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Cartan geometries on complex manifolds of algebraic
dimension zero

Indranil Biswas, Sorin Dumitrescu and Benjamin McKay

Abstract. We prove that every compact complex manifold of algebraic dimension zero bearing
a holomorphic Cartan geometry of algebraic type must have infinite fundamental group. This
generalizes the main Theorem in [DM] where the same result was proved for the special cases of
holomorphic affine connections and holomorphic conformal structures.
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Titre. Géométries de Cartan sur les variétés complexes de dimension algébrique nulle

Résumé. Nous montrons que toute variété complexe compacte de dimension algébrique nulle pos-
sédant une géométrie de Cartan holomorphe de type algébrique doit avoir un groupe fondamental
infini. Il s’agit d’une généralisation du théorème principal de [DM] où le même résultat était dé-
montré dans le cas particulier des connexions affines holomorphes et des structures conformes
holomorphes.
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1. Introduction

Let G be connected complex Lie group and H ⊂ G a closed complex Lie subgroup. A holomorphic
Cartan geometry of type (G, H) on a complex manifold X is an infinitesimal structure on X modeled on
G/H (details are in Section 2). Holomorphic affine connections, holomorphic projective connections and
holomorphic conformal structures are among the important geometric examples of holomorphic Cartan
geometries [Sh].

Contrary to the real setting, compact complex manifolds admitting a holomorphic Cartan geometry
are rather rare. All known examples of compact complex manifolds admitting a holomorphic Cartan
geometry actually admit a flat holomorphic Cartan geometry. It should be clarified that the model of the
flat Cartan geometry (see Definition 2.1) could be different from the given one. Indeed, compact complex
parallelizable manifolds [Wa] biholomorphic to quotients G/Γ , where G is a complex semi-simple Lie group
and Γ ⊂ G a uniform lattice, are known to admit holomorphic affine connections, but no flat holomorphic
affine connections [Du2].

Nevertheless, the following was conjectured in [DM]: Compact complex simply connected manifolds admit-
ting a holomorphic Cartan geometry with model (G, H) are biholomorphic to the model G/H . (See [DM, Section
6].)

This question is open even for the very special case of holomorphic projective connections: accord-
ingly to this conjecture, complex compact simply connected manifolds bearing a holomorphic projective
connection should be complex projective spaces (endowed with the standard flat projective geometry); this
is not known even for smooth complex projective varieties (except for the complex dimensions one, two
[KO1, KO2] and three [PR1]). A special case of this conjecture is that compact complex simply connected
manifolds X do not admit any holomorphic affine connection. This is known to be true for Kähler mani-
folds; indeed, in this case the rational Chern classes of the holomorphic tangent bundle TX must vanish,
[At], and using Yau’s theorem proving Calabi’s conjecture it can be shown that X admits a finite unramified
cover which is a complex torus [IKO]. According to the conjecture, the only simply connected compact
complex manifold which admits a holomorphic conformal structure is the smooth nondegenerate quadric
hypersurface in complex projective space. However, this is not known even for smooth complex projec-
tive varieties (except for the complex dimensions one, two [KO3] and three [PR2]). It is known that the
smooth quadric hypersurface admits precisely one holomorphic conformal structure (the standard one)
[BMc, Corollary 3].

Examples of non–Kähler complex compact manifolds of algebraic dimension zero admitting holomor-
phic Riemannian metrics [Le, Gh] of constant sectional curvature were constructed by Ghys in [Gh]. If
the sectional curvatures of a holomorphic Riemannian metric are constant, then the associated Levi-Civita
holomorphic affine connection is projectively flat. They also admit the corresponding flat holomorphic con-
formal structure. The examples in [Gh] are deformations of parallelizable manifolds covered by SL(2,C).

In the direction of the conjecture, the following was proved in [DM, Theorem 1]:
Compact complex simply connected manifolds with algebraic dimension zero admit neither holomorphic affine

connections, nor holomorphic conformal structures.
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Generalizing the main theorem in [DM] (Theorem 1), here we prove the following:
Compact complex manifolds of algebraic dimension zero bearing a holomorphic Cartan geometry of algebraic

type have infinite fundamental group (Theorem 4.1).

2. Cartan geometries

Let X be a complex manifold, G a complex connected Lie group and H a closed complex Lie subgroup of
G. The Lie algebras of the Lie groups G and H will be denoted by g and h respectively.

