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Weighted projective lines and rational surface singularities

Osamu Iyama and Michael Wemyss

Abstract. In this paper we study rational surface singularities R with star shaped dual graphs, and
under very mild assumptions on the self-intersection numbers we give an explicit description of all
their special Cohen–Macaulay modules. We do this by realising R as a certain Z-graded Veronese
subring S~x of the homogeneous coordinate ring S of the Geigle–Lenzing weighted projective
line X, and we realise the special CM modules as explicitly described summands of the canonical
tilting bundle on X. We then give a second proof that these are special CM modules by comparing
qgrS~x and cohX, and we also give a necessary and sufficient combinatorial criterion for these
to be equivalent categories. In turn, we show that qgrS~x is equivalent to qgrΓ where Γ is the
corresponding reconstruction algebra, and that the degree zero piece of Γ coincides with Ringel’s
canonical algebra. This implies that Γ contains the canonical algebra and furthermore qgrΓ is
derived equivalent to the canonical algebra, thus linking the reconstruction algebra of rational
surface singularities to the canonical algebra of representation theory.
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Titre. Droites projectives à poids et singularités rationnelles de surfaces

Résumé. Dans cet article, nous étudions les singularités rationnelles de surfaces R de graphes
duaux étoilés. Sous de légères hypothèses sur les nombres d’auto-intersection, nous donnons une
description explicite de tous leurs modules Cohen–Macaulay spéciaux. Pour cela, nous réalisons R
comme un certain sous-anneau de Veronese Z-gradué S~x de l’anneau de coordonnées homogènes
S de la droite projective pondérée de Geigle–LenzingX et nous réalisons les modules CM spéciaux
comme des facteurs directs explicites du fibré basculant canonique de X. Nous donnons ensuite
une seconde démonstration du fait que ce sont des modules CM spéciaux en comparant qgrS~x et
cohX, et nous énonçons également un critère combinatoire nécessaire et suffisant d’équivalence
pour ces deux catégories. En outre nous montrons que qgrS~x est équivalente à qgrΓ où Γ est
l’algèbre de reconstruction correspondante, et que la partie de degré zéro de Γ coïncide avec
l’algèbre canonique de Ringel. Cela implique que Γ contient l’algèbre canonique et de plus que
qgrΓ est équivalente au sens dérivé à l’algèbre canonique, reliant ainsi l’algèbre de reconstruction
des singularités rationnelles de surfaces à la théorie des représentations de l’algèbre canonique.
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1. Introduction

1.1. Motivation and Overview

It is well known that any rational surface singularity has only finitely many indecomposable special CM
modules, but it is in general a difficult task to classify and describe them explicitly. In this paper we use
the combinatorial structure encoded in the homogeneous coordinate ring S of the Geigle–Lenzing weighted
projective line X to solve this problem for a large class of examples arising from star shaped dual graphs,
extending our previous work [IW] to cover a much larger class of varieties. In the process, we link S , its
Veronese subrings, the reconstruction algebra and the canonical algebra, through a range of categorical
equivalences.

A hint of a connection between rational surface singularities and the canonical algebra can be found
in the lecture notes [R2]. In his study of the canonical algebra Λp,λ, Ringel drew pictures [R2, p196] of
canonical tilting bundles on X for the cases p = (2,3,3), (2,3,4) and (2,3,5), which correspond to Dynkin
diagrams E6, E7 and E8. For example, in the E7 case, Ringel’s picture is the following.

0 a1 c2 a2 ω

c1 b c3

(1.A)

What is remarkable is that all of Ringel’s pictures are identical to ones the authors drew in [IW, §7–9] when
classifying special CM modules for certain families of quotient singularities k[[x,y]]G with G ≤ GL(2,k).
For example, [IW, 8.2] contains the following picture, indicating the positions of special CM modules in the
AR quiver of k[[x,y]]O13 .

R
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Further, although they were not drawn in [IW], the arrows in (1.A) are implicit in the calculation of the
quiver of the corresponding reconstruction algebra [W2, §4]. This paper grew out of trying to give a
conceptual explanation for this coincidence, since a connection between the mathematics underpinning the
two pictures did not seem to be known.

In fact, the connection turns out to be explained by a very general phenomenon. Recall first that one
of the basic properties of the canonical algebra Λp,λ is that there is always a derived equivalence [GL1]

Db(cohXp,λ) 'Db(modΛp,λ)

where cohXp,λ is the weighted projective line of Geigle–Lenzing (for details, see §1.2). Thus, to explain the
above coincidence, we are led to consider the possibility of linking the weighted projective line, viewed as
a Deligne–Mumford stack, to the study of rational surface singularities. However, the weighted projective
line Xp,λ cannot itself be the stack that we are after, since it only has dimension one, and rational surface
singularities have, by definition, dimension two.

We need to increase the dimension, and the most naive way to do this is to consider the total space
of a line bundle over Xp,λ. We thus choose any member of the grading group ~x ∈ L and consider the
total space stack Tot(O

X
(−~x)) (for definition, see §1.2). From tilting on this and its coarse moduli, under

mild assumptions we prove that the Veronese subring S~x :=
⊕

i∈ZSi~x is a weighted homogeneous rational
surface singularity, giving the first concrete connection between the above two settings. Furthermore,
from the stack Tot(O

X
(−~x)) we then describe the special CM S~x-modules, and give precise information

regarding the minimal resolution of SpecS~x and its derived category.
Our results recover known special cases, such as the domestic case (corresponding to Dynkin diagrams),

where it is known that S−~ω is a simple singularity. In that setting there is an equivalence CMLS ' CMZS−~ω,
and this leads us to investigate more general categorical equivalences. We do this for very general S and
~x, and through a range of categorical equivalences we are then able to relate CMZS~x and vectX, which
finally allows us in Section 6 to explain categorically why the above two pictures must be the same.

We now describe our results in detail.

1.2. Veronese Subrings and Special CM modules

Throughout, let k denote an algebraically closed field of characteristic zero. For any n ≥ 0, choose positive
integers p1, . . . ,pn with all pi ≥ 2 and set p := (p1, . . . ,pn). Furthermore, choose pairwise distinct points
λ1, . . . ,λn in P1, and denote λ := (λ1, . . . ,λn). Let `i(t0, t1) ∈ k[t0, t1] be the linear form defining λi , and
write

Sp,λ = S :=
k[t0, t1,x1, . . . ,xn]

(xpii − `i(t0, t1) | 1 ≤ i ≤ n)
.

Moreover, let L = L(p1, . . . ,pn) be the abelian group generated by the elements ~x1, . . . , ~xn subject to the
relations p1~x1 = p2~x2 = · · · = pn~xn =: ~c. With this input S is an L-graded algebra with degxi := ~xi and
deg tj := ~c, and L is a rank one abelian group, possibly containing torsion. Often we normalize λ so that
λ1 = 0, λ2 =∞ and λ3 = 1, however it is important for changing parameters later that we allow ourselves
flexibility.

From this, consider the stack

Xp,λ =X := [(SpecSp,λ\0)/ SpeckL],

with coarse moduli space denoted Xp,λ = X. It is well known that X � P1, regardless of p and λ (see 2.1(2)).
To increase the dimension we choose an element ~x ∈ L and consider both the Veronese subring given

by S~x :=
⊕

i∈ZSi~x and the total space stack

T
~x = Tot(O

Xp,λ
(−~x)) := [(SpecSp,λ\0× Speck[t])/ SpeckL],
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where L acts on t with weight −~x. Writing ~x =
∑n
i=1 ai~xi +a~c in normal form (see 2.1(1)), we show in 3.2 that

the coarse moduli space T ~x is a surface containing a P1, and on that P1 complete locally the singularities
of T ~x are of the form

P
1

1
p1
(1,−a1)

λ1
1
p2
(1,−a2)

λ2

1
p3
(1,−a3)

λ3

... 1
pn

(1,−an)

λn
(1.B)

where for notation see 2.13.
As is standard, positivity conditions on ~x are needed in order to contract the zero section of T ~x. It

turns out that the correct notion is to assume that ~x ∈ L is not torsion, and further that ~ω − i~x < L+ for all
i ≥ 0 (for the definition of ~ω and L+ see 2.1(1)). Under this mild positivity restriction, we show in 3.7 that
there is a canonical morphism

γ : T ~x→ SpecS~x

satisfying Rγ∗OT ~x = OS~x , and further in 3.10 that γ is projective birational. Composing γ with the minimal
resolution ϕ : Y ~x→ T ~x of T ~x, gives the following.

Theorem 1.1 (=3.11). If ~x ∈ L is not torsion, and ~ω − i~x < L+ for all i ≥ 0, then S~x is a rational surface
singularity.

In the setting of the above theorem, all the datum can be summarized by the following commutative
diagram

T
~x X

T ~x X � P1
Y ~x

SpecS~x

g f

q

p
ϕ

γπ

(1.C)

We remark that the coarse moduli space T ~x is a singular line bundle in the sense of Dolgachev [D, §4]
and Pinkham [P, §3], which also appears in the work of Orlik–Wagreich [OW] and many others. However,
the key difference in our approach is that the grading group giving the quotient is L not Z, and indeed it
is the extra combinatorial structure of L that allows us to extract the geometry much more easily.

It is in fact easy to check (see 3.6(1)) that the positivity condition on ~x in 1.1 is satisfied if 0 , ~x ∈ L+.
This setting is particularly pleasant, since tilting behaves well.

Theorem 1.2 (=3.14). If 0 , ~x ∈ L+, then p
∗(O

P
1 ⊕O

P
1(1)) is a tilting bundle on T ~x.

Writing E :=
⊕

i∈[0,~c ]OX(i) for the Geigle–Lenzing tilting bundle on X [GL1], our next main result is
then the following.

Theorem 1.3. If 0 , ~x ∈ L+, then with notation as in (1.C),

(1) (=3.13) q∗E is a tilting bundle on T~x such that

D(QcohT~x) D(ModEnd
T
~x (q∗E))

D(QcohX) D(ModΛp,λ)

RHom
T
~x (q∗E ,−)
∼

RHom
X
(E ,−)

∼

Rq∗ res

commutes, where Λp,λ is the canonical algebra of Ringel.

(2) (=3.21) There is a fully faithful embedding Db(cohY ~x) ↪→Db(cohT~x).
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It is by analysing 1.3(2) that we are able to extract the special CM S~x-modules below. We show
in §4.3 that for any non-torsion ~x =

∑n
i=1 ai~xi + a~c we can change parameters and replace (p,λ, ~x) by

(p′ := (pi | i ∈ I),λ′ ,~x :=
∑
i∈I ai~xi + a~c ∈ L′ ) such that S~xp,λ = S~xp′ ,λ′ and (pi ,ai) = 1 holds. See 4.10 for

full details. With this in mind, we are then able to precisely control when the embedding in 1.3(2) is an
equivalence.

Proposition 1.4 (=4.8). If 0 , ~x =
∑n
i=1 ai~xi + a~c ∈ L+ with (pi , ai) = 1 for all 1 ≤ i ≤ n, then the embedding

in 1.3(2) is an equivalence if and only if every ai is 1, that is ~x =
∑n
i=1 ~xi + a~c.

Combining the above tilting result with (1.B) and a combinatorial argument, we are in fact able to
determine the precise dual graph (for definition see 2.5) of the morphism π in (1.C). Recall that for each
1
pi
(1,−ai) in (1.B) with ai , 0, we can consider the Hirzebruch–Jung continued fraction expansion

pi
pi − ai

= αi1 −
1

αi2 − 1
αi3− 1

(...)

:= [αi1, . . . ,αimi
], (1.D)

with each αij ≥ 2; see §2.4 for full details.

Theorem 1.5 (=3.16, 4.19). Let 0 , ~x ∈ L+ and as above write ~x =
∑n
i=1 ai~xi + a~c in normal form. Then the

dual graph of the morphism π : Y ~x→ SpecS~x is

...
...

...
...

. . .

. . .

−β

−α11

−α12

−α1m1−1

−α1m1

−α21

−α22

−α2m2−1

−α2m2

−α31

−α32

−α3m3−1

−α3m3

−αn1

−αn2

−αnmn−1

−αnmn

(1.E)

where the arm [αi1, . . . ,αimi
] corresponds to i ∈ {1, . . . ,n} with ai , 0, and the αij are given by the Hirzebruch–

Jung continued fractions in (1.D). Furthermore, writing v = #{i | ai , 0} for the number of arms, we have
β = a+ v.

We first establish in 3.17 that π is the minimal resolution if and only if ~x < [0,~c ]. Theorem 1.5 is then
proved by splitting into the two cases ~x < [0,~c ] and ~x ∈ [0,~c ], with the verification in both cases being
rather different. Note that the case ~x ∈ [0,~c ] is degenerate as [0,~c ] is a finite interval, containing only those
~x of the form ai~xi for some i and some 0 ≤ ai ≤ pi . In this paper we are mostly interested in special CM
modules and these are defined using the minimal resolution: this is why below the condition ~x < [0,~c ] often
appears.

We remark that for 0 , ~x ∈ L+, S~x is rarely a quotient singularity, and it is even more rare for it to
be ADE. Nevertheless, the dual graphs of all quotient singularities k2/G (where G is a small subgroup
of GL(2,k)) are known [B3], and so whether S~x is a quotient singularity can, if needed, be immediately
determined by 1.5, after contracting (−1)-curves if necessary.

One key observation in this paper is that controlling the stack T~x allows us not only to obtain a rational
surface singularity S~x, with its dual graph, but furthermore it also allows us to determine the special CM
S~x-modules. Indeed, in effect we simply compare the two resolutions

Y ~x T
~x

SpecS~x

π π′ :=γ◦g
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constructed above. It is known that Y ~x has a tilting bundleM [VdB, W6], and by 1.3(1) that T~x has tilting
bundle q∗E , where E is the Geigle–Lenzing tilting bundle on X. Pushing these down to SpecS~x gives the
following result. Throughout, we write SCMS~x for the category of special CM S~x-modules; for definitions
see §2.3. For ~y ∈ L, write S(~y)~x :=

⊕
i∈ZS~y+i~x.

Theorem 1.6. If 0 , ~x ∈ L+ with ~x < [0,~c ], then the following hold.

(1) [W6] SCMS~x = addπ∗M.

(2) (=3.21) π∗M is a summand of π′∗(q
∗E) =

⊕
~y∈[0,~c ]S(~y)

~x.

Furthermore, we say precisely which summands of π′∗(q
∗E) give the special CM modules. As notation,

recall that the i-series associated to the Hirzebruch–Jung continued fraction expansion r
a = [α1, . . . ,αm] is

defined as i0 = r, i1 = a and it = αt−1it−1 − it−2 for all t with 2 ≤ t ≤m+1, and we write

I(r,a) := {i0, i1, . . . , im+1}.

As convention I(r, r) = ∅.

Theorem 1.7 (=3.18, 4.15). If ~x ∈ L+ with ~x < [0,~c ], write ~x in normal form ~x =
∑n
i=1 ai~xi + a~c. Then

SCMS~x = add{S(u~xj )~x | j ∈ [1,n],u ∈ I(pj ,pj − aj )}.

This allows us to construct both R = S~x, and its special CM modules, for (almost) every star shaped
dual graph. We remark that this is the first time that special CM modules have been classified in any
example with infinite CM representation type, and indeed, due to the non–tautness of the dual graph, in an
uncountable family of examples. For simplicity in this paper, we restrict the explicitness to certain families
of examples, and refer the reader to §5.2 for more details.

By construction, all the special CM S~x-modules have a natural Z-grading, and we let N denote their
sum. By definition the reconstruction algebra is defined to be Γ~x := EndS~x(N ), and in this setting it inherits
a N-grading from the grading of the special CM modules in 1.7. In general, it is not generated in degree
one over its degree zero piece, but nevertheless the degree zero piece is always some canonical algebra of
Ringel. We state the first half of the following result vaguely, giving a much more precise description of the
parameters in 4.21.

Proposition 1.8. Suppose that x ∈ L+ with ~x < [0,~c ].

(1) (=4.21) The degree zero part of Γ~x is isomorphic to the canonical algebra Λq,µ, for some suitable parameters
(q,µ).

(2) (=5.8) For ~s :=
∑n
i=1 ~xi , then Γ~s is generated in degree one over its degree zero piece. Moreover the degree zero

piece is the canonical algebra Λp,λ.

1.3. Geigle–Lenzing Weighted Projective Lines via Rational Surface Singularities

For an abelian group G and a G-graded noetherian k-algebra, we write modGA for the category of
finitely generated G-graded A-modules, modG0A for the subcategory of finite dimensional modules, and
qgrGA := modGA/modG0A for the Serre quotient. Motivated by the above, and also the fact that when
studying curves it should not matter how we embed them into surfaces (and thus be independent of any
self-intersection numbers that appear), we then investigate when qgrZS~x ' cohX.

In very special cases, cohXp,λ is already known to be equivalent to qgrZR for some connected graded
commutative ring R [GL2, 8.4]. The nicest situation is when the star-shaped dual graph is of Dynkin
type, and further R is the ADE quotient singularity associated to the Dynkin diagram via the McKay
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correspondence (with a slightly non-standard grading). However, all the previous attempts to link the
weighted projective line to rational singularities have taken all self-intersection numbers to be −2, which is
well-known to restrict the possible configurations to ADE Dynkin type.

One of our main results is the following, which does not even require that ~x ∈ L+.

Theorem 1.9 (=4.7). Suppose that ~x =
∑n
i=1 ai~xi + a~c is not torsion, and write R := S~x. Then the following

conditions are equivalent.

(1) The natural functor (−)~x : CMLS→ CMZR is an equivalence.

(2) The natural functor (−)~x : qgrLS→ qgrZR is an equivalence.

(3) For any ~z ∈ L, the ideal I~z := S(~z)~x · S(−~z)~x of R satisfies dim
k
(R/I~z) <∞.

(4) (pi , ai) = 1 for all 1 ≤ i ≤ n.

The above theorem implies that for a non-torsion element ~x =
∑n
i=1 ai~xi+a~c of L, there is an equivalence

qgrZS~xp,λ ' cohXp,λ if and only if (pi , ai) = 1 for all i with 1 ≤ i ≤ n. Thus, by choosing a suitable ~x, the
weighted projective line can be defined using only connected N-graded rational surface singularities. Also,
we remark that in the case (pi , ai) , 1 we still have that qgrS~x is equivalent to some weighted projective
line, but the parameters are no longer (p,λ). We leave the details to §4.

Combining the above gives our next main result.

Corollary 1.10 (=4.7, 4.22). Let ~x ∈ L+ with ~x < [0,~c ], and write ~x =
∑n
i=1 ai~xi + a~c in normal form. If

(pi , ai) = 1 for all 1 ≤ i ≤ n, then
cohXp,λ ' qgrZS~x ' qgrZΓ~x,

and further Γ~x is an N-graded ring, with zeroth piece a canonical algebra.

