Since m−1 and m are coprime, it
follows that p = 2. We can then write m− 1 = 2r for some r ≥ 1. We observe that 2r divides d2. Moreover,
2r divides 3d − 2(2r +1) and thus also 3d − 2. But then 2r divides d2 − 3d +2 = (d − 1)(d − 2). Since d is
even, it follows that 2r divides (d −2). Since 2r divides 3d −2 = (d −2)+2d, it follows that 2r−1 divides d,
but also d − 2, and thus r must be 1 or 2. Using these values for r, it is easy to check that the equations
above have no integral solutions for d. We can thus conclude that δ , −1. �

Claim (A.3). If δ = 0, we reach a contradiction.

Proof of Claim (A.3). The curves Cl+m and El+m have a unique intersection point, hence this is the base-
point pl+m+1. After blowing up pl+m+1 we obtain a (−1)-tower resolution of C (see the left part of Figure 13).
In the surface X, the curves El+m+1, . . . ,En all lie in a chain (not necessarily in this order) between Cn and
El+m, otherwise there would be a loop in the configuration of the curves E1, . . . ,En−1,Cn. The curve El+m+1
intersects Cn in this chain. The map η contracts first Cn and then the chain E1, . . . ,El . The self-intersection
of the image of El+m+1 after these contractions increases by l+1. Since El+1 is not a (−1)-curve after these
contractions (as m ≥ 3), it follows that El+m+1 is a (−1)-curve in this surface. This implies that in X the
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E1 El

El+1[−m]

El+m El+m−1 El+2

El+m+1

Cl+m+1

E1 El

El+1[−m]

El+m[−3] El+m−1 El+2

El+m+2

El+m+1[−l − 2]

Cn

Figure 13: Case k = 1, δ = 0.

curve El+m+1 has self-intersection −(l +2). This means that the base-points pl+m+2, . . . ,pl+m+(l+2) must lie
on the strict transform of El+m+1. Assume first that l ≥ 2. Then El+m+2 has self-intersection −2 in X. The
map η contracts El+m before the (−2)-curves El+m−1 and El+m+2, but this is not possible, as the images of
both El+m−1 and El+m+2 are (−1)-curves, after contracting El+m. Hence l must be 1 and the multiplicity
sequence of C is then (m,m− 1). The condition δ = 0 and the genus-degree formula give

0 = d2 −m2 − (m− 1)2 −m+1,

0 = d2 − 3d +2−m(m− 1)− (m− 1)(m− 2).

Subtracting these equations yields the identity 3d = 3m, which is not possible as m < d. We conclude that
δ , 0. �

Claim (A.4). If δ = 1, we reach a contradiction.

Proof of Claim (A.4). Again, the base-point pl+m+1 is the intersection point between El+m and Cl+m and
pl+m+2 is the intersection point between El+m+1 and Cl+m+1. After blowing up pl+m+1 and pl+m+2 we have
a (−1)-tower resolution of C (see the left part of Figure 14).

E1 El

El+1[−m]

El+m El+m−1 El+2

El+m+1

El+m+2

Cl+m+2

E1 El

El+1[−m]

El+m El+m−1 El+2

El+m+1[−3]

El+m+2[≤ −3]

Cn

Figure 14: Case k = 1, δ = 1.

Suppose that this resolution is π. Then η contracts El+m before the (−2)-curves El+m−1 and El+m+1, but
this is not possible. Hence π has another base-point, which must be the intersection point between El+m+1
and El+m+2, otherwise there would be a loop in the resolution in X. Now in Xl+m+3, the curve Cl+m+3
intersects the (−2)-curves E1 and El+m+2. Thus there is another base-point of π, which is the intersection
point between El+m+2 and El+m+3. But this implies that El+m+1 has self-intersection −3 in X (see the right
part of Figure 14). We know that η contracts El+m before El+m−1 and El+m+1. After contracting El+m,
the self-intersections of the images of El+m−1 and El+m+1 are −1 and −2 respectively. But then El+m−1
intersects no other (−2)-curve, so we have El+m−1 = El+2 and hence m = 3. The multiplicity sequence of C
is thus of the form (3,2(l)). Using δ = 1 and the genus degree formula, we obtain

0 = d2 − 4l − 10,
0 = d2 − 3d − 2l − 4.

Subtracting these equations and rearranging terms, we obtain l = 3d−6
2 , which we can substitute in the first

equation and get d2 − 6d +2 = 0, which has no integer solution in d. Thus δ = 1 is not possible. �
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Claim (A.5). If δ ≥ 2, we reach a contradiction.

