arXiv:1811.09513v3 [math.AG] 16 Jun 2020

Epijournal de Géométrie Algébrique ) ‘ :
epiga.episciences.org

Volume 4 (2020), Article Nr. 6 EPIGA

Finiteness of cohomology groups of stacks of shtukas as
modules over Hecke algebras, and applications
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Abstract. In this paper we prove that the cohomology groups with compact support of stacks
of shtukas are modules of finite type over a Hecke algebra. As an application, we extend the
construction of excursion operators, defined in [Lafl8] on the space of cuspidal automorphic forms,
to the space of automorphic forms with compact support. This gives the Langlands parametrization
for some quotient spaces of the latter, which is compatible with the constant term morphism.
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Finitude des groupes de cohomologie des champs de shtukas comme modules sur les al-
gébres de Hecke et applications

Résumé. Dans cet article nous démontrons que les groupes de cohomologie a support compact
des champs de chtoucas sont des modules de type fini sur une algébre de Hecke. En guise
d’application, nous étendons la construction des opérateurs d’excursion, définis dans [Lafl8] sur
I'espace des formes automorphes paraboliques, a 'espace des formes automorphes a support
compact. Cela fournit la paramétrisation de Langlands pour certains quotients de ce dernier
espace, paramétrisation compatible avec le morphisme « terme constant ».
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Introduction

Let X be a smooth projective geometrically connected curve over a finite field IF,. We denote by F its
function field, A the ring of adéles of F and O the ring of integral adéles.
Let G be a connected split reductive group over IF,.

Let = be a cocompact subgroup in Z5(F)\Z5(A), where Zg is the center of G. Then the quotient
ZG(F\Zg(A)/Z5(O)E is finite. Let N C X be a finite subscheme. We denote by Oy the ring of functions
on N and Ky := Ker(G(O) — G(Oy)).

Let ¢ be a prime number not dividing g. Let E be a finite extension of Q, containing a square root of 4.
Let Of be the ring of integers of E. We denote by C.(G(F)\G(A)/KnE, E) the vector space of automophic
forms with compact support.

Let u be a place in X \ N. Let O, be the complete local ring at u# and let F, be its field of fractions. Let
G = Ce(G(O,)\G(F,)/G(O,),E) be the Hecke algebra of G at the place u. The algebra J7; ,, acts on
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C.(G(F)\G(A)/KNE, E) by convolution on the right. The following proposition was already known by some
experts:

Proposition 1. For any place u of X \ N, the vector space C.(G(F)\G(A)/KNE, E) is a J;,,,-module of finite
bpe.

Due to the lack of reference, in Section 1 we recall the proof of Proposition 1 for G = SL, to illustrate the
idea of the proof in the general case.

Let G be the Langlands dual group of G over E (i.e. the reductive group whose roots and weights are the
coroots and coweights of G, and vice-versa). Let I be a finite set and W be a finite dimensional E-linear
representation of G!. Associated to these data, in [Var04] Varshavsky defined the stack classifying G-shtukas
(denoted by Chtg x 1) over (X \ N)! and its -adic cohomology groups with compact support in any

degree j € Z (denoted by Hé,N,I,W,E’ where X is a geometric point of (X \ N)). In particular, when I = 0

and W =1 (the one-dimensional trivial representation of the trivial group 60), the cohomology group
HQ \ 915 coincides with Cc(G(F)\G(A)/KNE, E).

The cohomology group H]G N.Iw 3 18 equipped with an action of 77 , by Hecke correspondences on the
stacks of shtukas. Suppose that X satisfies the condition in 2.1.15 (for example X can be a geometric generic
point of X'). One main result in this paper is

Theorem 2. For any place u of X \ N, the cohomology group H]G N.Lw x I8 of finite type as I, , -module.

Since Hg No1x = C(G(F)\G(A)/KNE,E), Theorem 2 is a generalization of Proposition 1. The proof of
Theorem 2 is given in Section 2. The idea is similar to the case of automorphic forms explained in Section 1.
In addition, we use the constant term morphisms of the cohomology groups of stacks of shtukas and the

contractibility of deep enough Harder-Narasimhan strata established in [Xue20].

As an application, in Section 3, we extend the excursion operators, defined in [Lafl8] on the vector space
of cuspidal automorphic forms C:"P(G(F)\G(A)/KNE, E), to C.(G(F)\G(A)/KNE, E).

Concretely, fix an algebraic closure F of F. Let ! be the generic point of X and fix a geometric point ?
over i/, The cohomology group Hé NLWT is equipped with an action of 7t;(17!,7!) and an action of the
AN, LWV

partial Frobenius morphisms. In [Lafl8], V. Lafforgue

(1) defined a Hecke-finite part of H J — (denoted by g
G,N, LW,y G,N, LW,y

(for Og-modules of finite type) to construct an action of Gal(F/F) on Hgifl Wi
AL WL
(2) with the help of (1), he constructed the excursion operators acting on C;' ' (G(F)\G(A)/KnE, E).
(3) with the help of (2), he obtained a canonical decomposition of C¢' ' (G(F)\G(A)/KNE, Q) indexed

by Langlands parameters.

