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Density of arithmetic representations of function fields

Hélène Esnault and Moritz Kerz

Abstract. We propose a conjecture on the density of arithmetic points in the deformation space
of representations of the étale fundamental group in positive characteristic. This conjecture has
applications to étale cohomology theory, for example it implies a Hard Lefschetz conjecture. We
prove the density conjecture in tame degree two for the curve P

1 \ {0,1,∞}.
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1. Introduction

Let X0 be a smooth geometrically connected variety defined over a finite field k = Fq of characteristic p.
We fix an algebraic closure k ⊂ k̄ and a geometric point x ∈ X0(k̄). In this note we study representations of
the geometric étale fundamental group G = πét

1 (X,x), where X = X0 ⊗k k̄, and the action of the Frobenius
on the set of representations.

For a given prime ` , p, we fix a finite field F of characteristic `, and a continuous semi-simple representa-
tion ρ̄ : G→GLr(F ). We define the set Sρ̄ of isomorphism classes of continuous semi-simple representations
ρ : πét

1 (X,x)→GLr(Q̄`) with the property that the associated semi-simple residual representation is isomor-
phic to ρ̄. We endow Sρ̄ with a Noetherian Zariski topology in Section 2.

There is a canonical Frobenius action Φ : Sρ̄
∼−→ Sρ̄. A point [ρ] ∈ Sρ̄ is fixed by Φn for some integer

n > 0 if and only if the representation ρ extends to a continuous representation πét
1 (X0 ⊗k k′ ,x)→GLr(Q̄`),

for some finite extension k ⊂ k′ . We call such a point in Sρ̄ arithmetic and we let Aρ̄ ⊂ Sρ̄ be the subset of
arithmetic points.

The aim of our note is to propose and to study (two variants of) a conjecture about the density of
arithmetic points, see Section 3.

Weak Conjecture. The arithmetic points Aρ̄ are dense in Sρ̄.

Strong Conjecture. For a Zariski closed subset Z ⊂ Sρ̄ with Φn(Z) = Z for some integer n > 0 the subset of
arithmetic points Z ∩Aρ̄ is dense in Z .

One application of the Strong Conjecture is that it implies a Hard Lefschetz isomorphism for semi-simple
perverse Q̄`-sheaves in characteristic p, see Section 9. This application is motivated by the corresponding
work of Drinfeld for complex varieties [Dri01].

For degree r = 1 and X either proper or a torus the Strong Conjecture is shown in [EK21, Theorem 1.7
and Lemma 3.1].
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In Section 6 we prove the following reductions for the Strong Conjecture, see also Proposition 3.6. Here
the algebraically closed field k̄ is fixed.

• If the Strong Conjecture holds for given degree r for all smooth curves X over k̄ then it holds in
degree r for all smooth varieties X over k̄.
• If the Strong Conjecture holds in any degree r for X = P

1
k̄
\ {0,1,∞} and ρ̄ tame then it holds in

general over k̄.

These reductions motivate our two main theorems, see Section 3.

Theorem A. The Weak Conjecture holds when X is a curve, ` > 2 and ρ̄ is absolutely irreducible.

Theorem B. The Strong Conjecture holds for X = P
1
k̄
\ {0,1,∞} when ρ̄ is tame of degree two.

We now explain the ideas of our proofs. The main ingredient in the proof of Theorem A is de Jong’s
conjecture [deJ01] proven in [Gai07, § 1.4] under the assumption ` > 2, using the geometric Langlands
program. Indeed, if ρ̄ is absolutely irreducible, then Sρ̄ is the set of Q̄`-points of Mazur’s deformation space
which is smooth if X is a curve, and on which we can apply de Jong’s technique [deJ01, § 3.14].

The proof of Theorem B is very different. We embed Sρ̄ in the completion of the affine space of dimension
6 at the closed point which corresponds to the characteristic polynomials of three well chosen elements of
the geometric fundamental group G on which Φ acts by raising to the qth power. We can then apply our
main density theorem in [EK21] on the cover which separates the roots of those polynomials. In particular,
this also shows that the arithmetic points are precisely those which have quasi-unipotent monodromy at
infinity. We remark in Section 9.2 that our method yields a proof de Jong’s conjecture in this particular case,
which does not use automorphic forms.
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2. The Zariski topology on the set of semi-simple representations

Let ` be a prime number, O be the ring of integers of a finite extension of Q` with residue field F ,
O ↪→ Q̄` be an embedding of O into an algebraic closure of Q̄` defining an embedding of F into an
algebraic closure F̄ . Let G be a pro-finite group which satisfies Mazur’s `-finiteness property, i.e. for any
open subgroup U ⊂ G the set Homcont(U,Z/`Z) is finite. Let

ρ̄ : G→GLr(F )

be a continuous representation. We define Sρ̄ to be the set of isomorphism classes of continuous semi-simple
representations ρ : G→ GLr(Q̄`) with semi-simple reduction isomorphic to ρ̄ss : G→ GLr(F ) ⊂ GLr(F̄ ). In
this section we define a Zariski topology on Sρ̄. In Section 4 we relate Sρ̄ to the deformation space of
pseudorepresentations.

For a finite family g = (g1, . . . , gm) ∈ Gm, let pi be the characteristic polynomial char(ρ̄(gi)) of ρ̄(gi).
Then p = (p1, . . . ,pm) is an F -point of the affine space A

rm
O over O. Let Rp = Rρ̄(g) be the complete local

ring of Arm
O at the closed point p. The ring Rρ̄(g) ⊗O Q̄` is Noetherian Jacobson. Its maximal ideals

correspond to the m-tuples of polynomials over Z̄` with reduction p, see [GL96, Propositions A.2.2.2
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and A.2.2.3]. Sending a representation ρ : G→GLr(Q̄`) in Sρ̄ to the family of characteristic polynomials
(char(ρ(g1)), . . . ,char(ρ(gm))) therefore induces a map

charg : Sρ̄→ Spm(Rρ̄(g) ⊗O Q̄`).