Proof of Claim (A.5). For i = l +m,. . . , l +m+ δ, the base-point pi+1 is then the unique intersection point
between Ci and Ei . As δ ≥ 2, this means that El+m+1 has self-intersection −2 in X (see Figure 15). But this
leads to a contradiction, since η contracts El+m before the (−2)-curves El+m−1 and El+m+1, whose images
both have self-intersection −1, after El+m is contracted.

E1 El

El+1[−m]

El+m El+m−1 El+2

El+m+1

El+m+δ+1

Cl+m+δ+1

Figure 15: Case k = 1, δ ≥ 2.

�

This concludes the case k = 1.

(B) Assume now that l = 1, as shown in Figure 16. We can also assume that k ≥ 2, since we have already
considered the case k = 1. If Ck+1 has self-intersection −1, then by the symmetry of the configuration, there
exists a morphism X→ P

2 whose contracted locus is E1 ∪ . . .∪En−1 ∪Cn.

E1 Ek

Ek+1

Ck+1

Figure 16: Minimal resolution of singularities for l = 1.

From (Ck+1)2 = −1 and the genus-degree formula we get the following two identities

0 = d2 − km2 − (m− 1)2 +1,

0 = d2 − 3d +2− km(m− 1)− (m− 1)(m− 1).

Subtracting the second identity from the first yields 3d − 1 − km − (m − 1) = 0. We then substitute the
equality km = 3d − 1− (m− 1) in the first equation and obtain d2 = m(3d − 2). Let p be a prime number
that divides 3d − 2 and thus also d. But then p = 2 and hence we can write 3d − 2 = 2r for some natural

number r . It then follows that m = (2r+2)2

9·2r , in particular 2r divides 22r + 4 · 2r + 4 and thus r = 1 or r = 2.
If r = 1, then d = 4

3 , which is absurd. If r = 2, then d = 2 and m = 1, which is excluded by hypothesis.
We thus know that (Ck+1)2 > −1 and hence π has a base-point on Ek+1 that also lies on Ck+1. Since C

is not unicuspidal, the curves Ck+1 and Ek+1 intersect in at least two points.
There are now two possibilities: either Ck+1 passes through the intersection point between Ek and Ek+1,

or it does not. We will look at these cases separately (parts (i) and (ii) below).

(i) We suppose that Ck+1 passes through the intersection point between Ek and Ek+1. Then this point is
the next base-point of π, since there can be no triple intersections in the tree of the curves E1, . . . ,En−1,Cn
in X. Moreover the intersection multiplicity between Ck+1 and Ek+1 at pk+2 is m − 2 as Cn and Ek+1
intersect transversely in X, see the configuration on the left in Figure 17.



M. Hemmig, Isomorphisms between complements of projective plane curves 33M. Hemmig, Isomorphisms between complements of projective plane curves 33

E1 Ek

Ek+1

Ck+1 E1 Ek [−3] Ek+2

Ek+m−1

Ek+1[−m+1]Ck+m−1[δ]

Figure 17: Blow-up of pk+2, . . . ,pk+m−1.

It follows that the base-point pi+1 is the intersection point between Ek+1 and Ei for i = k+1, . . . , k+m−2.
We then denote by δ the self-intersection of Ck+m−1 in Xk+m−1, see the configuration on the right in
Figure 17. We have δ = d2 − km2 − (m− 1)2 − (m− 2) and δ ≥ −1, since π is a (−1)-tower resolution.

Claim (B.i.1). If δ = −1, we reach a contradiction.

Proof of Claim (B.i.1). From δ = −1 and the genus-degree formula we obtain

0 = d2 − km2 − (m− 1)2 −m+3,

0 = d2 − 3d +2− km(m− 1)− (m− 1)(m− 2).

Subtracting these identities yields 3d − km − 2m + 2 = 0. Thus the greatest common divisor of d and m
divides 2. We then substitute k = 3d−2m+2

m in the first equation and obtain d2 − 3dm +m2 −m + 2 = 0.
Let p be any prime number that divides m. Then p divides 3d + 2 and also d2 + 2. But then p also
divides d2 − 3d = d(d − 3). Assume that p does not divide d, then p divides d − 3. Then p divides
3d +2−3(d −3) = 11. On the other hand p also divides (d2 +2)− (d −3)2 −3(d −3) = 2 and thus we have
a contradiction. It follows that p divides d and hence p = 2. Dividing the equation above by 2 yields

d
d
2
− 3dm

2
+m

m
2
− m

2
+1 = 0.

We conclude that m2 must be odd. Since m is a power of 2 it then follows that m = 2. We hence obtain the
equation d2 − 6d +4 = 0, which has no integer solution in d. We conclude that δ = −1 is not possible. �

Claim (B.i.2). If δ = 0, then C has degree 13 and multiplicity sequence (5(6),4).

