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Hyperelliptic classes are rigid and extremal in genus two

Vance Blankers

Abstract. We show that the class of the locus of hyperelliptic curves with ` marked Weier-
strass points, m marked conjugate pairs of points, and n free marked points is rigid and
extremal in the cone of effective codimension-(`+m) classes on M2,`+2m+n. This gener-
alizes work of Chen and Tarasca and establishes an infinite family of rigid and extremal
classes in arbitrarily-high codimension.
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Les classes hyperelliptiques sont rigides et extrémales en genre 2

Résumé. Nous montrons que la classe du lieu des courbes hyperelliptiques avec ` points de
Weierstrass marqués, m paires de points conjugués marqués et n points marqués libres est
rigide et extrémale dans le cône des classes effectives de codimension `+m deM2,`+2m+n.
Ceci généralise le travail de Chen et Tarasca et construit une famille infinie de classes
rigides et extrémales en codimension arbitrairement grande.
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Introduction

Every smooth curve of genus two admits a unique degree-two hyperelliptic map to P
1. The

Riemann-Hurwitz formula forces such a map to have six ramification points called Weierstrass
points; each non-Weierstrass point p exists as part of a conjugate pair (p,p ′) such that the images of
p and p ′ agree under the hyperelliptic map.

The locus of curves of genus two with ` marked Weierstrass points is codimension ` inside the
moduli spaceM2,`, and in [CT16] it is shown that the class of the closure of this locus is rigid and
extremal in the cone of effective classes of codimension `. Our main theorem extends their result to
H2,`,2m,n ⊆M2,`+2m+n, the locus of genus-two curves with ` marked Weierstrass points, m marked
conjugate pairs, and n free marked points (see Definition 2.1).

Main Theorem. For `,m,n ≥ 0, the class H2,`,2m,n, if non-empty, is rigid and extremal in the cone of
effective classes of codimension `+m inM2,`+2m+n.

In [CC15], the authors show that the effective cone of codimension-two classes of M2,n has in-
finitely many extremal cycles for every n. Here we pursue a perpendicular conclusion: although in
genus two ` ≤ 6, the number of conjugate pairs and number of free marked points are unbounded,
so that the classes H2,`,2m,n form an infinite family of rigid and extremal cycles in arbitrarily-high
codimension. Moreover, the induction technique used to prove the main result is genus-agnostic,
pointing towards a natural extension of the main theorem to higher genus given a small handful of
low-codimension cases.

When `+m ≥ 3, our induction argument (Theorem 2.4) is a generalization of that used in [CT16,
Theorem 4] to include conjugate pairs and free points; it relies on pushing forward an effective
decomposition of one hyperelliptic class onto other hyperelliptic classes and showing that the only
term of the decomposition to survive all pushforwards is the original class itself. This process
is straightforward when there are at least three codimension-one conditions available to forget;
however, when `+m = 2, and in particular when ` = 2 and m = 0, more care must be taken. The
technique used in [CT16, Theorem 5] to overcome this problematic subcase relies on an explicit
expression for

[
H2,2,0,0

]
which becomes cumbersome when a non-zero number of free marked

points are allowed. Although adding free marked points can be described via pullback, pullback
does not preserve rigidity and extremality in general, so we introduce an intersection-theoretic
calculation using tautological ω-classes to handle this case instead.

The base case of the induction (Theorem 2.2) is shown via a criterion (Lemma 1.4) given by
[CC14] for rigidity and extremality for divisors; it amounts to an additional pair of intersection
calculations. We utilize the theory of moduli spaces of admissible covers to construct a suitable
curve class for the latter intersection, a technique which generalizes that used in [Rul01] for the
class of H2,1,0,0.
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Structure of the paper.