). Then he used Drinfeld’s lemma

In this paper,
(I’) thanks to Theorem 2, we apply a variant of Drinfeld’s lemma (for /77 ,-modules of finite type) to

H’ — and obtain an action of Weil(F/F)! on H — (Proposition 3.2.15).
G,N,LLW,y! GN,LLW,y!

(2’) with the help of (I’), we construct the excursion operators acting on C.(G(F)\G(A)/KNE,E) in
Section 3.4. When restricted to Ce T (G(F)\G(A)/KxZE, E), these excursion operators coincide with
those defined in (2).

(3’) Let .# be a finite codimensional ideal of J7;,. With the help of (2’), we obtain a canonical

decomposition of the quotient vector space

C(G(F)\G(A)/KNE, Q). - C.(G(F)\G(A)/KNE, Q)
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indexed by Langlands parameters (Theorem 3.6.7).

More generally, in Section 3.7, we construct the excursion operators acting on the cohomology groups of
stacks of shtukas, which are compatible with the action of the Hecke algebras and the action of the Galois
group. Moreover, there is a canonical decomposition similar to (3’) for some quotient vector spaces of the
cohomology groups.

In Section 4, we show that the action of the excursion operators commutes with the constant term
morphisms. As a consequence, the parametrization in (3’) is compatible with the constant term morphisms.
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1. Example of automorphic forms for SL,

In this section, we consider the cohomology group of stacks of shtukas without paws, i.e. the space of
automorphic forms. In this section, let N =@ and G = SL,.

1.0.1. Let Bung be the classifying stack of G-bundles over X. For G = SL,, it is the classifying stack of rank
2 vector bundles on X with trivial determinant. It is well-known that (see [Lafl8, rem. 8.21] for more details)

G(F)\G(A)/G(D) = Bung(E,).

Thus
C(G(F)\G(A)/G(O),E) = C(Bung(IF,), E).

It is also well-known that the action of .7, by convolution on C.(G(F)\G(A)/G(O),E) coincides with the
action of G, by Hecke correspondences on C.(Bung(IF,),E).

1.0.2. The stack Bung has a Harder-Narasimhan stratification. For G = SL,, we have
L <(d,~d)
Bung = h_r)n Bun )
deZy

(d,—d)

where Buné is the open substack of Bung defined by the condition that the degree of any line subbundle

of the rank 2 vector bundle is < d. For any dy,d, € Z such that d; < d,, we have an open immersion
Bun="" < Bun=""")_ It induces an inclusion C (Buns(d"_dl)(IF ),E)cC (Bung(dz’_dZ)(IF ),E) b
G G : c G q) c G q) Y

extension by zero. Thus the vector space C.(Bung(IF,), E) has a filtration F¢ indexed by d € Z:

Fé = C(Bung " (F,), E),

with associated graded quotients (for d > 1)

gr‘é = Fé/Fé_l = CC(BunZ(d’_d)

where Bunz(d'fd) is the closed substack of Buné(d'id) defined by the condition that for the canonical

Harder-Narasimhan filtration 0 C £ C € of the rank 2 vector bundle &, we have deg L = d. (When d = 0, we

©0) _ Buné(o'o) which classifies the semistable vector bundles.)

(F,),E),

have Bun G

Since every Fé has finite dimension, Proposition 1 is a direct consequence of Lemma 1.0.4 below.
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1.0.3. Let /:=deg(u). Let g be the genus of X. Let dy = max{0,g—1}+1.

Lemma 1.0.4. We have

C.(Bung(F,),E) = #, - F&.

q

Proof. Applying successively Lemma 1.0.8 below to dy+ 1, dg+2, dg + 3, ---, we deduce that for any d > d,,
we have Fé C HGu -Fgo. This implies Lemma 1.0.4. O

1.0.5. Fix a Borel subgroup B of G = SL,. The group G has only one simple coroot & = (1,—1). A generator
of the coweight lattice is @ = d. Let @ be a uniformizer of O,. Let h$ be the Hecke operator in HGu
associated to the characteristic function of G(0,)®“G(0,,), where

()

1.0.6. The action of h$ on F¢ is defined in the following way: let I['(G(O,)®“G(0,)) be the groupoid
classifying pairs (G --» §’), where G, §” are rank 2 vector bundles of trivial determinant, § --> §’ is an
isomorphism outside # such that when restricted to the formal disc on u, the relative position of § and G’ is
equal to ®”. We have a Hecke correspondence (where the arrows are morphisms of groupoids):

Bung(F,) - T(G(0,)0“ G(0,)) == Bung([F,).