Proof of Claim (B.i.2). From δ = 0 and the genus-degree formula we obtain

0 = d2 − km2 − (m− 1)2 −m+2,

0 = d2 − 3d +2− km(m− 1)− (m− 1)(m− 2).

Subtracting these identities yields 3d − km− 2m+ 1 = 0. We thus see that d and m are coprime and that
m divides 3d +1. We substitute k = 3d−2m+1

m in the first equation and obtain d2 − 3dm+m2 +1 = 0. From
this we see that m divides d2 +1. But then m also divides (d2 +1)− (3d +1) = d(d −3). Since d and m are
coprime, m divides d −3. On the other hand, m also divides (d2 +1)+ (3d +1) = (d +1)(d +2). Let p be a
prime number that divides m. Then p divides d − 3 and either d + 1 or d + 2, but not both since they are
coprime. Thus p must be either 2 or 5. Assume moreover that p2 divides m. Then p2 also divides d2 +1
and 3d+1. Since p divides d−3, it follows that p2 divides (d−3)2 = d2−6d+9 = d2+1−2(3d+1)+10. But
then p2 divides 10, which is not possible. We conclude that m ∈ {5,10} (since m ≥ 3). We then check for
integer solutions for d in the equation d2−3dm+m2+1 = 0 for these values of m and find (d,m) = (13,5)
as the only possibility. For a diagram of a resolution of such an isomorphism see Remark 4.23. We assume
from now on that we are not in this case. �
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Claim (B.i.3). If δ = 1, we reach a contradiction.

Proof of Claim (B.i.3). From δ = 1 and the genus-degree formula we get the equations

0 = d2 − km2 − (m− 1)2 −m+1,

0 = d2 − 3d +2− km(m− 1)− (m− 1)(m− 1).

Subtracting these identities yields 3d−km−2m = 0. We then substitute k = 3d−2m
m in the first equation and

obtain d2 =m(3d+m+1). Let p be any prime number that divides m. But then p divides d2 and thus also
d. It then follows that p divides 1 and we have a contradiction. �

Claim (B.i.4). If δ ≥ 2, we reach a contradiction.

Proof of Claim (B.i.4). Since π is a (−1)-tower resolution of C, the base-point pi+1 is the unique intersection
point between Ci and Ei , for i = k+m−1, . . . , k+m+δ−1. The configuration after these blow-ups is shown
in Figure 18.

E1 Ek [−3] Ek+m−2

Ek+m−1

Ek+1[−m+1]
Ek+m

Ek+m+1

Ek+m+δ

Ck+m+δ

Figure 18: Case l = 1, δ ≥ 2.

Since no more base-point of π can lie on Ek+m, its strict transform in X has self-intersection −2. If m > 3,
then Ek+m−1 intersects the two (−2)-curves Ek+m−2 and Ek+m in X. But η contracts Ek+m−1 before these
two curves and thus this situation is not possible and we have m = 3. Since d < 3m = 9 by Lemma 4.4,
the multiplicity sequence of C is in Table 1 and can only be (3(3),2) in degree 6. In this case δ = 5. But
this implies that Ek+m+1 is also a (−2)-curve in X. We hence get a contradiction after η contracts Ek+m−1.
Then the image of Ek+m intersects the (−2)-curves Ek and Ek+m+1. �

This concludes (i) of part (B).

(ii) Suppose now that Ck+1 does not pass through the intersection point between Ek and Ek+1. Then
Ck+1 intersects Ek+1 in one point with intersection multiplicity m − 1, otherwise there would be a loop
in the configuration of the curves E1, . . . ,En−1,Cn. The configuration of curves in Xk+1 is shown in the
left part of Figure 19. Since Cn and Ek+1 do not intersect in X, it follows that the base-point pi+1 for
i = k + 1, . . . , k +m − 1 is the unique intersection point between Ci and Ei , which also lies on Ek+1. The
configuration of curves in Xk+m is shown in the right part of Figure 19. We denote the self-intersection of
Ck+m by δ and this number is equal to d2 − km2 − (m− 1)2 − (m− 1). Since π is a (−1)-tower resolution of
C, it follows that δ ≥ −1.

In the surface X, let E , Ek in {E1, . . . ,En} be a curve that intersects Cn. We know that the map η first
contracts Cn and then the chain Ek , . . . ,E1. Since k ≥ 2, it follows that the image of E is tangent to Ek+1,
after these contractions. This implies that E is not contracted by η and thus E = En is the last exceptional
curve in the (−1)-tower resolution π. We now discuss what happens for different values of δ.
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E1 Ek

Ek+1

Ck+1 E1 Ek

Ek+1[−m]

Ek+m Ek+2

Ck+m[δ]

Figure 19: Blow-up of pk+2, . . . ,pk+m.