We begin in §1 with some background on Mg,n and cones of effective cycles. This section also
contains the important Lemma 1.4 upon which Theorem 2.2 depends. In §2, we prove Theorem
2.2, which establishes the base case for the induction argument of our main result, Theorem 2.4.
Finally, we conclude in §3 with a discussion of extending these techniques for g ≥ 3 and possible
connections to a CohFT-like structure.

Acknowledgments.

The author wishes to thank Nicola Tarasca, who was kind enough to review an early version of
the proof of the main theorem and offer his advice. The author is also greatly indebted to Renzo
Cavalieri for his direction and support.

1. Preliminaries onMg,n and effective cycles

Moduli spaces of curves, hyperelliptic curves, and admissible covers.

We work throughout inMg,n, the moduli space of isomorphism classes of stable genus g curves
with n (ordered) marked points. If 2g− 2+n > 0 this space is a smooth Deligne-Mumford stack of
dimension 3g−3+n. We denote points ofMg,n by [C;p1, . . . ,pn] with p1, . . . ,pn ∈ C smooth marked
points. For fixed g, we may vary n to obtain a family of moduli spaces related by forgetful morphisms:
for each 1 ≤ i ≤ n, the map πpi :Mg,n →Mg,n−1 forgets the ith marked point and stabilizes the
curve if necessary. The maps ρpi : Mg,n → Mg,{pi} are the rememberful morphisms which are the
composition of all possible forgetful morphisms other than πpi .

Due to the complexity of the full Chow ring of Mg,n, the tautological ring R∗(Mg,n) is often
considered instead [FP05] (for both rings we assume rational coefficients). Among other classes,
this ring contains the classes of the boundary strata, as well as all ψ- and λ-classes. For 1 ≤ i ≤ n the
class ψpi is defined to be the first Chern class of the line bundle onMg,n whose fiber over a given
isomorphism class of curves is the cotangent line bundle at the ith marked point of the curve; λ1
is the first Chern class of the Hodge bundle. The tautological ring also includes pullbacks of all
ψ- and λ-classes, including the ω-classes, sometimes called stable ψ-classes. The class ωpi is defined
onMg,n for g,n ≥ 1 as the pullback of ψpi along ρpi . Several other notable cycles are known to be
tautological, including the hyperelliptic classes considered below ([FP05]).

Hyperelliptic curves are those which admit a degree-two map to P
1. The Riemann-Hurwitz for-

mula implies that a hyperelliptic curve of genus g contains 2g+ 2 Weierstrass points which ramify
over the branch locus in P

1. For a fixed genus, specifying the branch locus allows one to recover
the complex structure of the hyperelliptic curve and hence the hyperelliptic map. Thus for g ≥ 2,
the codimension of the locus of hyperelliptic curves inMg,n is g− 2. In this context, requiring that
a marked point be Weierstrass (resp. two marked points be a conjugate pair) is a codimension-one
condition for genus at least two.

We briefly use the theory of moduli spaces of admissible covers to construct a curve in M2,n in
Theorem 2.2. These spaces are particularly nice compactifications of Hurwitz schemes. For a
thorough introduction, the standard references are [HM82] and [ACV01]. For a more hands-on
approach in the same vein as our usage, see as well [Cav06].
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Figure 1. On the left-hand side, the topological pictures of the general elements of W2,P

(top) and γ1,P (bottom) in M2,5 with P = {p1,p2,p3}. On the right-hand side, the corre-
sponding dual graphs.

Notation.

We use the following notation for boundary strata on Mg,n; all cycles classes are given as stack
fundamental classes. For g ≥ 1, the divisor class of the closure of the locus of irreducible nodal
curves is denoted by δirr. By δh,P we mean the class of the divisor whose general element has one
component of genus h attached to another component of genus g− h, with marked points P on
the genus h component and marked points {p1, . . . ,pn}\P on the other. By convention δh,P = 0 for
unstable choices of h and P.