In the case when (pi , ai) , 1 we have a similar result but again there is a change of parameters, so we refer
the reader to 4.22 for details. Combining 1.10 with 1.8(2), we can view the weighted projective line Xp,λ as
an Artin–Zhang noncommutative projective scheme over the canonical algebra Λp,λ [M].

Note that 1.9(2)⇔(4) was shown independently in [CCZ, 6.6].

1.4. Some Particular Veronese Subrings

We then investigate the particular Veronese subrings S~sa for ~sa := ~s+ a~c for some a ≥ 0, where ~s :=
∑n
i=1 ~xi .

We call S~sa the a-Wahl Veronese subring, and in this case, the singularities in (1.B) are all of the form 1
pi
(1,−1),

which are cyclic Gorenstein and so have a resolution consisting of only (−2)-curves. Thus resolving the
singularities in (1.B), by 1.5 we see that the dual graph of the minimal resolution of SpecS~sa is

...
...

...
...

. . .

. . .

−n−a

−2

−2

−2

−2

−2

−2

−2

−2

−2

−2

−2

−2

−2

−2

−2

−2

pn−1p3−1p2−1p1−1

(1.F)

where there are n arms, and the number of vertices on arm i is pi − 1. It turns out that these particular
Veronese subrings have many nice properties; not least by 1.4 they are precisely the Veronese subrings for
which

Db(cohY ~x) ↪→Db(cohT~x)



8 1. Introduction8 1. Introduction

is an equivalence. In §6 we investigate S~sa in the case when (p1,p2,p3) forms a Dynkin triple, in which case
S~sa is isomorphic to a quotient singularity by some finite subgroup of GL(2,k) of type T , O or I (see 6.1 for
details). In this situation S~sa and its reconstruction algebra have a very nice relationship to the preprojective
algebra of the canonical algebra, and this is what turns out to explain the motivating coincidence from §1.1
in 1.15 below.

For arbitrary parameters (p,λ), the Veronese subring S~s has a particularly nice form.

Theorem 1.11 (=5.2). For any Xp,λ, S
~s is generated by the homogeneous elements

ui :=


x
p1+p2
1 x

p2
3 . . .x

p2
n i = 1,

x
p1+p2
2 x

p1
3 . . .x

p1
n i = 2,

−xpi1 x
p2+pi
2 x

pi
3 . . . x̂i . . .x

pi
n 3 ≤ i ≤ n,

v := x1x2 . . .xn.

Proposition 1.12 (=5.5). With notation as above, the modules S(u~xj )~s appearing in 1.7 are precisely the following
ideals of S~s, and furthermore they correspond to the dual graph of the minimal resolution of SpecS~s (1.F) in the
following way:

(vp2 ,u1)

(vp2+1,u1)

(vp2+2,u1)

(vp2+p1−2,u1)

(vp2+p1−1,u1)

(u1,vp2−1)

(u1,vp2−2)

(u1,v2)

(u1,v)

(u3,vp3−1)

(u3,vp3−2)

(u3,v2)

(u3,v)

(un,vpn−1)

(un,vpn−2)

(un,v2)

(un,v)

...
...

...
.... . .

The relations between u1, . . . ,un,v turn out to be easy to describe, and remarkably have already ap-
peared in the literature. It is well-known [W1, 3.6] that there is a family of rational surface singularities Rp,λ
where the dual graph of the minimal resolution of SpecRp,λ is precisely (2.A) with a = 0. Indeed, in [W1]
Rp,λ is defined as follows: given the same data (p,λ) as above normalised so that λ1 = (1 : 0), λ2 = (0 : 1)
and λ3, . . . ,λn ∈ k∗ are pairwise distinct, we can consider the commutative k-algebra Rp,λ, generated by
u1, . . . ,un,v subject to the relations given by the 2× 2 minors of the matrix(

u2 u3 . . . un vp2

vp1 λ3u3 + vp3 . . . λnun + vpn u1

)
This is a connected N-graded ring graded by degv := 1, degu1 := p2, degu2 := p1 and degui := pi for
all 3 ≤ i ≤ n.

We show that S~s recovers precisely the above Rp,λ.

Theorem 1.13 (=5.3). There is an isomorphism Rp,λ � S
~s of Z-graded algebras given by ui 7→ ui for 1 ≤ i ≤ n

and v 7→ v.

Thus the Veronese method we develop in this paper for constructing rational surface singularities
recovers as a special case the example of [W1], but in a way suitable for arbitrary labelled star-shaped
graphs, and also in a way suitable for obtaining the special CM modules.

We then present the reconstruction algebra of Rp,λ � S
~s, since again in this situation it has a particularly

nice form. In principle, using 1.7, we can do this for any Veronese S~x with 0 , ~x ∈ L+, but for notational
ease we restrict ourselves to the case ~x = ~s.
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Theorem 1.14 (=5.7). The reconstruction algebra Γp,λ of Rp,λ can be written explicitly as a quiver with relations.
It is the path algebra of the double of the quiver Qp of the canonical algebra, subject to the relations induced by
the canonical relations, and furthermore at every vertex, all 2-cycles that exist at that vertex are equal.

We refer the reader to 5.7 for more details, but remark that the reconstruction algebra was originally
invented in order to extend the notion of a preprojective algebra to a more general geometric setting. In
our situation here, the reconstruction algebra is not quite the preprojective algebra of the canonical algebra
Λp,λ, but the relations in 5.7 are mainly of the same form as the preprojective relations; the reconstruction
algebra should perhaps be thought of as a better substitute.

In the last section of the paper, finally we can explain the coincidence of the two motivating pictures,
as a consequence of the following result.

Theorem 1.15 (=6.3). Let R be the (m−3)-Wahl Veronese subring associated with (p1,p2,p3) = (2,3,3), (2,3,4)
or (2,3,5) and m ≥ 3, and R its completion. Let G ≤ L be the cyclic group generated by (h(m− 2) + 1)~ω, where
h = 6, 12 or 30 respectively. Then

(1) There are equivalences vectX ' CMZR and

F : (vectX)/G
∼−→ CMR,

where (vectX)/G is the complete orbit category (for the definition, see §6).

(2) For the canonical tilting bundle E on X, we have SCMR = addFE .

Acknowledgements. The authors thank Kazushi Ueda and Atsushi Takahashi for many helpful comments
and remarks, and Mitsuyasu Hashimoto, Ryo Takahashi and Yuji Yoshino for valuable discussions on
reflexive modules. Part of this work was completed when O.I. visited Edinburgh in March and September
2012, and he thanks people in Edinburgh for hospitality during his visit.

Conventions. Throughout, k denotes an algebraically closed field of characteristic zero. All modules will
be right modules, and for a ring A write modA for the category of finitely generated right A-modules.
If G is an abelian group and A is a noetherian G-graded ring, grGA will denote the category of finitely
generated G-graded right A-modules. Throughout when composing maps f g will mean f then g , similarly
for arrows ab will mean a then b. Note that with this convention HomR(M,N ) is an EndR(M)op-module
and an EndR(N )-module. For M ∈modA we write addM for the full subcategory consisting of summands
of finite direct sums of copies of M .

2. Preliminaries

2.1. Notation

We first fix notation. For n ≥ 0, choose positive integers p1, . . . ,pn with all pi ≥ 2, and set p := (p1, . . . ,pn).
Likewise, for pairwise distinct points λ1, . . . ,λn ∈ P1, set λ := (λ1, . . . ,λn). Let `i(t0, t1) ∈ k[t0, t1] be the
linear form defining λi .

Notation 2.1. To this data we associate the following.

(1) The abelian group L = L(p1, . . . ,pn) generated by the elements ~x1, . . . , ~xn subject to the relations
p1~x1 = p2~x2 = · · · = pn~xn =: ~c. Note that L is an ordered group with L+ =

∑n
i=1Z≥0~xi as positive

elements . Since L/Z~c �
∏n
i=1Z/piZ canonically, each ~x ∈ L can be written uniquely in normal form

as ~x =
∑n
i=1 ai~xi + a~c with 0 ≤ ai < pi and a ∈ Z. Then ~x belongs to L+ if and only if a ≥ 0. The

dualizing element ~ω ∈ L is defined to be

~ω := (n− 2)~c −
n∑
i=1

~xi .
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(2) The commutative k-algebra Sp,λ defined as

Sp,λ = S :=
k[t0, t1,x1, . . . ,xn]

(xpii − `i(t0, t1) | 1 ≤ i ≤ n)
.

As in the introduction, this is L-graded by degxi := ~xi , and defines the weighted projective line
Xp,λ := [(SpecS\0)/ SpeckL]. Then its coarse moduli space Xp,λ := (SpecS\0)/ SpeckL is P1. In
fact, the open cover SpecS\0 = U0 ∪U1 with Ui := SpecSti induces an open cover Xp,λ = X0 ∪X1
with Xi := Spec(Sti )0, where (Sti )0 is the degree zero part of Sti . By inspection (Sti )0 = k[t1−i/ti],
and it follows that Xp,λ � P

1.

When n ≥ 2, often we choose λ1 = (1 : 0) and λ2 = (0 : 1), in which case `1 = t1, `2 = t0 and `i = λit0 − t1
for 3 ≤ i ≤ n, and there is a presentation

Sp,λ =
k[x1, . . . ,xn]

(xpii + xp11 −λix
p2
2 | 3 ≤ i ≤ n)

.

Moreover, when n ≥ 2, we can further associate

(3) The quiver

Qp :=
...

...
...

...

. . .

. . .

x1 x2 x3 xn

x1 x2 x3 xn

x1 x2 x3 xn

x1 x2 x3 xn

pn−1p3−1p2−1p1−1

(where there are n arms, and the number of vertices on arm i is pi − 1).

(4) The canonical algebra Λp,λ, namely the path algebra of the quiver Qp subject to the relations

I := 〈xp11 −λix
p2
2 + xpii | 3 ≤ i ≤ n〉.

There is a degenerate definition of the canonical algebra if 0 ≤ n ≤ 1; see [GL1].

(5) The commutative k-algebra Rp,λ, generated by u1, . . . ,un,v subject to the relations given by the 2×2
minors of the matrix (

u2 u3 . . . un vp2

vp1 λ3u3 + vp3 . . . λnun + vpn u1

)
This is a connected N-graded ring graded by degu1 := p2, degu2 := p1, degv := 1, and degui := pi
for all 3 ≤ i ≤ n.

We will also consider



O. Iyama and M. Wemyss, Weighted projective lines and rational surface singularities 11O. Iyama and M. Wemyss, Weighted projective lines and rational surface singularities 11

(6) Star-shaped graphs of the form

...
...

...
...

. . .

. . .

−β

−α11

−α12

−α1n1−1

−α1n1

−α21

−α22

−α2n2−1

−α2n2

−α31

−α32

−α3n3−1

−α3n3

−αv1

−αv2

−αvnv−1

−αvnv

(2.A)

where there are v ≥ 2 arms, each ni ≥ 1, each αij ≥ 2 and β ≥ 1. Later, we will assume β ≥ v.

We next give some properties of Sp,λ and related rings that will be required later, all being elementary
in nature. We start with a general result. Let G be an abelian group and A a G-graded ring. Then A
is a G-domain whenever a product of non-zero homogeneous elements is again non-zero, and a G-field if
any non-zero homogeneous element is invertible. A homogeneous element x ∈ A is G-prime if A/(x) is an
G-domain. If A is a G-domain, then the quotient G-field of A is the localization of A with respect to the set
of all non-zero homogeneous elements. A G-domain is G-factorial if every non-zero homogeneous element
in A is a product of G-prime elements in A.

Proposition 2.2. With notation as above,

(1) Sp,λ is an L-factorial L-domain.

(2) Any G-factorial G-domain A is G-normal, i.e. if a homogeneous element x in the quotient G-field of A
satisfies an equality xm+a1xm−1+ · · ·+am = 0 for some ai ∈ A, then x ∈ A. In particular, A0 is a normal
domain (in the usual sense).

(3) Let A be a G-field and A[y] the G-graded polynomial ring with a homogeneous indeterminate y. Then any
homogeneous ideal of A[y] is principal.

(4) If A is a G-factorial G-domain, the localization of A by a set of homogeneous elements is G-factorial. The
G-graded polynomial ring A[y1, . . . , ym] with homogeneous indeterminates y1, . . . , ym is also G-factorial.

Proof. Part (1) is well known, see e.g. [GL1, 1.3] or [HIMO, Section 2.2]. Parts (2), (3) and the first assertion of
(4) are easy. The second assertion of (4) follows from a parallel argument to the classical case [B4, Section
VII.3.5] using (3) and the G-version of Gauss’s Lemma. �

Let S = Sp,λ. Recall from the introduction that for ~x ∈ L, S~x :=
⊕

i∈ZSi~x. We will also be interested in

the N-graded version, so define SN~x :=
⊕

i≥0Si~x.

Corollary 2.3. With notation as above, let ~x ∈ L.

(1) If ~x ∈ L is not torsion, then S~x is a noetherian k-algebra with dimS~x = 2, and S is a finitely generated
S~x-module.

(2) Let S[t] be the L-graded polynomial ring with deg t = −~x. Then (S[t])0 � SN~x holds, and this is a
normal domain.

(3) Suppose −i~x < L+ for all i > 0. Then S~x is a noetherian normal domain with dimS~x = 2, and has at
worst a unique singular point corresponding to

⊕
i>0Si~x.
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Proof. (1) Since ~x is not torsion, Z~x ⊆ L has finite index, and so the first two assertions of (1) are easy; see
e.g. 4.2. In particular, necessarily dimS~x = dimS = 2.
(2) The equality (S[t])0 =

⊕
i≥0Si~xt

i � SN~x is clear. Furthermore, S[t] is an L-factorial L-domain accord-
ing to 2.2(1)(4). Thus (S[t])0 is a normal domain by 2.2(2).
(3) The assumption −i~x < L+ for all i > 0 implies that ~x is not torsion, since otherwise −Nx = 0 ∈ L+ for
some N > 0. It also forces S~x = SN~x, so the first half of the result follows by combining parts (1) and (2).

The second half is a general property of a positively graded two-dimensional normal domain (e.g. [P,
p1]). In fact, since S~x is a Z-graded finitely generated k-algebra, by the Jacobian criterion, there is a Z-
graded ideal I of S~x such that SingS~x = Spec(S~x/I). Since S~x is normal, all singularities of S~x are isolated
and dim

k
(S~x/I) <∞ holds. Since I is Z-graded, it contains

⊕
i>` Si~x for ` � 0 and hence

√
I contains⊕

i>0Si~x. Thus SingS~x ⊆ {
⊕

i>0Si~x}. �

The following will be required later, and all are well known (see [GL1]).

Lemma 2.4. If ~x =
∑n
i=1 ai~x+ a~c ∈ L+ is in normal form, then the following hold.

(1) S~x = (
∏n
i=1 x

ai
i )Sa~c.

(2) Sa~c is an (a+1)-dimensional vector space, and a basis of Sa~c is given by t
`
0t
a−`
1 with 0 ≤ ` ≤ a.

(3) S~x+m~c = S~x · Sm~c for all m ≥ 0.

2.2. Preliminaries on Rational Surface Singularities

We briefly review some combinatorics associated to rational surface singularities. Let R be a finitely
generated noetherian k-algebra, or alternatively the completion of such an algebra at a maximal ideal.
Recall that R is said to be a rational surface singularity if dimR = 2 and there exists f : X → SpecR a
resolution such that Rf∗OX = OR. If this property holds for one resolution, it holds for all resolutions [KM,
5.10], and automatically R must be normal [KM, 5.8].

In our setting later R will be a rational surface singularity with a unique singular point, at the origin.
Completing at this maximal ideal to give R, in the minimal resolution Y → SpecR the fibre above the
origin is well-known to be a tree (i.e. a finite connected graph with no cycles) of P1s denoted {Ei}i∈I . Their
self-intersection numbers satisfy Ei ·Ei ≤ −2, and moreover the intersection matrix (Ei ·Ej )i,j∈I is negative
definite. We encode the intersection matrix in the form of the labelled dual graph:

Definition 2.5. Suppose that {Ei}i∈I is a collection of P1s forming the exceptional locus in a resolution of some
rational surface singularity. The dual graph is defined as follows: for each curve Ei there is a vertex, with
Ei · Ej edges connecting the vertices corresponding to Ei and Ej . Furthermore, every vertex is labelled with the
self-intersection number of the corresponding curve.

The dual graph of a complete local rational surface singularity is well known to be a labelled tree (see
e.g. [B3, 1.3]). Conversely, suppose that T is a tree, with vertices denoted E1, . . . ,En, labelled with integers
w1, . . . ,wn. To this data we associate the symmetric matrix MT = (bij )1≤i,j≤n with bii defined by bii := wi ,
and bij (with i , j) defined to be the number of edges linking the vertices Ei and Ej . We write Z for the free
abelian group generated by the vertices Ei , and call its elements cycles. The matrix MT defines a symmetric
bilinear form (−,−) on Z and in analogy with the geometry, we will often write Y ·Z instead of (Y ,Z), and
consider

Ztop := {Z =
n∑
i=1

aiEi ∈ Z | Z , 0, all ai ≥ 0, and Z ·Ei ≤ 0 for all i}.

If there exists Z ∈ Ztop such that Z ·Z < 0, then automatically MT is negative definite [A, Prop 2(ii)]. In this
case, Ztop admits a unique smallest element Zf , called the fundamental cycle. Whenever all the coefficients
in Zf are one, the fundamental cycle is said to be reduced.
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We now consider the case of the labelled graph (2.A) and calculate some combinatorics that will be
needed later. Denoting the set of vertices of (2.A) by I , considering Z :=

∑
i∈I Ei it is easy to see that

(−Z ·Ei)i∈I =

β−v

α11−2

α12−2

α1n1−1−2

α1n1−1

α21−2

α22−2

α2n2−1−2

α2n2−1

α31−2

α32−2

α3n3−1−2

α3n3−1

αv1−2

αv2−2

αvnv−1−2

αvnv−1

...
...

...
...

. . .

. . .
(2.B)

and so Z satisfies Z ·Ei ≤ 0 for all i ∈ I if and only if β ≥ v. Since Ztop does not contain elements smaller
than Z, the fundamental cycle Zf is given by Z =

∑
i∈I Ei if and only if β ≥ v. In this case Zf is reduced.

We remark that in general there will be many singularities with dual graph (2.A), and indeed a labelled
graph T is called taut if there exists a unique rational surface singularity (up to isomorphism in the category
of complete local k-algebras) which has T for its dual graph of its minimal resolution. It is well known that
the labelled graph (2.A) is taut if and only if v = 3 [L].

2.3. Preliminaries on Reconstruction Algebras

Let R be a rational surface singularity. A CM R-module M is called special if Ext1R(M,R) = 0 [IW], and we
write SCMR for the category of special CM R-modules.