Claim (B.ii.1). If δ = −1, we reach a contradiction.

Proof of Claim (B.ii.1). In this case we already have a (−1)-tower resolution of C. This resolution must
be π, since there is no more base-point on Ck+m and Cn intersects En. But we observe that the curves
E1, . . . ,Ek+m−1,Ck+m are not connected and thus cannot be the contracted locus of η. Hence δ = −1 is not
possible. �

Claim (B.ii.2). If δ = 0, we reach a contradiction.

Proof of Claim (B.ii.2). The base-point pk+m+1 is the unique intersection point between Ck+m and Ek+m.
After this blow-up, we have a (−1)-tower resolution of C, which must be π, for the same reason as in the
case δ = −1. The configuration of curves is shown in Figure 20.

E1 Ek

Ek+1[−m]

Ek+m Ek+2

Ek+m+1Ck+m+1

Figure 20: Case l = 1, δ = 0.

The map η contracts first Ck+m+1 and then the chain Ek , . . . ,E1. After these contractions the self-
intersection of the image of Ek+1 is −m+ k, but must also be −1 and hence k =m− 1. From δ = 0 we then
obtain the equation d2 = m(m2 − 1). Since m and m2 − 1 are coprime, they are both squares, as d > 0.
But if m ≥ 2 is a square, then m2 − 1 is not a square. Hence the only integer solutions to the equation are
(d,m) = (0,−1), (0,0), (0,1), and thus δ = 0 is also not possible. �

Claim (B.ii.3). If δ ≥ 1, we reach a contradiction.

Proof of Claim (B.ii.3). For i = l +m,. . . , l +m + δ, the base-point pi+1 is the unique intersection point
between Ci and Ei . After these blow-ups we have a (−1)-tower resolution of C, which has to be π for the
same reason as in the previous cases. The configuration of curves is shown in Figure 21.

E1 Ek

Ek+1[−m]

Ek+m Ek+m−1 Ek+2

Ek+m+1

Ek+m+δ+1
Ck+m+δ+1

Figure 21: Case l = 1, δ ≥ 1.
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Since δ ≥ 1, the curve El+m+1 has self-intersection −2. But we know that η contracts Ek+m before the
(−2)-curves El+m−1 and El+m+1, which leads to a contradiction. �

This concludes (ii) of part (B) and hence finishes the proof of Proposition 4.22. �

Remark 4.23. Below we see the configuration of exceptional curves of a resolution of a non-extendable
isomorphism between two curves of degree 13 with multiplicity sequence (5(6),4). All the unlabeled
curves have self-intersection −2. Starting with either of the (−1)-curves, one can successively contract
all curves in this configuration, except the other (−1)-curve. The image of this curve in P

2, denoted C,
then has self-intersection 169 = 132. It remains to be verified whether such curves exist and whether new
counterexamples to Conjecture 1.1 may arise in this way. We remark that C \ Sing(C) 'A

1 \ {0} and thus
C is different from the unicuspidal examples of degree 13 constructed in [Cos12].

−3

−5

−4

−1

−4

−1

−3

Corollary 4.24. Let C ⊂ P
2 be an irreducible curve with one of the multiplicity sequences (3,2(3)), (3(2),2(4)),

(3(3),2), (3(4),2(3)), (4,3(3)), (4,3(5)), (4(2),3(3)), or (4(3),3). Then either C is unicuspidal or any open embed-
ding P2 \C ↪→ P

2 extends to an automorphism of P2.

Proof. This is a direct consequence of Proposition 4.22. �

Remark 4.25. Note that in Corollary 4.24, only curves with the multiplicity sequences (3(3),2) and (4(3),3)
can be unicuspidal.

Proposition 4.26. Let C ⊂ P
2 be a rational curve of degree d and multiplicity sequence (m1, . . . ,mk) such that

all multiplicities are even and there exists l < k such that ml+1 = . . . =mk = 2 and mj < mj+1 + . . .+mk for all
j ≤ l. Let ϕ : P2 \C ↪→ P

2 be an open embedding that does not extend to an automorphism of P2. Then C is
unicuspidal.

Proof. Suppose that C is not unicuspidal. By Proposition 4.19, we can assume that the multiplicity sequence

of C is non-constant. By Lemma 2.4, there exists π : X = Xn
πn−−→ . . .