We endow the maximal spectrum with the usual Zariski topology, which is thus Noetherian.

Proposition 2.1. There exists an integer m̃ > 0 and a family g̃ ∈ Gm̃ such that for any finite family g ∈ Gm
which contains g̃ we have:

(1) charg is injective with Zariski closed image.
(2) The induced topologies on Sρ̄ via the embeddings charg and charg̃ are the same.

Proposition 2.1 is an immediate consequence of Lemma 5.1. From now on we endow Sρ̄ with the induced
Zariski topology from Proposition 2.1.

Remark 2.2. By the same procedure we can define the `-adic topology on Sρ̄, which we do not consider in
this note, compare [Che14, Theorem D], and [Lit21] where it is used in an essential way.

3. The density conjectures

In this section we formulate a strong conjecture and a weak one on the density of arithmetic representations
in the Zariski space of all semi-simple representations Sρ̄ defined in Section 2. Then we formulate our main
results concerning them.

Let X0 be a smooth geometrically connected variety defined over a finite field k = Fq of characteristic
p , `. Set X = X0 ⊗k k̄, where k̄ is an algebraic closure of k. Fix a geometric point x ∈ X0(k̄) and let G be
the geometric fundamental group πét

1 (X,x). Fix a lift Φ ∈ πét
1 (X0,x) of the arithmetic Frobenius. Then Φ

acts by conjugation on G. This action depends on the lift up to an inner automorphism, so it canonically
acts on isomorphism classes of representations of G. We assume that

Φ(ρ̄) is isomorphic to ρ̄

which is always fulfilled after replacing Φ by a power, or equivalently X0 by X0⊗k k′ for a finite extension k′

of k. Thus the action of Φ on G induces a well defined automorphism Φ of Sρ̄. By the construction of the
Zariski topology on Sρ̄ via Proposition 2.1 the automorphism Φ is a homeomorphism.

We define the arithmetic points of Sρ̄ as the fixed points of powers of Φ

Aρ̄ :=
⋃
n>0

SΦ
n

ρ̄ .

Remark 3.1. The arithmetic points in Sρ̄ correspond to those continuous semi-simple representations
ρ : G→GLr(Q̄`) which can be extended to a continuous representation

πét
1 (X0 ⊗k k′ ,x)→GLr(Q̄`)

for some finite extension k′ ⊂ k̄ of k, see [Del80, § 1.1.14].

Conjecture 3.2 (Weak Conjecture). The space Sρ̄ is the Zariski closure of its arithmetic points Aρ̄.

Conjecture 3.3 (Strong Conjecture). A Zariski closed subset Z ⊂ Sρ̄ with Φn(Z) = Z for some integer n > 0 is
the Zariski closure of its arithmetic points Z ∩Aρ̄.

Note that the formulation of the conjectures depends only on X and not on the choice of X0 or the base
point x.

Remark 3.4. If r = 1 and X is projective or X is a torus, then the strong conjecture is true by virtue of
[EK21, Theorem 1.7 and Lemma 3.1].
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Remark 3.5. If we endow Sρ̄ with the `-adic topology as in Remark 2.2, then the subset of arithmetic points
Aρ̄ is discrete and closed, see [Lit21, Theorem 1.1.3].

Using the Lefschetz theorem on fundamental groups and the Belyi principle we reduce in Section 6 the
Strong Conjecture to the case where X is a curve.

Proposition 3.6. For varieties over the fixed field k̄ we have the implications:

(1) If for fixed r the Strong Conjecture holds for dim(X) = 1, then it holds for any X and the given degree r .
(2) If the Strong conjecture holds for all r > 0 for tame representations ρ̄ on the variety X = P

1
k̄
\ {0,1,∞}, then

it holds in general.

The main results of our note are the following.

Theorem 3.7 (Theorem A). Assume that ` > 2. If ρ̄ is absolutely irreducible and X is a curve, then the weak
conjecture holds.

Theorem 3.8 (Theorem B). If X = P
1
k̄
\ {0,1,∞}, r = 2 and ρ̄ is tame, then the strong conjecture holds. The

arithmetic local systems are then precisely those with quasi-unipotent monodromies at infinity.

The only reason why we assume ` > 2 in Theorem 3.7 is that de Jong’s conjecture [deJ01, Conjecture 2.3]
is known only under this assumption at the moment, see [Gai07, § 1.4]. In fact our proof of Theorem 3.8
yields a geometric proof of de Jong’s conjecture on P

1
k \ {0,1,∞} in rank 2 for any `, without any use of the

Langlands program, see Section 9.2.

4. The deformation space of pseudorepresentations

In this section we recall some properties of the deformation space of pseudorepresentations PDρ̄
following [Che14]. The reason why we work with pseudorepresentations is that they naturally give rise to a
parametrization of the semi-simple representations Sρ̄ defined in Section 2. As in Section 2, G is a profinite
group satisfying Mazur’s `-finiteness property.

Let C be the category of complete local O-algebras (A,mA) such that O → A/mA identifies the residue
fields of A and O. Following [Che14, Section 3] we define the functor of pseudodeformations of ρ̄

PDρ̄ : C → Sets

which assigns to A the set of continuous r-dimensional A-valued determinants D : A[G]→ A such that
D ⊗A F : F [G]→ F is the F -valued determinant induced by ρ̄.

Recall that a determinant is given by a compatible collection of maps DB : B[G]→ B, where B runs
through all commutative A-algebras, see [Che14, § 1.2]. Every continuous representation ρ : G→ GLr(A)
gives rise to a continuous determinant Det(ρ) : A[G]→ A. We define the coefficients of the characteristic
polynomial of D as the maps Λi : G→ A determined by the formula

DA[t](t − [g]) =
r∑
i=0

(−1)iΛi(g)td−i ,

see [Che14, § 1.3]. Recall that from the Λi we can reconstruct the whole determinant D by means of Amitsur’s
formula [Che14, § 1.3].