Definition 2.1. A holomorphic Cartan geometry (P , ω) on X with model (G, H) is a holomorphic principal
(right) H-bundle

π : P −→ X (2.1)

endowed with a holomorphic g-valued 1-form ω satisfying the following three conditions:

1. ωp : TpP −→ g is a complex linear isomorphism for all p ∈ P ,

2. the restriction of ω to every fiber of π coincides with the left invariant Maurer-Cartan form of H , and

3. (Rh)∗ω = Ad(h)−1ω, for all h ∈ H , where Rh is the right action of h on P and Ad is the adjoint
representation of G on g.

Definition 2.2. The kernel N of a model (G, H) is the largest subgroup of H normal in G; the kernel is clearly
a closed complex normal subgroup, and we denote its Lie algebra by n. A model (G, H) is effective if its kernel
is N = {1}. In other words, (G, H) is effective if H does not contain any nontrivial subgroup normal in G.
A Cartan geometry is effective if its model is effective. Any Cartan geometry (P , ω) has an induced effective
Cartan geometry (P , ω) where P = P /N and ω is the unique g/n-valued 1-form on P which pulls back, via the
natural quotient map P −→ P , to the g/n-valued one-form given by ω.

Definition 2.3. If Ad(H/N ) ⊂ GL(g/n) is an algebraic subgroup, then the holomorphic Cartan geometries with
model (G, H) are said to be of algebraic type.

Holomorphic affine connections, holomorphic projective connections, and holomorphic conformal struc-
tures are among the examples of effective holomorphic Cartan geometries of algebraic type [Pe, Sh].

Notice that Definition 2.1 implies, in particular, that the complex dimension of the homogeneous model
space G/H coincides with the complex dimension n of the manifold X.

Let us give some important examples.
A holomorphic affine connection corresponds to the model (Cn oGL(n,C), GL(n,C)) of the complex

affine space acted on by the group C
n
oGL(n,C) of complex affine transformations.

A holomorphic projective connection is a Cartan geometry with model (PGL(n + 1,C), Q), where
PGL(n + 1,C) is the complex projective group acting on the complex projective space CP n and where
Q ⊂ PGL(n+1,C) is the maximal parabolic subgroup that fixes a given point in CP n.

Holomorphic conformal structures are modeled on the quadric z20 + z
2
1 + . . .+ z

2
n+1 = 0 in CP n+1. Here

G is the subgroup PO(n+2,C) of the complex projective group PGL(n+2,C) preserving the above quadric,
while H is the stabilizer of a given point in the quadric. For more details about those Cartan geometries
and for many other examples the reader may consult [Sh].

Definition 2.4. Let X be equipped with a holomorphic Cartan geometry (P , ω) of type (G, H). A (local) biholo-
morphism between two open subsets U and V in X is a (local) automorphism of the Cartan geometry (P , ω) if it
lifts to a holomorphic principal H-bundle isomorphism between π−1(U ) and π−1(V ) that preserves the form ω;
here π is the projection in (2.1).

A (local) holomorphic vector field on X is a (local) Killing field of (P , ω) if its (local) flow acts by (local)
automorphisms of (P , ω).
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The Cartan geometry (P , ω) is called locally homogeneous on an open subset U ⊂ X if the tangent space TuX
is spanned by local Killing fields of (P , ω) for every point u ∈ U .

The curvature of (P , ω) is defined as a 2-form Ω on P , with values in g, given by the following formula

Ω(Y , Z) = dω(Y , Z)− [ω(Y ), ω(Z)]g (2.2)

for all local holomorphic vector fields Y , Z on P . When at least one of Y and Z is a vertical vector field
(meaning lies in the kernel of the differential dπ of π in (2.1)), then Ω(Y , Z) = 0 (see [Sh, 5.3.10]). From this
it follows that Ω is basic and it descends on X.

More precisely we have the following classical interpretation of Ω. Let

PG := P ×H G
πG−→ X (2.3)

be the holomorphic principal G–bundle over X obtained by extending the structure group of the holomor-
phic principal H–bundle P using the inclusion of H in G. Recall that PG is the quotient of P ×G where
two points (p1, g1), (p2, g2) ∈ P ×G are identified if there is an element h ∈ H such that p2 = p1h and
g2 = h−1g1. The projection πG in (2.3) is induced by the map P ×G −→ X, (p, g) 7−→ π(p). The action of
G on PG is induced by the action of G on P ×G given by the right–translation action of G on itself.