π2−−→ X1
π1−−→ X0 = P

2 a (−1)-tower
resolution of C with base-points p1, . . . ,pn and exceptional curves E1, . . . ,En, and a (−1)-tower resolution
η : X→ P

2 of some curve D ⊂ P
2 such that ϕ ◦π = η. Then E1 ∪ . . .∪En−1 ∪Cn is the exceptional locus

of η, being the support of an SNC-divisor that has a tree structure. The composition π1 ◦ . . . ◦πk is the
minimal resolution of singularities of C. For i = 1, . . . , k, we obtain the following intersection numbers, by
Lemma 4.8:

Ck ·Ei =mi −
∑
pj�pi

mj .

In particular, Ck · Ek = 2. Since mj < mj+1 + . . . +mk for all j ≤ l, it follows that, for i = 1, . . . , l, the
curves Ei and Ek do not intersect in Xk and hence also not in X. Since all mi are even, it follows that the
intersection numbers Ck ·Ei are even. It follows moreover that the intersection numbers Cn ·Ei are also even
for i = 1, . . . , l, since Ek and Ei do not intersect in Xk . The curve E1∪ . . .∪En−1∪Cn is SNC and therefore
Ei and Cn do not intersect at all, for i = 1, . . . , l. Since the multiplicities ml+1, . . . ,mk are all equal to 2, it
follows that Ck does not intersect any of the curves E1, . . . ,Ek−1, but only Ek . Since C is not unicuspidal,
the curves Ck and Ek intersect in two distinct points. We denote by δ the self-intersection of Ck , which is
given by δ = d2 −

∑k
i=1m

2
i . Since C has a (−1)-tower resolution, we have δ ≥ −1.
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Claim (1). If δ = −1, we reach a contradiction.

Proof of Claim (1). We already have a (−1)-tower resolution of C (see Figure 22). Since Ck and Ek intersect
in two points and there is no more base-point on Ck , there is no more base-point at all. But we observe
that Ck and E1 ∪ . . .∪Ek−1 are not connected. This is not possible and hence δ must be ≥ 0.

Ek

Ck

Figure 22: Case δ = −1.

�

Claim (2). If δ = 0, we reach a contradiction.

Proof of Claim (2). The genus-degree formula yields

d2 − 3d +2 =
k∑
i=1

mi(mi − 1).

Using δ = 0, we get 3d − 2 =
∑k
i=1mi . This identity implies that d is even. We can thus find the equations(

d
2

)2
=

k∑
i=1

(mi
2

)2
,

3
(
d
2

)
+1 =

k∑
i=1

mi
2
.

Adding these identities yields

d
2

(
d
2
+3

)
+1 =

k∑
i=1

mi
2

(mi
2

+1
)
.

The left-hand side of this equation is odd, whereas the right-hand side is even. This is a contradiction and
thus δ = 0 is not possible. �

Claim (3). If δ = 1, we reach a contradiction.

Proof of Claim (3). The base-point pk+1 is one of the intersection points between Ck and Ek . The curve
Ck+1 has then self-intersection 0 in Xk+1 and thus the base-point pk+2 is the unique intersection point
between Ck+1 and Ek+1. The configuration of curves in Xk+2 is shown in Figure 23. In the surface X, the
curve Ek has self-intersection −2. This implies that η first contracts Cn and then Ek , . . . ,E1, in this order. By
assumption, the multiplicity sequence of C is non-constant. This implies that there exists a curve Ej with
j < k that intersects 3 other exceptional curves. But this implies that the image of Ek+1, after contracting
Cn,Ek , . . . ,E1, is singular and hence cannot be contracted. We thus reach a contradiction and conclude that
δ , 1.

�
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Ej

Ek

Ek+1 Ek+2

Ck+2

Figure 23: Case δ = 1.

Claim (4). If δ ≥ 2, we reach a contradiction.

Proof of Claim (4). Again, the base-point pk+1 is one of the intersection points between Ck and Ek . Since
π is a (−1)-tower resolution of C, it follows that for i = k + 1, . . . , k + δ, the base-point pi+1 is the unique
intersection point between Ck and Ek (see Figure 24). This implies that in X, the curve Ek+1 has self-
intersection −2. We observe that Ek also intersects the (−2)-curve Ek−1 in X. Since η contracts Ek before
Ek−1 and Ek+1, this leads to a contradiction.

Ek−1

Ek

Ek+1 Ek+δ+1

Ck+δ+1

Figure 24: Case δ ≥ 2.

�

This concludes the proof of Proposition 4.26. �

Corollary 4.27. Let C ⊂ P
2 be an irreducible curve with one of the multiplicity sequences (4,2(4)), (4(3),2(3)),

or (6,2(6)). If C is not unicuspidal, then any open embedding P2 \C ↪→ P
2 extends to an automorphism of P2.