Restrict now to the case of g = 2. We use W2,P to denote the codimension-two class of the
stratum whose general element agrees with that of δ2,P, with the additional requirement that the
node be a Weierstrass point. We denote by γ1,P the class of the closure of the locus of curves whose
general element has a genus-one component containing the marked points P meeting in two points
conjugate under a hyperelliptic map a rational component with marked points {p1, . . . ,pn}\P (see
Figure 1).

The space Adm
2

2−→0,t1,...,t6,u1±,...,un±
is the moduli space of degree-two admissible covers of genus

two with marked ramification points (Weierstrass points) ti and marked pairs of points (conjugate
pairs) uj+ and uj−. This space comes with a finite map c to M0,{t1,...,t6,u1,...,un}

which forgets the
cover and remembers only the base curve and its marked points, which are the images of the
markings on the source. It comes also with a degree 2n map s to M2,1+n which forgets the base
curve and all uj+ and ti other than t1 and remembers the (stabilization of the) cover.

ω-class lemmas.

The following two lemmas concerning basic properties of ω-classes prove useful in the last
subcase of Theorem 2.4. The first is a unique feature of these classes, and the second is the ω-class
version of the dilaton equation.
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Figure 2. An admissible cover in Adm
2

2−→0,t1,...,t6,u1±
represented via dual graphs. In de-

gree two the topological type of the cover is uniquely recoverable from the dual graph
presentation.

Lemma 1.1. Let g ≥ 1, n ≥ 2, and P ⊂ {p1, . . . ,pn} such that |P| ≤ n− 2. Then for any pi,pj < P

ωpi · δg,P =ωpj · δg,P

onMg,n.

Proof. This follows immediately from Lemma 1.9 in [BC18]. �

Lemma 1.2. Let g,n ≥ 2. Then onMg,n,

πpi∗ωpj = 2g− 2

if i= j, and 0 otherwise.

Proof. Let P = {p1, . . . ,pn}. When i = j, the pushforward reduces to the usual dilaton equation for
ψpi onMg,{pi}. If π is the morphism which forgets all marked points, the diagram

Mg,n Mg,P\{pi}

Mg,{pi} Mg

ρpi

πpi

π

πpi

commutes, so πpi∗ωpi = πpi∗ρ
∗
pi
ψpi = π

∗πpi∗ψpi = (2g− 2)1.
If i , j, then πpi∗ωpj = πpi∗π

∗
pi
ωpj = 0. �

Cones and properties of effective classes.

For a projective variety X, the sum of two effective codimension-d classes is again effective, as
is any Q+-multiple of the same. This gives a natural convex cone structure on the set of effective
classes of codimension d inside the Q vector space of all codimension-d classes, called the effective
cone of codimension-d classes and denoted Effd(X). Given an effective class E in the Chow ring of X,
an effective decomposition of E is an equality

E=

m∑
s=1

asEs

with as > 0 and Es irreducible effective cycles on X for all s. The main properties we are interested
in for classes in the pseudo-effective cone are rigidity and extremality.
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Definition 1.3. Let E ∈ Effd(X).
E is rigid if any effective cycle with class rE is supported on the support of E.
E is extremal if, for any effective decomposition of E, all Es are proportional to E.

When d = 1, elements of the cone correspond to divisor classes, and the study of Eff1(Mg,n) is
fundamental in the theory of the birational geometry of these moduli spaces. For example, M0,n

is known to fail to be a Mori dream space for n ≥ 10 (first for n ≥ 134 in [CT15], then for n ≥ 13 in
[GK16], and the most recent bound in [HKL18]). For n ≥ 3 in genus one, [CC14] show thatM1,n is
not a Mori dream space; the same statement is true forM2,n by [Mul17]. In these and select other
cases, the pseudo-effective cone of divisors has been shown to have infinitely many extremal cycles
and thus is not rational polyhedral ([CC15]).

These results are possible due in large part to the following lemma, which plays an important
role in Theorem 2.2. Here a moving curve C in D is an irreducible effective curve C, the deformations
of which cover a Zariski-dense subset of D.