G (G->9)—9

<(d-1,—-(d-1))

For any d € Z such that d — > 0, the projection pr, sends plrgl(BunG ) to Buné(d’id)

. We
deduce a morphism

hg : Fé_l - Fé; f = (pry)(pry)’f.
Similarly, we have a morphism h$ : Fé_l_l - Fé_l. We deduce a morphism
(1Y) hS :grg_l — grg.
Lemma 1.0.7. Ifd > d, then the morphism (1) is an isomorphism.
The proof of Lemma 1.0.7 will be given in the remaining part of this section.
Lemma 1.0.8. For any d € Zs such that d > d, we have
Fe=nG F& 4+ & c o, - FEL

Proof. This is a direct consequence of Lemma 1.0.7. O

1.0.9. To prove Lemma 1.0.7, we need some preparation. Recall that B is a Borel subgroup of G. Let Bunp
be the classifying stack of B-bundles on X. For G = SL,, it is the classifying stack of pairs (£ C €), where
€ is in Bung and £ is a line subbundle. Let T be the torus of G. Let Buny be the classifying stack of
T-bundles on X. For G = SL,, it is the classifying stack of pairs of line bundles (£, £71) on X. We have a

correspondence

(12) Bung < Bung - Bunyp, & < (L C &) (L, E/L).
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1.0.10. For any d e Z, let Bun;(d,’_d,)

condition that deg(£) = d’. (Note that d’ can be negative.) Then Buny = | |;¢z Bun;(d/'_d,). Let

be the open and closed substack of Bunt defined by the

=d’._ =(d’,~d’) ; : =d’ . .
H7% := C.(Buny (I;), E). Consider the vector space 11_)mdEZZO [lyez a<a HT" - It has a filtration F%
indexed by d € Z:

d._ =d’
= || H
d’eZ,d’<d

with associated graded quotients

grd = F§/Fi! = HF".
1.0.11. For any d € Zs(, we define Bung(d’_d) = i’l(Buné(d'_d)) and Buni(
Then (1.2) induces a morphism of groupoids

d,—d) (d’,—d’)

= Ugp<g Bun;

<(d,-d)

<(d,-d)
BunG

) &Buns (@,

<(d,—d)

(F ) 5 Bun; (IF,).

q
We have a constant term morphism

Cg : Fé - F%, frmitf.
When d > 1, we have a commutative diagram:

d-1 d d
Fo & ——F;—=2gr1¢

d-1 d d
Fr? ——Fr ——gry

1.0.12. Let 51, := C/(T(O,)\T(F,)/T(O,),E) be the Hecke algebra of T at the place u. It acts on F}.
by Hecke correspondences. Let h] € Jr ,, be the Hecke operator associated to the characteristic function
of T(0,)@“T(O,). By the Satake isomorphism, we have h$ € He.u S ,%”TS; C A7 ,, where S, is the
symmetric group. In #% ,,, we have h$ = q((hL)™! + hI).

Lemma 1.0.13.

(i) For any d € Z, the action of hS induces a morphism hS : F% — F%”;

(ii) the induced morphism on the associated graded quotients h< : gr% — grglfl is an isomorphism.

Proof. (i) For any d € Z, the action of hZ; induces an isomorphism:

Bun;
(the inverse is induced by (h])~!). Thus the Hecke operator 1l induces an isomorphism
(1.3) hlH7? S HZA
The Hecke operator (h])~! induces
(1.4) (hI)y™t:H7? 5 HFA
As a consequence, the Hecke operator h§ = g((hI)™! + hl) induces a morphism
(1.5) WS H7Y — H7%! x HZ 4,
Applying (1.5) to all d’ < d and taking the product, we get a morphism: h$ : [T; <4 H;d' = [ar<as H;d”,
ie. hG:F4 — Fil,
(ii) The morphisms h$ : F% — F%Jrl and hG : F%_l - F%_“l induce a morphism

hG : F3/FEY — PR+ /pEH-L
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Recall that gr% = F%/Pglfl = HFd. The action of h$ = g(hL + (h])~!) on F%/Faifl is equal to the action
of ghl on F%/P%_l, because by (1.4) we have

(h['l:))—l (H]:"d) — H;d—l - Fajfl_l,
i.e. the morphism (h])~: F¢/F41 — Fd*!/F4+=1 i the zero morphism. ]

Proof of Lemma 1.0.7. Let d > . Since the constant term morphism commutes with the action of the Hecke
algebra ¢ ,,, we have a commutative diagram

16 a1 M g
(L6) grét ——grd
G

It is well-known that if d > max{0,g — 1}, then Cg : grg — gr% is an isomorphism. (Indeed, for any

Ee Bunz(d’_d)(IFq), let 0 C £ C € be its canonical Harder-Narasimhan filtration, then deg £ = d. We have

€/L = L7, The condition d > max{0, g — 1} implies that Ext'(£~!,£) ~ H!(X,£?)=0. Thus E ~ L® L.

Let Bun;(d’_d) =i (Bunz(d’_d>) N n‘l(Bun;(d’_d)). We deduce that

(L7) Bung “"(E,) — Bunj " "(E,) — Buny """ (E,)
- =(d,—d) ~ =(d,—d)

are bijective. Thus C.(Bun (IF,), E) — C.(Buny (), E).)