Proof. This is a direct consequence of Proposition 4.26. �

4.D. A special sextic curve and the proof of Theorem 2

Proposition 4.28. Let C ⊂ P
2 be a curve of degree 6 and multiplicity sequence (3,2(7)) such that there exists

ϕ : P2 \C→ P
2 \D an isomorphism, where D ⊂ P

2 is a curve. Then C and D are projectively equivalent.

Proof. If ϕ extends to an automorphism of P2 the claim is trivial, so we assume this is not the case.
Then by Lemma 2.4, there exists a (−1)-tower resolution π : X → P

2 of C and a (−1)-tower resolution
η : X → P

2 of D such that η = ϕ ◦π. The curve C has 8 singular points p1, . . . ,p8, where pi+1 lies in the
first neighborhood of pi for i = 1, . . . ,7. The map π is a (−1)-tower resolution of C and thus blows up the
points p1, . . . ,p8. We denote by Ei the exceptional curve of the blow-up of pi , for i = 1, . . . ,8. After blowing
up these 8 points, the strict transform Ĉ of C has self-intersection 62 −32 −7 ·22 = −1. We observe that Ĉ
and E8 intersect with multiplicity 2. Since no other base-point of π lies on Ĉ, it follows that also the strict
transforms of Ĉ and E8 intersect with multiplicity 2 in X. But this means that E8 is not contracted by η. It
follows that E8 is the last exceptional curve of π and η(E8) =D .

By Bézout’s theorem the points p1,p2,p3 are not collinear and hence there exists a conic Q1 ⊂ P
2 that

passes through p1, . . . ,p5. Again by Bézout’s theorem, it follows that C and Q1 intersect transversely in
some proper point of P2 that is different from p1. It then follows that the strict transform Q̂1 of Q1 in X
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transversely intersects E5 and Ĉ. By symmetry there also exists a conic Q2 ⊂ P
2 whose strict transform Q̂2

by η intersects E3 and D̂ transversely. The configuration of curves in X is shown below.

E3E1 E2

E4

E5 E7E6

Q̂2 Q̂1

E8Ĉ

To see that Q̂1 and Q̂2 do not intersect in X, we observe that π sends Q̂2 to a rational quartic curve
with multiplicity sequence (2(3)) and singular points p1,p2,p3. It then follows that

Q̂1 · Q̂2 =Q2 ·π(Q̂2)− 2− 2− 2− 1− 1 = 0.

Moreover, the curves Q̂1 and Q̂2 both have self-intersection −1 in X. We can thus construct a morphism
ρ by contracting the curves Q̂2,E3,E2,E1 and Q̂1,E5,E6,E7. The rank of the Picard group of X is 9, and
hence the rank of the Picard group of the image of ρ is 1. It thus follows that ρ is a morphism X → P

2.
The images of Ĉ,E4 and E8 all have self-intersection 4 and are thus smooth conics in P

2. The curves ρ(E4)
and ρ(Ĉ) intersect in two distinct points p,q ∈ P2, with multiplicity 1 in p and multiplicity 3 in q. The
curves ρ(E4) and ρ(E8) also intersect in p and q, but with multiplicity 3 in p and multiplicity 1 in q. The
configuration of the 3 conics is shown below.

ρ(E4)
ρ(Ĉ) ρ(E8)

p q

Up to a linear change of coordinates, we can assume that the smooth conic ρ(E4) has equation xz+ y2 = 0
and the points p and q are [1 : 0 : 0] and [0 : 0 : 1] respectively. Conics that pass through the points
[1 : 0 : 0] and [0 : 0 : 1] are of the form

ay2 + bxy + cxz+ dyz = 0

where a,b,c,d ∈ k. A smooth conic with this equation intersects xz+y2 = 0 with multiplicity 3 in [1 : 0 : 0]
if and only if a = c , 0, b = 0 and d , 0. Thus there exists some λ ∈ k∗ such that ρ(Ĉ) has equation
xz+ y2 +λyz = 0. Analogously, there exists µ ∈ k∗ such that ρ(E8) has equation xz+ y2 +µyz = 0.

We then find θ ∈ Aut(P2) that sends a point [x : y : z] to [λµz : y : µλx]. Thus θ preserves the conic

xz + y2 = 0 and exchanges ρ(Ĉ) and ρ(E8). It follows that θ̂ B ρ−1 ◦ θ ◦ ρ is an automorphism of X that
exchanges Ĉ and E8 and sends Ei to E8−i for i = 2, . . . ,7. But then η ◦ θ̂ ◦π−1 is an automorphism of P2

that sends C to D, and hence C and D are projectively equivalent. �

Before we are able to prove Theorem 2, we need to look at one more special case.
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Lemma 4.29. Let C ⊂ P
2 be a curve of degree 7 and multiplicity sequence (5,2(5)). Then every open embedding

P
2 \C ↪→ P

2 extends to an automorphism of P2.