Consider the adjoint vector bundle ad(PG) = PG ×G g of PG. We recall that ad(PG) is the quotient of
PG × g where two points (c1, v1) and (c2, v2) are identified if there is an element g ∈ G such that c2 = c1g
and v2 is the image of v1 through the automorphism of the Lie algebra g defined by automorphism of G
given by z 7−→ g−1zg .

Starting with (P , ω) there is a natural Ehresmann connection on the principal bundle PG given by the
following g-valued form on P ×G:

ω̃(p,g) = Ad(g−1)π∗1(ω) +π
∗
2(ωG) ,

where π1 and π2 are the projections of P ×G on the first and the second factor respectively, while ωG is
the left-invariant Maurer-Cartan form on G.

The above form ω̃ is invariant by the previous H-action on P ×G and it vanishes when restricted to the
fibers of the fibration P ×G −→ PG. This implies that ω̃ is basic and it descends on PG. Let us denote also
by ω̃ this one-form on PG with values in g: it is an Ehresmann connection on the principal bundle PG (see
[BD], Proposition 3.4).

Recall that the curvature of the connection ω̃ on the principal bundle PG is a tensor of the following
type:

Curv(ω̃) ∈ H0(X, ad(PG)⊗Ω2
X) . (2.4)

Moreover, the curvature Ω of ω in (2.2) vanishes if and only if Curv(ω̃) vanishes. If Ω = 0, then ω
produces local isomorphisms of X to the homogeneous space G/H . This way we get a developing map
from the universal cover of X to G/H , which is a local biholomorphism (see for example [Sh] or [BD, p. 9]).

3. Cartan geometries on manifolds of algebraic dimension zero

As a preparation for the proof of Theorem 4.1, we first prove the following Lemma 3.1 which is an adaptation,
for Cartan geometries, of [DM, Proposition 2] on rigid geometric structures.

Recall that a compact complex manifold is of algebraic dimension zero if it does not admit any non-
constant meromorphic function [Ue]. These manifolds are far from being algebraic. Indeed, a manifold is
bimeromorphic with an algebraic manifold if and only if its field of meromorphic functions separates points
[Moi, Ue].
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Lemma 3.1. Let X be a compact complex simply connected manifold of algebraic dimension zero endowed with
a holomorphic effective Cartan geometry (P , ω). Then the connected component of the automorphism group of the
identity of (P , ω) is a connected complex abelian Lie group L acting on X with an open dense orbit. The open
dense orbit is the complement of an anticanonical divisor. Moreover, the natural map from L to this open dense
orbit, constructed by fixing a point of this orbit, is a biholomorphism. Furthermore, L is covered by (C∗)n.

Proof. By Theorem 1.2 in [Du] (see also [Du1]) the Cartan geometry (P , ω) is locally homogeneous on an
open dense subset in X. Recall that on simply connected manifolds, local Killing vector fields of Cartan
geometries extend to all of the manifold X [Am, No, Gr, Pe]. Therefore, it follows that there exists a Lie
algebra a of globally defined Killing vector fields on X which span TX at the generic point. Let us fix a
basis {X1, · · · , Xk} of a and consider the generalized Cartan geometry (P ,ω,a) (in the sense of Definition
4.11 in [Pe]) which is a juxtaposition of (P ,ω) with the family of vector fields {X1, · · · , Xk}. The proof of
Theorem 1.2 in [Du] applies to the generalized geometry (P , ω, a) which must also be locally homogeneous
on an open dense set. Notice that local Killing vector fields of (P ,ω,a) are restrictions of elements in a
which commute with the vector fields Xi . It follows that local vector fields of (P , ω, a) are elements in the
centralizer a′ of a, and a′ is transitive on an open dense subset. Since a′ is commutative, the action is
simply transitive on the open dense subset (note that a′ has the same dimension as that of X). A basis
of a′ is a family of commuting vector fields spanning TX at the generic point. Since the vector fields Xi
commute with elements in this basis, they must be a linear combination of elements in a′ with constant
coefficients (on the open dense subset and hence on all of X). In particular, we have Xi ∈ a′ , which implies
that a = a′ is an abelian algebra; this also implies that k is the complex dimension of X. In particular,
the corresponding connected Lie group L (the connected component of the identity of the automorphism
group of (P , ω)) is an abelian group of the same dimension as that of X acting with an open dense orbit.
This open dense orbit is the complement of the vanishing set S of the holomorphic section X1