As a consequence, if d — 1 > max{0, g — 1}, then the two vertical morphisms in (1.6) are isomorphisms.
Moreover, by Lemma 1.0.13, the lower line in (1.6) is an isomorphism. So the upper line in (1.6) is an
isomorphism. O

Remark 1.0.14. For a general group G, to prove Proposition 1, we need [DG15, Proposition 9.2.2] to show
that an analogue of (1.7) is bijective. We do not give details here because we will prove some more general
statements in Section 2.

2. Proof of Theorem 2

In this section, we consider the general case.

2.1. Reminder of cohomologies of stacks of shtukas

The stacks of shtukas and their cohomologies are defined in [Var(04], recalled in [Lafl8, Section 2] and in
[Xue20, Section 1 and 2.

As in the introduction, let N C X be a finite subscheme. Let I be a finite set and W be a representation
of G! (in this paper, this always means a finite dimensional E-linear representation of G! )-

2.1.1. In [Xue20, Definition 2.3.1], we defined a classifying stack of G-shtukas Chtg n w over (X \N ) (this
stack is denoted by Chtg\II?I,W in [Lafl8, notation 4.4]). It is a Deligne-Mumford stack locally of finite type.

2.1.2. Let G* be the adjoint group of G. Let KGad denote the coweight lattice of G*¢ and Xgad = KGad ®zQ.

Fix a Borel subgroup B C G. Let Kgad C KGad denote the monoid of dominant coweights. Let KZS C Kgad

be the corresponding rational cone.
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+Q
Gad ’

in Qs of simple coroots of G, or equivalently, of simple coroots of G modulo KQZQG, where A 7, is the

For any py, pp € A we say 1 < pp if and only if py — py is a linear combination with coefficients

coweight lattice of Z; and XQZ)G = KZG ®7z Q.

2.1.3. In [Lafl8, défi. 2.1] and [Xue20, § 2.3.3], for any y € Ké’g, we defined an open substack Chté{lN'l'W of

Chtg n 1w. For any py, py € Kgff and p <y, we have an open immersion:
<p <
(2.0) Chtg N w = Chtgn Lw-

— _ <H
We have ChtG,N,I,W = U;AGAZ;% ChtG,N,I,W'

Remark 2.1.4. The above Harder-Narasimhan truncations Chté{l N.Lw on Chtg y 1w come from the Harder-
Narasimhan truncations defined in [Schl5] and [DG15] for Bung.

2.1.5. Recall that we have fixed & C Zg(F)\Zg(A) in the introduction. As recalled in [Xue20, Proposi-
tion 2.3.4], the quotient Chté"N I W/E is a Deligne-Mumford stack of finite type.

2.1.6. In [Lafl8, défi. 4.5] and [Xue20, Definition 2.4.7], we defined a Satake perverse sheaf ?g’N’I’W over
Chtg n,;,w/E (with the perverse normalization relative to (X \ N)!). When W is irreducible, ffg’N’LW is
(non canonically) isomorphic to the intersection complex of Chtg y 1w /2 (with coefficients in E and with

the perverse normalization relative to (X \ N )! )-

2.1.7. Asin [Xue20, § 1.1.7], let pg : Chtg N w /2 = (X N\ N)! be the projection of paws. Let ¥ — (X \ N)!

be a geometric point.

Definition 2.1.8 (¢f. définition 4.7 in [Lafl8] and Definition 2.5.1 in [Xue20]). For any y € Kgfﬁ and any
j € Z, we define

- _ _
HES = Ri(pe)(FE 9 o);
G,N, LW (P )i G,N,I,W|ChtGF’NJ’W/a)'
Isp g Sk
HG,N,I,W,? T j_CG,N,I,W ¥

< i, <
Remar.k 2.1.9. (i) Since Chta{lN’Lw/E is of finite type, U{JCETI\?,I,W is an E-constructible sheaf on (X \ N)!
< . . . .
and Hé,NPfI,W,K is a finite dimensional E-vector space.

(ii) }Cé% 1w and Héj\;flle depend on Z. We do not write 2 in the index to simplify the notations.
(iii) Let d be the dimension of Chtg y ;w relatively to (X \ N)!. By [BBD82, § 4.2], the cohomology
group Héi]y 1w is concentrated in degrees j € [~d, d].

2.1.10. For any pyy, p, € KZS and pq < yy, the open immersion (2.1) induces a morphism of sheaves:

j; <m j, <p
Heniw = He N w

Definition 2.1.11 (¢f. Definition 2.5.3 in [Xue20]). We define
i i S
Henpw = ImIC N 1w
I

in the category of inductive limits of constructible sheaves over (X \ N)!. And we define

j 1 J<p
Henwx = h_r>nHG,N,I,W,§'
p

j _ gl
We have HG,N,I,W,E = ‘rHG,N,I,W x
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2.112. By [Xue20, § 2.1.9], the cohomology J{é,N,I,W is functorial on W. In particular, for W = W; & W,

we have ChtG,N,I,W = ChtG,N,I,Wl UChtG,N,I,WZ and j{]G,N,I,W = g_C]G,N,I,Wl GBG_C]G,N,I,WZ'
2.113. When I =0 and W =1, we have Chtg n,9,1 = Bung n(IF;) = G(F)\G(A)/Ky and, for X a geometric
point of SpeclF;, we also have HgN 013 = Cc(G(F\G(A)/KNE,E).