Lemma 1.4 ([CC14, Lemma 4.1]). Let D be an irreducible effective divisor in a projective variety X, and

suppose that C is a moving curve in D satisfying
∫
X
[D] · [C]< 0. Then [D] is rigid and extremal. �

Remark 1.5. Using Lemma 1.4 to show a divisor D is rigid and extremal in fact shows more: if the
lemma is satisfied, the boundary of the pseudo-effective cone is polyhedral at D. We do not rely
on this fact, but see [Opi16, §6] for further discussion.

Lemma 1.4 allows us to change a question about the pseudo-effective cone into one of intersec-
tion theory and provides a powerful tool in the study of divisor classes. Unfortunately, it fails to
generalize to higher-codimension classes, where entirely different techniques are needed. Conse-
quently, much less is known about Effd(Mg,n) for d ≥ 2. This paper is in part inspired by [CT16],
where the authors show that certain hyperelliptic classes of higher codimension are rigid and ex-
tremal in genus two. In [CC15], the authors develop additional extremality criteria to show that
in codimension-two there are infinitely many extremal cycles inM1,n for all n ≥ 5 and inM2,n for
all n ≥ 2, as well as showing that two additional hyperelliptic classes of higher genus are extremal.
These criteria cannot be used directly for the hyperelliptic classes we consider; this is illustrative
of the difficulty of proving rigidity and extremality results for classes of codimension greater than
one.

2. Main theorem

In this section we prove our main result, which culminates in Theorem 2.4. The proof proceeds
via induction, with the base cases given in Theorem 2.2. We begin by defining hyperelliptic classes
onMg,n.

Definition 2.1. Fix integers `,m,n ≥ 0. Denote by Hg,`,2m,n the closure of the locus of hyper-
elliptic curves in Mg,`+2m+n with marked Weierstrass points w1, . . . ,w`; pairs of marked points
+1,−1, . . . ,+m,−m with +j and −j conjugate under the hyperelliptic map; and free marked points
p1, . . . ,pn with no additional constraints. By hyperelliptic class, we mean a non-empty class equiva-
lent to some

[
Hg,`,2m,n

]
in the Chow ring ofMg,`+2m+n.

Lemma 1.4 allows us to establish the rigidity and extremality of the two divisor hyperelliptic
classes for genus two, which together provide the base case for Theorem 2.4.

Theorem 2.2. For n ≥ 0, the class of H2,0,2,n is rigid and extremal in Eff1(M2,2+n) and the class of H2,1,0,n
is rigid and extremal in Eff1(M2,1+n).
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w1 w2

p1

p2 p3

Figure 3. The general element of H2,2,0,3.

Proof. Define a moving curve C inH2,0,2,n by fixing a general genus-two curve Cwith n free marked
points p1, . . . ,pn and varying the conjugate pair (+,−).

Since
[
H2,0,2,n

]
= π∗pn · · ·π

∗
p1

[
H2,0,2,0

]
, by the projection formula and the identity (see [Log03])[

H2,0,2,0
]
=−λ+ψ++ψ−− 3δ2,∅− δ1,∅,

we compute ∫
M2,2+n

[
H2,0,2,n

]
· [C] =

∫
M2,2

[
H2,0,2,0

]
·πp1∗ · · ·πpn∗[C]

= 0+(4− 2+ 6)+ (4− 2+ 6)− 3(6)− 0

=−2.

In particular, intersecting with λ is 0 by projection formula. Intersecting with either ψ-class can
be seen as follows: pullback ψi from M2,1 to ψi − δ2,∅, then use projection formula on ψi back to
M2,1. This is just 2g− 2, since ψi is the first Chern class of the cotangent bundle of C over i. The
intersection with δ2,∅ corresponds to the 2g+ 2 Weierstrass points. Finally, δ1,∅ intersects trivially,
since by fixing C we have only allowed rational tail degenerations. As H2,0,2,n is irreducible, it is
rigid and extremal by Lemma 1.4.