Proof. Suppose that there exists an open embedding ϕ : P2 \ C ↪→ P
2 that does not extend to an auto-

morphism of P2. Then by Lemma 2.4, there exists π : X = Xn
πn−−→ . . .

π2−−→ X1
π1−−→ X0 = P

2 a (−1)-tower
resolution of C with base-points p1, . . . ,pn and exceptional curves E1, . . . ,En, and a (−1)-tower resolution
η : X→ P

2 of some curve D ⊂ P
2 such that ϕ◦π = η. Then E1∪ . . .∪En−1∪Cn is the exceptional locus of

η, being the support of an SNC-divisor that has a tree structure. By Lemma 4.8, we obtain the intersection
number

Cn ·E1 =mi −
∑
pj�p1

mj .

Thus either Cn ·E1 = 3 or Cn ·E1 = 1. Since Cn can intersect E1 only transversely in at most one point, we
conclude that Cn ·E1 = 1 and that p3 is proximate to p1. For the first 6 blow-ups of π, we then obtain the
configuration of curves illustrated below.

E1

E3

E2

E4

E5

E6
C6

The curves E2 and E4 have self-intersection −2 in X since the resolution π is obtained by blowing up more
points on E6. Moreover, the map η contracts E3 before E2 and E4, but this leads to a contradiction. �

We are now ready to give the proof of the second main result.

Proof of Theorem 2. We assume that C is not a line, conic, or a nodal cubic. We can also assume that C
is rational and has a unique proper singular point with one of the multiplicity sequences in Table 1, by
Corollary 4.5. Otherwise, ϕ extends to an automorphism of P2. If C is unicuspidal, then C and D are
projectively equivalent by Corollary 4.18. If C is not unicuspidal, then ϕ extends to an automorphism of
P
2 by Corollary 4.10, Corollary 4.21, Corollary 4.24, Corollary 4.27, and Lemma 4.29, except when C is

of degree 6 with multiplicity sequence (3,2(7)) or C is of degree 8 with multiplicity sequence (3(7)). If C
has multiplicity sequence (3,2(7)), the claim follows from Proposition 4.28. If C has multiplicity sequence
(3(7)), then C \ Sing(C) is isomorphic to A

1 \ {0}, by Proposition 4.19. �

Remark 4.30. For all known examples of irreducible curves C ⊂ P
2 that have non-extendable open em-

beddings P2 \C ↪→ P
2, we have that C \ Sing(C) ' P

1 \ {p1, . . . ,pk}, where k ∈ {1,2,3,9}. There are only
very few known non-unicuspidal examples. Do there exist examples for any k ∈N?

4.E. A counterexample of degree 8

It follows from Theorem 2 that if two irreducible curves C,D ⊂ P
2 of degree ≤ 8 are counterexamples to

Conjecture 1.1, then C and D are of degree 8 and have multiplicity sequence (3(7)). In this section, we
show that such counterexamples do indeed exist. First we need the following auxiliary construction.

Lemma 4.31. We denote the conic
Λ : xy + xz+ yz = 0

and for λ ∈ k \ {0,−1} the conics

Γλ : x
2 − (1 +λ)xy −λxz − (1 +λ)yz = 0,
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∆λ : z
2 −

(
1+

1
λ

)
xy − 1

λ
xz −

(
1+

1
λ

)
yz = 0.

Then the curves Λ, Γλ and ∆λ intersect in [0 : 1 : 0] with multiplicity 3 for each pair. Moreover, the curves

• Λ and Γλ intersect in [0 : 0 : 1],

• Λ and ∆λ intersect in [1 : 0 : 0],

• Γλ and ∆λ intersect in [λ : 0 : 1],

and in no other point apart from [0 : 1 : 0]. The configuration of these conics is shown below.

Λ

∆λΓλ

[0 : 1 : 0]

[1 : 0 : 0]

[0 : 0 : 1]

[λ : 0 : 1]

Furthermore, there exists an automorphsim of P2 that preserves Λ and exchanges Γλ and ∆λ if and only if λ = 1.

Proof. The curves Λ, Γλ and ∆λ are given by explicit equations and it is a straightforward computation to
determine the intersection points and multiplicities.