With a slight abuse of notation we define PDρ̄(Z̄`) to be the set of r-dimensional Z̄`-valued determinants
D : Z̄`[G] → Z̄` with D ⊗

Z̄`
F̄` = Det(ρ̄) ⊗

F
F̄ , which are induced by base change from O′ to Z̄` by

O′-valued continuous determinants DO
′
: O′[G]→O′ , where O′ ⊂ Z̄` runs over all finite extensions of O.

Proposition 4.1.

(1) The functor PDρ̄ is representable by R
P
ρ̄ ∈ C with universal determinant D

RPρ̄ : RPρ̄ [G]→ RPρ̄ .
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(2) The complete local ring RPρ̄ is Noetherian and topologically generated as an O-algebra by the finitely many
elements Λj(gi) where 1 ≤ j ≤ r and g1, . . . , gm ∈ G is a suitable family.

(3) If ρ̄ is absolutely irreducible, RPρ̄ coincides with Mazur’s universal deformation ring and D
RPρ̄ is the

determinant of the universal deformation.

We refer to [Che14, Proposition 7.59] for part (1), to [Che14, Remark 7.61] for part (2), to [Che14, Ex-
ample 7.60] for part (3). Recall that Mazur’s deformation functor C → Sets assigns to A ∈ C the set of
isomorphism classes of continuous representations ρ : G→GLr(A) such that ρ⊗A F is isomorphic to ρ̄, see
for example [Til96, Section 3]. Note that for any ρ̄ we have by definition

RPρ̄ = RPρ̄ss

where ss indicates the semi-simplification. We define the universal deformation space of pseudorepresentations of
ρ̄ by

PDρ̄ = SpfRPρ̄ .

Remark 4.2. The construction of the universal deformation ring RPρ̄ is compatible with any finite base
change of local rings O ⊂ O′ , i.e. the universal deformation space of pseudorepresentations over O′ with
residue field F

′ ⊂ F̄ a finite extension of F and residual condition D ⊗O′ F ′ = Det(ρ̄)⊗
F
F
′ is given by

RPρ̄ ⊗O O′ , see [Che14, Proposition 7.59]. In particular the canonical map

HomO(R
P
ρ̄ ,Z̄`)

∼−→ PDρ̄(Z̄`)

is bijective.

Proposition 4.3. Sending a continuous representation ρ : G→GLr(Q̄`) to its determinant induces a bijection

Det: Sρ̄
∼−→ PDρ̄(Z̄`).

Proof. By [Che14, Theorem A] there is a bijection between the isomorphism classes of not necessarily
continuous semi-simple representations ρ : G→GLr(Q̄`) and the not necessarily continuous determinants
D : Q̄`[G]→ Q̄` . We combine this with the simple fact from representation theory that a semi-simple
representation ρ : G → GLr(Q̄`) is continuous precisely when its character tr ◦ ρ has image in a finite
extension of Frac(O) inside Q̄` and is continuous. �

Combining Remark 4.2 and Proposition 4.3 we obtain a canonical identification

Sρ̄
∼−→ Spm(RPρ̄ ⊗O Q̄`).(1)

We shall see in the next section that (1) induces the same Zariski topology on Sρ̄ as the one defined in
Section 2.

5. Characteristic polynomials

In this section G is a profinite group satisfying Mazur’s `-finiteness property. Recall that for a family
p = (p1, . . . ,pm) of m monic polynomials pi of degree r over the finite field F , we introduced the complete
local deformation ring Rp in Section 2. When pi is the characteristic polynomial of the matrix ρ̄(gi) for a
representation ρ̄ : G→GLr(F ) and for i = 1, . . . ,m, we also write Rρ̄(g) for Rp. Let

Dρ̄(g) = SpfRρ̄(g)

be the corresponding formal scheme over O. We obtain a canonical morphism of formal schemes

PDρ̄
charg
−−−−−→Dρ̄(g)
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which sends a pseudorepresentation to the family of associated characteristic polynomials of g1, . . . , gm. In
view of the identification (1) this induces the map charg : Sρ̄→ Spm(Rρ̄(g) ⊗O Q̄`) from Section 2.

Lemma 5.1. There is a finite family g̃ ∈ Gm̃ such that for any finite family g ∈ Gm containing g̃ , the morphism

charg : PDρ̄→Dρ̄(g)

is a closed immersion.

Proof. This is an immediate consequence of Proposition 4.1(2). �

Proof of Proposition 2.1. Take g̃ as in Lemma 5.1 and use the identification (1). �

Assume given roots µ = (µ(j)i )1≤j≤m
1≤i≤r

∈Arm
O (F ) of the m monic polynomials p of degree r , we let Dµ be the

formal completion of the affine space A
rm
O at µ. Sending a point

(λ(j)i )i,j ∈Dµ(A) to
(
(t −λ(1)1 ) · · · (t −λ(1)r ), . . .

)
∈Dp(A)

induces a finite “symmetrization” morphism of O-formal schemes

poly: Dµ→Dp .

For an integer n we write µn for ((µ(j)i )n)i,j . Sending

λ ∈Dµ(A) to λn ∈Dµn(A)

induces a finite morphism of O-formal schemes

[n] : Dµ→Dµn .

There exists a unique lower horizontal morphism [n] of O-formal schemes making the square

Dµ
[n]
//

poly
��

Dµn

poly
��

Dp [n]
// D[n]p

commutative, where [n]p has the obvious meaning, that is its jth component is defined to be

(t − (µ(j)1 )n) · · · (t − (µ(j)r )n).

We now study the compatibility of the universal deformation space of pseudodeformations with restriction.
Let U ⊂ G be an open subgroup, ρ̄|U : U →GLr(F ) be the restriction of ρ to U . It induces a morphism

rest : PDρ̄→ PDρ̄|U

by sending D : A[G]→ A to its restriction D |U : A[U ]→ A.