∧
· · ·

∧
Xk

of the anticanonical bundle.
Since L is abelian, any `0 ∈ L stabilizing some point x0 of the open orbit stabilizes all points `x0 for

` ∈ L: `0x0 = x0, so `0`x0 = ``0x0 = `x0. By density of the open dense orbit, `0 stabilizes all points of X.
So the stabilizer of any point in the open orbit is trivial, i.e., X is an L-equivariant compactification of L.

The following arguments which prove that L is covered by (C∗)n are borrowed from [DM] (Proposition
2). Let us define nontrivial meromorphic 1-forms ωi on X by

ωi(ξ) =
X1 ∧X2 ∧ · · · ∧Xi−1 ∧ ξ ∧Xi+1 ∧ · · · ∧Xn

X1 ∧X2 ∧ · · · ∧Xn
.

Notice that the previous meromorphic 1-forms ωi are L-invariant and are holomorphic when restricted
to X \ S . Since L is abelian the classical Lie-Cartan formula implies that the forms ωi are closed (on the
open dense orbit X \S and hence on all of X). The indefinite integral of any nonzero closed meromorphic
1-form is a nonconstant meromorphic function on some covering space of the complement of the simple
poles of the 1-form. Since X is simply connected and does not admit nontrivial meromorphic functions,
every nonzero meromorphic 1-form on X must have a simple pole on some component of the complement
S of the open dense orbit of L.

Define
∆ = H1(X \ S,Z) = H1(L,Z) .

Then ∆ identifies with a discrete subgroup in the Lie algebra a of L and L is isomorphic to the quotient
a/∆.

The restriction to X \ S of the L-invariant meromorphic 1-forms ωi identify with a basis of a∗.
Pair any γ ∈ ∆, ω ∈ a∗ as follows:

γ, ω 7−→
∫
γ
ω ∈ C . (3.1)

Assume that for a given ω this pairing vanishes for every γ . Then ω integrates around each component
of S to define a meromorphic function on X. This meromorphic function must be constant and therefore
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we have ω = 0. Consequently, the pairing in (3.1) is nondegenerate, and hence ∆ ⊂ a spans a over C. This
implies that L = a/∆ is covered by (C∗)n. �

Recall that a large and important class of non-Kähler smooth equivariant compactifications of complex
abelian Lie groups (namely the so-called LMBV manifolds) was constructed in [BM, Mer] (see also [PUV]).

4. Equivariant compactifications of abelian groups and stability

In this section we prove the main result of the article (Theorem 4.1).
Let us first recall the notion of slope stability for holomorphic vector bundles complex manifolds which

will be used in the sequel.
Let X be a compact complex manifold of complex dimension n. Let us fix a Gauduchon metric g on it.

Recall that the (1,1)-form αg associated to a Gauduchon metric g satisfies the equation

∂∂αn−1g = 0 .

By a result of Gauduchon, any hermitian metric on X is conformally equivalent to a Gauduchon metric
(satisfying the above equation) which is uniquely defined up to a positive constant [Ga].

The degree of a torsionfree coherent analytic sheaf F on X is defined to be

deg(F) :=

√
−1
2π

∫
M
K(detF)∧αn−1g ∈ R , (4.1)

where detF is the determinant line bundle for F [Ko, Ch. V, § 6] (or Definition 1.34 in [Br]) and K is the
curvature for a hermitian connection on detF compatible with ∂detF . This degree is independent of the
hermitian metric since any two such curvature forms differ by a ∂∂-exact 2–form on X:∫

X
(∂∂u)∧αn−1g = −

∫
X
u ∧∂∂αn−1g = 0 .

This notion of degree is independent of the choice of the hermitian connection, but depends on the
Gauduchon metric (it is not a topological invariant). In the particular case where dαg = 0 we find the
classical degree for Kähler manifolds (and in this case the degree is a topological invariant).