The following local-to-global lemma is useful. In particular, if R has a unique singular point m, to
conclude that addM = SCMR it suffices to check this complete locally at m.

Lemma 2.6. Let R be a rational surface singularity, andM ∈ CMR. If addM̂m = SCM R̂m for allm ∈MaxR,
then addM = SCMR.

Proof. Since Ext groups localise and complete, certainly M ∈ SCMR and thus addM ⊆ SCMR. Next, let
X ∈ SCMR. Then add X̂m ⊆ SCM R̂m for all m ∈ MaxR, so by assumption add X̂m ⊆ addM̂m for all
m ∈MaxR. By [IW2, 2.26] we conclude that addX ⊆ addM, so X ∈ addM and thus addM ⊇ SCMR. �

The following asserts that a global additive generator of SCMR exists, regardless of the number of
points in the singular locus.

Theorem 2.7 ([VdB]). Let R be a rational surface singularity, and π : X → SpecR the minimal resolution.
Then the following statements hold.

(1) There exists M ∈ SCMR such that SCMR = addM .

(2) There is a triangle equivalence Db(modEndR(M)) �Db(cohX).

Proof. This is known but usually only stated when R is complete, so for the convenience of the reader we
provide a proof. By [VdB, 3.2.5] there is a progenerator OX ⊕M for the category of perverse sheaves (with
perversity −1), which induces an equivalence

Db(modEndX(OX ⊕M)) �Db(cohX).

There is an isomorphism EndX(OX ⊕M) � EndR(R⊕π∗M) by [DW, 4.1]. Furthermore, OX ⊕M remains
a progenerator under flat base change [VdB, 3.1.6], so addM̂m = SCM R̂m by [W6, IW]. The result then
follows using 2.6. �
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Definition 2.8. For any M ∈ SCMR such that SCMR = addM, we call EndR(M) the reconstruction algebra.

In this global setting, the reconstruction algebra is only defined up to Morita equivalence. Only after
completing R, or in certain other settings (see 2.11) will there be a canonical choice.

When R is a complete local rational surface singularity with minimal resolution X → SpecR, there is
a much more explicit description of the additive generator of SCMR. Let {Ei | i ∈ I} denote the irreducible
exceptional curves, then for each i ∈ I , by [W6] there exists a CM R-module Mi such that H1(M∨i ) = 0
and c1(Mi) ·Ej = δij hold, whereMi := π∗(Mi)∨∨ for (−)∨ =HomX(−,OX).

Theorem 2.9 ([W6, 1.2]). There is a bijection

{irreducible exceptional curves in min. resolution} {non-free, indecomposable special CM R-modules}
Ei Mi .

Furthermore, the rank of Mi , as an R-module, coincides with the co-efficient of Ei in Zf .

It follows that R⊕
⊕

i∈IMi is the natural additive generator for SCMR.

Definition 2.10. Let R be a complete local rational surface singularity. We call Γ := EndR(R⊕ (
⊕

i∈IMi))
the reconstruction algebra of R.

Remark 2.11. If R is a rational surface singularity with a unique singular point, and if there exist Li ∈ CMR
such that L̂i �Mi for all i, then we also use the letter Γ to denote the particular reconstruction algebra

Γ := EndR(R⊕
⊕
i∈I

Li)

of R. Such Li are not guaranteed to exist, in general.

In the complete local setting, the quiver of Γ , and the number of its relations, is completely determined
by the intersection theory.

Theorem 2.12 ([W2, 3.3]). Let R be a complete local rational surface singularity. The quiver and the numbers
of relations of Γ is given as follows: for every i ∈ I associate a vertex labelled i corresponding to Mi , and also
associate a vertex labelled corresponding to R. Then the number of arrows and relations between the vertices is

Number of arrows Number of relations

i→ j (Ei ·Ej )+ (−1−Ei ·Ej )+
→ 0 −ZK ·Zf +1 = −1−Zf ·Zf
i→ −Ei ·Zf 0
→ i ((ZK −Zf ) ·Ei)+ ((ZK −Zf ) ·Ei)−

where for a ∈Z

a+ :=
{
a if a ≥ 0
0 if a < 0

and a− =
{

0 if a ≥ 0
−a if a < 0

,

and the canonical cycle ZK is by definition the rational cycle defined by the condition ZK · Ei = E2
i + 2 for all

i ∈ I .
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2.4. Hirzebruch–Jung Continued Fraction Combinatorics

We review briefly the notation and combinatorics surrounding dimension two cyclic quotient singularities.

Definition 2.13. For r,a ∈N with r > a the group G = 1
r (1, a) is defined by

G =
〈
ζ :=

(
ε 0
0 εa

)〉
≤GL(2,k),

where ε is a primitive rth root of unity. By abuse of notation, we also write 1
r (1, a) for the corresponding quotient

singularity k[x,y]G.

Remark 2.14. In the literature it is often assumed that the greatest common divisor (r,a) is 1, which is
equivalent to the group having no pseudoreflections. However we do not make this assumption, since in
our construction later groups with pseudoreflections naturally appear.

Provided that a , 0, we consider the Hirzebruch–Jung continued fraction expansion of ra , namely

r
a
= α1 −

1

α2 − 1
α3− 1

(...)

:= [α1, . . . ,αn]

with each αi ≥ 2. The labelled Dynkin diagram

· · ·
−α1 −α2 −αn−1 −αn

is precisely the dual graph of the minimal resolution of k2/ 1r (1, a) [R1, Satz8]. Note that [R1] assumed the
condition (r,a) = 1, but the result holds generally: if we write h := (r,a), then the quotient singularities
1
r (1, a) and 1

r/h (1, a/h) are isomorphic, and furthermore both have the same Hirzebruch–Jung continued
fraction expansion.

Definition 2.15. For integers 1 ≤ a < r as above, consider the continued fraction expansion r
a = [α1, . . . ,αn].

Then the i-series is defined as i0 = r, i1 = a and

it = αt−1it−1 − it−2

for all t with 2 ≤ t ≤ n+1. Thus in+1 = 0 holds. Let I(r,a) := {i0, i1, . . . , in+1}, and by convention I(r, r) := ∅.

The following lemma is elementary, and will be needed later.

Lemma 2.16. For integers 1 ≤ a < r, I(r,a) = [0, r] if and only if a = r − 1.

For a cyclic quotient singularity G = 1
r (1, a), consider

St := {f ∈ k[x,y] | σ · f = εtf },

for t ∈ [0, r], and note that S0 � Sr . Further, for k with 0 ≤ k ≤ r − 1, we say that a monomial xmyn has
weight k if m+ an = k mod r, that is xmyn ∈ Sk . It is the i-series that determines which CM SG-modules
are special.

Theorem 2.17. For G = 1
r (1, a),

(1) [H3] CMSG = add{St | t ∈ [0, r]}.

(2) [W5] SCMSG = add{St | t ∈ I(r,a)}.
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Proof. Both results are usually stated in the complete case, with no pseudoreflections, so since we are
working more generally, we give the proof. Since SG has a unique singular point, by 2.6 (and its counterpart
in the CMSG case) it suffices to prove both results in the complete local setting. In this case, when (r,a) = 1,
part (1) is [H3] and part (2) is [W5]. When (r,a) , 1, the result is still true since 1

r (1, a) =
1
r/h (1, a/h) for

h := (r,a). �

In what follows, we will require a different characterization of members of the i-series, by reinterpreting
a result of Ito [I, 3.7]. As notation, if (r,a) = 1 then the G-basis B(G) is defined to be the set of monomials
which are not divisible by any G-invariant monomial. We usually draw B(G) in a 2× 2 grid.

Example 2.18. Consider G = 1
17 (1,10). Then B(G) is

1
x

x2

x3

x4

x5

x6

x7
...
x16

y

xy

x2y

x3y

x4y

x5y

x6y

y2

xy2

x2y2

x3y2

x4y2

x5y2

x6y2

y3

xy3

x2y3

x3y3

y4

xy4

x2y4

x3y4

y5 ... y16

For G = 1
r (1, a) with (r,a) = 1, recall that the L-space L(G) is defined to be

L(G) := {1,x, . . . ,xr−1, y, . . . , yr−1},

so called since in the 2× 2 grid the shape of L(G) looks like the letter L.

Theorem 2.19 (=[I, 3.7]). When (r,a) = 1, the elements of I(r,a) are precisely those numbers in [0, r] that do
not appear as weights of monomials in the region B(G)\L(G).

Example 2.20. Consider G = 1
17 (1,10). Then B(G)\L(G) is the region

1
x

x2

x3

x4

x5

x6

x7
...
x16

y

xy

x2y

x3y

x4y
x5y

x6y

y2

xy2

x2y2

x3y2

x4y2

x5y2

x6y2

y3

xy3

x2y3

x3y3

y4

xy4

x2y4

x3y4

y5 ... y16

Replacing the monomials in the above region by their corresponding weights gives

11
12
13
14
15
16

4
5
6
7
8
9

14
15
16

7
8
9

and so by 2.19, the i-series consists of those numbers that do not appear in the above region, which are
precisely the numbers 0, 1, 2, 3, 10 and 17. Indeed, in this example 17

10 = [2,4,2,2] and the i-series is

i0 = 17 > i1 = 10 > i2 = 3 > i3 = 2 > i4 = 1 > i5 = 0.
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The following lemma, which we use later, is an extension of 2.19. For integers r > 0 and k, write [k]r
for the unique integer k′ satisfying 0 ≤ k′ ≤ r − 1 and k − k′ ∈ rZ.

Lemma 2.21. Assume (r,a) = 1. For 0 ≤ u ≤ r − 1, the following are equivalent.

(1) u ∈ I(r, r − a).

(2) u does not appear in B(G)\L(G) for G := 1
r (1,−a).

(3) For every integer ` ≥ 1, there exists an integer m ∈ [1, `] such that [u + `a− 1]r ≥ [ma− 1]r .

Proof. (1)⇔(2) This is 2.19.
(2)⇔(3) We will establish the following claim: u does not appear in column ` of B(G)\L(G) if and only if
there exists an integer m satisfying 1 ≤m ≤ ` and [u + `a− 1]r ≥ [ma− 1]r .

The first row of B(G) is 0,−a,−2a,−3a, . . .. Now for each m with 1 ≤m ≤ `, we find the first occurrence
of weight 0 in column m, and use this to draw the following diagram:

−ma
1−ma
2−ma
...
−2
−1
0

···
···
···
. . .
···
···
···

−`a
1−`a
2−`a
...

−2+(m−`)a
−1+(m−`)a
(m−`)a

The column ` of B(G)\L(G) is the intersection, over all m with 1 ≤m ≤ `, of the above dotted regions. It is
clear that u does not appear in the dotted region in the above diagram if and only if [u+`a−1]r ≥ [ma−1]r .
The claim follows. �

Notation 2.22. Throughout the remainder of the paper, to aid readability we will use the following simpli-
fied notation.

Notation Meaning Simplified Notation

Xp,λ Weighted projective line X

Sp,λ Defining ring of Xp,λ S
Λp,λ Canonical algebra Λ

S~xp,λ Veronese of Sp,λ with respect to ~x ∈ L S~x

Y ~xp,λ Resolution of SpecS~xp,λ in (1.C) Y ~x

Throughout it will be implicit that we are working generally, with parameters (p,λ).

3. The Total Space T

3.1. Definition and First Properties

With notation as in 2.22, let ~x ∈ L and consider the Veronese subring S~x, and the total space stack defined
by

T
~x := Tot(O

X
(−~x)) := [(SpecS\0× Speck[t])/ SpeckL],

where L acts on t with weight −~x. There is a natural projection q : T~x→X, and a natural map g : T~x→ T ~x

to its coarse moduli space.
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We remark that T ~x has a natural open cover. Indeed, the open covering SpecS\0 = U0 ∪U1 with
Ui := SpecSti induces an open cover

(SpecS\0)× Speck[t] =U ′0 ∪U
′
1 with U ′i :=Ui × Speck[t] = SpecSti [t],

which in turn implies that T ~x has an open cover

T ~x = V0 ∪V1 with Vi := Spec(Sti [t])0, (3.A)

where (Sti [t])0 is the degree zero part of the L-graded ring Sti [t] with deg t = −~x. As in 2.1(2), the curve
Xi := Spec(Sti )0 in Vi gives the coarse moduli X = X0 ∪X1 � P

1 of X.

We first investigate the singularities of T ~x.

Proposition 3.1. If ~x ∈ L, then T ~x is a surface containing the coarse moduli X � P1 of X. Moreover T ~x is
normal, and all its singularities are isolated and lie on X.

Proof. Fix i = 0,1 and let A := Sti [t] and B := (Sti [t])0 so that Vi = SpecB.
Since A is an L-factorial L-domain by 2.2(1)(4), its degree zero part B is a normal domain by 2.2(2).

Now we claim dimB = 2. Note that S is a finitely generated L-graded module over the Z~c-graded
subring C := k[t0, t1]. Thus A is a finitely generated L-graded Cti [t]-module, and similarly B is a finitely
generated (Cti [t])0-module. Let p be the smallest positive integer satisfying p~x ∈ Z~c, and p~x = q~c for
q ∈ Z. Then (Cti [t])0 = (Cti [t

p])0 is the polynomial ring with two variables t1−i/ti and t
q
i t
p. Thus

dimB = dim(Cti [t])0 = 2.
Consider next the Z-grading on A = Sti [t] defined by deg t = 1 and degx = 0 for any x ∈ Sti . This

gives a Z-grading on B such that B =
⊕

j≥0Bj and B0 = (Sti )0. Since B is a Z-graded finitely generated
k-algebra, by the Jacobian criterion, there is a Z-graded ideal I of B such that SingB = Spec(B/I).
Since B is normal, all the singularities of B are isolated and dim

k
(B/I) <∞ holds. Since I is Z-graded,

it contains
⊕

j>`Bj for ` � 0 and hence
√
I contains

⊕
j>0Bj . Consequently, SingB is contained in

SpecB0 = Xi ⊂ X. �

Proposition 3.2. Suppose that ~x ∈ L and write ~x in normal form as ~x =
∑n
i=1 ai~xi + a~c for some 0 ≤ ai < pi

and a ∈Z. Then on X � P1, complete locally the singularities of T ~x are of the form

P
1

1
p1
(1,−a1)

λ1
1
p2
(1,−a2)

λ2

1
p3
(1,−a3)

λ3

... 1
pn

(1,−an)

λn
(3.B)

Proof. We will show that ÔT ~x ,λi is the completion of 1
pi
(1,−ai). By symmetry, we only have to consider the

case i = 1. We use the presentation of S given in 2.1(2)

S =
k[x1, . . . ,xn]

(xpii + xp11 −λix
p2
2 | 3 ≤ i ≤ n)

.

and the open cover T ~x = V0 ∪V1 given in (3.A), where t0 = x
p2
2 and t1 = x

p1
1 . Thus λ1 = (1 : 0) belongs to

V0 = SpecB for B := (St0[t])0 = (Sx2[t])0.
Let m be the maximal ideal of B corresponding to λ1. We shall show that ÔT ~x ,λ1

= B̂m is the completion

of 1
p1
(1,−a1). For the polynomial ring k[x1, . . . ,xn, t] and the formal power series ring k[[x1, t]], consider

the morphism
f : k[x1, . . . ,xn, t]→ P := k[[x1, t]]

of k-algebras defined by f (t) = t, f (x1) = x1, f (x2) = 1 and f (xi) = (λi − x
p1
1 )1/pi for 3 ≤ i ≤ n, where a

pi-th root of λi − x
p1
1 exists since k is an algebraically closed field of characteristic zero. Since f sends
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x
pi
i + xp11 − λix

p2
2 to zero for all 3 ≤ i ≤ n, it induces a morphism of k-algebras f : S[t]→ P , and further

since f (t0) = f (x
p2
2 ) = 1 this induces a morphism of k-algebras

f : St0[t]→ P . (3.C)

Let C := 1
p1
(1,−a1) = 〈ζ〉 be the cyclic group acting on P by ζx1 = εx1 and ζt = ε−a1t for a primitive p1-th

root ε of unity. Certainly f (xi) with 2 ≤ i ≤ n belongs to k[[xp11 ]] ⊂ P C . Now we claim that (3.C) induces a
morphism of k-algebras

f : B = (St0[t])0→ P C . (3.D)

If a monomial X = x`11 . . .x
`n
n t` ∈ Sx2[t] = St0[t] has degree zero, then `1~x1 + . . . + `n~xn + `~x = 0 holds.

Looking at the coefficient of ~x1, we have `1+`a1 ∈ p1Z. Thus f (X) = x`11 t`
∏n
i=2 f (xi)

`i belongs to P C , and
the assertion follows.

The closed subscheme X0 = Spec(St0)0 of V0 = SpecB is defined by the ideal (tSt0[t])0 of B, and the
closed point λ1 of X0 is defined by the ideal (t1/t0) of (St0)0 = k[t1/t0]. Therefore the maximal ideal m of

B is generated by monomials x`11 · · ·x
`n
n t` with ` ≥ 1 and t1/t0 = x

p1
1 /x

p2
2 . In particular, f (m) is contained

in the maximal ideal n of P C , and hence (3.D) induces a morphism

f : B̂m→ P C . (3.E)

We show that this is an isomorphism. Since B is a normal domain which is finitely generated over a field, B̂m
is also a normal domain by Zariski’s Main Theorem [ZS, VIII.13 Theorem 32]. Since dim B̂m = 2 = dimP C ,
it suffices to show that (3.E) is surjective, or equivalently, (3.D) gives a surjective map m→ n/n2. Since the

k-vector space n/n2 is spanned by monomials in P C , it suffices to show that any monomial x`11 t` in P C

belongs to Imf +n2. Since x`11 t` is invariant under the action of C, the coefficient of ~x1 in the normal form
of `1~x1 + `~x is zero. Thus there exist `2 ∈Z and `3, . . . , `n ∈Z≥0 such that `1~x1 + . . .+ `n~xn + `~x = 0. Now

X := x`11 · · ·x
`n
n t` ∈ B satisfies

f (αX) ≡ x`11 t` modn2 for α :=
n∏
i=3

λ
−`i /pi
i .

Hence (3.E) is an isomorphism. �

The following calculation will be one of our main technical tools.

Proposition 3.3. For any ~x ∈ L,

H i(OT ~x ) =


⊕

j≥0Sj~x i = 0,⊕
j≥0(S~ω−j~x)

∗ i = 1,
0 i ≥ 2.

Therefore there is a canonical morphism γ : T ~x→ SpecSN~x.