Lemma 5.2. The morphism rest is finite.
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Proof. Fix a family g in G as in Lemma 5.1. Choose an integer n > 0 such that gni ∈U for all the gi of the
family and denote by gn the family (gn1 , . . . , g

n
m). We have a commutative diagram

PDρ̄

rest
��

charg
// Dρ̄(g)

[n]
��

PDρ̄|U chargn
// Dρ̄(gn)

in which the upper horizontal arrow charg is a closed immersion and the right vertical arrow [n] is finite.
This implies that the left vertical arrow rest is finite as well. �

It is likely that the notion of induction for pseudorepresentations with respect to an open subgroup U ⊂ G
can be defined and induces a finite morphism of universal deformation spaces of pseudorepresentations.
Unfortunately, this is not documented in the literature.

We now describe a weak form of induction which is sufficient for our purpose. For simplicity assume
that U ⊂ G is a normal subgroup of index n. Let ρ̄U : U →GLr(F ) be a continuous representation and set
ρ̄ = IndGU ρ̄U . Let ρ̄|U : U →GLnr(F ) be the restriction of ρ̄ to U . We have

ρ̄|U =
n⊕
i=1

(ρ̄U )
si

where Σ := {s1, . . . , sn} ⊂ G is a set of representatives of G/U , and

(ρ̄U )
si (u) = ρ̄U (sius

−1
i ) for u ∈U.

Similarly, sending a pseudorepresentation D : A[U ]→ A to the pseudorepresentation ⊕ni=1D
si : A[U ]→ A

where Dsi (u) =D(sius
−1
i ) defines the horizontal morphism ξ in the triangle

PDρ̄U

?
��

ξ // PDρ̄|U

PDρ̄

rest

;;
(2)

We expect that (2) can be extended to a commutative diagram by the indicated dashed induction arrow. As
ξ is finite by Lemma 5.3, the dashed arrow, if it exists, is automatically finite.

Lemma 5.3. The morphism ξ in diagram (2) is finite.

Proof. Let u = (u1, . . . ,um), ui ∈U be a family as in Lemma 5.1 for ρ̄U . We consider the family

uΣ =
(
s1u1s

−1
1 , . . . , s1ums

−1
1 , s2u1s

−1
2 , . . . , snums

−1
n

)
and the associated roots µ of the characteristic polynomials of the matrices ρ̄(uΣ). We have the diagram

PDρ̄U

ξ

��

charuΣ // Dρ̄U (uΣ)

��

Dµ
poly
oo

id
��

PDρ̄|U charu
// Dρ̄|U (u) Dµpoly

oo
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where we now define the dashed arrow as the quotient of the identity map id as follows. We label the λ
coordinates of Dµ (

λ
(j)
i (a) | a = 1, . . . ,n, j = 1, . . . ,m, i = 1, . . . , r

)
.

The upper poly map is defined by the elementary symmetric functions on r letters
(
sym

(
λ
(j)
i (a)

)
1≤i≤r

)
a,j
. In

other words, it is the quotient by the product
∏
a,j Σr where Σr is the symmetric group in r letters. The lower

poly map is defined by

(
sym

(
λ
(j)
i (a)

)
1≤a≤n,1≤i≤r

)
j

where sym are the elementary symmetric functions on

rn letters. In other words, it is the quotient by the product
∏
j Σrn. The embedding

∏
aΣr ⊂ Σrn induces the

embedding
∏
a,j Σr ⊂

∏
j Σrn, and thus defines the requested dashed arrow

Dµ /
∏
a,j

Σr dDµ /
∏
j

Σrn

which is finite. This finishes the proof. �

Remark 5.4. When evaluated on Z̄` the diagram (2) becomes commutative if we define the dashed arrow
on Z̄`-points as the induction

PDρ̄U (Z̄`) � Sρ̄U
IndGU−−−−→ Sρ̄ � PDρ̄(Z̄`)

on representations. Here the isomorphisms are coming from (1) and induction is understood up to semi-
simplification.

We now study the case of two-dimensional pseudorepresentations. A two-dimensional determinant
D : A[G]→ A has characteristic polynomial

g 7→ t2 − τ(g)t + δ(g) ∈ A[t],

here for simplicity of notation we write τ(g) for Λ1(g) and δ(g) for Λ2(g). For elements g0, g1 ∈ G we have
(see [Che14, Lemma 7.7])

τ(g0g1) = τ(g1g0),

δ(g0g1) = δ(g0)δ(g1),

τ(g0g1) = τ(g0)τ(g1)− δ(g0)τ(g−10 g1).

From these formulae we deduce that if F2 is the free group on 2 elements g0, g1, for any element h in F2
there exists

F ∈Z[X0,X1,X2,Y1,Y2,Y
−1
1 ,Y −12 ]

with τ(h) = F(τ(g0), τ(g1), τ(g0g1),δ(g0),δ(g1)). This proves:

Lemma 5.5. If G is topologically generated by g0 and g1 then with

g = (g0, g1, g0g1)

the morphism charg : PDρ̄→Dρ̄(g) is a closed immersion.
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6. Compatibility with restriction and induction

In this section we prove some reductions and compatibilities which enable us to prove Proposition 3.6. So
as there G is a profinite group satisfying Mazur’s `-finiteness property. As we are interested in the density of
the fixed points of powers of an automorphism on a topological space, we formulate the simple Lemma 6.1
in this context. For a topological space S and a homeomorphism Φ : S→ S, we define

SΦ
∞
=

⋃
n>0

SΦ
n

and study the following density property.

(D)S,Φ : For any closed subset Z ⊂ S with Φn(Z) = Z for some integer n > 0 the intersection
Z ∩ SΦ∞ is dense in Z .

If Φ is clear from the context we omit it in our notation.

Let ψ] : R2→ R1 be a homomorphism of Noetherian Jacobson rings. Let Φ1 : R1
∼−→ R1 and Φ2 : R2

∼−→ R2
be compatible ring automorphisms. Endow Si = SpmRi with the Zariski topology (i = 1,2). Let ψ : S1→ S2
be the induced morphism.