Define

µ(F) :=
deg(F)
rank(F)

∈ R ,

which is called the slope of F (with respect to g).
A torsionfree coherent analytic sheaf F on X is called stable (respectively, semi-stable) if for every

coherent analytic subsheaf W ⊂ F such the rank(W ) ∈ [1 ,rank(F) − 1], the inequality µ(W ) < µ(F)
(respectively, µ(W ) ≤ µ(F)) holds (see [LT, p. 44, Definition 1.4.3], [Ko, Ch. V, § 7]).

The rest of the section is devoted to the proof of the main theorem of the article:

Theorem 4.1. Compact complex manifolds with algebraic dimension zero bearing a holomorphic Cartan geometry
of algebraic type have infinite fundamental group.

Proof. Assume, by contradiction, that a complex manifold X of algebraic dimension zero admits a holo-
morphic Cartan geometry (P , ω) and has finite fundamental group. Considering the universal cover of X
and pulling back the Cartan geometry (P , ω) to it, we would assume that X is simply connected. Replace
the Cartan geometry by the induced effective Cartan geometry, so we can assume that it is effective.

By Lemma 3.1, the maximal connected subgroup of the automorphism group of (P , ω) is a complex
connected abelian Lie group L acting on X with an open dense orbit (it is the complement of an anticanon-
ical divisor on X). The complement of this anticanonical divisor is biholomorphic to L (see Lemma 3.1
again).
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Let us now prove the following lemma describing the geometry of simply connected smooth equivariant
compactifications of complex abelian Lie groups.

Lemma 4.2. Let X be a simply connected smooth equivariant compactification of a complex abelian Lie group L.
Then the following four hold:

1. There is no nontrivial holomorphic k-form on X, for k ≥ 1.

2. Any holomorphic line bundle E1 over X admitting a holomorphic connection is holomorphically trivial.

3. If E is a holomorphic vector bundle over X admitting a holomorphic connection, then E is semi-stable of
degree zero.

4. If F is a coherent analytic subsheaf of the holomorphic tangent bundle TX, such that TX/F is nonzero and
torsionfree, then the quotient deg(TX/F) > 0.

Proof of Lemma 4.2. (1) Let us first consider the special case of k = 1. Let η be a holomorphic one-form
on X. Let {X1, · · · , Xn} be a family of commuting holomorphic vector fields on X which span TX at the
generic point. By the Lie-Cartan formula we get that for any i, j ∈ {1, · · · , n}:

dη(Xi , Xj ) = Xi · η(Xj )−Xj · η(Xi)− η([Xi ,Xj ]) = 0 . (4.2)

Since any holomorphic function on X is a constant one and [Xi , Xj ] = 0 for all i, j, it follows from (4.2)
that the form η is closed. Now since X is simply connected, η coincides with the differential of a global
holomorphic function u on X. Since X is compact, u is constant and hence η = 0.

Now consider a k-form η on X with k > 1. For any i1, i2, · · · , ik−1 ∈ {1, · · · , n}, the one-form on X

v 7−→ η(Xi1 , · · · , Xik−1 , v)

vanishes by the previous proof. Consequently, η must vanish.
(2) Let ∇ be a holomorphic connection on a holomorphic line bundle E1. The curvature Curv(∇) of ∇

is a holomorphic two-form on X. Hence Curv(∇) = 0 by (1). So ∇ is flat. This implies that E1 is the trivial
holomorphic line bundle, because X is simply connected.

(3) Let ∇ be a holomorphic connection of E. The determinant line bundle det(E) of E has a holomorphic
connection induced by ∇. So det(E) is holomorphically trivial by (2). Hence the degree of E is zero (see
(4.1)).

Assume, by contradiction, that E is not semi-stable. Then there exists a maximal semi-stable coherent
analytic subsheaf W (the smallest nonzero term of the Harder–Narasimhan filtration of E) [HL, pp. 14–15,
Theorem 1.3.1]. The maximal semistable subsheaf W has the following property:

H0(X, Hom(W, E/W )) = 0 . (4.3)

Indeed, this follows immediately from the facts that the slopes of the graded pieces for the Harder–
Narasimhan filtration of E/W are strictly less than µ(W ), and there is no nonzero homomorphism from a
semistable sheaf to another semistable sheaf of strictly smaller slope.