2.1.14. Let u be a place in X \ N. Let | = deg(u). The Hecke algebra J7; , acts on Hé,N,I,W,E by Hecke
correspondences (see [Lafl8, § 2.20 and 4.4] and [Xue20, § 6.1-6.2]). This action does not preserve the

I<p
subspaces Hg 1 -

Concretely, for any dominant coweight f of G, let h[g,‘; € J;,, be the characteristic function of

G(0,)@PG(0O,). We have the Hecke correspondence associated to hg:

— Pr pr —_
Chtg 1w /E «— T(G(0,)@PG(0,)) —> Chtg n. 1w /E,

. , . 1D+ . .
where pr; and pr, are finite étale morphisms. For any p € $R(,,, the projection pr; sends

- < —- <ptpl = . .
przl(ChtG{lN,LW/:) to Cht&;i’w/a. It induces a morphism

G .y <m Jr<p+pl
hﬁ “Honiwz — Honows

2.115. For i €1, let pr; : X! — X be the projection to the i-th factor. From now on, let X be a geometric
point of (X \ N)! such that for every i, € I, the image of the composition

; (Pripr)

X — (X\N) (XNXN)x(X\N)

is not included in the graph of any non-zero power of Frobenius morphism Frob : X \ N — X \ N. (This
condition will be needed in 2.3.11 and Proposition 2.3.15.)
In particular, when i = j € I, the above condition is equivalent to the condition that the composition

X — (X\N)! PI X NN is over the generic point 77 of X \ N.

One example of geometric point satisfying the above condition is ?, a geometric point over the
generic point 177 of X!. Another example of geometric point satisfying the above condition is A(7]), where
A : X < X! is the diagonal inclusion and 7] is a geometric point over 7.

However, for any i € I, let Froby;; : X! — X! be the morphism sending (Xj)jer to (x;)]-el, with x” = Frob(x;)
and x]’. = x; if j # i. Then Froby;; A(77) does not satisfy the above condition.

J<u

. ,
Notation 2.1.16. In the remaining part of Section 2, we write H]G'_” (resp. H]G) instead of H; | w5 (resp.

Hé’N’I’W’E) to simplify the notation.

2.2. Strategy of the proof of Theorem 2

2.2.1. We denote by R\Ead the dominant cone of the coroot lattice of G4, We have R\Ead C ;\\Ead. For any
+Q

positive integer 7, we have Azr;ad - %R+ad CAL-

Fix r large enough as in [Xue20, § 5.11].
Definition 2.2.2. We define a filtration F& of Hé:

> .
FL:=Im(H;™ — HL).
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2.2.3. For any pq, j; € %R\Ead and p; < p,, the morphism Hé’ﬁm — H]G factors through Hé'gm. Thus
FE c F?
G G-

Since every Fé has finite dimension, Theorem 2 is a direct consequence of the following proposition:
Proposition 2.2.4. There exists g € %R\Ead large enough (a priori depending on u and X), such that
HL = A, - F

Proposition 2.2.4 will follow from Lemma 2.2.8 below.

2.2.5. We denote by I; the set of vertices of the Dynkin diagram of G. For any i € I\5, we denote by «;
(resp. d;) the simple root (resp. simple coroot) of G associated to i. We denote by (, ) the natural pairing
between coweights and weights. Let P; be the standard maximal parabolic with Levi quotient M; such
that Tg — Ty, = {i}, where I}, is the set of vertices of the Dynkin diagram of M;. By a quasi-fundamental
coweight of G we mean the smallest positive multiple of a fundamental coweight of G4, which is a coweight
of G. Let w; be the quasi-fundamental coweight of G such that (w;,a;) = 0 for any j € T)y,.

Notation 2.2.6. Let C; € Q< be the constant in Proposition 5.1.5 (c) of [Xue20]. Let
1
C(G,u) = CG + maxierc(wil + ;di,ai),
where | = deg(u).

Remark 2.2.7. The above definition implies that for any u € %R\Ead and any i € I, if (i, a;) > C(G, u),
then (y — w;l - %di,aj) >0 forall jelg, ie pu—w;l- %di is dominant.

Lemma 2.2.8. Let p € %Egad such that (p, a;) > C(G,u) for all j € Is, then for any i € Ig, we have
g
Fhc s, Fr 7

The proof of Lemma 2.2.8 will be given after Lemma 2.2.11 below.

Proof of Proposition 2.2.4 admitting Lemma 2.2.8. We use the same argument as in the proof of Lemma
5.3.6 in [Xue20]. Let Z(C) be the set of p € %R\Ead such that (y, a;) > C(G,u) for all j € I'5. Let (J(C) be
the set of y € Z(C) such that p— %di ¢ Z(C) for all i € I;;. The set O(C) is bounded, thus is finite. Let
Mo € %R\Ead such that py > p for all € Q(C).