Lemma 6.1.

(1) If ψ is surjective then

(D)S1,Φ1
⇒ (D)S2,Φ2

.

(2) If the ring homomorphism ψ] : R2→ R1 is finite then

(D)S2,Φ2
⇒ (D)S1,Φ1

.

Proof. Part (1) is obvious. To show part (2) consider Z ⊂ S1 closed with Φn1 (Z) = Z for some n > 0. Then,
replacing n by m for some m > 0 the latter is true for each irreducible component of Z , so in order to show

that Z ∩ SΦ
∞
1

1 is dense in Z we can assume without loss of generality that Z is irreducible.

We assume that the closure Z ′ of Z ∩ SΦ
∞
1

1 is not equal to Z and we are going to deduce a contradiction.
Incomparability, see [Bou98, Section V.2.1, Corollary 1], tells us that we get a proper inclusion ψ(Z ′) ( ψ(Z)

of closed subsets of S2. As the fibres of ψ are finite we have ψ−1(S
Φ∞2
2 ) = S

Φ∞1
1 , so S

Φ∞2
2 ∩ψ(Z) ⊂ ψ(Z ′). But

then (D)S2,Φ2
applied to the closed subset ψ(Z) says that ψ(Z ′) = ψ(Z), which is a contradiction. �

Let U ⊂ G be an open subgroup and let ρ̄ : G→GLr(F ) be a continuous representation. Let Φ : G→ G
be an automorphism with Φ(U ) =U and with Φ(ρ̄) ' ρ̄. We can then deduce compatibility of our density
property with restriction and induction.

Proposition 6.2.

(1) We have the implication (D)Sρ̄|U
⇒ (D)Sρ̄ .

(2) If U ⊂ G is normal and ρ̄ = IndGU ρ̄U with Φ(ρ̄U ) ' ρ̄U we have the implication (D)Sρ̄ ⇒ (D)Sρ̄U
.

Proof. For part (1) we observe that the restriction map Sρ̄→Sρ̄|U is induced via the identification (1) by the
finite homomorphism of Noetherian Jacobson rings

RPρ̄|U ⊗O Q̄`→ RPρ̄ ⊗O Q̄`.

The Noetherian Jacobson property of these rings follows from the general fact that for a Noetherian
complete local O-algebra R with finite residue field, the ring R⊗O Q̄` is Noetherian and Jacobson, see [GL96,
Propositions A.2.2.2 and A.2.2.3.(ii)]. The finiteness of the homomorphism is Lemma 5.2. Then part (1)
follows from Lemma 6.1(2) with S1 = Sρ̄, S2 = Sρ̄|U and ψ = rest.
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We prove part (2). In view of Remark 5.4 taking Z̄`-points in the diagram (2) we get the commutative
diagram

Sρ̄U
Ind
��

ξ // Sρ̄|U

Sρ̄
rest

==

By Lemma 5.2 the image S = rest(Sρ̄) ⊂ Sρ̄|U is closed, so it is naturally a maximal spectrum. By Lemma 6.1(1)
our assumption (D)Sρ̄ implies that (D)S holds. As by Lemma 5.3 the map ξ : Sρ̄U → S is induced by a finite

ring homomorphism on maximal spectra, we can apply Lemma 6.1(2) and deduce that (D)Sρ̄U
holds. �

Let X be a smooth connected variety over an algebraically closed field k. Fix a geometric point x ∈ X(k̄).
We apply the results from the previous sections to the case G = πét

1 (X,x). As in Section 3, we consider a
continuous representation ρ̄ : G→GLr(F ).

For a morphism of smooth connected varieties ι : Y → X and a geometric point y ∈ Y (k̄) mapping to x,
we let ι∗ρ̄ : πét

1 (Y ,y)→GLr(F ) be the composition of ι∗ : π
ét
1 (Y ,y)→ πét

1 (X,x) with ρ̄.

Proposition 6.3. There is a smooth connected one-dimensional C and a locally closed immersion ι : C→ X such
that the induced morphism ι∗ : PDρ̄→ PDι∗ρ̄ is a closed immersion.

Proof. Let m ⊂ RPρ̄ be the maximal ideal. By [Che14, Lemma 7.52] there exists an open normal subgroup
U ⊂ G such that the composed determinant

RPρ̄ [G]
D
RPρ̄

−−−−→ RPρ̄ → RPρ̄ /m
2

factors through a determinant RPρ̄ /m
2[G/U ]→ RPρ̄ /m

2.
It is sufficient to choose ι such that

ι∗ : RPι∗ρ̄→ RPρ̄ /m
2

is surjective. Recall from Proposition 4.1(2) that the O-algebra RPρ̄ /m2 is generated by the coefficients of the
characteristic polynomials Λj(ḡ) with 1 ≤ j ≤ r and ḡ ∈ G/U . So any closed immersion ι : Y → X such that
the composition

πét
1 (Y ,y)

ι∗−→ G→ G/U

is surjective will suffice.
To find such a ι we can assume without loss of generality that X ↪→ A

N
k

is affine and use Bertini’s
theorem [Jou83, Theorem 6.3] applied to the étale covering X ′ of X corresponding to U ⊂ G and the
unramified map X ′→A

N
k
. In fact Bertini tells us that a generic affine line L ⊂A

N
k

has the property that
X ′ ×

A
N
k
L is smooth connected and one-dimensional, so one can take C = X ×

A
N
k
L. �

Remark 6.4. The above argument shows in addition that if X◦
ι−→ X is an open embedding, then the induced

morphism ι∗ : PDρ̄→ PDι∗ρ̄ is a closed immersion. Indeed πét
1 (X

◦, y)
ι∗−→ G is surjective, so a fortiori

πét
1 (X

◦, y)
ι∗−→ G→ G/U

and one argues as above.