We next apply Lemma 1.4 by constructing a moving curve B which intersects negatively with
H2,1,0,n using the following diagram. Note that the image of s is precisely H2,1,0,n ⊂M2,1+n.

Adm
2

2−→0,t1,...,t6,u1±,...,un±
M2,1+n

M0,{t1,...,t6,u1,...,un}

M0,{t1,...,t5,u1,...,un}

c

s

πt6

Fix a generic point [xn] in M0,{t1,...,t5,u1,...,un}
corresponding to a smooth marked curve and the

point [bn] inM0,{t1,...,t5,u1,...,un}
corresponding to a chain of P1s with n+3 components and marked

points as shown in Figure 4 (if n= 0, t4 and t5 are on the final component; if n= 1, t5 and u1 are on
the final component; etc.), and define [Xn] = s∗c∗π∗t6 [xn] and [Bn] = s∗c∗π∗t6 [bn] (with an additional
relabeling of t1 to w1 and uj− to pj). Now Xn is a moving curve in H2,1,0,n, and the deformations
of Xn are parametrized byM0,{t1,...,t5,u1,...,un}

.
Because the image of s is H2,1,0,n, the intersection

[
H2,1,0,n

]
· [Xn] is not transverse, so we correct

with minus the Euler class of the normal bundle of H2,1,0,n in M2,1+n restricted to Xn. Further, as
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t1

t2

t3 t4 un−3 un−2 un−1

un

Figure 4. The point [bn] inM0,{t1,...,t5,u1,...,un}
.

all points inM0,{t1,...,t5,u1,...,un}
are equivalent, we may replace [Xn] with [Bn] in the intersection. In

other words,

∫
M2,1+n

[
H2,1,0,n

]
· [Xn] =

∫
M2,1+n

−π∗pn · · ·π
∗
p1
ψw1
· [Xn]

=

∫
M2,1+n

−π∗pn · · ·π
∗
p1
ψw1
· [Bn]

=

∫
M2,1

−ψw1
· [B0].

By passing to the space of admissible covers (see, for example, [Rul01]), this integral is seen to be a
positive multiple (a power of two) of

∫
M1,2

−ψw1
·
[
H1,2,0,0

]
=

∫
M1,2

−ψw1
· (3ψw1

)

= −
1

8
,

where we have used the fact that
[
H1,2,0,0

]
= 3ψw1

[Cav16]. Therefore, by Lemma 1.4, H2,1,0,n is
rigid and extremal. �

This establishes the base case for the inductive hypothesis in Theorem 2.4. The induction proce-
dure differs fundamentally for the codimension-two classes, so we first prove the following short
lemma to simplify the most complicated of those.

Lemma 2.3. The class W2,{p1,...,pn} is not proportional to
[
H2,2,0,n

]
onM2,2+n.

Proof. Let P = {p1, . . . ,pn}. Note that in W2,P the marked points w1 and w2 carry no special re-
strictions, and the class is of codimension two. Because the point w1 is on a three-pointed rational
component of the general element of W2,P,

∫
M2,2+n

W2,P ·ψn+3w1
=

∫
M0,3

ψn+3w1
= 0.