For any A € Z(C), there exists a (zigzag) chain A = A0 > A > s A m=1) 5 4 0m) %Ezad for some
m € Zs¢ such that

(i) for all j, we have AU) € Z(C),

(ii) for all j, we have AU — AU+ = %di for some i € I§;.

(iii) A e Q(C).
Applying successively Lemma 2.2.8 to A A()_ ... until A" we deduce that

(m)

FAc i, Fi

Since A" < g, by 2.2.3, we have Fé(m) C Féo, Thus Fé C Mg, .Fé‘)_ O

Notation 2.2.9. For any quasi-fundamental coweight w; of G, let hff,l_ € G,y be the characteristic function of
G(0,)@* G(Oy).
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2.2.10. Suppose that p—w;l - %di is dominant. By 2.1.14, hgi induces morphisms

—w;l
hg FL " > FL

G . phwil-1d; p i
he,  Fg —F; "
They induce a morphism on the quotient spaces
. hG 1 v
p—w;l p—wil=ta; Mep  _p o p-ta;
(2.2) Fo " /F; —> Fo/Fs "

Lemma 2.2.11. Let p € %R\Ead such that (p, a;) > C(G,u) for all j € I, then for any i € I, the morphism (2.2)
is an isomorphism.

The proof of this lemma will be given in 2.5. The following figure shows an illustration of Lemma 2.2.11
for G = GL3, and i = 2, where the set Sy, (p) is defined in 2.3.9 below.

Proof of Lemma 2.2.8 admitting Lemma 2.2.11. We deduce from Lemma 2.2.11 that

_ly.
(2.3) Fl=nG Bl BT

i y : - Cij ~
For any i € [}5, we have w; > %ai. Indeed, since w; € %Rgad, we have w; = Z]’ ~d; for some ¢;j € Z,.
Since (w;, a;) = 0 for all j #1i € I}, we have (w;, w;) = (w;, %ai) = %(a)i,ai). The fact that {(w;, w;) >0
implies ¢;; # 0. Thus ¢;; > 1.

v —w;l ~rdi
Taking into account that [ > 1, we have p— w;l < p— %ai. Thus Fé “tc Fé ""'. As a consequence,

1y 1y 1 v
K G ph % Py i Py di
(2.4) FoChyg -Fg " "+ Fg CHGu Fg ™.
O

The goal of the remaining part of Section 2 is to prove Lemma 2.2.11. We need to use the cohomology
group H)y, of the stack of M;-shtukas, the constant term morphism from Hg to Hy, and the contractibility
of deep enough Harder-Narasimhan strata of Chtg. We recall these in Section 2.3. Then we study the action

of hgi on Hyy, in Section 2.4. Finally in Section 2.5, we use Section 2.3 and Section 2.4 to prove Lemma
2.211.
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2.3. Cohomology of stacks of M-shtukas and constant term morphism

For the convenience of the reader, we extract some results from [Xue20]. The goal of this subsection is to
state Corollary 2.3.17.

As before, let I be a finite set and W be a representation of G'. Let P be a standard parabolic subgroup
of G. Let M be the Levi quotient of P.

2.3.1. In [Xue20, § 2.6.2], we defined the classifying stack of M-shtukas Chty; n ;w over (X \ N) . Itisa
Deligne-Mumford stack locally of finite type.

In [Xue20, § 2.6.3], for any p € KES, we defined an open substack Chtf\f’N’I’W of Chtys n 1, w. We have

_ _ p
Chtyrn,,w =U peh' Chtyy nrw-

2.3.2. Let Z) be the center of M, XZM/ZG the coweight lattice of Zy;/Zg and KQZQM/ZG = KZM/ZG ®7 Q. In
[Xue20, Definition 1.7.2 and 2.6.3], for any v € ASM/ZG, we defined an open and closed substack Cht]%/f,}:f/,l,w

<p <p o . <uv
of ChtM,N,I,W' We have ChtM,N,I,W = |_|VEA<IZ)M/ZG ChtM,N,I,W'

Let E C Zg(F)\Zg(A) as before. We defined the quotient Chtﬂf}\?,llw/E. By [Xue20, § 2.6.3], it is a
Deligne-Mumford stack of finite type.

Remark 2.3.3. E is a lattice in Zg(F)\Zg(A) but only a discrete subgroup in Zy;(F)\Zy;(A). Thus the
stack Chtzs\f’N’Lw/E is only locally of finite type.

2.3.4. Asin [Xue20, § 1.5.11], let
d.xQ “Q
Prp’ i Agu = Az 76
be the projection. In [Xue20, § 1.5.13], we defined a partial order "<" on KSM/ZG which is induced by the

partial order on A2 . We defined a translated cone A%, ={ve K?M/ZG’ v < pr;’;d(]d)} in A2 By

Gad* Zy/Zg * Zyl/Zg®
— — <
[Xue20, Lemma 1.5.14], if v ¢ AZM/ZG N pr%d(%REad), then the stack Chtxf}z,/l w is empty.