Proof of Proposition 3.6. For part (1), we choose ι as in Proposition 6.3. Then via the identification (1) one
sees that ι∗ : Sρ̄ ↪→ Sι∗ρ̄ is a closed embedding of topological spaces. One can descend ι to a morphism
ι0 : Y0→ X0 of varieties over a finite field k. Then ι∗ is Φ-equivariant. So (D)Sι∗ ρ̄ ⇒ (D)Sρ̄ .
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We prove part (2). By part (1) we may assume that X0 is a smooth geometrically connected curve. Let
π : Y0→ X0 be a finite étale cover trivializing ρ̄. Let 1̄ be the trivial rank r representation on Y with value
in GLr(F ). By Proposition 6.2(1), we may assume that ρ̄ = 1̄ on the one-dimensional X0.

Let X0 ↪→ X̄0 be the normal compactification. By [Sai97, Theorem 5.6] if p ≥ 3 and [SY20, Theorem 1.2]
if p = 2, there is a tame finite Belyi map π : X̄0 → P

1 with ramification in {0,1,∞}. Let Σ ⊂ P
1 be the

union of π(X̄0 \X0) with {0,1,∞}. Let z be the coordinate on P
1 with value 0 at 0, 1 at 1 and ∞ at ∞.

Let us denote by ai the z coordinate of the other closed points of Σ. Then ai lies in the units of a finite
field extension of Fq, thus there is an integer n > 0 prime to p such that the morphism zn : P1→ P

1, which
is defined over Fq, sends Σ to {0,1,∞}. It follows that the finite morphism τ = zn ◦π : X̄0→ P

1 has the
property that X̄0 \ τ−1({0,1,∞}) ⊂ X0. By Remark 6.4 we can replace X0 by X̄0 \ τ−1({0,1,∞}). Moreover,
using Proposition 6.2(1) again, we can replace X0 by the Galois hull of τ . We finally apply Proposition 6.2(2)

in order to reduce to the case of the curve P
1 \ {0,1,∞} and to the representation ρ̄ = Ind

πét
1 (P

1\{0,1,∞})
πét
1 (X)

1̄,

which is tame as τ is tame. This finishes the proof. �

7. Proof of Theorem B

The aim of this section is to prove Theorem B. Let X be the scheme P1
W \ {0,1,∞} over the ring of Witt

vectors W = W (k). Set K = Frac(W ) and fix an algebraic closure K̄ of K together with an embedding
K̄ ↪→C and an isomorphism of the residue field of K̄ with k̄. We also fix a lift x� ∈ X (K̄) of our base point
x ∈ X0(k̄).

Fix an orientation for C and let γ0,γ1,γ∞ ∈ π
top
1 (X (C),x�) be suitable “simple” loops around 0, 1 and

∞ such that

γ0 ·γ1 ·γ∞ = 1.

Then π
top
1 (X (C),x�) is a free group with generators γ0,γ1.

The étale fundamental group πét
1 (XK̄ ,x�) is the pro-finite completion of the topological fundamental

group π
top
1 (X (C),x�) and there is a canonical outer action of H = Gal(K̄/K) on the former. Let χ : H → Ẑ

×

be the cyclotomic character.

Claim 7.1. For h ∈Gal(K̄/K) and a ∈ {0,1,∞} the element h(γa) (which is well-defined up to conjugation)

is conjugate to γ
χ(h)
a in πét

1 (XK̄ ,x�).

Proof. Up to inner automorphisms one can replace the base point x� in the étale fundamental group by
the base point ya : Spec(K̄a)→XK , where K̄a is an algebraic closure of the fraction field Ka of Oh

P
1
C
,a
. As

explained in [Del73, § 1.1.10] there is a corresponding generalized topological base point of X (C), which we
simply write as D̃∗a. Here D

∗
a is a small punctured disk around the point a ∈ P1

C
(C) and D̃∗a is its universal

covering. Then by loc. cit. we have a commutative diagram

Z� _

��

π
top
1 (D∗a, D̃

∗
a) //

��

π
top
1 (X (C), D̃∗a)

��
Ẑ(1) Gal(K̄a/Ka) // πét

1 (XK̄ , ya)

where the vertical maps are pro-finite completions. �

By [Gro71, Exposé XIII, § 2.10 and 4.7] the specialization homomorphism

sp: πét
1 (XK̄ ,x

�)→ πt
1(X,x)
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is surjective and compatible with the action of the Frobenius lift Φ . Here the codomain is the tame
fundamental group which we also write Gt in the following.

We set ga = sp(γa) for a ∈ {0,1,∞}, so we have

g0 · g1 · g∞ = 1 in Gt.

In addition, Gt is topologically generated by g0, g1. By Lemma 5.5 the map

charg : PDρ̄→Dρ̄(g)(3)

is a closed immersion, where g = (g0, g1, g−1∞ ) and where PDρ̄ classifies pseudorepresentations of the group
Gt. From Claim 7.1 we conclude that

Φ(ga) is conjugate to g
q
a ,

for a = 0,1,∞. In particular, as ρ̄ is fixed by Φ , one has

char(ρ̄(gq)) = char(ρ̄(g)).

We assume without loss of generality, by replacing k by a finite extension and thus Φ by a power, that the

family of roots µ of the polynomials char(ρ̄(g)) satisfy µq = µ, thus the isomorphism Dµ
[q]
−−→ Dµ is well

defined. This implies that with the notation as in Section 5 we obtain a commutative diagram

PDρ̄
Φ //

charg
��

PDρ̄

charg
��

Dρ̄(g)
[q]
// Dρ̄(g)

Dµ
[q]

//

poly
OO

Dµ

poly
OO

which is Φ-equivariant.
As charg is a closed immersion we have the implication

(D)Dρ̄(g)(Z̄`)⇒ (D)Sρ̄ ,

see Section 6.
As the morphism poly is surjective on Z̄`-points, we have by Lemma 6.1(1) the implication

(D)Dµ(Z̄`)⇒ (D)Dρ̄(g)(Z̄`).