Now consider the second fundamental form

S : W −→ (E/W )⊗Ω1
X

of W for the holomorphic connection ∇, which associates to any locally defined holomorphic section s of
W the projection, to (E/W ) ⊗Ω1

X , of ∇(s) (which is a section of E ⊗Ω1
X ). For any global holomorphic

vector field Xi on X we have the homomorphism W −→ E/W defined by w 7−→ S(w)(Xi). From (4.3)
we know that this homomorphism vanishes identically. Since the vector fields Xi span TX at the generic
point, we have S = 0. Therefore, the connection ∇ preserves W . In other words, ∇ induces a holomorphic
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connection on W . This implies that the coherent analytic sheaf W is locally free (see Lemma 4.5 in [BD]).
SinceW admits a holomorphic connection, from (2) we have deg(W ) = 0. This contradicts the assumption
that W destabilizes E.

Consequently, E is semistable.
(4) Take F ⊂ TX as in (4). Let TX/F be of rank r ≥ 1. Consider the projection q : TX −→ TX/F and

the associated homomorphism

q̂ :
∧r

TX −→ det(TX/F) . (4.4)

Note that q produces a homomorphism
∧r TX −→ det(TX/F) over the subset U ⊂ X where the torsion-

free coherent analytic sheaf TX/F is locally free; now this homomorphism extends to entire X by Hartogs’
theorem, because det(TX/F) is locally free and the complex codimension of X \U is at least two.

Choose i1, · · · , ir ∈ {1, 2, · · · , n} for which {q(Xi1), · · · , q(Xir )} generate TX/F at the generic point.
Then q(Xi1)

∧
· · ·

∧
q(Xir ) defines a holomorphic section of det(TX/F) which is not identically zero; we

shall denote this section of det(TX/F) by σ . So we have deg(TX/F) ≥ 0, because det(TX/F) admits a
nonzero holomorphic section namely σ .

Assume by contradiction deg(TX/F) = 0. Then the divisor div(σ ) ⊂ X of the above section σ is the
zero divisor. Indeed, the degree of TX/F is the volume of div(σ ) with respect to the given Gauduchon
metric (see [Br, Proposition 5.23]). Consequently, the line bundle det(TX/F) is holomorphically trivializ-
able. Once a holomorphic trivialization of det(TX/F) is fixed, the homomorphism q̂ in (4.4) becomes a
holomorphic 1-form on X which is not identically zero. This is in contradiction with (1). This proves that
deg(TX/F) > 0. �

Continuing with the proof of Theorem 4.1, let us now consider the curvature of the Cartan geometry
(P , ω)

Curv(ω̃) ∈ H0(X, ad(PG)⊗Ω2
X)

constructed in (2.4). When contracted with any global holomorphic vector field Xi on X, this curvature
form Curv(ω̃) produces a holomorphic homomorphism

ϕ(Xi) : TX −→ ad(PG) , v 7−→ Curv(ω̃)(Xi , v) . (4.5)

The holomorphic connection ω̃ on PG induces a holomorphic connection on the vector bundle ad(PG)
associated to the principal G–bundle PG. Hence from Lemma 4.2(3) we know that the vector bundle ad(PG)
is semistable of degree zero. Consequently, from Lemma 4.2(3) it follows immediately that

H0(X, Hom(TX, ad(PG)) = 0;

indeed, the image of a nonzero homomorphism TX −→ ad(PG) would contradict the semistability condition
for ad(PG). In particular, the homomorphism ϕ(Xi) in (4.5) vanishes identically.

Since the vector fields Xi generate the tangent bundle of X over a nonempty open subset of X, from
the vanishing of the homomorphisms ϕ(Xi) we conclude that Curv(ω̃) = 0. Consequently, the Cartan
geometry (P , ω) is flat.

Since X is simply connected, the developing map of the Cartan geometry is a holomorphic biholomor-
phism between X and G/H . But G/H is algebraic and X has algebraic dimension zero: a contradiction.
This completes the proof of Theorem 4.1. �

Recall that a generalized Cartan geometry in the sense of [BD] is given by a pair (P , ω) satisfying con-
ditions (2) and (3) in Definition 2.1, while the homomorphism in Definition 2.1(1) is not required to be an
isomorphism anymore. Consequently, X and G/H do not necessarily have the same dimension.

The proof of Theorem 4.1 shows that on simply connected smooth equivariant compactifications X of
complex abelian Lie groups, all (generalized) holomorphic Cartan geometries in the sense of [BD] are flat
(notice that the condition on the algebraic dimension of X is not needed for this part of the proof; neither
the condition on the algebraicity of G/H ). In conclusion all (generalized) holomorphic Cartan geometries
on X are given by holomorphic maps X −→ G/H .