Proof. We calculate H i(OT ~x ) as the Čech cohomology with respect to the open affine cover T ~x = V0 ∪V1
in (3.A). Since H0(Vi ,OT ~x ) = (Sti [t])0 for i = 0,1 and H0(V0 ∩V1,OT ~x ) = (St0t1[t])0, the complex

0→ (St0[t])0 ⊕ (St1[t])0→ (St0t1[t])0→ 0 (3.F)

has cohomology H i(OT ~x ) with i ≥ 0. Thus H i(OT ~x ) = 0 for any i ≥ 2.
Now let a = St0 + St1. Then the local cohomologies H i

a(S) of S are the cohomologies of the extended
Čech complex

0→ S→ St0 ⊕ St1 → St0t1 → 0 (3.G)
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by [BS, Theorem 5.1.20]. Since t0, t1 is an S-sequence, we have H0
a (S) =H

1
a (S) = 0 by [BS, Theorem 6.2.7].

Thus (3.G) gives an exact sequence

0→ (S[t])0→ (St0[t])0 ⊕ (St1[t])0→ (St0t1[t])0→ (H2
a (S)⊗k k[t])0→ 0.

Comparing with (3.F) gives isomorphisms

H0(OT ~x ) ' (S[t])0 =
⊕
j≥0

Sj~x and H1(OT ~x ) ' (H2
a (S)⊗k k[t])0 =

⊕
j≥0

H2
a (S)j~x.

Since
√
a is the L-graded maximal ideal m of S , we have H i

a(S) = H
i
m(S). Furthermore, S(~ω) being an

L-graded canonical module of S , the L-graded local duality theorem [BS, Theorem 14.4.1] gives the required
isomorphism

H2
a (S)j~x =H

2
m(S)j~x ' (HomS(S,S(~ω))−j~x)

∗ = (S~ω−j~x)
∗.

The last statement follows from [H1, Exercise II.2.4], since SN~x :=
⊕

j≥0Sj~x. �

There is also a map f : X → X from X to its coarse moduli space, and p : T ~x → X an obvious
morphism, which together with the above form a commutative diagram

T
~x X

T ~x X � P1

g f

q

p

(3.H)

We now try to contract the P1 in (3.B) by taking global sections. As is usual, to do this requires some
form of negativity for T~x = Tot(O

X
(−~x)); in the language here, this translates into some form of positivity

for ~x. This is slightly technical to state, and we will require the following lemma. Recall that there is a
group homomorphism

δ : L→Q

sending ~c 7→ 1 and ~xi 7→ 1
pi

. It is elementary that δ(L+) ⊂ Q≥0, and ~x is torsion if and only if δ(~x) = 0.

Also, using normal form, it is clear that L \L+ has the maximum element
∑n
i=1(pi − 1)~xi − ~c = ~ω + ~c. In

particular, ~ω < L+.

Lemma 3.4. If ~x ∈ L, then the following hold.

(1) −i~x < L+ for all i > 0 ⇐⇒ δ(~x) > 0.

(2) ~ω − i~x < L+ for all i ≥ 0⇒ δ(~x) ≥ 0.

Proof. (1)(⇐) If i > 0, then δ(−i~x) = −iδ(~x) < 0. The result follows since δ(L+) ⊂Q≥0.
(1)(2)(⇒) Since ~ω+~c is the maximum element of L \L+, any ~z ∈ L satisfying

δ(~z) > δ(~ω+~c) (3.I)

belongs to L+. If δ(~x) < 0, then

δ(−j~x) = −jδ(~x)→ +∞ and δ(~ω − j~x) = δ(~ω)− jδ(~x)→ +∞

as j→∞. Hence for sufficiently large j, both δ(−j~x) and δ(~ω − j~x) are larger than δ(~ω+~c). Thus, by (3.I),
both −j~x and ~ω−j~x belong to L+, a contradiction. Hence δ(~x) ≥ 0. Thus (2) follows. To complete the proof
of (1)(⇒), notice that the assumption implies that ~x is not torsion, as in the proof of 2.3(3), so δ(~x) , 0. �
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This leads to our key new definition.

Definition 3.5. We define the geometrically positive elements of L to be

GPos(L) := {~x ∈ L | ~x is not torsion, and ~ω − j~x < L+ for all j ≥ 0}.

Given any ~x ∈ L, recall from 3.3 that H0(OT ~x ) = SN~x holds, giving rise to a canonical morphism
γ : T ~x→ SpecSN~x.

Proposition 3.6. Suppose that ~x ∈ L.

(1) If 0 , ~x ∈ L+, then ~x ∈ GPos(L).

(2) The following conditions are equivalent.

(a) ~x ∈ GPos(L).
(b) −i~x < L+ for all i > 0, and ~ω − j~x < L+ for all j ≥ 0.

(c) SN~x = S~x and Rtγ∗OT ~x = 0 for all t > 0.

Proof. (1) Clearly ~x is not torsion. Since ~ω < L+ and ~ω − j~x ≤ ~ω for j ≥ 0, we have ~ω − j~x < L+. Thus
~x ∈ GPos(L).
(2)(a)⇔(b). The condition ~ω − j~x < L+ for all j ≥ 0 is common to both. Thus we just need to prove,
assuming this condition, that ~x is not torsion (equivalently, δ(~x) , 0) if and only if −i~x < L+ for all i > 0.
But this follows from 3.4.
(b)⇔(c) Follows from 3.3. �

Corollary 3.7. If ~x ∈ GPos(L), then there is a canonical morphism

γ : T ~x→ SpecS~x

such that Rγ∗OT ~x = OS~x .

3.2. The morphism γ

In this subsection we show, under the assumption in 3.7, that γ is a projective birational morphism. This
then implies that T ~x is a partial resolution of singularities of SpecS~x, which indeed is our motivation for
studying the stack T~x and its coarse moduli T ~x.

Lemma 3.8. Suppose that ~x ∈ GPos(L). Then

(1) γ is a finite type morphism between noetherian schemes.

(2) L := p∗O(1) is an ample bundle on T ~x.

(3) L is γ-relatively ample.

Proof. (1) T ~x is noetherian since it is covered by a finite number of affine charts (namely two) in (3.A), each
given by a noetherian ring. Further SpecS~x is noetherian since S~x is by 2.3. Now the morphism γ is
quasi-compact since T ~x is noetherian and thus quasi-compact, and SpecS~x is affine. Further, composing
γ with the structure morphisms s : SpecS~x → Speck gives a morphism s ◦ γ of finite type, since T ~x is
covered by finitely generated k-algebras. By the left cancelation property [H1, II.Ex.3.13(f)], γ also has finite
type.
(2) It is well-known that O(1) is ample on P1, or equivalently, relatively ample with respect to the structure
morphism P

1 → Speck. Since p is affine, pulling back yields a bundle p∗O(1) which is relatively ample
with respect to the composition T ~x→ P

1→ Speck [EGA, II.5.1.12]. But this is just the structure morphism
for T ~x, hence it follows that p∗O(1) is ample on T ~x.
(3) This follows immediately from (2), given SpecS~x is affine. �
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As notation, for ~y ∈ L write S(~y)~x :=
⊕

i∈ZS~y+i~x ⊃ S(~y)
N~x :=

⊕
i≥0S~y+i~x.

Lemma 3.9. Suppose that ~x ∈ GPos(L). Then

(1) For all ~y ∈ L, γ∗g∗q∗OX(~y) = S(~y)N~x.

(2) γ∗L = S(~c)N~x holds, and this is a finitely generated S~x-module.

(3) γ∗L−n and R1γ∗L−n are finitely generated S~x-modules for all n ≥ 0.

Proof. (1) Note first that

γ∗g∗q
∗O

X
(~y) = H0(T ,q∗O

X
(~y)) = H0(X,q∗q

∗O
X
(~y)).

By the projection formula q∗q
∗(O

X
(~y)) =

⊕
i≥0OX(i~x+ ~y), and so the above equals⊕

i≥0
H0(X,O

X
(i~x+ ~y)) =

⊕
i≥0

Si~x+~y = S(~y)
N~x.

(2) Note that g∗g
∗L = L by the projection formula, and so

γ∗L = γ∗g∗g
∗L = γ∗g∗g

∗p∗O
P

1(1) = γ∗g∗q
∗f ∗O

P
1(1) = γ∗g∗q

∗O
X
(~c).

Hence γ∗L = S(~c)N~x by (1). Now by 2.3(1), S(~c)~x is a finitely generated S~x-module, hence its submodule
γ∗L is also a finitely generated S~x-module, since S~x is noetherian.
(3) We know by 3.7 that the result is true for n = 0 since Rγ∗OT ~x = OS~x . Part (2) shows that f∗L is finitely
generated. Pulling up the Euler exact sequence from P

1 gives an exact sequence

0→L−1→O⊕2→L→ 0 (3.J)

on T ~x, and pushing down gives an exact sequence

0→ γ∗L−1→ (S~x)⊕2→ γ∗L→ R1γ∗L−1→ 0.

Since S~x is noetherian, and the middle two objects are finitely generated, necessarily the outer objects are
also finitely generated. Hence the result is true for n = 1.

By induction, we can thus assume that the result is true for n− 1 and n− 2. Twisting the sequence (3.J)
appropriately, then pushing down, gives an exact sequence

0→ γ∗L−n→ (γ∗L−n+1)⊕2→ γ∗L−n+2→ R1γ∗L−n→ (R1γ∗L−n+1)⊕2→ R1γ∗L−n+2→ 0.

By induction the second, third, fifth and sixth objects are finitely generated. Hence so too are the first and
fourth. By induction the result follows. �

Theorem 3.10. Suppose that ~x ∈ GPos(L). Then γ : T ~x → SpecS~x is a projective birational morphism, satis-
fying Rγ∗OT ~x = OS~x .

Proof. We first claim that γ is proper. Since by 3.8(1) γ is a finite type morphism between noetherian
schemes, by [R3] it suffices to show that both γ∗ and R1γ∗ preserve coherent sheaves. Pick F ∈ cohT ~x.

Since by 3.8(2) L is ample, there exists some n ≥ 0 such that F ⊗Ln is generated by its global sections.
Hence for some N > 0 there exists a surjection O⊕N � F ⊗Ln and thus a surjection (L−n)⊕N � F . Write
K for the kernel, then pushing down yields an exact sequence

0→ γ∗K→ γ∗(L−n)⊕N → γ∗F → R1γ∗K→ R1γ∗(L−n)⊕N → R1γ∗F → 0,
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since R2γ∗ = 0 by Čech cohomology. But R1γ∗(L−n)⊕N is coherent by 3.9(3), so it follows from the above
exact sequence that R1γ∗F is also coherent. Since F was an arbitrary coherent sheaf, we also deduce that
R1γ∗K is coherent. Thus in the above exact sequence, combining with 3.9(3) we see that the second, fourth,
fifth and sixth objects are coherent. It follows that the third one is too, namely γ∗F .

Hence γ is proper. Further L is γ-relatively ample by 3.8(3), and SpecS~x is separated since it is affine,
and it is clearly quasi-compact. It is well known that these conditions imply that γ is projective [EGA,
II.5.5.3]. Lastly, γ is birational by inspection, and the statement Rγ∗OT ~x = OS~x is just 3.7. �

Corollary 3.11. Suppose that ~x ∈ GPos(L). Then S~x is a rational surface singularity.

Proof. By 2.3(1), S~x is two-dimensional and noetherian. Further, by 3.10, γ : T ~x → SpecS~x is a projective
birational morphism such that Rγ∗OT ~x = OS~x . Now by 3.2, all the singularities on T ~x are rational, hence
there exists a resolution ϕ : Y → T ~x such that Rϕ∗OY = OT ~x . Composing gives a projective birational
morphism

γ ◦ϕ : Y → SpecS~x

such that R(γ ◦ϕ)∗OY = OS~x . �

In the sequel write ϕ : Y ~x → T ~x for the minimal resolution of T ~x, and consider the composition
π : Y ~x→ T ~x→ SpecS~x. We remark that this composition need not be the minimal resolution of SpecS~x,
and indeed later in 3.17 we give a precise criterion for when it is. Nevertheless, as in the introduction, we
summarize the above information in the following commutative diagram

T
~x X

T ~x X � P1
Y ~x

SpecS~x

g f

q

p
ϕ

γπ

(3.K)

3.3. Tilting on T~x and T ~x

Write V := O
P

1 ⊕O
P

1(1) ∈ cohP1, and E :=
⊕

~y∈[0,~c ]OX(~y) ∈ cohX. The following result is well known.

Theorem 3.12. The following statements hold.

(1) V is a tilting bundle on P1.

(2) E is a tilting bundle on X.

Proof. Part (1) is [B1] and part (2) is [GL1]. �

In this subsection we lift these tilting bundles to tilting bundles on both T ~x and T~x, again under the
assumption that 0 , ~x ∈ L+. This is the singular line bundle (respectively stack) version of the usual trick of
lifting tilting bundles on projective Fano varieties to the total spaces of various vector bundles, considered
by many authors [AU, B2, BH, VdB2]. We remark that without the restriction to L+, the following is false.

Theorem 3.13. If 0 , ~x ∈ L+, then q
∗E is a tilting bundle on T~x such that

D(QcohT~x) D(ModEnd
T
~x(q∗E))

D(QcohX) D(ModΛ)

RHom
T
~x (q∗E ,−)
∼

RHom
X
(E ,−)

∼

Rq∗ res
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commutes, where Λ is the canonical algebra.

Proof. To simplify, we drop all ~x from the notation and set T := T~x. The generation argument is standard,
as in [AU, 4.1] and [B2, 4.1], namely if M ∈ D(QcohT ) with HomD(T )(q∗E ,M[i]) = 0 for all i, then
HomD(X)(E ,q∗M[i]) = 0 for all i, so since E generates D(QcohX), q∗M = 0 and so since q is affine M = 0.
Hence q∗E generates D(QcohT ).

For Ext vanishing,

Ext1
T
(q∗E ,q∗E) � Ext1

X
(E ,q∗q∗E) (by adjunction)

� Ext1
X
(E ,

⊕
k≥0
E ⊗O

X
(k~x)) (by projection formula)

�
⊕
k≥0

Ext1
X
(E ,E ⊗O

X
(k~x))

�
⊕
k≥0

⊕
i∈[0,~c ]

⊕
j∈[0,~c ]

H1(X,O
X
(i − j + k~x))

�
⊕
k≥0

⊕
i∈[0,~c ]

⊕
j∈[0,~c ]

H0(X,O
X
(~ω − i + j − k~x))∗ (by Serre duality)

It suffices to check that ~ω − i + j − k~x < L+ for all k ≥ 0 and all i, j ∈ [0,~c ]. Since 0 , ~x ∈ L+, clearly if
suffices to check i = k = 0 and j = ~c, this being the most positive case. But ~ω = (n− 2)~c −

∑n
t=1 ~xt , and so

~ω +~c = (n− 1)~c −
∑n
t=1 ~xt < L+, as required. Replacing Ext1 by Exti , the above proof also shows that the

higher Exts vanish.
The commutativity is just the adjunction RHom

X
(E ,Rq∗(−)) � RHom

T
(q∗E ,−). �

Theorem 3.14. If 0 , ~x ∈ L+, then p
∗V is a tilting bundle on T ~x.

Proof. As above, when possible we drop all ~x from the notation. The generation argument is identical to
the argument in 3.13. The Ext-vanishing is also similar, namely writing F := f ∗V = O

X
⊕O

X
(~c) then there

is a chain of isomorphisms

ExtiT (p
∗V ,p∗V ) � ExtiT (p

∗V , g∗OT ⊗T p∗V ) (g∗OT = OT )

� ExtiT (p
∗V , g∗g∗p∗V ) (projection formula)

� Exti
T
(g∗p∗V , g∗p∗V ) (adjunction)

� Exti
T
(q∗f ∗V ,q∗f ∗V ) (commutativity of (3.K))

� Exti
T
(q∗F ,q∗F )

which is zero by 3.13 since q∗F is a summand of q∗E . �

Since π : Y ~x→ SpecS~x is a resolution of a rational surface singularity, the fundamental cycle exists.

Corollary 3.15. If 0 , ~x ∈ L+, then the fundamental cycle associated to the morphism π : Y ~x → SpecS~x is
reduced.

Proof. Resolving the singularities in (3.B) it is clear that the dual graph of π is star shaped, with the middle
curve of this star corresponding to the P1 in T ~x. By 3.14 the line bundle L := p∗O

P
1(1) on T ~x satisfies

Ext1
T ~x
(L,OT ~x ) = 0. It clearly has degree one on the exceptional curve. Then LY := ϕ∗L = Lϕ∗L is a line

bundle on Y ~x, with degree one on the middle curve and degree zero on all other curves. Furthermore

H1(L−1Y ) � Ext1
Y ~x
(LY ,OY ~x )
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�HomDb(Y ~x)(Lϕ
∗L,OY ~x [1])

�HomDb(T ~x)(L,Rϕ∗OY ~x [1])

� Ext1
T ~x
(L,OT ~x )

= 0.

Since LY has rank one, by 2.9 (see also [VdB, 3.5.4]), this implies that in the fundamental cycle of π, the
middle curve has coefficient one. In (2.B), this implies that β − v ≥ 0, and thus the fundamental cycle is
reduced by the paragraph following (2.B). �

In the sequel, we require the following description of some degenerate cases.

Lemma 3.16. Let 0 , ~x ∈ L+ and write ~x =
∑n
i=1 ai~xi + a~c with a ≥ 0 in normal form.

(1) If all ai = 0 (so necessarily a > 0), then Y ~x = T ~x = O
P

1(−a) and S~x = k[x,y]
1
a (1,1).

(2) If ai , 0 and aj = 0 for all j , i, then the dual graph of π in (3.K) is

· · ·
−1−a −αi1 −αimi−1 −αimi

where pi
pi−ai = [αi1, . . . ,αimi

].

Proof. (1) By 2.4 S~c = k[t0, t1], and hence Sa~c is the a-th Veronese of k[t0, t1], which is k[x,y]
1
a (1,1). Since

(Sti [t])0 = k[
t1−i
ti
, tai t], the description (3.A) of T ~x coincides with that of O

P
1(−a). Thus O

P
1(−a) = T ~x = Y ~x.

(2) There is only one singularity in (3.B), which implies that the dual graph has the above Type A form. It is
standard that αij from pi

pi−ai = [αi1, . . . ,αimi
] resolves 1

pi
(1,−ai), and thus the only thing still to be verified

is the self-intersection number −1 − a. There are two ways of doing this: since the fundamental cycle of
π is reduced by 3.15, the reconstruction algebra is easy to calculate and it can be directly verified that its
quiver has the form given by intersection rules in 2.12 (which, by [W2], hold for non-minimal resolutions
too). Alternatively, the number −1− a can be determined by an explicit gluing calculation on T ~x; in both
cases we suppress the details. �

3.4. Special CM Modules and the Dual Graph

Choose 0 , ~x ∈ L+. In this subsection we first give a precise criterion for when π : Y ~x→ SpecS~x in (3.K) is
the minimal resolution, then we use the results of the previous subsections to determine the indecomposable
special CM S~x-modules.