Property (D)Dµ(Z̄`) is a consequence of [EK21, Theorem 1.7] by noting that translating Dµ by the

Teichmüller lift of µ we can assume that µ = (1, . . . ,1), so that Dµ(Z̄`) consists of the Q̄`-points of the

multiplicative formal Lie group associated to π =Z
6
` . Indeed, we apply loc. cit. with σ = [q]. This implies

that the closed subset Z in Property (D)Dµ(Z̄`) is a finite union of torsion translates of formal subtori.

Finally, the points of Dµ invariant under [q]n for integers n > 0 are precisely the roots of unity. It follows
that those points located on Z are dense on Z by [EK21, Lemma 3.1]. In particular a point of Sρ̄ is arithmetic
if and only if its local monodromies at 0,1,∞ are quasi-unipotent. This finishes the proof of Theorem B. �

Remark 7.2. What makes our argument work is the particular property due to Riemann that rank two local
systems on P

1
C
\ {0,1,∞} are rigid, see [Kat96, p. 1].
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8. Proof of Theorem A

The aim of this section is to prove Theorem A. So ρ̄ is supposed to be absolutely irreducible. The
arguments rely on [deJ01], and are partly similar to [BK06] and [BHKT19, Section 5].

As recalled in Proposition 4.1(3) RPρ̄ is then Mazur’s universal deformation ring, which parametrizes
isomorphism classes of continuous representations ρ : G→GLr(A) for A ∈ C such that ρ⊗AF is isomorphic
to ρ̄. In this case we simply write Rρ̄ for RPρ̄ and Dρ̄ for PDρ̄.

Lemma 8.1. The O-algebra Rρ̄ is formally smooth, i.e. there is a non-canonical O-isomorphism

Rρ̄ � O[[t1, . . . , tb]].

Proof. Let Ddet ρ̄ = SpfRdet ρ̄ be the universal deformation space of the degree one representation

det ρ̄ : G→ F
×.

Let 0→ I → B→ A→ 0 be an extension in C such that I ·mB = 0 (so the B-module structure on I factors
through F ). By [Maz89, § 1.6], there exists a canonical commutative obstruction diagram with exact rows

Dρ̄(B) //

det
��

Dρ̄(A)
O //

det
��

H2(X,End(F ))

tr
��

Ddet ρ̄(B) // Ddet ρ̄(A)
O // H2(X,F )

(4)

Here F is the lisse étale sheaf on X corresponding to ρ̄ and we use that the canonical map

H2(G,Adρ̄) ↪→H2(X,End(F ))

induced by the Hochschild-Serre spectral sequence of the universal covering X̃→ X is injective. The latter
injectivity is due to the fact that F is trivialized on X̃ and that its first cohomology on X̃ vanishes.

First case: X is affine.
By [Art73, Corollary 3.5] we have H2(X,End(F )) = 0, so the first exact row in (4) tells us that Dρ̄ is formally
smooth.

Second case: X is projective.
This case follows from the following two claims and a chase in the diagram (4). �

Claim 8.2. Ddet ρ̄ is formally smooth over O.

Claim 8.3. The map tr in (4) is an isomorphism.

Proof of Claim 8.2. We know that if det ρ̄ = 1̄ is trivial, then D1̄ = O~Gab,`�, where Gab,` is the abelian,
`-adic étale fundamental group of X. In general, Ddet ρ̄ is isomorphic to D1̄ by translating with the

Teichmüller lift of det ρ̄, see [Maz89, § 1.4]. Thus Ddet ρ̄ is formally smooth, since Gab,` is torsion free. �

Proof of Claim 8.3. As the trace map of étale sheaves

End(F )→ F

is surjective and X has dimension one, the map tr in (4) is surjective as well. So it suffices to show that
both F -vector spaces have dimension one. For H2(X,F ) this is immediate from Poincaré duality. In
order to apply Poincaré duality to H2(X,End(F )) we recall that the trace pairing induces an isomorphism
End(F )∨ � End(F ). So we obtain from duality an isomorphism H2(X,End(F )) � EndG(ρ̄)∨ = F . The
equality comes from the absolute irreducibility of ρ̄ and Schur’s lemma. �
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For an integer n > 0 we consider the quotient ring (Rρ̄)Φn = Rρ̄/In, where In is the ideal generated by
Φn(α) −α for all α ∈ Rρ̄. Based on the presentation of Lemma 8.1, we see that In is generated by the b
elements

Φn(t1)− t1, . . . ,Φn(tb)− tb.(5)

By definition

Sρ̄ ⊃ Aρ̄ =
⋃
n>0

Spm((Rρ̄)Φn ⊗O Q̄`).

We use the following two propositions.

Proposition 8.4. The ring (Rρ̄)Φn is finite, flat and a complete intersection over O for any n > 0.

Proposition 8.5. The generic fibre (Rρ̄)Φn ⊗O Q̄` is reduced for any n > 0.

Proposition 8.5 is the same as Proposition 5.12 in [BHKT19].

Sketch of proof of Proposition 8.4. As in [deJ01, § 3.14], we have to show that the images of the elements (5)
form a regular sequence in Rρ̄ ⊗O F . The latter is equivalent to (Rρ̄)Φ ⊗O F being zero-dimensional. This is
deduced by verbatim the same argument as loc. cit. in view of the fact that de Jong’s conjecture is known for
` > 2 by [Gai07]. �

Proof of Proposition 8.5. Consider a continuous representation ρ : G→ GLr(O′) corresponding to a homo-
morphism (Rρ̄)Φn →O′ , where O′ is a discrete valuation ring which is a finite extension of O. Then up to
replacing k by a finite extension, ρ can be extended to a continuous representation ρ0 : π

ét
1 (X0,x)→GLr(O′),

see Remark 3.1. As ρ̄ is absolutely irreducible, ρ0 ⊗O′ Q̄` is irreducible. After a suitable twist we can assume
without loss of generality that det(ρ0) is finite, see [Del80, Proposition 1.3.4]. Then by the Langlands
correspondence [Laf02, Theorem VII.6] the lisse sheaf F0 corresponding to ρ0 is pure of weight zero. The
tangent space to ρ in (Rρ̄)Φ ⊗O Q̄` is given by