I. Biswas, S. Dumitrescu and B. McKay, Cartan geometries on complex manifolds of algebraic dimension zero 9I. Biswas, S. Dumitrescu and B. McKay, Cartan geometries on complex manifolds of algebraic dimension zero 9

Acknowledgements

The authors are very grateful to Laurent Meersseman for many enlightening discussions on the subject. We
thank the referee for helpful comments. Indranil Biswas is partially supported by a J. C. Bose Fellowship.
Sorin Dumitrescu wishes to thank T.I.F.R. Mumbai for hospitality. This research was supported in part by
the International Centre for Theoretical Sciences (ICTS) during a visit for participating in the program -
Analytic and Algebraic Geometry (Code: ICTS/aag2018/03).

References

[Am] A. M. Amores, Vector fields of a finite type G-structure,J. Diff. Geom. 14 (1980), 1–6. MR-0577874

[At] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181–207.
MR-MR0086359

[BD] I. Biswas and S. Dumitrescu, Generalized holomorphic Cartan geometries, Eur. J. Math. (2019), https:
//doi.org/10.1007/s40879-019-00327-6.

[BMc] I. Biswas and B. McKay, Holomorphic Cartan geometries and rational curves, Complex Manifolds 3
(2016), 145–168. MR-3489612

[BM] F. Bosio and L. Meersseman, Real quadrics in C
n, complex manifolds and convex polytops, Acta Math.

197 (2006), no. 1, 53–127. MR-2285318

[Br] V. Brînzanescu, Holomorphic vector bundles over compact complex surfaces, Lectures Notes in Mathe-
matics, 1624. Springer, Berlin Heidelberg, 1996. x+170 pp. MR-1439504

[Du] S. Dumitrescu, Killing fields of holomorphic Cartan geometries, Monatsh. Math. 161 (2010), no. 2,
145–154. MR-2680003

[Du1] S. Dumitrescu, Meromorphic almost rigid geometric structures, Geometry, Rigidity and Group Actions.
Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 2011, 32–58. MR-2807828

[Du2] S. Dumitrescu, Une caractérisation des variétés complexes compactes parallélisables admettant des struc-
tures affines, C. R. Math. Acad. Sci. Paris 347 (2009), no. 19-20, 1183–1187. MR-2567000

[DM] S. Dumitrescu and B. McKay, Affine connections on complex manifolds of algebraic dimension zero,
Moscow Math. Journal 16 (2016), no. 4, 675–689. MR-3598502

[Ga] P. Gauduchon, Sur la 1-forme de torsion d’une variété hermitienne compacte, Math. Ann., 267 (1984),
no. 4, 495–518. MR-0742896

[Gh] E. Ghys, Déformations des structures complexes sur les espaces homogènes de SL(2,C), J. Reine Angew.
Math. 468 (1995), 113–138. MR-1361788

[Gr] M. Gromov, Rigid Transformations Groups, Géométrie Différentielle (Paris, 1986), 65–139. Travaux en
Cours, 33, Hermann, Paris, 1988. MR-0955852

[HL] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31.
Friedr. Vieweg & Sohn, Braunschweig, 1997. xiv+269 pp. MR-1450870

[IKO] M. Inoue, S. Kobayashi and T. Ochiai, Holomorphic affine connections on compact complex surfaces, J.
Fac. Sci. Univ. Tokyo 27 (1980), no. 2, 247–264. MR-0586449

http://www.ams.org/mathscinet-getitem?mr=0577874
http://www.ams.org/mathscinet-getitem?mr=MR0086359
https://doi.org/10.1007/s40879-019-00327-6
https://doi.org/10.1007/s40879-019-00327-6
http://www.ams.org/mathscinet-getitem?mr=3489612
http://www.ams.org/mathscinet-getitem?mr=2285318
http://www.ams.org/mathscinet-getitem?mr=1439504
http://www.ams.org/mathscinet-getitem?mr=2680003
http://www.ams.org/mathscinet-getitem?mr=2807828
http://www.ams.org/mathscinet-getitem?mr=2567000
http://www.ams.org/mathscinet-getitem?mr=3598502
http://www.ams.org/mathscinet-getitem?mr=0742896
http://www.ams.org/mathscinet-getitem?mr=1361788
http://www.ams.org/mathscinet-getitem?mr=0955852
http://www.ams.org/mathscinet-getitem?mr=1450870
http://www.ams.org/mathscinet-getitem?mr=0586449