, P(Oy)
2.3.5. In [Xue20, Definition 3.4.2], we defined Cht) n 1y := Chtpyn 1w X G(Op). In [Xue20, Defini-

tion 3.4.5], we defined Chtz\/gl,’;\f,l,w and Chtéﬁ\}"}’w in the same way.
2.3.6. In [Xue20, Definition 3.4.7] , we defined a Satake perverse sheaf ‘T;V%,N,I,W over Chty; ;1 w/E (with
the perverse normalization relative to (X \ N )! )-

Definition 2.3.7 (¢f Definitions 3.4.7 and 3.4.9 in [Xue20]). Let py : Chty = (XN N)! be the
morphism of paws. For any u € ng and v € KEM/ZG’ for any geometric point X of (X \ N)!, we define

"LEWY 5 4
iHM,N,I,W T R](pM)!(?M,N,LW|Cht/S"’V /':)
M,N, W/~
"LEwy a Sy
HM,N,I,W,E . J{M,N,I,W e
j,<p L "j<uv
Hy(N1wx = H HyiNw
AH
VEAZM/ZG
'j i 1 D SH
Hy nopw s = hm, HyrNowz
[4
We also define
",V . "i,<u,v
H/ _i=limH "

M,N,I,W,x " "M,N,LW,x"
M
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y definition, HJ A, N 3 W is a finite dimensional E-vector space and it depends on =.

Notation 2.3.8. From now on, we will omit the indices N,1, W,x and’ to simplify the notation.
2.3.9. Let pe AES In [Xue20, Definition 4.1.1], we defined a bounded set:
Sm(p):={A e AT 1A < [ YA eALT I prif (1) = prif ().

where < is the partial order in Kgad

2.3.10. In [Xue20, Definition 4.1.10], we defined a locally closed substack ChtéM(P) of Chtg and an open
W) of Chty,. In [Xue20, Definition 4.6.2], we defined

);

s i Sm(#) /o
M = v et 72| )

and closed substack Chtls\j\f

2.3.11. In [Xue20, § 3.5.8 and 4.6.3] for any p € 1R+

Gaa» We defined the constant term morphism:

Pj,<p 140 <p J<u.
Ce cHe™" — Hyp s

P,j,Sm() | 147 Sm(p) 7 Sm(p)
Ce M .HGM —>HMM.

(In fact Definition 2.3.7 is valid for any geometric point X. It is here that we need the conditions in 2.1.15.
See Remark 2.3.16 for more discussion.)

Notation 2.3.12. In the following, let i € I'; and P; be a maximal parabolic subgroup with Levi quotient M; such
that T — Ty, = {i}. We note P:= P;, M := M, a := a;, d := d; and @ := w;.

2.3.13. Let a as in Notation 2.3.12. Note that it is a simple coroot of G but not a simple coroot of M. Let
UE %ﬁgad and p > %0?. By the proof of Lemma 5.3.1 (1) in [Xue20], we have an open substack and the
. <u
complementary closed substack in Cht":
_lg
Chty " - Chtg « Chtg®
We have a long exact sequence of compact support cohomology groups:

_1 : : _lgy fir .
(2.5) H] <p-pd Ji H] Sp Hésm(ﬂ) _)Hgl,s;t L fin Hgl,gy .

2.3.14. By the proof of Lemma 5.3.1 (1) of [Xue20], we also have an open substack and the complementary
closed substack in Chtif:

_1y
Cht;? 7% = Chtl « Cht;r ™

ad
Moreover, by [Xue20, § 4.1.7], Chtij‘f(m = Chtif’ P S it is open and closed in Chtjs\f. Thus we have a
(split) short exact sequence of compact support cohomology groups for every degree j:

1 _ _
0 _>H1]\;ISH 14 _>H1]\;IS/M _)HIJ\;ISM(P) 0
1 ; ad
And we have HIJ\;ISM(V) — H]J\;ISV’PYP (M).

Proposition 2.3.15 (¢f Lemma A.0.8, Proposition 4.6.4 and Proposition 5.1.5 in [Xue20]). Let p € %R\Ead and
U= %0?. Let je Z. Let Cg be the constant in [Xue20| Proposition 5.1.5.
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(1) We have a commutative diagram:

: jr<p=ta fi jr<n o Sw ()
(2.6) Hg Hg Hg
l Pt L o l cPiSMn)
G G
jr<p-td jo<p i Sa(p)
HJ, H), HMW,

(i1) If{u, a) > Cg, then the morphism CP'j'SM(#) is an isomorphism.
H P G 4

(1ii) If moreover (u,y) > Cg for every simple root y of G, then for every j € Z, the morphism H]G = Hé is
injective. In particular, f; and fj,1 in (2.5) are injective. So we have a short exact sequence:

p<p-ta fio < S
0— HL™ T Ll o gl o,

Remark 2.3.16. In [Xue20] the constant term morphism Cg'j "= and Proposition 5.1.5 are stated for x = F,

a geometric generic point of X'. But in fact, in loc. cit., we can replace F by any geometric point X satisfying
the conditions in 2.1.15 (of this paper). The same arguments go through.