Proposition 3.17. Let 0 , ~x ∈ L+. Then π is the minimal resolution if and only if ~x < [0,~c ].

Proof. Write ~x =
∑n
i=1 ai~xi + a~c in normal form, then since ~x ∈ L+, necessarily a ≥ 0. As in 3.15, resolving

the singularities in (3.B) it is clear that the dual graph of π is star shaped, and the only curve that might be
a (−1)-curve is the middle one.
(⇐) Suppose that ~x < [0,~c ]. If all ai = 0 then necessarily a ≥ 2, and so 3.16(1) shows that π is the minimal
resolution. Similarly, if ai , 0 but aj = 0 for all j , i, then the assumption ~x < [0,~c ] forces a ≥ 1, and 3.16(2)
then shows that π is minimal.

Hence we can assume that ~x < [0,~c ] with at least two of the ai being non-zero. This being the case,
there are at least two singular points in (3.B). By 3.15, since the fundamental cycle is reduced, the calculation
(2.B) shows that the middle curve then cannot be a (−1)-curve, hence the resolution is minimal.
(⇒) By contrapositive, suppose that 0 , ~x ∈ [0,~c ], say ~x = ai~xi for some i and some 0 < ai < pi . Since
a = 0, by 3.16(2) the resolution π is not minimal. �



26 3. The Total Space T26 3. The Total Space T

Hence if x ∈ L+ with x < [0,~c ], it follows that the dual graph of the minimal resolution π : Y ~x→ SpecS~x

is (1.E), except that we have not yet determined the precise value of β. We will do this later in 4.19, since
for the moment this value is not needed. As notation, for ~y ∈ L write S(~y)~x :=

⊕
i∈ZS~y+i~x.

Theorem 3.18. Suppose that ~x ∈ L+ with ~x < [0,~c ], and write ~x =
∑n
i=1 ai~xi + a~c with a ≥ 0 in normal form.

Then
SCMS~x = add{S(u~xj )~x | j ∈ [1,n],u ∈ I(pj ,pj − aj )}.

Proof. The ring S~x = SN~x has a unique singular point corresponding to the graded maximal ideal by 2.3(3).
Thus, by 2.6 we may complete S~x at this point and pass to the formal fibre, which is still the minimal
resolution. However, to aid readability, we do not add (̂−) to the notation.

Consider the bundle q∗E on T , and its pushdown g∗q
∗E on T ~x. At the point λ1 of T ~x, which is the

singularity 1
p1
(1,−a1) by 3.2, the sheaves

g∗q
∗O, g∗q∗O(~x1), . . . , g∗q∗O((p1 − 1)~x1) (3.L)

are all locally free away from the point λ1, since at any other singular point λi , multiplication by x1 is
invertible. Further, at the point λ1, (3.L) is a full list of the CM modules, indexed by the characters of
Zp1 =

1
p1
(1,−a1) in the obvious way. Hence by 2.17, which does not require any coprime assumption, the

torsion-free pullbacks under ϕ of

{g∗q∗O(u~x1) | u ∈ I(p1,p1 − a1)\{0,p1}}

are precisely the line bundles on Y ~x corresponding to the curves in arm 1 of the dual graph. By 2.9 and
3.15 they are the special bundles on Y ~x corresponding to the curves in arm 1 of the dual graph, hence their
pushdown (via π) to S~x are the special CM S~x-modules corresponding to arm 1. Since the pushdown under
ϕ of the torsion-free pullback of ϕ is the identity, the pushdown to S~x gives the modules{

γ∗g∗q
∗O(u~x1) | u ∈ I(p1,p1 − a1)\{0,p1}

}
.

Then, by 3.9(1), γ∗g∗q
∗O(u~x1) =

⊕
i≥0Si~x+ux1 . But since ~x ∈ L+, ~x < [0,~c ] and u ≤ p1 we see that

ux1 − ~x ≤ ~c − ~x � 0, and hence γ∗g∗q
∗O(u~x1) =

⊕
i∈ZSi~x+ux1 := S(u~x1)

~x.
The argument for the other arms is identical. The argument that the middle curve gives the special CM

module S(~c)~x follows again by 3.15. �

Remark 3.19. It is possible to assign each special CM S~x-module to its vertex in the dual graph of the
minimal resolution across the bijection in 2.9, see below 3.20 for a typical example. As in 3.20, there are
obvious irreducible morphisms between the special CM S~x-modules, so they must appear in the quiver of
the reconstruction algebra. By the intersection theory in 2.12, we conclude that S(~c)~x corresponds to the
middle vertex, and this forces the positions of the other special CM modules relative to the dual graph.

Example 3.20. Consider the example (p1,p2,p3) = (3,5,5) and ~x = 2~x1 + 2~x2 + 3~x3. The continued
fractions for pi

pi−ai , and the corresponding i-series are given by:

3
3−2 = [3] 3 > 1 > 0
5

5−2 = [2,3] 5 > 3 > 1 > 0
5

5−3 = [3,2] 5 > 2 > 1 > 0
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It follows from 3.18 that an additive generator of SCMS~x is given by the direct sum of the following circled
modules:

S(~c)~x

S(2~x1)~x

S(~x1)~x

S(4~x2)~x

S(3~x2)~x

S(2~x2)~x

S(~x2)~x

S(4~x3)~x

S(3~x3)~x

S(2~x3)~x

S(~x3)~x

S~x

x1 x2 x3

x1

x2 x3

x2 x3

x2 x3

x1 x2 x3

Consider the tilting bundleM on Y ~x, generated by global sections, constructed in [VdB, 3.5.4].

Corollary 3.21. If 0 , ~x ∈ L+, then the following statements hold.

(1) π∗M is a summand of
⊕

~y∈[0,~c ]S(~y)
~x = γ∗g∗(q∗E).

(2) There is an idempotent e ∈ End
T
~x(q∗E) such that eEnd

T
~x (q∗E)e � EndY ~x (M).

(3) There is a fully faithful embedding

Db(cohY ~x) ↪→Db(cohT~x).

Proof. (1) By 3.15 the fundamental cycle is reduced. It follows that π∗M is a summand of
⊕

~y∈[0,~c ]S(~y)
~x,

by the argument in the proof of 3.18.
(2) Even although π : Y ~x→ SpecS~x need not be the minimal resolution, it is still true by [DW, 4.3] that

EndY ~x (M) � EndS~x(π∗M)

On the other hand,
End

T
~x (q∗E) � EndS~x (γ∗g∗q

∗E) � EndS~x (
⊕
~y∈[0,~c ]

S(~y)~x).

Thus by (1) there is an idempotent e ∈ End
T
~x (q∗E) such that eEnd

T
~x (q∗E)e � EndY ~x (M).

(3) By (2), writing A := End
T
~x(q∗E) then EndY ~x(M) = eAe, thus there is an obvious embedding of derived

categories
RHomeAe(Ae,−) : D(ModEndY ~x(M)) ↪→D(ModEnd

T
~x(q∗E)),

and also an embedding given by − ⊗LeAe eA. Regardless, since gl.dimeAe < ∞, the above induces an
embedding

Db(modEndY ~x (M)) ↪→Db(modEnd
T
~x(q∗E)).

The left hand side is equivalent to Db(cohY ~x), so it suffices to show that the right hand side is equivalent
to Db(cohT~x). By 3.13, there is an unbounded derived equivalence D(ModEnd

T
~x(q∗E)) ' D(QcohT~x).

This automatically restricts to an equivalence on compact objects. The compact objects of D(QcohT~x)
are Db(cohT~x) by [BLS, A.3], and since End

T
~x(q∗E) has finite global dimension, the compact objects of

D(ModEnd
T
~x (q∗E)) are Db(modEnd

T
~x(q∗E)), as required. �
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We give a simple criterion for when the above is an equivalence later in 4.8. Note that the above result
is formally very similar to the case of quotient singularities, where the reconstruction algebra embeds into
the quotient stack [k2/G], but this embedding is also very rarely an equivalence.

4. Categorical Equivalences

In this section we investigate the conditions on ~x under which

cohX ' qgrZS~x ' qgrZΓ~x

holds. This allows us, in 4.8, to give a precise criterion for when the embedding in 3.21(3) is an equivalence,
and further it allows us in 4.19 to determine the middle self-intersection number in (1.E). Throughout many
results in this section, a coprime condition (pi , ai) = 1 naturally appears, and in §4.3 we show that we can
always change parameters so that this coprime condition holds.

4.1. General Results on Categorical Equivalences

To simplify the notation, in this subsection we first produce categorical equivalences in a very general
setting, before specialising in the next subsection to the case of the weighted projective line. Throughout
this subsection, k denotes an arbitrary field.

We start with a basic observation. Let G be an abelian group and A a noetherian G-graded k-algebra.
As in §1.3 we consider the categories modGA, modG0A and qgrGA. For an idempotent e ∈ A0, B := eAe is
a noetherian G-graded k-algebra. The functor

E := e(−) : modGA→modGB

has a left adjoint functor Eλ and a right adjoint functor Eρ given by

Eλ := Ae⊗B − : modGB→modGA

Eρ := HomB(eA,−) : modGB→modGA.

Moreover EEλ = idmodGB = EEρ holds, and for the natural morphism m : Ae ⊗B eA → A, the counit
η : EλE→ idmodGA is given by m⊗A − and the unit ε : idmodGA→ EρE is given by HomA(m,−).

The following basic observation is a prototype of our results in this subsection.

Proposition 4.1. If dimkA/(e) <∞, then E induces an equivalence qgrGA ' qgrGB.

Proof. Clearly Eλ and E induce an adjoint pair Eλ : qgrGA→ qgrGB and E : qgrGB→ qgrGA. For any
X ∈ modGA, both the kernel and cokernel of m⊗A X : EλEX → X are finite dimensional since they are
finitely generated (A/(e))-modules. Therefore Eλ and E give the desired equivalences. �

In the rest of this subsection, let G be an abelian group and H a subgroup of G of finite index. Assume
that A is a noetherian G-graded k-algebra, and let B := AH =

⊕
g∈H Ag be the H-Veronese subring of A.

There is a natural functor
(−)H : modGA→modHB

given by XH :=
⊕

h∈H Xh.

Lemma 4.2. B is a noetherian k-algebra and A is a finitely generated B-module.

Proof. There is a finite direct sum decomposition A =
⊕

g∈G/H A(g)
H as B-modules. For any submodule

M of A(g)H , it is easy to check that the ideal AM of A satisfies AM ∩A(g)H =M . Therefore A(g)H is a
noetherian B-module, since A is a noetherian ring. The assertion follows. �
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We say that X ∈modGA has depth at least two if ExtiA(Y ,X) = 0 for any i = 0,1 and Y ∈modGA with
dimk Y < ∞. We write modG2A for the full subcategory of modGA consisting of modules with depth at
least two. We define modH2 B similarly.

Theorem 4.3. Let G be an abelian group, H a subgroup of G of finite index, A a noetherian G-graded k-algebra,
and B := AH . Then the following conditions are equivalent.

(1) The natural functor (−)H : qgrGA→ qgrHB is an equivalence.

(2) For any i ∈ G, the ideal I i := A(i)H ·A(−i)H of B satisfies dimk(B/I i) <∞.

If A belongs to modG2A, then the following condition is also equivalent.

(3) The natural functor (−)H : modG2A→modH2 B is an equivalence.

Proof. Consider the matrix algebra
C = (A(i − j)H )i,j∈G/H

whose rows and columns are indexed by G/H , and the product is given by the matrix multiplication together
with the product in A, namely

(si,j ) · (ti,j ) := (
∑
k∈G/H

si,k · tk,j ).

Now we fix a complete set I of representatives of G/H in G. Then C has an H-grading given by

Ch := (Ai−j+h)i,j∈I .

By [IL, Theorem 3.1] there is an equivalence

F : modGA 'modHC (4.A)

sending M =
⊕

i∈GMi to F(M) =
⊕

h∈H F(M)h, where F(M)h is defined by

F(M)h := (Mi+h)i∈I

and the C-module structure is given by

(si,j )i,j∈I · (mi)i∈I := (
∑
j∈I
si,j ·mj )i∈I .

On the other hand, let e ∈ C be the idempotent corresponding to 0 ∈ G/H . Since eCe = B holds, there is
an exact functor

E := e(−) : modHC→modHB (4.B)

such that the following diagram commutes

modGA modHB

modHC

(−)H

F

∼
E

The functor (4.B) has a left adjoint functor Eλ := Ce⊗B − : modHB→modHC and a right adjoint functor
Eρ := HomB(eC,−) : modHB→modHC.
(1)⇔(2) The functors F and E induce an equivalence F : qgrGA ' qgrHC and a functor

E : qgrHC→ qgrHB (4.C)
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respectively, which make the following diagram commutative

qgrGA qgrHB

qgrHC

(−)H

F

∼
E

Thus the functor (−)H : qgrGA→ qgrHB is an equivalence if and only if the functor (4.C) is an equivalence.
The functor Eλ : modHB→modHC induces a left adjoint functor Eλ : qgrHB→ qgrHC of (4.C). Clearly
EEλ = idqgrHB holds, and the counit η : EλE → idqgrHC is given by m ⊗C −, where m is the natural
morphism

m : Ce⊗B eC→ C. (4.D)

Thus the condition (1) holds if and only if η is an isomorphism of functors if and only if m is an isomorphism
in qgrHC. On the other hand, the cokernel of m is C/(e), where (e) is the two-sided ideal of C generated
by e, and the kernel of m is a finitely generated C/(e)-module. Therefore (1) holds if and only if the factor
algebra C/(e) of C is finite dimensional if and only if (2) holds, by the following observation.

Lemma 4.4. dimkC/(e) <∞ if and only if the condition (2) holds.

Proof of Lemma 4.4. Since
C/(e) = (A(i − j)H /(A(i)H ·A(−j)H ))i,j∈I

holds, C/(e) is finite dimensional if and only if A(i − j)H /(A(i)H · A(−j)H ) is finite dimensional for any
i, j ∈ I . This implies the condition (2) by considering the case i = j .

Conversely assume that (2) holds. Since there is a surjective map

A(i − j)H ⊗B
B

A(j)H ·A(−j)H
=

A(i − j)H

A(i − j)H ·A(j)H ·A(−j)H
→

A(i − j)H

A(i)H ·A(−j)H

whose domain is finite dimensional, the target is also finite dimensional. Thus the assertion holds. �

(2)⇔(3) Assume that A ∈modG2A. Clearly the equivalence (4.A) induces equivalences

F : modG0A 'modH0 C and F : modG2A 'modH2 C.

The remainder of the proof requires the following general lemma.

Lemma 4.5. With the setup as above,

(1) The functor (4.B) induces a functor
E : modH2 C→modH2 B. (4.E)

(2) The functor Eρ : modHB→modHC induces a functor Eρ : modH2 B→modH2 C.

(3) X ∈modHC belongs to modH0 C if and only if ExtiC(X,modH2 C) = 0 for i = 0,1.

Proof of Lemma 4.5. (1) Let X ∈ modH2 C, Y ∈ modH0 B and EλY := Ce
L
⊗B Y . Since H i(EλY ) is zero for

any i > 0 and belongs to modH0 C for any i ≤ 0, we have HomDb(modC)(EλY ,X[i]) = 0 for i = 0,1. Using

RHomB(Y ,EX) = RHomC(EλY ,X), we have ExtiB(Y ,EX) = 0 for i = 0,1.
(2) Let X ∈modH2 B, Y ∈modH0 C and EρX := RHomB(eC,X). Since RHomC(Y ,EρX) = RHomB(EY ,X)
and EY ∈modH0 B hold, we have HomDb(modC)(Y ,EρX[i]) = 0 for i = 0,1. There is a triangle

EρX→ EρX→ Z→ EρX[1]
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satisfying H i(Z) = 0 for all i ≤ 0. Applying HomDb(modC)(Y ,−) gives ExtiC(Y ,EρX) = 0 for i = 0,1.

(3) It suffices to prove the ‘if’ part. Our assumption A ∈ modG2A implies C =
⊕

i∈I F(A(−i)) ∈ modH2 C,
since Cej = (A(i − j)H )i∈I = F(A(−j)). Let 0→ T → X → F → 0 and 0→ ΩF → P → F → 0 be exact
sequences in modHC such that T is the largest submodule of X which belongs to modH0 C and P is an
H-graded projective C-module. Then ΩF belongs to modH2 C since C ∈modH2 C. Applying HomC(−,ΩF)
to the first sequence gives an exact sequence

0 = HomC(T ,ΩF)→ Ext1C(F,ΩF)→ Ext1C(X,ΩF) = 0.

Thus Ext1C(F,ΩF) = 0 holds, and F is projective in modHC. Hence X = T ⊕ F, and so HomC(X,C) = 0
implies that F = 0. Therefore X = T belongs to modH0 C. �

It follows from 4.5 that there is a commutative diagram

modG2 A modH2 B

modH2 C

(−)H

F

∼
E

Thus the functor (−)H : modG2A→modH2 B is an equivalence if and only if the functor (4.E) is an equiva-
lence. By 4.5(2), there is a right adjoint functor Eρ : modH2 B→ modH2 C of (4.E). Clearly EEρ = idmodH2 B
holds, and the unit ε : idmodH2 C

→ EρE is given by HomC(m,−), where m is the morphism (4.D). Thus the
condition (3) holds if and only if ε = HomC(m,−) is an isomorphism of functors.

Now fix X ∈ modH2 C and apply HomC(−,X) to exact sequences 0 → (e) → C → C/(e) → 0 and
0→ Kerm→ Ce⊗B eC→ (e)→ 0. This gives exact sequences

0→HomC(C/(e),X)→ X→HomC((e),X)→ Ext1C(C/(e),X)→ 0

0→HomC((e),X)→HomC(Ce⊗B eC,X)→HomC(Kerm,X).

Therefore, if C/(e) is finite dimensional, then so is Kerm and hence ε is an isomorphism. Conversely, if
ε is an isomorphism, then ExtiC(C/(e),X) = 0 for i = 0,1 for any X ∈ modH2 C and hence C/(e) is finite
dimensional by 4.5(3). Consequently (3) is equivalent to (2), again by 4.4. �

Later we need the following observation.

Lemma 4.6. In the setting of 4.3, assume that the condition (2) is satisfied. Then for any X ∈ modGA and
Y ∈modG2A, there is an isomorphism

HomB(X
H ,YH ) �HomA(X,Y )

H

of H-graded k-modules.

Proof. Clearly HomB(XH ,YH ) = HomB(EFX,EFY ) = HomC(EλEFX,FY ). This is isomorphic to
HomC(FX,FY ) since the kernel and the cokernel of ηX : EλEX → X are finite dimensional by our
assumptions. Finally,

HomC(FX,FY ) =
⊕
h∈H

HomH
C (FX, (FY )(h)) =

⊕
h∈H

HomG
A(X,Y (h)) = HomA(X,Y )

H .