10 References10 References

[Ko] S. Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society
of Japan, 15. Princeton University Press, Princeton, NJ, 1987. xii+305 pp. MR-0909698

[KO1] S. Kobayashi and T. Ochiai, Holomorphic projective structures on compact complex surfaces, Math. Ann.
249 (1980), no. 1, 75–94. MR-0575449

[KO2] S. Kobayashi and T. Ochiai, Holomorphic projective structures on compact complex surfaces. II, Math.
Ann. 255 (1981), no. 4, 519–521. MR-0618182

[KO3] S. Kobayashi and T. Ochiai, Holomorphic structures modeled after hyperquadrics, Tôhoku Math. J. 34
(1982), no. 4, 587–629. MR-0685426

[Le] C. LeBrun, H-spaces with cosmological constant, Proc. Royal Soc. London Ser. A 380 (1982), no. 1778,
171–185. MR-0652038

[LT] M. Lübke and A. Teleman, The Kobayashi-Hitchin correspondence, World Scientific Publishing Co.,
Inc., River Edge, NJ, 1995. x+254 pp. MR-1370660

[Mer] L. Meersseman, A new geometric construction of compact complex manifolds in any dimension, Math.
Ann. 317 (2000), no. 1, 79–115. MR-1760670

[Moi] B. Moishezon, On n dimensional compact varieties with n independent meromorphic functions, Amer.
Math. Soc. Transl. (2) 63 (1967), 51–177. MR-0216522

[No] K. Nomizu, On local and global existence of Killing vector fields, Ann. of Math. (2) 72 (1960), 105–120.
MR-0119172

[Pe] V. Pecastaing, On two theorems about local automorphisms of geometric structures, Ann. Inst. Fourier 66
(2016), no. 1, 175–208. MR-3477874

[PUV] T. Panov, Y. Ustinovsky and M. Verbitsky, Complex geometry of moment angles manifolds, Math. Z. 284
(2016), no. 1-2, 309–333. MR-3545497

[PR1] J. Priska and I. Radloff, Threefolds with holomorphic normal projective connections, Math. Ann. 329
(2004), no. 3, 379–400. MR-2127983

[PR2] J. Priska and I. Radloff, Projective threefolds with holomorphic conformal structure, Internat. J. Math. 16
(2005), no. 6, 595–607. MR-2153485

[Sh] R. Sharpe, Differential Geometry. Cartan’s generalization of Klein’s Erlangen program, Graduate Texts
in Mathematics, 166. Springer-Verlag, New York, 1997. xx+421 pp. MR-1453120

[Ue] K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Math-
ematics 439. Springer-Verlag, Berlin-New York, 1975. xix+278 pp. MR-0506253

[Wa] H.-C. Wang, Complex parallisable manifolds, Proc. Amer. Math. Soc. 5 (1954), 771–776. MR-0074064

http://www.ams.org/mathscinet-getitem?mr=0909698
http://www.ams.org/mathscinet-getitem?mr=0575449
http://www.ams.org/mathscinet-getitem?mr=0618182
http://www.ams.org/mathscinet-getitem?mr=0685426
http://www.ams.org/mathscinet-getitem?mr=0652038
http://www.ams.org/mathscinet-getitem?mr=1370660
http://www.ams.org/mathscinet-getitem?mr=1760670
http://www.ams.org/mathscinet-getitem?mr=0216522
http://www.ams.org/mathscinet-getitem?mr=0119172
http://www.ams.org/mathscinet-getitem?mr=3477874
http://www.ams.org/mathscinet-getitem?mr=3545497
http://www.ams.org/mathscinet-getitem?mr=2127983
http://www.ams.org/mathscinet-getitem?mr=2153485
http://www.ams.org/mathscinet-getitem?mr=1453120
http://www.ams.org/mathscinet-getitem?mr=0506253
http://www.ams.org/mathscinet-getitem?mr=0074064

	Introduction
	Cartan geometries
	Cartan geometries on manifolds of algebraic dimension zero
	Equivariant compactifications of abelian groups and stability
	References