However, using the equality

[
H2,2,0,0

]
= 6ψw1

ψw2
−
3

2
(ψ2w1

+ψ2w2
)− (ψw1

+ψw2
)
(
21

10
δ1,{w1}

+
3

5
δ1,∅+

1

20
δirr

)
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established in [CT16, Equation 4] and Faber’s Maple program [Fab], we compute∫
M2,2+n

[
H2,2,0,n

]
·ψn+3w1

=

∫
M2,2+n

π∗p1 · · ·π
∗
pn

[
H2,2,0,0

]
·ψn+3w1

=

∫
M2,2

[
H2,2,0,0

]
·πp1∗ · · ·πpn∗ψ

n+3
w1

=

∫
M2,2

6ψw1
ψw2

−
3

2
(ψ2w1

+ψ2w2
)

− (ψw1
+ψw2

)
(
21

10
δ1,{w1}

+
3

5
δ1,∅+

1

20
δirr

) ·ψ3w1

=
1

384
,

so W2,P is not a non-zero multiple of
[
H2,2,0,n

]
. �

We are now ready to prove our main result. The bulk of the effort is in establishing extremality,
though the induction process does require rigidity at every step as well. Although we do not
include it until the end, the reader is free to interpret the rigidity argument as being applied at
each step of the induction.

The overall strategy of the extremality portion of the proof is as follows. Suppose
[
H2,`,2m,n

]
is

given an effective decomposition. We show (first for the classes of codimension at least three, then
for those of codimension two) that any terms of this decomposition which survive pushforward by
πwi

or π+j
must be proportional to the hyperelliptic class itself. Therefore we may write

[
H2,`,2m,n

]
as an effective decomposition using only classes which vanish under pushforward by the forgetful
morphisms; this is a contradiction, since the hyperelliptic class itself survives pushforward.

Theorem 2.4. For `,m,n ≥ 0, the classH2,`,2m,n, if non-empty, is rigid and extremal in Eff`+m(M2,`+2m+n).

Proof. We induct on codimension; assume the claim holds when the class is codimension `+m−1.
Theorem 2.2 is the base case, so we may further assume `+m ≥ 2. Now, suppose that[

H2,`,2m,n
]
=

∑
s

as [Xs] +
∑
t

bt [Yt](2.1)

is an effective decomposition with [Xs] and [Yt] irreducible codimension-(`+m) effective cycles on
M2,`+2m+n, with [Xs] surviving pushforward by some πwi

or π+j
and [Yt] vanishing under all such

pushforwards, for each s and t.
Fix an [Xs] appearing in the right-hand side of (2.1). If ` , 0, suppose without loss of generality

(on the wi) that πw1∗ [Xs] , 0. Since

πw1∗
[
H2,`,2m,n

]
= (6−(`− 1))

[
H2,`−1,2m,n

]
is rigid and extremal by hypothesis, πw1∗ [Xs] is a positive multiple of the class of H2,`−1,2m,n and
Xs ⊆ (πw1

)−1H2,`−1,2m,n. By the commutativity of the following diagrams and the observation
that hyperelliptic classes survive pushforward by all πwi

and π+j
, we have that πwi∗ [Xs] , 0 and

π+j∗ [Xs] , 0 for all i and j.

H2,`,2m,n H2,`,2(m−1),n+1 H2,`,2m,n H2,`−1,2m,n

H2,`−1,2m,n H2,`−1,2(m−1),n+1 H2,`−1,2m,n H2,`−2,2m,n

πw1

π+j

πw1
πw1

πwi

πw1

π+j πwi
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If `= 0, suppose without loss of generality (on the +j) that π+1∗ [Xs] , 0. Then the same conclusion
holds that [Xs] survives all pushforwards by π+j

, since

π+1∗
[
H2,`,2m,n

]
=

[
H2,`,2(m−1),n+1

]
is rigid and extremal by hypothesis, and π+1

commutes with π+j
.

It follows that for any `+m ≥ 2

Xs ⊆
⋂
i,j

(
(πwi

)−1H2,`−1,2m,n ∩ (π+j
)−1H2,`,2(m−1),n+1

)
.

We now have two cases. If `+m ≥ 3, any `+ 2m− 1 non-free marked points in a general element
of Xs are distinct Weierstrass or conjugate pair marked points, and hence all `+ 2m such non-free
marked points in a general element of Xs are distinct Weierstrass or conjugate pair marked points.
In this case we conclude that [Xs] is a positive multiple of

[
H2,`,2m,n

]
. If `+m= 2, we must analyze

three subcases.
If `= 0 and m= 2, then

Xs ⊆ (π+1
)−1H2,0,2,n+1 ∩ (π+2

)−1H2,0,2,n+1.