�
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4.2. Categorical Equivalences for Weighted Projective Lines

In this subsection, we apply the general results of the previous subsection to describe the precise conditions
on ~x ∈ L for which qgrZS~x ' cohX holds. As before, write S(~y)~x :=

⊕
i∈ZS~y+i~x. This subsection does

not require the condition that ~x belongs to L+, instead assuming that ~x is not torsion. The following is the
main result, where the special case ~x = ~ω was given in [GL2]. Another approach can be found in [H2].

Theorem 4.7. If ~x =
∑n
i=1 ai~xi + a~c ∈ L is not torsion, then the following conditions are equivalent.

(1) The natural functor (−)~x : CMLS→ CMZS~x is an equivalence.

(2) The natural functor (−)~x : qgrLS→ qgrZS~x is an equivalence.

(3) For any ~z ∈ L, the ideal I~z := S(~z)~x · S(−~z)~x of S~x satisfies dim
k
(S~x/I~z) <∞.

(4) (pi , ai) = 1 for all 1 ≤ i ≤ n.

Proof. To ease notation, write R := S~x.
(1)⇔(2)⇔(3) These are shown in 4.3 since CMLS =modL2 S and CMZR =modZ2 R.
(3)⇒(4). By contrapositive, assume that a1 and p1 are not coprime. Then the normal form of any element
in ~x1 +Z~x (respectively, −~x1 +Z~x) contains a positive multiple of ~x1. Thus we have

I~x1 ⊂ Sx1 · Sx1 = Sx21.

Therefore the condition (3) implies that the algebra R/(R∩ Sx21) is finite dimensional. Since S/Sx21 is a
finitely generated R/(R∩Sx21)-module by 2.3(1), it is also finite dimensional. This is a contradiction since S
has Krull dimension two.
(4)⇒(3). Assume that (pi , ai) = 1 for all i. If R/I~y and R/I~z are finite dimensional, then so is R/I~y+~z since
I~y · I~z ⊂ I~y+~z holds. Thus we only have to show that R/I~xi is finite dimensional for each i with 1 ≤ i ≤ n.
We will show that I~xi contains a certain power A of xi and a certain monomial B of xj ’s with j , i. Then

it is easy to check that S/(SA + SB) is finite dimensional, and hence R/(RA +RB) = (S/(SA + SB))~x and
R/I~xi are also finite dimensional.

For the least common multiple p of p1, . . . ,pn, we have p~x = q~c for some q > 0. Then

I~xi = S(~xi)
~x · S(−~xi)~x ⊃ S~xi · S−~xi+p~x 3 xi · x

piq−1
i = xpiqi .

Thus I~xi contains a power of xi . On the other hand, since ai and pi are coprime, there exist integers `
and m such that ai` + 1 = pim and ~xi + `~x ∈ L+. Then the normal form of ~xi + `~x does not contain a
positive multiple of ~xi , and hence S(~xi)~x ⊃ S~xi+`~x contains a monomial of xj ’s with j , i. Applying a similar

argument to S(−~xi)~x, we have that I~xi = S(~xi)~x · S(−~xi)~x contains a monomial of xj ’s with j , i. Thus the
assertion follows. �

The following is a geometric corollary of the results in this subsection.

Corollary 4.8. Suppose that 0 , ~x ∈ L+ and write ~x =
∑n
i=1 ai~xi+a~c in normal form. If n ≥ 1 and (pi , ai) = 1

for all 1 ≤ i ≤ n, then the fully faithful embedding

Db(cohY ~x) ↪→Db(cohT~x)

in 3.21 is an equivalence if and only if every ai = 1, that is ~x =
∑n
i=1 xi + a~c.

Proof. We use the notation from the proof of 3.21. Note that from the assumption (pi , ai) = 1 for every
1 ≤ i ≤ n, necessarily each ai is non-zero. Next, the indecomposable summands of π∗M are pairwise non-
isomorphic by combining [VdB, 3.5.3] and [DW, 4.3], and the summands of

⊕
~y∈[0,~c ]S(~y)

~x are pairwise
non-isomorphic by 4.7(1).

The embedding in 3.21 is induced from idempotents using the observation that π∗M is a summand of⊕
~y∈[0,~c ]S(~y)

~x. It follows that the embedding is an equivalence if and only if for all t = 1, . . . ,n, the i-series
on arm t has maximum length. By 2.16 this holds if and only if every ai = 1. �
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4.3. Changing Parameters

Our next main result, 4.10, shows that we can always change parameters, without changing the category of
coherent sheaves, so that the condition (pi , ai) = 1 for all 1 ≤ i ≤ n appearing in both 4.7(4) and 4.8 holds.

We now fix notation. Let S := Sp,λ, and fix a subset I of {1, . . . ,n}. For each i ∈ I , choose a divisor di
of pi . Let pi := pi/di , p′:= (pi | i ∈ I), λ′ := (λi | i ∈ I),

S ′ := Sp′,λ′ =
k[t0, t1,xi | i ∈ I]

(xpii − `i(t0, t1) | i ∈ I)

and L′ := L(pi | i ∈ I) = 〈~xi ,~c | i ∈ I〉/(pi~xi −~c | i ∈ I). Then S ′ is an L′-graded k-algebra, and there is an
equivalence cohXp′,λ′ = qgrL

′
S ′ as before.

Proposition 4.9. With notation as above,

(1) There is a monomorphism ι : L′ → L of groups sending ~xi to di~xi for each i ∈ I and ~c to ~c.

(2) There is a monomorphism S ′ → S of k-algebras sending xi to x
di
i for each i ∈ I and tj to tj for j = 0,1,

which induces an isomorphism S ′ '
⊕

~x∈L′ Sι(~x).

(3) Let ~x ∈ L be an element with normal form ~x =
∑
i∈I ai~xi + a~c such that ai is a multiple of di . For

ai := ai/di and ~x :=
∑
i∈I ai~xi + a~c ∈ L′ , we have (S ′)~x = S~x.

Proof. (1) Clearly ι is well-defined. Assume that ~x ∈ L′ with normal form ~x =
∑
i∈I ai~xi + a~c belongs to the

kernel of ι. Then 0 = ι(~x) =
∑
i∈I aidi~xi + a~c, where the right hand side is a normal form in L, and so

ai = 0 = a for all i. Hence ~x = 0.
(2) Take any element ~x ∈ L′ with a normal form ~x =

∑
i∈I ai~xi + a~c. We prove S ′

~x ' Sι(~x). If ~x < L′+, then
ι(~x) < L+ and both sides are zero. Assume ~x ∈ L′+. Then by 2.4, S ′

~x has a k-basis

t
j
0t
a−j
1

∏
i∈I

xaii 0 ≤ j ≤ a.

Since ι(~x) has a normal form
∑
i∈I aidi~xi +a~c, it follows from 2.4 that Sι(~x) has a k-basis t

j
0t
a−j
1

∏
i∈I x

aidi
i for

0 ≤ j ≤ a. The assertion follows.
(3) Immediate from (2). �

Proposition 4.10. Suppose that ~x ∈ L is not torsion, and write ~x =
∑n
i=1 ai~xi + a~c ∈ L in normal form. Let

I := {1 ≤ i ≤ n | ai , 0}, and consider the parameters (p′,λ′) defined by p′ := (pi | i ∈ I) for pi := pi/(ai ,pi) and
λ′ := (λi | i ∈ I). As above, set ~x :=

∑
i∈I ai~xi + a~c ∈ L′ , then the following statements hold.

(1) There is an isomorphism S~xp,λ � S
~x
p′,λ′ as Z-graded k-algebras.

(2) There are equivalences CMZS~xp,λ ' CMZS~xp′,λ′ ' CMLSp′,λ′ .

(3) There are equivalences qgrZS~xp,λ ' qgrZS~xp′,λ′ ' cohXp′,λ′ .

Proof. Part (1) follows directly from 4.9(3). Certainly this induces the left equivalences in (2) and (3). Applying
4.7 to S~xp′,λ′ gives the right equivalences in (2) and (3). �

Thus we can always replace (p,λ, ~x) by (p′ ,λ′ ,~x) such that S~xp,λ = S~xp′ ,λ′ and the coprime assumptions

in both 4.7(4) and 4.8 hold, applied to (p′ ,λ′ ,~x). Note also that the above implies that if ~x ∈ L is any non-
torsion element, then qgrZS~xp,λ always gives the category of coherent sheaves over a weighted projective
line, perhaps with different parameters.
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4.4. Algebraic Approach to Special CM Modules

In this subsection we give an algebraic treatment of the special CM S~x-modules, and show how to determine
the rank one special CM modules without using geometric arguments. Hence this subsection is independent
of §3, and the techniques developed will be used later to obtain geometric corollaries. Note however that
the geometry is required to deduce that there are no higher rank indecomposable special CM modules; this
algebraic approach seems only to be able to deal with the rank one specials.

Consider Xp,λ and let ~x ∈ L be an element with normal form ~x =
∑n
i=1 ai~xi + a~c with a ≥ 0. By 4.10 we

can assume, by changing parameters if necessary, that (ai ,pi) = 1 for all 1 ≤ i ≤ n. Then, by 4.7, there is
an equivalence

(−)~x : CMLS→ CMZS~x.

Below we will often use the identification

S~y−~x �HomL

S (S(~x),S(~y)) (4.F)

for any ~x,~y ∈ L. Recall that the AR translation functor of S~x is given by

τS~x := HomS~x (−,ωS~x ) ◦HomS~x(−,S~x) : CMZS~x→ CMZS~x,

where ωS~x is the Z-graded canonical module of S~x [AR2, IT].

Proposition 4.11. With the setup as above, the following statements hold.

(1) There is an isomorphism ωS~x � S(~ω)
~x.

(2) There is a commutative diagram

CMLS CMZS~x

CMLS CMZS~x

τS :=(~ω) τ
S~x

(−)~x

(−)~x
(4.G)

Proof. Again, to ease notation write R := S~x.
(1) Taking a projective resolution of k in modLS , applying HomS(−,S(~ω)) and using 4.6 we see that
ExtiR(k,S(~ω)

~x) = ExtiS(k,S(~ω))
~x. This is k for i = 2 and zero for i , 2 [BHe]. Thus S(~ω)~x is the Z-graded

canonical module of R.
(2) Let X ∈ CMLS . Using (1) and 4.6,

τR(X
~x) = HomR(HomR(X

~x,S~x),S(~ω)~x) = HomS(HomS(X,S),S(~ω))
~x = X(~ω)~x. �

The following gives an algebraic criterion for certain CM S~x-modules to be special.

Lemma 4.12. For ~y ∈ L, the CM S~x-module S(~y)~x is special if and only if

S~y+~ω+`~x =
∑
m∈Z

S~ω+m~x · S~y+(`−m)~x (4.H)

holds for all ` ∈Z.



O. Iyama and M. Wemyss, Weighted projective lines and rational surface singularities 35O. Iyama and M. Wemyss, Weighted projective lines and rational surface singularities 35

Proof. Set R := S~x and as above write τR : CM
ZR ' CMZR for the AR-translation. If CM

Z

R is the quotient
category of CMZR by the ideal generated by {ωR(`) | ` ∈Z}, this yields AR duality

DExt1
modZR

(X,Y ) 'Hom
CM

Z

R
(Y ,τRX) (4.I)

for any X,Y ∈ CMZR [AR2, IT]. By 4.11(1), S(~ω + `~x)~x = ωR(`) holds, and hence there is an induced
equivalence

(−)~x : (CMLS)/I ' CM
Z

R (4.J)

for the ideal I of the category CMLS generated by add{S(~ω+ `~x) | ` ∈Z}. It follows that

DExt1R(S(~y)
~x,R) =

⊕
`∈Z

DExt1
modZR

(S(~y)~x,R(`))

(4.I)
'

⊕
`∈Z

Hom
CM

Z

R
(R, (τR(S(~y)

~x))(`))

(4.G)(4.J)
'

⊕
`∈Z

HomCMLS(S,S(~y + ~ω+ `~x))
I(S,S(~y + ~ω+ `~x))

.

Thus S(~y)~x is special if and only if HomCMLS(S,S(~y + ~ω + `~x)) = I(S,S(~y + ~ω + `~x)) holds for all ` ∈ Z.
Since HomCMLS(S,S(~y+ ~ω+`~x)) = S~y+~ω+`~x and I(S,S(~y+ ~ω+`~x)) =

∑
m∈ZS~ω+m~x ·S~y+(`−m)~x hold by (4.F),

the assertion follows. �

We will also require the next result, which is much more elementary, and follows from 2.4.

Lemma 4.13 ([GL1]). Suppose that ~x ∈ L has normal form ~x =
∑n
i=1 ai~xi + a~c.

(1) If ~y ∈ L+ and ~x − ~y ∈ L+, write ~y =
∑n
i=1 bi~xi + b~c in normal form. Then for I := {1 ≤ i ≤ n | ai < bi},

~x ≥ |I |~c and S~y · S~x−~y = (
∏
i∈I
x
pi
i )S~x−|I |~c.

(2) Let X,Y be a basis of S~c. If ~x ≥ i~c ≥ 0, then

S~x = XS~x−~c + f (X,Y )S~x−i~c

for any f (X,Y ) ∈ Si~c which is not a multiple of X.

Before proving the main result 4.15, we first illustrate a special case.

Example 4.14. Let ~sa =
∑n
i=1 ~xi + a~c with a ≥ 0 and n+ a ≥ 2 (since a ≥ 0, the last condition is equivalent

to ~sa < [0,~c ]). Then S(~y)~sa is a special CM S~sa-module for all ~y ∈ [0,~c ].

Proof. We use 4.12. When ` ≤ 0, both sides of (4.H) are zero. When ` > 0, since ~ω+~sa = (n−2+a)~c we have

S~y+~ω+`~sa = S~y+(`−1)~sa+(n−2+a)~c
2.4(3)
= S(n−2+a)~c · S~y+(`−1)~sa = S~ω+~sa · S~y+(`−1)~sa

and so (4.H) holds. �

The following is the main result in this section. The algebraic method of proof describes all the rank
one indecomposable special CM modules directly, and the geometry is only required to verify that there are
no further indecomposable special CM modules of higher rank. The algebraic method of proof developed
below feeds back into the geometry, and allows us to extract the middle self-intersection number in 4.19.
As notation, we write SCMZS~x for those special CM S~x-modules that are Z-graded.
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Theorem 4.15. Let ~x ∈ L+ with ~x < [0,~c ]. Write ~x =
∑n
i=1 ai~xi + a~c in normal form, then the following

statements hold.

(1) Up to degree shift, the indecomposable objects in SCMZS~x are precisely those S(u~xj )~x with 1 ≤ j ≤ n and
u ∈ I(pj ,pj − aj ).

(2) Forgetting the grading, add{S(u~xj )~x | j ∈ [1,n],u ∈ I(pj ,pj − aj )} = SCMS~x.

In particular, S~x, S(~c)~x and S((pj − aj )~xj )~x for all j ∈ [1,n] are always special.

Proof. We only prove (1), since the other statements follow immediately. By 4.10(1) we can assume that
(ai ,pi) = 1 for all 1 ≤ i ≤ n. Write R := S~x.

(a) We first claim that, up to degree shift, Z-graded special CM R-modules of rank one must have the
form S(u~xj )~x for some 1 ≤ j ≤ n and 0 ≤ u ≤ pj .

By 2.2 S is an L-graded factorial domain, so all rank one objects in CMLS have the form S(~y) for some
~y ∈ L. Under the rank preserving equivalence 4.7(1), it follows that all rank one objects in CMZR have the
form S(~y)~x for some ~y ∈ L. Since we are working up to degree shift, and ~x ≥ 0, we can assume without loss
of generality that ~y ≥ 0 and ~y 6≥ ~x, by, if necessary, replacing ~y by ~y − `~x for some ` ∈Z.

Hence we can assume that our rank one special CM module has the form S(~y)~x with ~y ≥ 0 and ~y 6≥ ~x.
Now assume that ~y can not be written as u~xj for some 1 ≤ j ≤ n and 0 ≤ u ≤ pj . Then there exists j , k
such that ~y ≥ ~xj + ~xk . By applying 4.12 for ` = 0, it follows that

S~y+~ω =
∑
m∈Z

S~ω+m~x · S~y−m~x.

Now S~y+~ω , 0 by our assumption ~y ≥ ~xj +~xk , hence there exists m ∈Z such that S~ω+m~x , 0 and S~y−m~x , 0.
On one hand, since ~ω 6≥ 0, this implies that m > 0. On the other hand, since ~y 6≥ ~x, this implies that m ≤ 0,
a contradiction. Thus the rank one special CM modules have the claimed form S(u~xj )~x.

(b) Let 1 ≤ j ≤ n and 0 ≤ u ≤ pj . We now show that S(u~xj )~x is a special CM R-module if and only if

u ∈ I(pj ,pj − aj ). By 4.12, the CM R-module S(u~xj )~x is special if and only if

Su~xj+~ω+`~x =
∑
m∈Z

S~ω+m~x · Su~xj+(`−m)~x (4.K)

holds for all ` ∈Z, or equivalently, for all ` > 0 since the left hand side vanishes for ` ≤ 0 (in that case we
have u~xj + ~ω ≤ ~c+ ~ω 6≥ 0). Thus in what follows, we fix an arbitrary ` > 0.

Clearly equality holds in (4.K) if and only if ⊆ holds. To simplify notation, for m ∈Z write

~x := u~xj + ~ω+ `~x

~ym := ~ω+m~x.

Then S~ym · S~x−~ym = S~ω+m~x · Su~xj+(`−m)~x. Notice that ~ym, ~x−~ym ∈ L+ holds if and only if 1 ≤m ≤ `. The ‘if’
part follows easily from ~x < [0,~c ], and the ‘only if’ part follows from ~ω 6≥ 0 and u~xj − ~x ≤ ~c − ~x 6≥ 0. Thus
(4.K) holds if and only if

S~x ⊆
∑̀
m=1

S~ym · S~x−~ym (4.L)

holds. Note that ~x and ~ym can be written more explicitly as

~x =
(∑

i,j(`ai − 1)~xi
)
+ (u + `aj − 1)~xj + (n− 2+ a`)~c

~ym =
∑n
i=1(mai − 1)~xi + (n− 2+ am)~c.