To prove the last claim, suppose that θ ∈ Aut(P2) = PGL3(k) preserves Λ and exchanges Γλ and ∆λ.
Then θ fixes [0 : 1 : 0] and exchanges [1 : 0 : 0] and [0 : 0 : 1]. These conditions imply that θ is of
the form [x : y : z] 7→ [αz : y : βx], for some α,β ∈ k∗. The image of Λ under θ then has equation
βxy +αβxz +αyz = 0. Since Λ is preserved, it follows that α = β = αβ and hence α = β = 1. The map
θ also fixes the intersection point [λ : 0 : 1] between Γλ and ∆λ. Since θ([λ : 0 : 1]) = [1 : 0 : λ], it follows
that λ = 1. For the converse, suppose that λ = 1. Then the automorphism [x : y : z] 7→ [z : y : x] preserves
Λ and exchanges Γ1 and ∆1. �

Proof of Theorem 3. With the same notations as in Lemma 4.31, we choose some λ ∈ k \ {0,±1} and conics
Λ, Γ = Γλ, ∆ = ∆λ. We denote moreover by Ly the line y = 0 and by Lλ the line through [0 : 1 : 0] and
[λ : 0 : 1]. The line Lλ has equation x−λz = 0 and intersectsΛ in the points [0 : 1 : 0] and [1+λ : −1 : 1+ 1

λ ].
The configuration of these curves in shown below.

Λ

∆Γ

Ly

Lλ

[0 : 1 : 0]

[1 : 0 : 0]

[0 : 0 : 1]

[λ : 0 : 1]

[1 +λ : −1 : 1 + 1
λ ]
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We then blow up the points [1 : 0 : 0], [0 : 0 : 1] and [λ : 0 : 1], with exceptional curves E1, E2, and E3
respectively. The configuration after these blow-ups is shown below. By abuse of notation, we use the same
names for the strict transforms of all curves. Curves with self-intersection −1 are drawn with thick lines
and all other self-intersection numbers are indicated, except if they are −2.

Λ[2]

Lλ[0]

Ly

∆[2]

Γ [2]

E3

E2E1

p

q

Next, we blow up the intersection point q between Lλ and E3, with exceptional curve E4. The curves
Γ , ∆ and Λ each intersect with multiplicity 3 in the point p. We then blow up p and two points proximate
to p (with exceptional curves E5, E6, E7) so that the strict transforms of Γ , ∆ and Λ are disjoint. We thus
obtain the following configuration of curves.

∆

ΓLλ

Λ

Ly

E1 E2

E3

E4

E5 E6

E7

r

Finally, we blow up the intersection point r between Λ and E7 and two points proximate to r, with
exceptional curves E8, E9, E10, and obtain the configuration shown below. We denote the surface obtained
after these blow-ups by X and denote the composition of all 10 blow-ups by ρ : X → P

2. The curves E1,
E2, E4, E10 are dashed and unlabeled because they will not be used for what follows.

LλΛ

Ly

∆

Γ

E3

E5 E6

E7[−4]
E8E9

The rank of the Picard group of X is 11, since this surface is obtained from P
2 by 10 blow-ups. We

can now find a morphism π : X → P
2, by contracting the 10 curves ∆, E3, Ly , E7, E6, E5, Lλ, Λ, E8, E9,

in this order. The image C B π(Γ ) is then a curve of degree 8 in P
2 with multiplicity sequence (3(7)).

Likewise, we find a morphism η : X→ P
2, where we first contract Γ instead of ∆. The image D B η(∆) is
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then also a curve of degree 8 with multiplicity sequence (3(7)). The complements P2 \C and P
2 \D are

both isomorphic to the complement of the union of the curves Γ , ∆, E3, Ly , E7, E6, E5, Lλ, Λ, E8, E9 in X.
Suppose now that C and D are projectively equivalent, i.e. there exists θ ∈ PGL3(k) with θ(C) =D . We

observe that the base-points of π are completely determined by C, since π is the minimal SNC-resolution
of C followed by the blow-up of the unique intersection point between E3 and E7. Likewise, the base-points
of η are determined by D . It follows that θ̂ B η−1 ◦ θ ◦π defines an automorphism of X that exchanges
Γ and ∆ and preserves the other exceptional curves. But then θ̂ induces an automorphism of P2 (via ρ)
that exchanges the conics Γ ,∆ ⊂ P

2 and preserves Λ, Ly and Lλ. But this is not possible by Lemma 4.31,
since we have chosen λ , 1. We thus reach a contradiction and conclude that C and D are not projectively
equivalent. �

Remark 4.32. The construction in the proof of Theorem 3 also works if the base-field k is not algebraically
closed, except if k has only 2 or 3 elements. In these cases we cannot choose λ ∈ k \ {0,±1} = ∅.
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