H1
(
G,Adρ[

1
`
]
)Φ

=H1
(
X,End(F )[

1
`
]
)Φ

= 0,

where the last equality follows from the fact that H1(X,End(F )) has weight one as End(F0) has weight zero.
This finishes the proof. �

Proof of Theorem A. We have to show that an element α ∈ Rρ̄⊗O Q̄` which vanishes on the points Aρ̄ is zero.
After replacing O by a finite extension we may assume without loss of generality that α ∈ Rρ̄. The vanishing
condition means that α is contained in all the maximal ideals corresponding to the points of Aρ̄, i.e. that
the image of α in the ring (Rρ̄)Φn ⊗O Q̄` is contained in its nilpotent radical for all n > 0. As (Rρ̄)Φn ⊗O Q̄`

is reduced by Proposition 8.5, this means that the image of α vanishes in (Rρ̄)Φn ⊗O Q̄` for all n > 0. By
the flatness in Proposition 8.4 it actually vanishes in (Rρ̄)Φn for any n > 0. By Claim 8.6 this implies that
α = 0. �

Claim 8.6. The canonical map Rρ̄→ limn(Rρ̄)Φn is injective.

Proof. Let m be the maximal ideal of Rρ̄. For any integer m > 0, there is an integer n > 0 such that Φn acts
trivially on Rρ̄/m

m as the latter ring is finite, so In ⊂mm. Thus ∩n>0In ⊂ ∩m>0mm = {0}. �

9. Some Applications

In this section we make two remarks concerning applications.
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9.1. The Hard Lefschetz theorem in positive characteristic.

This application of our Strong Conjecture is motivated by [Dri01]. Let f : X→ Y be a projective morphism
of separated schemes of finite type over an algebraically closed field k̄. Let η ∈ H2(X,Q`) be the Chern
class of a relative ample line bundle. Here we omit Tate twists for simplicity of notation.

One conjectures (see [EK21, Remark 1.4]) that if F ∈Dbc (X,Q̄`) is a semi-simple perverse sheaf, then the
Hard Lefschetz property holds, i.e. the cup-product

∪ηi : pH−if∗F → pH if∗F(6)

is an isomorphism for all i ≥ 0. It is known that this holds if

(i) F is of geometric origin in the sense of [BBD82, § 6.2.4–6.2.5]
(ii) k̄ is the algebraic closure of a finite field k and f , η and F descend to schemes X0,Y0 over the field k.

For part (ii) one combines [BBD82, Theorem 6.2.10] and the Langlands correspondence of Drinfeld–
Lafforgue [Laf02, Theorem VII.6]. By [EK21, Theorem 1.1] the Hard Lefschetz property is also known if
F is a rank 1 Q̄`-local system L, and more generally if it is a twist of such an L by a sheaf as in (i) (see
Theorem 5.4 in loc. cit.).

Proposition 9.1. If the irreducible constituents of F have generic rank at most r and the Strong Conjecture 3.3
holds for any representation of degree ≤ r then the map (6) is an isomorphism.

Sketch of proof. Similar to [BBD82, Lemma 6.1.9] one uses a spreading argument in order to reduce to the
case in which k̄ is the algebraic closure of a finite field k0 and f and η are defined over k0. Then F
corresponds to an irreducible representation ρF : πét

1 (U )→ GLr(Q̄`), where U ⊂ X is a smooth locally
closed geometrically irreducible subvariety (over which F is a shifted smooth sheaf).

Let ρ̄ : πét
1 (U )→GLr(F ) be the semi-simple reduction of ρF . In fact each representation ρ ∈ Sρ̄ gives

rise via the intermediate extension of the associated smooth sheaf to a Q̄`-perverse sheaf Fρ on X.
Similarly to [EK21, Corollary 4.3] one shows

Claim 9.2. The subset Z◦ ⊂ Sρ̄ of those ρ for which the Hard Lefschetz property for the perverse sheaf Fρ
fails to hold, is constructible.

In order to give a complete proof of the claim one would need a theory of perverse étale adic sheaves over
fields more general than Q̄` . Unfortunately, such a theory does not exist in the literature at the moment, but
should be rather formal in terms of the pro-étale topology.

As Z◦ is also stabilized by the Frobenius Φ , we can apply the Strong Conjecture to the Zariski closure Z
of Z◦. This implies that Z◦ contains an arithmetic point, which contradicts (ii) above. �

Remark 9.3. Using Proposition 3.6, it would be enough in Proposition 9.1 to prove the Strong Conjecture in
rank ≤ r on all curves or in any rank on P

1 \ {0,1,∞} for a tame ρ̄.

9.2. Our proof of Theorem B on X0 = P
1 \ {0,1,∞} for ρ̄ tame and r = 2 implies de Jong’s

conjecture [deJ01, Conjecture 2.3] in this case

Let ρ0 : π1(X0,x) → GL2(F [[t]]) be an arithmetic representation and ρ be its restriction to G. By
[deJ01, Proposition 2.4 and Lemma 2.10] we may assume that ρ ⊗

F [[t]] F ((t)) is absolutely irreducible.
By the proof of Theorem B in Section 7, the Φ-invariant point Det(ρ) ∈ PDρ̄(F [[t]]) has a [q]-invariant
image in Dρ̄(g)(F [[t]]). Thus it lies in Dρ̄(g)(F ′) ⊂ Dρ̄(g)(F ′[[t]]) for a finite extension F

′ ⊃ F . Thus

ρ ⊗
F [[t]] F ((t)) comes from a continuous representation G → GL2(F ′′) for a finite extension F

′′ ⊃ F
′

([Bas80, Proposition 2.2]) and thus has finite monodromy. This finishes the proof. �

We observe that our proof avoids the use of the geometric Langlands correspondence, which is used
in [deJ01, Theorem 1.2] to establish the degree two case of de Jong’s conjecture.
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