}
(4.M)
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Since ~ym, ~x−~ym ∈ L+ for each 1 ≤m ≤ `, 4.13(1) implies that

S~ym · S~x−~ym = (
∏
i∈Im

x
pi
i )S~x−|Im|~c, (4.N)

where Im is the set I in 4.13(1) for ~x and ~ym. As before, for an integer k, we write [k]pi for the integer k′

satisfying 0 ≤ k′ ≤ pi − 1 and k − k′ ∈ piZ. Simply writing out ~x and ~ym into normal form, from (4.M) we
see that

Im = {1 ≤ i ≤ n | [ui + `ai − 1]pi < [mai − 1]pi } (4.O)

where ui := u if i = j and ui := 0 otherwise.
For the case m = `, it is clear that I` ⊆ {j}. Hence we see that

S~y` · S~x−~y`
(4.N)
= (

∏
i∈I`

x
pi
i )S~x−|I` |~c ⊇ x

pj
j S~x−~c. (4.P)

Now we claim that (4.L) holds if and only if j < Im for some 1 ≤m ≤ `.
(⇒) Assume that (4.L) holds. If further j ∈ Im for all 1 ≤m ≤ `, then using

S~x
(4.L)
=

∑̀
m=1

S~ym · S~x−~ym
(4.N)
=

∑̀
m=1

(
∏
i∈Im

x
pi
i )S~x−|Im|~c

we see that x
pj
j divides every element in S~x. This gives a contradiction, since we can use the normal form

of ~x to obtain elements of S~x which are not divisible by x
pj
j .

(⇐) Suppose that j < Im for some 1 ≤m ≤ `. Since ~x ≥ |Im|~c ≥ 0 holds by 4.13(1), we have

S~x = x
pj
j S~x−~c + (

∏
i∈Im

x
pi
i )S~x−|Im|~c.

by choosing X := x
pj
j and f (X,Y ) :=

∏
i∈Im x

pi
i in 4.13(2). Finally, using (4.N) and (4.P) this gives

S~x ⊆ S~y` · S~x−~y` + S~ym · S~x−~ym ,

which clearly implies (4.L).
Consequently, (4.L) holds if and only if j < Im for some 1 ≤ m ≤ `, which by (4.O) holds if and only if

[u + `aj − 1]pj ≥ [maj − 1]pj for some 1 ≤m ≤ `. By 2.21, this holds if and only if u ∈ I(pj ,pj − aj ), proving
claim (b).

(c) We now prove part (1). Combining (a) and (b), it suffices to show that there is no indecomposable
object X in SCMZR with rank bigger than one. Otherwise, by [Y, 15.2.1], X̂ is an indecomposable object in
SCMR with rank bigger than one, where R is the completion of R. This is a contradiction to 2.9 and 3.15,
and so Part (1) follows. �

4.5. The Middle Self-Intersection Number

In this subsection we use the techniques of the previous subsections to determine the middle self-intersection
number in (1.E). This requires the following two elementary but technical lemmas.

Lemma 4.16. Let `1, . . . , `m be elements in S~c such that any two elements are linearly independent. Then∏
j,1 `j , . . . ,

∏
j,m `j is a basis of S(m−1)~c.

Proof. Assume that the assertion holds for m − 1. Then
∏
j,1 `j , . . . ,

∏
j,m−1 `j gives a basis of `mS(m−2)~c.

Since S(m−1)~c = `mS(m−2)~c +k
∏
j,m `j holds, the assertion also holds for m. �
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The following lemma is general, and does not require n > 0.

Lemma 4.17. Let ~x ∈ L+, and write ~x =
∑n
i=1 ai~xi + a~c in normal form. If t ≥ 2, then every morphism in

HomL

S (S(~c),S(t~x)) factors through add{S(~x+ (pi − ai)~xi) | 1 ≤ i ≤ n}.

Proof. It suffices to show that

St~x−~c ⊂
n∑
i=1

S~x−ai~xi · S(t−1)~x−(pi−ai )~xi .

For each i with 1 ≤ i ≤ n, take mi ≥ 0 and εi ∈ {0,1} such that

(t − 1)ai = [(t − 1)ai]pi +mipi and tai = [tai]pi + (mi + εi)pi .

Let m :=
∑n
i=1mi and ε :=

∑n
i=1 εi . Then the equality

t~x −~c =
n∑
j=1

[taj ]pj~xj + (m+ ε− 1+ ta)~c

implies that

St~x−~c = (
n∏
j=1

x
[taj ]pj
j )S(m+ε−1+ta)~c. (4.Q)

Similarly the equality

(t − 1)~x − (pi − ai)~xi = [tai]pi~xi +
∑
j,i

[(t − 1)aj ]pj~xj + (m+ εi − 1+ (t − 1)a)~c

implies that

S(t−1)~x−(pi−ai )~xi = x
[tai ]pi
i (

∏
j,i

x
[(t−1)aj ]pj
j )S(m+εi−1+(t−1)a)~c.

Multiplying S~x−ai~xi = (
∏
j,i x

aj
j )Sa~c and using [(t − 1)aj ]pj + aj = [taj ]pj + εjpj gives

S~x−ai~xi · S(t−1)~x−(pi−ai )~xi = (
n∏
j=1

x
[taj ]pj
j )(

∏
j,i

x
εjpj
j )Sa~c · S(m+εi−1+(t−1)a)~c. (4.R)

Now set I := {1 ≤ i ≤ n | εi = 1}. Clearly |I | = ε holds.
First we assume I , ∅. By 4.16 we have

∑
i∈I k

∏
j,i x

εjpj
j = S(ε−1)~c and thus

∑
i∈I
S~x−ai~xi · S(t−1)~x−(pi−ai )~xi

(4.R)
= (

n∏
j=1

x
[taj ]pj
j )S(ε−1)~c · Sa~c · S(m+(t−1)a)~c

= (
n∏
j=1

x
[taj ]pj
j )S(m+ε−1+ta)~c

(4.Q)
= St~x−~c,

as desired.
Next we assume I = ∅. If further m− 1+ (t − 1)a ≥ 0, then (4.R) is equal to

(
n∏
j=1

x
[taj ]pj
j )Sa~c · S(m−1+(t−1)a)~c = (

n∏
j=1

x
[taj ]pj
j )S(m−1+ta)~c

(4.Q)
= St~x−~c,

as desired, so we can assume that m−1+ (t −1)a < 0. But a ≥ 0 since ~x ∈ L+, and t ≥ 2 by assumption, so
necessarily m = 0 = a. Then m− 1+ ta < 0 holds, so St~x−~c = 0 by (4.Q), which implies the assertion. �
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The following is the main result of this subsection; the main point is that the manipulations above
involving the combinatorics of the weighted projective line give the geometric corollary in 4.19 below.

Theorem 4.18. Let ~x ∈ L+ with ~x < [0,~c ], and write ~x =
∑n
i=1 ai~xi + a~c in normal form. Set R := S~x and

N := S(~c)~x, and consider their completions R and N̂ . Then in the quiver of the reconstruction algebra of R, the
number of arrows from N̂ to R is a.

Proof. By 4.10(2), S~xp,λ � S
~x
p′,λ′ as Z-graded algebras, where ~x :=

∑
i∈I ai~xi + a~c ∈ L′ satisfies the condition

in 4.7(4). Note that this change in parameters has not changed the value a on ~c, hence in what follows, we
can assume that CMLS ' CMZR holds, via the functor (−)~x.

Let C be the full subcategory of CMLS corresponding to SCMZR via the functor (−)~x. Then the number
of arrows from N̂ to R is equal to the dimension of the k-vector space

radSCMR(N̂ ,R)

rad2SCMR(N̂ ,R)
�

∏
t∈Z

HomZ

R (N,R(t))

rad2
SCMZR

(N,R(t))
�

∏
t∈Z

HomL

S (S(~c),S(t~x))

rad2C(S(~c),S(t~x))
.

By 4.15, C is the additive closure of S(u~xj + s~x), where s ∈Z, 1 ≤ j ≤ n and u ∈ I(pj ,pj − aj ). We split into
three cases.

(1) If t ≤ 0, then HomL

S (S(~c),S(t~x)) = 0.

(2) If t ≥ 2, then since S(~x + (pi − ai)~xi) belongs to C by 4.15, and is not isomorphic to both S(~c) and
S(t~x) in modLS (since ~x < [0,~c ]), we have HomL

S (S(~c),S(t~x)) = rad2C(S(~c),S(t~x)) by 4.17.

(3) Suppose that t = 1. By definition any morphism in rad2C(S(~c),S(~x)) can be written as a sum of
compositions S(~c)→ S(u~xj + s~x)→ S(~x). If s ≤ 0, then HomL

S (S(~c),S(u~xj + s~x)) � Su~xj+s~x−~c, and

hence radC(S(~c),S(u~xj + s~x)) = 0. If s ≥ 1, then HomL

S (S(u~xj + s~x),S(~x)) � S(1−s)~x−u~xj , and hence

radC(S(u~xj + s~x),S(~x)) = 0. Either way, rad2C(S(~c),S(t~x)) = 0 in this case.

Combining all cases, the desired number is thus

∑
t∈Z

dim
k

HomL

S (S(~c),S(t~x))

rad2C(S(~c),S(t~x))

 = dim
k
HomL

S (S(~c),S(~x)) = dim
k
S~x−~c

2.4= a. �

This allows us to finally complete the proof of 1.5 from the introduction.

Corollary 4.19. Let ~x ∈ L+ with ~x < [0,~c ], and write ~x =
∑n
i=1 ai~xi + a~c in normal form. Then the morphism

π : Y ~x→ SpecS~x is the minimal resolution, and its dual graph is precisely (1.E) with β = a+v = a+#{i | ai , 0}.

Proof. We know from 3.17 that π is the minimal resolution, and we know from construction of Y ~x that
all the self-intersection numbers are determined by the continued fraction expansions (§2.4), except the
middle curve Ei corresponding to the special CM module S(~c)~x. The dual graph does not change under
completion. By 4.18 the number of arrows in the reconstruction algebra from the middle vertex to the
vertex ◦ is a. Thus the calculation (2.B) combined with 2.12 shows that a = −Ei ·Zf = β− v. �

4.6. The Reconstruction Algebra and its qgr

Using the above subsections, we next describe the quiver of the reconstruction algebra and determine the
associated qgr category. Consider the dual graph (1.E), then with the convention that we only draw the
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arms that are non-empty, we see from 3.15, (2.B) and ZK ·Ei = E2
i +2 that

((ZK −Zf ) ·Ei)i =

2−v

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

...
...

...
...

. . .

. . .
(4.S)

Note that the cases v = 0 and v = 1 are degenerate, and are already well understood [W3]. Therefore in the
next result, we only consider the case v ≥ 2.

Inspecting the list of special CM S~x-modules in 3.18, the conditions in 2.11 are satisfied, so we consider
the particular choice of reconstruction algebra

Γ~x := EndS~x(M
~x) where M := S ⊕ (

⊕
j∈[1,n],u

S(u~xj ))⊕ S(~c),

and u in the middle direct sum ranges over I(pj ,pj − aj )\{0,pj}. Since the above S~x-modules are clearly
Z-graded, this induces a Z grading on Γ~x.

Corollary 4.20. For ~x ∈ L+ with ~x < [0,~c ], write ~x =
∑n
i=1 ai~xi + a~c in normal form. For each i with ai , 0,

as before mi is defined via
pi

pi−ai = [αi1, . . . ,αimi
], and if ai = 0 set mi = 0. Suppose that v = #{i | ai , 0}

satisfies v ≥ 2. Then the reconstruction algebra Γ~x can be presented as a quiver with relations, where the relations
are homogeneous with respect to the natural grading, and the quiver is the following: we first consider the double
quiver of the dual graph (1.E) and add an extending vertex (denoted ) as follows:

...
...

...
.... . . mnm3m2m1

(4.T)

where by convention if mi = 0 the ith arm does not exist. Further, we add extra arrows subject to the following
rules:

(1) If some αij > 2, add αij − 2 extra arrows from that vertex to the top vertex.

(2) Add further a arrows from the bottom vertex to the top vertex.

Proof. As in [W4, §4], we first work on the completion Πi∈ZHomZ

S~x
(M~x,M~x(i~x)) of Γ~x, where the result fol-

lows by combining 3.19, (2.B), (4.S) and 2.12. The result then follows from the easy fact that if f :
⊕

i≥0Ai →⊕
i≥0Bi is a morphism of graded rings, then f is an isomorphism if and only f̂ : Πi≥0Ai → Πi≥0Bi is an

isomorphism. �
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It is possible to describe the relations of Γ~x in this level of generality, but for notational ease we will
only do this for the 0-Wahl Veronese in §5 below. However, in full generality, we do have the following.

Proposition 4.21. Suppose that ~x =
∑n
i=1 ai~xi + a~c ∈ L+ with ~x < [0,~c ]. Then, with notation as in 4.20,

(Γ~x)0, the degree zero part of the reconstruction algebra Γ~x, is isomorphic to the canonical algebra Λq,µ, where
I := {i ∈ [1,n] | ai , 0}, q := (mi +1)i∈I and µ := (λi)i∈I .

Proof. By 4.10 we can change parameters to assume that the coprime assumption 4.7(4) holds. Thus we
have CMZS~x ' CMLS and hence (Γ~x)0 � EndLS (M). But by [GL1] it is well known that there is a ring
isomorphism EndLS (

⊕
~y∈[0,~c ]S(~y)) � Λp,λ. Thus (Γ~x)0 = eΛp,λe for an idempotent e corresponding to a

subset of [0,~c ] containing 0 and ~c. Clearly eΛp,λe �Λq,µ for q and µ in the statement. �

When ~x ∈ L+ with ~x < [0,~c ], we will next show in 4.22 that qgrZS~x ' qgrZΓ~x, since after combining
with 4.10 this then allows us to realise any weighted projective line as qgrZΓ~x. Since Γ~x is an N-graded
ring, this allows us to interpret any weighted projective line as a ‘noncommutative projective scheme’ over
‘Spec(Γ~x)0’, and thus by 4.21 a noncommutative projective scheme over the canonical algebra.

Proposition 4.22. For ~x ∈ L+ with ~x < [0,~c ], there is an equivalence

qgrZS~x ' qgrZΓ~x,

where Γ~x is a Z-graded k-algebra such that (Γ~x)i is Λq,µ for i = 0 and zero for i < 0.

Proof. Set R := S~x. Let A := Γ~x = EndR(M~x) and let e ∈ A be the idempotent corresponding to the
summand R of M~x. Clearly B := eAe � R. Note that dim

k
(A/〈e〉) < ∞ since by 2.3(3) R is normal, so

addM~x
p = addRp for any non-maximal prime ideal p of R, and hence (A/〈e〉)p = 0. The first statement

then follows from 4.1, and the second statement by 4.21. �

5. The 0-Wahl Veronese

Throughout this section we work with an arbitrary Xp,λ with n ≥ 3, and consider the 0-Wahl Veronese

subring of S = Sp,λ from the introduction, namely S~s, where ~s =
∑n
i=1 ~xi . It is not too hard, but more

notationally complicated, to extend to cover the case ~sa = ~s + a~c, but we shall not do this here. We
investigate the more general S~sa for Dynkin type in §6.

5.1. Presenting the 0-Wahl Veronese

The aim of this subsection is to give a presentation of the 0-Wahl Veronese subring S~s of S by constructing
an isomorphism S~s � Rp,λ. We define elements of S~s as follows:

ui :=


x
p1+p2
1 x

p2
3 . . .x

p2
n i = 1,

x
p1+p2
2 x

p1
3 . . .x

p1
n i = 2,

−xpi1 x
p2+pi
2 x

pi
3 . . . x̂i . . .x

pi
n 3 ≤ i ≤ n,

v := x1x2 . . .xn,

where we write x̂i to mean ‘omit xi ’. Then with respect to the Z-grading S~s =
⊕

i∈ZSi~s, the element v is
homogeneous of degree one, and ui is homogeneous of degree p2 if i = 1, p1 if i = 2 and pi if 3 ≤ i ≤ n.

To construct an isomorphism between Rp,λ and S~s, we first construct a morphism of graded algebras.

Lemma 5.1. The morphism k[u1, . . . ,un,v]→ S~s of graded algebras given by ui 7→ ui for 1 ≤ i ≤ n and v 7→ v
induces a morphism Rp,λ→ S~s of graded algebras.
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Proof. It suffices to show that all 2× 2 minors of the following matrix have determinant zero.(
u2 u3 . . . un vp2

vp1 λ3u3 + vp3 . . . λnun + vpn u1

)
(5.A)

Since S~s is a domain, it suffices to show that all 2× 2 minors containing the last column have determinant
zero. The outer 2× 2 minor has determinant

u1u2 − vp1+p2 = (x1 . . .xn)
p1+p2 − (x1 . . .xn)p1+p2 = 0.

Further for any i ≥ 3, using the relation x
p1
1 = λix

p2
2 − x

pi
i it follows that

u1ui = −x
p1+p2+pi
1 x

p2+pi
2 x

p2+pi
3 . . .x

p2
i . . .x

p2+pi
n

= −(λix
p2
2 − x

pi
i )x

p2+pi
1 x

p2+pi
2 x

p2+pi
3 . . .x

p2
i . . .x

p2+pi
n

= xp21 x
p2
2 . . .x

p2
n (−λix

pi
1 x

p2+pi
2 x

pi
3 . . . x̂i . . .x

pi
n + xpi1 x

pi
2 . . .x

pi
n )

= vp2(λiui + vpi ).

Thus the 2× 2 minor consisting of ith column and the last one has determinant zero. �

The following calculation is elementary.

Proposition 5.2. (1) The k-algebra S~s is generated by v and ui with 1 ≤ i ≤ n.

(2) The k-vector space S~s/vS~s is generated by u`i with 1 ≤ i ≤ n and ` ≥ 0.

Proof. It is enough to prove (2). Let V be the subspace of S~s/vS~s generated by u`i with 1 ≤ i ≤ n and ` ≥ 0.
Take any monomial X := xa11 . . .x

an
n in SN~s with N > 0, then

a1~x1 + . . .+ an~xn =N~x1 + . . .+N~xn.

For each 1 ≤ i ≤ n, there exists `i ∈Z such that ai =N + `ipi . Then
∑n
i=1 `i = 0 holds.

(i) We first show that X belongs to V in the situation when there exists i with 1 ≤ i ≤ n satisfying `i ≤ 0,
`j ≥ 0 and `k = 0 for all k , i, j, where j is defined by j := 2 if i , 2 and j := 1 if i = 2.

If ai , 0, then by the assumptions, all ak ≥ 1 for 1 ≤ k ≤ n, and hence X belongs to vS~s. Thus we can
assume that ai = 0. Then N = −`ipi and aj =N + `jpj = −`i(pi + pj ) hold, and further

X = x
aj
j

∏
k,i,j

xNk = (x
pi+pj
j

∏
k,i,j

x
pi
k )
−`i = ±u−`ii′ ,

where i′ := 2 if i = 1, i′ := 1 if i = 2 and i′ = i if i ≥ 3. Thus the assertion follows.
(ii) We consider the general case. Using induction on `(X) :=

∑
1≤i≤n, `i>0 `i , we show that X belongs to V .