The modular interpretation of the intersection leaves three candidates for [Xs]: W2,P or γ1,P for
some P containing neither conjugate pair, or

[
H2,0,4,n

]
itself. However, for the former two, we have

dimW2,P , dimπ+1
(W2,P) and dimγ1,P , dimπ+1

(γ1,P) for all such P, contradicting our assumption
that the class survived pushforward. Thus [Xs] is proportional to

[
H2,0,4,n

]
.

If `= 1 and m= 1, similar to the previous case, [Xs] could be
[
H2,1,2,n

]
or W2,P or γ1,P for some P

containing neither the conjugate pair nor the Weierstrass point. However, if Xs is either of the latter
cases, we have dimXs , dimπ+1

(Xs), again contradicting our assumption about the non-vanishing
of the pushforward, and so again [Xs] must be proportional to

[
H2,1,2,n

]
.

If `= 2 and m= 0, as before, [Xs] is either
[
H2,2,0,n

]
itself or W2,P or γ1,P for P = {p1, . . . ,pn}. Now

dimW2,P = dimπwi
W2,P, so the argument given in the other subcases fails (though γ1,P is still ruled

out as before). Nevertheless, we claim that W2,P cannot appear on the right-hand side of (2.1) for
H2,2,0,n; to show this we induct on the number of free marked points n. The base case of n = 0 is
established in [CT16, Theorem 5], so assume that H2,2,0,n−1 is rigid and extremal for some n ≥ 1.
Suppose for the sake of contradiction that[

H2,2,0,n
]
= a0W2,P +

∑
s

as [Zs](2.2)

is an effective decomposition with each [Zs] an irreducible codimension-two effective cycle on
M2,2+n. Note that

W2,P = π
∗
pn
W2,P\{pn}−W2,P\{pn}.

Multiply (2.2) by ωpn and push forward by πpn . On the left-hand side,

πpn∗
(
ωpn ·

[
H2,2,0,n

])
= πpn∗

(
ωpn ·π

∗
pn

[
H2,2,0,n−1

])
= πpn∗

(
ωpn

)
·
[
H2,2,0,n−1

]
= 2

[
H2,2,0,n−1

]
,

having applied Lemma 1.2. Combining this with the right-hand side,

2
[
H2,2,0,n−1

]
= a0πpn∗

(
ωpn ·π

∗
pn
W2,P\{pn}−ωpn ·W2,P\{pn}

)
+

∑
s

asπpn∗
(
ωpn · [Zs]

)
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= 2a0W2,P\{pn}+πpn∗
(
ωpn ·W2,P\{pn}

)
+

∑
s

asπpn∗
(
ωpn · [Zs]

)
.

The term πpn∗
(
ωpn ·W2,P\{pn}

)
vanishes by Lemma 1.1:

πpn∗
(
ωpn ·W2,P\{pn−1}

)
= πpn∗

(
ωw1

·W2,P\{pn}

)
= πpn∗

(
π∗pnωw1

·W2,P\{pn}

)
=ωw1

·πpn∗W2,P\{pn}

= 0,

where w1 is the Weierstrass singular point on the genus-two component of W2,P\{pn}. Altogether,
we have

2
[
H2,2,0,n−1

]
= 2a0W2,P\{pn}+

∑
s

asπpn∗
(
ωpn · [Zs]

)
.