Assume `(X) = 0. Then X = vN holds, and hence X belongs to V .
Assume that there exist 1 ≤ i , j ≤ n such that `i < 0 and `j < 0. Take 1 ≤ k ≤ n such that `k > 0.

Since {xpii ,x
pj
j } is a k-basis of S~c, there is a relation x

pk
k = λ′xpii + λ′′x

pj
j with λ′ ,λ′′ ∈ k, and we have

X = λ′X ′ +λ′′X ′′ for some monomials X ′ ,X ′′ satisfying `(X ′) < `(X) and `(X ′′) < `(X). Since X ′ and X ′′

belong to V , so does X.
In the rest, assume that there exists a unique 1 ≤ i ≤ n satisfying `i < 0. Define j by j := 2 if i , 2 and

j := 1 if i = 2. Using the relation x
pk
k = λ′kx

pi
i +λ′′k x

pj
j with λ′k ,λ

′′
k ∈ k, we have

X = xaii x
aj
j

∏
k,i,j

x
N+`kpk
k = xaii x

aj
j

∏
k,i,j

xNk (λ
′
kx
pi
i +λ′′k x

pj
j )

`k .

This is a linear combination of monomials Y = xbii x
bj
j

∏
k,i,j x

N
k which satisfies the condition in (i). Thus X

belongs to V . �
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The above leads to the following, which is the main result of this subsection.

Theorem 5.3. There is a graded ring isomorphism Rp,λ � S
~s given by ui 7→ ui for 1 ≤ i ≤ n and v 7→ v.

Proof. Combining 5.1 and 5.2, there is a surjective graded ring homomorphism ϑ : Rp,λ � S~s. But now

Rp,λ, being a rational surface singularity, is automatically a domain. Since S~s is two-dimensional, ϑ must
be an isomorphism. �

5.2. Special CM S~s-Modules and the Reconstruction Algebra

The benefit of our Veronese construction of Rp,λ is that it also produces the special CM modules, and we
now describe them explicitly as 2-generated ideals. We first do this in the notation of S , then translate into
the coordinates u1, . . . ,un,v.

Proposition 5.4. The following are, up to degree shift, precisely the indecomposable non-free objects in SCMZS~s.
Moreover, they have the following generators and degrees:

Module Generators Degree of generators

S(q~x1)~s x
p2
2 (x2x3 . . .xn)p1−q and x

q
1 p1 − q and 0

S(q~x2)~s x
p1
1 (x1x3 . . .xn)p2−q and x

q
2 p2 − q and 0

S(q~xi)~s x
p2
2 (x1 . . . x̂i . . .xn)pi−q and x

q
i pi − q and 0

S(~c)~s x
p1
1 and x

p2
2 0 and 0

where in row one q ∈ [1,p1 − 1], in row two q ∈ [1,p2 − 1], and in row three i ∈ [3,n], q ∈ [1,pi − 1].

Proof. The first statement is 4.15(1). We only prove the assertions for S(q~x1)~s since all other cases are
similar. Let M be the submodule of S(q~x1)~s generated by g1 := xq1 and g2 := xp1+p2−q2 x

p1−q
3 . . .x

p1−q
n . To

prove M = S(q~x1)~s, it suffices to show that any monomial X = xa11 . . .x
an
n ∈ S(q~x1)~s of degree N ≥ 0 has

either g1 or g2 as a factor. Since

a1~x1 + . . .+ an~xn = (N + q)~x1 +N~x2 + . . .+N~xn.

holds, there exists `i ∈Z for each 1 ≤ i ≤ n such that a1 = N + q + `1p1 and ai = N + `ipi for i ≥ 2. Then∑n
i=1 `i = 0 holds.

(i) If a1 ≥ q, then X belongs to M since X has g1 = x
q
1 as a factor.

(ii) We show that X belongs to M if `3 = . . . = `n = 0. By (i), we can assume that a1 < q and hence `1 < 0.
Then N = a1 − q − `1p1 ≥ p1 − q holds. Since `2 = −`1 > 0, we have a2 = N + `2p2 ≥ p1 + p2 − q, which
implies that X = xa11 x

a2
2 x

N
3 . . .x

N
n has g2 = x

p1+p2−q
2 x

p1−q
3 . . .x

p1−q
n as a factor.

(iii) We show that X belongs to M if all `3, . . . , `n are non-positive. By (i), we can assume that a1 < q and
hence `1 < 0. Using `2 = −

∑
i,2 `i and the relation x

p2
2 = λ′ix

p1
1 +λ′′i x

pi
i , it follows that

X = xa11 x
N−

∑
i,2 `ip2

2 xa33 . . .x
an
n = xa11 x

N−`1p2
2

∏
i≥3

xaii (λ
′
ix
p1
1 +λ′′i x

pi
i )
−`i .

Since a1 + p1 > q, this is a linear combination of monomials which have g1 = x
q
1 as a factor and of a

monomial xa11 x
N−`1p2
2

∏
i≥3 x

ai−`ipi
i = xa11 x

N−`1p2
2 xN3 . . .x

N
n satisfying (ii). Thus X belongs to M .

(iv) We show that X belongs to M in general. Let `+i = max{`i ,0} and `−i = min{`i ,0}, then `i = `
+
i + `

−
i .

Further, using the relation x
pi
i = −xp11 +λix

p2
2 ,

X = xa11 x
a2
2

∏
i≥3

x
N+`ipi
i = −xa11 x

a2
2

∏
i≥3

x
N+`−i pi
i (−xp11 +λix

p2
2 )`

+
i .

This is a linear combination of monomials satisfying (iii), so X belongs to M . �
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Using 5.2 we now translate the modules in 5.4 into ideals.

Proposition 5.5. With notation in 5.3, up to degree shift, the non-free indecomposable objects in SCMZS~s are
precisely the following ideals of S~s, and furthermore across the bijection in 2.9 they correspond to the dual graph
of the minimal resolution of SpecS~s (1.F) in the following way:

(vp2 ,u1)

(vp2+1,u1)

(vp2+2,u1)

(vp2+p1−2,u1)

(vp2+p1−1,u1)

(u1,vp2−1)

(u1,vp2−2)

(u1,v2)

(u1,v)

(u3,vp3−1)

(u3,vp3−2)

(u3,v2)

(u3,v)

(un,vpn−1)

(un,vpn−2)

(un,v2)

(un,v)

...
...

...
.... . .

Proof. We first claim that S(~x1)~s � (vp1+p2−1,u1). Indeed, since S is an L-domain by 2.2, multiplication
by any homogeneous element S → S is injective. Thus, multiplying by x2 . . .xn, we see that S(~x1)~s is
isomorphic to the S~s-submodule of S generated by x

p1+p2
2 x

p1
3 . . .x

p1
n and x1 . . .xn, that is generated by u2

and v. But then

u1(u2,v) = (u1u2,u1v)
5.3
� (vp1+p2 ,u1v) = (vp1+p2−1,u1)v,

which shows that S(~x1)~s � (vp1+p2−1,u1). The other cases are similar. The statement regarding the bijection
is a special case of 3.19. �

Proposition 5.6. The reconstruction algebra Γ~s is given by the following quiver, where the arrows correspond to
the following morphisms.

(vp2 ,u1)

(vp2+1,u1)

(vp2+p1−2,u1)

(vp2+p1−1,u1)

(u1,vp2−1)

(u1,v2)

(u1,v)

(u3,vp3−1)

(u3,v2)

(u3,v)

(un,vpn−1)

(un,v2)

(un,v)

...
...

...
...

. . .

R

inc v vp2+1
u3

vp2+1
un

inc v v v

u1 v v v

v
inc

u3
vp2

un
vp2

v inc inc inc

v
u1 inc

inc

inc

Proof. Under the isomorphisms in 5.3 and 5.5, the morphisms induced by the canonical algebra become

(vp2 ,u1)

(vp2+1,u1)

(vp2+2,u1)

(vp2+p1−2,u1)

(vp2+p1−1,u1)

(u1,vp2−1)

(u1,vp2−2)

(u1,v2)

(u1,v)

(u3,vp3−1)

(u3,vp3−2)

(u3,v2)

(u3,v)

(un,vpn−1)

(un,vpn−2)

(un,v2)

(un,v)

...
...

...
.... . .

R

inc v vp2+1
u3 vp2+1

un

inc v v v

inc v v v

u1 v v v

(5.B)
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From here, exactly as in the proof of 4.20, we can work on the completion. We know the quiver of
the reconstruction algebra from (4.T), and we know that for every special CM module X, we must be
able to hit the generators of X by composing arrows starting at the vertex R and ending at the vertex
corresponding to X, without producing any cycles. Since the arrows in (5.B) are already forced to be arrows
in the reconstruction algebra, it remains to choose a basis for the remaining red arrows. For example,
the generator vp2+1 in (vp2+1,u1) must come from a composition of arrows R to (vp2 ,u1), followed by the
bottom left arrow. Since we can see vp2 as a composition of maps from R to (vp2 ,u1), this forces the bottom
left red arrow to be v. The remaining arrows are similar. �

Theorem 5.7. The reconstruction algebra Γ~s is isomorphic to the path algebra of the double of the quiver Qp,

denoted Qp, subject to relations given by

(1) The canonical algebra relations on the black arrows

(2) At every vertex, all 2-cycles that exist at that vertex are equal.

Proof. This is very similar to [W4, 4.11]. Set Q := Qp,λ (as in (4.T)), and denote the set of relations in
the statement by S ′ . Exactly as in the proof of 4.20, we can work in the completed case (where we can
use [BIRS, 3.4]) and we prove that the completion of reconstruction algebra is given as the completion of
kQ (denoted kQ̂) modulo the closure of the ideal 〈S ′〉 (denoted 〈S ′〉). The non-completed version of the
theorem then follows.

By 5.6 there is a natural surjection γ : kQ̂ → Γ̂ with S ′ ⊆ I := Kerγ. Denote the radical of kQ̂ by
J and further let V denote the set of vertices of Q. Below we show that the elements of S ′ are linearly
independent in I/(IJ + JI), hence we may extend S ′ to a basis S of I/(IJ + JI). Since S is a basis, by [BIRS,
3.4(a)] I = 〈S〉, so it remains to show that S = S ′ . But by [BIRS, 3.4(b)]

#(eakQ̂eb)∩S = dimExt2
Γ̂
(Sa,Sb)

for all a,b ∈ V , where Sa is the simple module corresponding to vertex a. From 4.20 (i.e. [W2]), this is equal
to some number given by intersection theory. Simply inspecting our set S ′ and comparing to the numbers
in 4.20, we see that

#(eakQ̂eb)∩S = #(eakQ̂eb)∩S ′

for all a,b ∈ V , proving that the number of elements in S and S ′ are the same. Hence S ′ = S and so
I = 〈S ′〉, as required.

Thus it suffices to show that the elements of S ′ are linearly independent in I/(IJ + JI). This is identical
to the proof of [W4, 4.12], so we omit the details. �

Whilst thinking of the special CM modules as ideals makes everything much more explicit, doing this
forgets the grading. Indeed, the reconstruction algebra Γ~s has a natural grading induced from the Veronese
construction.

Proposition 5.8. The reconstruction algebra Γ~s is generated in degree one over its degree zero piece, which is the
canonical algebra Λp,λ.

Proof. It is clear that all the black arrows in the quiver in 5.6 have degree zero. It is easy to see that any
red arrow in the reverse direction to an arrow labelled xi has label x1 . . . x̂i . . .xn, and it is easy to check
that these all have degree one, using 5.4. Hence the degree zero piece is the canonical algebra, and as an
algebra Γ~s is generated in degree one over its degree zero piece. �

Note that for a > 0, the reconstruction algebra Γ~sa is not always generated in degree one over its degree
zero piece.
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6. Domestic Case

In this section we investigate the domestic case, that is when the dual graph is an ADE Dynkin diagram,
and relate Ringel’s work on the representation theory of the canonical algebra to the classification of the
special CM modules for quotient singularities in [IW]. This will explain the motivating coincidence from
the introduction. Since this involves AR theory, typically in this section rings will be complete.

Throughout this section we consider X = Xp,λ and S = Sp,λ with n = 3 and one of the triples
(p1,p2,p3) = (2,3,3), (2,3,4) or (2,3,5). For m ≥ 3, we consider ~sm−3 = ~s + (m − 3)~c with ~s =

∑3
i=1 ~xi ,

the (m−3)-Wahl Veronese subring R = S~sm−3 , and its completion R. Recall that here ~ω = ~c−~s, since n = 3.

Proposition 6.1. In the above setting, SpecR has the following dual graph:

...
...

...

−m

−2

−2

−2

−2

−2

−2

−2

−2

−2

−2

−2

−2

p3−1p2−1p1−1
(6.A)

Moreover R is isomorphic to a quotient singularity k[[x,y]]G in the following list:

(p1,p2,p3) Dual Graph G

(2,3,3)
−2 −2 −m

−2

−2 −2
T6(m−2)+1

(2,3,4)
−2 −2 −m

−2

−2 −2 −2
O12(m−2)+1

(2,3,5)
−2 −2 −m

−2

−2 −2 −2 −2
I30(m−2)+1

For the precise definition of the above subgroups of GL(2,k) we refer the reader to [IW].

Proof. By 4.19, the dual graph of R is known to be (1.F). On the other hand, the quotient singularity
k[[x,y]]G has the same dual graph [R1, §3]. Since the dual graphs (1.F) for ADE triples are known to be
taut [B3, Korollar 2.12], the result follows. �

Let us finally explain why Ringel’s picture (1.A) in the introduction is the same as the ones found in [IW]
and [W2, §4]. For example, in the family of groups O12(m−2)+1 with m ≥ 3 in 6.1, by [AR] the AR quiver of

R � k[[x,y]]O12(m−2)+1 is
R R

. . .
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where there are precisely 12(m − 2) + 1 repetitions of the original Ẽ7 shown in dotted lines. The left and
right hand sides of the picture are identified, and there is no twist in this AR quiver. Thus as m increases
(and the group O12(m−2)+1 changes), the AR quiver becomes longer.

Regardless of m ≥ 3, by [IW, 8.2] the special CM R-modules always have the following position in the
AR quiver:

R

. . .

In particular, comparing this to (1.A), we observe the following coincidences.

(1) The AR quiver of CMR is the quotient of the AR quiver of vectX by τ12(m−2)+1 = ((12(m−2)+1)~ω).

(2) The canonical tilting bundle E on X is given by the circled vertices in (1.A), and so under the
identification in (1), this gives the additive generator of SCMR.

The same coincidence can also be observed for type T and I by replacing 12 by 6 and 30 respectively. To
give a theoretical explanation to these observations, we need the following preparation.

Lemma 6.2. Define h as follows

Type h

T 6
O 12
I 30

Then (h+1)~ω = −~s and (h(m− 2) + 1)~ω = −~sm−3.

Proof. If (p1,p2,p3) = (2,3,3), then 6~ω = (6 − 3 − 2 − 2)~c = −~c and so 7~ω = −~s. Similarly, in the case
(p1,p2,p3) = (2,3,4) then 12~ω = (12−6−4−3)~c = −~c, thus 13~ω = −~s. Lastly, if (p1,p2,p3) = (2,3,5) then
30~ω = (30− 15− 10− 6)~c = −~c, hence 31~ω = −~s.

Therefore (h(m− 2) + 1)~ω = −(m− 2)~s − (m− 3)~ω = −~s − (m− 3)~c = −~sm−3. �

Let C be an additive category with an action by a cyclic group G = 〈g〉 � Z. Assume that, for any
X,Y ∈ C, HomC(X,g iY ) = 0 holds for i� 0. The complete orbit category C/G has the same object as C and
the morphism sets are given by

HomC/G(X,Y ) :=
∏
i∈Z

HomC(X,g
iY )

for X,Y ∈ C, where the composition is defined in the obvious way.

Theorem 6.3. Let R be the (m − 3)-Wahl Veronese subring associated with (p1,p2,p3) = (2,3,3), (2,3,4) or
(2,3,5) and m ≥ 3, and R its completion. Let G ≤ L be the infinite cyclic group generated by the element
−~sm−3 = (h(m− 2) + 1)~ω. Then

(1) There are equivalences vectX ' CMZR and

F : (vectX)/G
∼−→ CMR.

(2) For the canonical tilting bundle E on X, we have SCMR = addFE .
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Proof. Since (h(m − 2) + 1)~ω = −~sm−3 is a non-zero element in −L+, for any X,Y ∈ vectX, necessarily
Hom

X
(X,Y (i(h(m − 2) + 1)~ω)) = 0 holds for i � 0. Therefore the complete orbit category (vectX)/G is

well-defined.
(1) There are equivalences vectX ' CMLS ' CMZR, where the first equivalence is standard [GL1], and the
second is 4.7. Furthermore, the following diagram commutes.

vectX CMZR

vectX CMZR

(~sm−3) (1)

Since R has only finitely many indecomposable CM modules (see e.g. [Y, 15.14]), there is an equivalence
(CMZR)/Z ' CMR. Therefore (vectX)/G ' (CMZR)/Z ' CMR.
(2) This follows by the equivalences in (1), the definition of E , and 3.18. �

As one final observation, recall that for a canonical algebra Λ = Λp,λ, the preprojective algebra of Λ is
defined by

Π :=
⊕
i≥0

Πi , Πi := HomDb(modΛ)(Λ, τ
−iΛ),

where τ is the Auslander-Reiten translation in the derived category Db(modΛ). Moreover, for a positive
integer t, we denote the t-th Veronese subring of Π by

Π(t) :=
⊕
i≥0

Πti .

As notation we write Γm for the reconstruction algebra of R above, which corresponds to one of the types
T , O or I in 6.1.

The following is an analogue of 4.21, but also describes the other graded pieces.

Proposition 6.4. There is an isomorphism of Z-graded algebras

Π(h(m−2)+1) � Γm.

Proof. By 6.2 we know that (h(m−2)+1)~ω = −~sm−3. Setting M =
⊕

~y∈[0,~c ]S(~y), then Π
(h(m−2)+1)
i for i ≥ 0

is given by

HomDb(modΛ)(Λ, τ
−(h(m−2)+1)iΛ) �HomL

S (M,M(−i(h(m− 2) + 1)~ω))

�HomL

S (M,M(i~sm−3))

� (Γm)i .

Thus all the graded pieces match. It is easy to see that the isomorphisms are natural, and so give an
isomorphism of graded rings. �

Remark 6.5. By 6.4, it follows that in fact on the abelian level

qgrZΓm ' qgrZΠ(h(m−2)+1)

and so, combining 4.7 and 4.22,
cohX ' qgrZΠ(h(m−2)+1)

for any m ≥ 3. This is a stronger version of results of [GL1] and Minamoto [M], which combine to say that
for the weighted projective lines of non-tubular type there are derived equivalences

Db(cohX) 'Db(modΛ) 'Db(qgrZΠ).
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