[Rul01] establishes that ψpn is semi-ample on M2,{pn}, so ωpn is semi-ample, and hence this is an
effective decomposition. By hypothesis, H2,2,0,n−1 is rigid and extremal, so W2,P\{pn} must be a
non-zero multiple of

[
H2,2,0,n−1

]
, which contradicts Lemma 2.3. Therefore W2,P cannot appear as

an [Xs] in (2.1).
Thus for all cases of `+m= 2 (and hence for all `+m ≥ 2), we conclude that each [Xs] in (2.1) is

a positive multiple of
[
H2,`,2m,n

]
. Now subtract these [Xs] from (2.1) and rescale, so that[

H2,`,2m,n
]
=

∑
t

bt [Yt] .

Recall that each [Yt] is required to vanish under all πwi∗ and π+j∗. But the pushforward of
[
H2,`,2m,n

]
by any of these morphisms is non-zero, so there are no [Yt] in (2.1). Hence

[
H2,`,2m,n

]
is extremal in

Eff`+m(M2,`+2m+n).
For rigidity, suppose that E := r

[
H2,`,2m,n

]
is effective. Since πwi∗E = (6− (`− 1))r

[
H2,`−1,2m,n

]
and π+j∗E= r

[
H2,`,2(m−1),n+1

]
are rigid and extremal for all i and j, we have that πwi∗E is supported

on H2,`−1,2m,n and π+j∗E is supported on H2,`,2(m−1),n+1. This implies that E is supported on the

intersection of (πwi
)−1

[
H2,`−1,2m,n

]
and (π+j

)−1
[
H2,`,2(m−1),n+1

]
for all i and j. Thus E is supported

on H2,`,2m,n, so
[
H2,`,2m,n

]
is rigid. �

3. Higher genus

The general form of the inductive argument in Theorem 2.4 holds independent of genus for g ≥ 2.
However, for genus greater than one, the locus of hyperelliptic curves inMg is of codimension g−2,
so that the base cases increase in codimension as g increases. The challenge in showing the veracity
of the claim for hyperelliptic classes in arbitrary genus is therefore wrapped up in establishing the
base cases of codimension g−1 (corresponding to Theorem 2.2) and codimension g (corresponding
to the three `+m= 2 subcases in Theorem 2.4).

In particular, our proof of Theorem 2.2 relies on the fact thatH2,0,2,n andH2,1,0,n are divisors, and
the subcase `= 2 in Theorem 2.4 depends on our ability to prove Lemma 2.3. This in turn requires
the description of H2,2,0,0 given by [CT16]. More subtly, we require that ψpn be semi-ample in
M2,{pn}, which is known to be false in genus greater than two in characteristic 0 [Kee99]. In genus
three, [CC15] show that the base case H3,1,0,0 is rigid and extremal, though it is unclear if their
method will extend to H3,1,0,n. Moreover, little work has been done to establish the case of a single
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conjugate pair in genus three, and as the cycles move farther from divisorial classes, such analysis
becomes increasingly more difficult.

One potential avenue to overcome these difficulties is suggested by work of Renzo Cavalieri and
Nicola Tarasca [CT19]. They use an inductive process to describe hyperelliptic classes in terms of
decorated graphs using the usual dual graph description of the tautological ring of Mg,n. Such a
formula for the three necessary base cases would allow for greatly simplified intersection-theoretic
calculations, similar to those used in Theorem 2.2 and Lemma 2.3. Though such a result would be
insufficient to completely generalize our main theorem, it would be a promising start.

We also believe the observation that pushing forward and pulling back by forgetful morphisms
moves hyperelliptic classes to (multiples of) hyperelliptic classes is a useful one. There is evidence
that a more explicit connection between marked Weierstrass points, marked conjugate pairs, and the
usual gluing morphisms between moduli spaces of marked curves exists as well, though concrete
statements require a better understanding of higher genus hyperelliptic loci. Although it is known
that hyperelliptic classes do not form a cohomological field theory over the full Mg,n, a deeper
study of the relationship between these classes and the natural morphisms among the moduli
spaces may indicate a CohFT-like structure, which in turn would shed light on graph formulas or
other additional properties.
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