Corollary 2.3.17. Under the hypothesis of Proposition 2.3.15 (iii), we deduce from (2.6) a commutative diagram
. . _l v _ .
(27) Hé S}"/Hg Sp—a = H]Gl SM(,”)
lcg]s;a ~ l CgrfvSM(}l)

P SHerd = Su()
Hy; " /Hy, — H); .
. P,j,<p . . .
Thus the left vertical map C is an isomorphism.

2.4. Action of Hecke operators

Let M as in Notation 2.3.12. The goal of this section is to prove Lemma 2.4.3.

241 Let H, = C.(M(O0,)\M(F,)/M(0O,),E) be the Hecke algebra of M at the place u. The cohomol-

ogy group HI</I is equipped with an action of J#}, by Hecke correspondences (see [Lafl8, § 2.20 and 4.4]
and [Xue20, § 6.1-6.2]) and equipped with an action of J7; , via the Satake transformation J7; ,, < % ,,.

Definition 2.4.2. We define a filtration Fy, of H]]\/I
1= < '
ne—R; Fy :=Im(H ™" — H]))

Lemma 2.4.3. Let w as in Notation 2.3.12 and hS, as in Notation 2.2.9.
(1) Forany A € %T?f the Hecke operator hS, induces a morphism

Gad»
hG
(2.8) Fy =5 Farel,
(ii) If A — %0? is still in %R\Ead, the induced morphism on the quotients
A-La hS Mwl-Ld
(2.9) Fp/Fy T = Flrel/py [T

is an isomorphism.

To prove this lemma we need some preparations.
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2.4.4. We define
Q) := {6 coweight of G conjugate to w, O is dominant for M}.

Since w is dominant for G, for any 6 € (), we have O < w for the order in KG.

2.4.5. For any dominant coweight 6 of M, let hé\f € J)1,, be the characteristic function of M (0,)@°M(0,).
We can view h$ as an element in %, by the Satake transformation J#;, <> %, ,. We have the
following equality (up to multiplication by a power of q) in J#; ,:

(2.10) WG =M+ Z cohM,  co € Qs
0eQ), 02w

2.4.6. Forany 0 € Q, 0 # w, we have v -6 > %d for the order in Kg (hence for the order in Kgad). Indeed,
we have 0 < w, i.e. w—0 = Zj %o?j for some c; € Z. Recall that & = ;. Then the fact that (w, a;) = 0 for
all j =i € I; implies (w, w — 0) =(w, %ai) = %(a),ai). Since [|0]|? = ||w||?, we cannot have (@, —0) = 0.
This implies ¢; # 0. Thus ¢; > 1.

Moreover, since [ > 1, we have wl - 0] >

1 v
70(.

Proof of Lemma 2.4.3. Recall that in 2.3.4 we defined a projection pr?)d : Kgad - K?M /76 We will write
pr:= pr?gd to simplify the notations.
(i) Let A € %Egad and v € ;\\ng /7.~ Note that w is a coweight of the center of M. Thus the Hecke operator
M/ &G

hM induces an isomorphism of stacks (¢f [Xue20, § 1.3.1] applied to the reductive group M and (2) of the
proof of Lemma 6.3.3):

-~ <Mwl, I
ChtiY /2 5 Chts Hh VPl g
This induces an isomorphism of cohomology groups:

<AV j,<A+wl, v+pr(w)l

(2.11) WMH = S HY,

Now consider the Hecke operator hg[ for 0 € () and 0 # w. As in [Lafl8, § 2.20 and 4.4] and [Xue20,
§ 6.1-6.2], we have the Hecke correspondence associated to 0:

—~ PI 0 pPr; —_
Chty /2 —T(M(0,)@’M(0,,)) —> Chty /E

where pr; and pr, are finite étale morphisms. The morphism pr; sends prgl(ChtiI’\’v/E) to
Chti;”el'wm(g)l/ E. This induces a morphism of cohomology groups:

M . 77, <AV 7, <A+0Lv+pr(0)!
(2.12) hy : Hy, — Hy;

Taking into account (2.10), we deduce from (2.11) and (2.12) a morphism

(2.13) H]{;IS/\,V E) H]{;ISA+91fV+Pr(9)l % H]]&[Sz\+wl,v+pr(w)l.

0€Q), 0w

Consider the RHS of (2.13). For any 6 € Q) and 6 # w, by 2.4.6 we have 0] < wl — %02. Thus

j, <A+0Lv+pr(0)] j,<Atwl-1d, v+pr(0)]
(2.14) Hy; C Hy; )

By [Schlb, Proposition 3.1.2], pr is order-preserving. Thus pr(0)! < pr(w)! - pr(%d). We deduce that
(215) H]];;IS/\+wl—%d,V+pr(9)l c ]_[ H]]\.;IS/\+Q)Z—%02,1/.

v’ <v+pr(w)l-1 pr(d)
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Moreover, by loc. cit. pr(d) > 0, thus

‘ R

(2.16) ]_[ H}]V,IS/le S,V c ]—[ H] <A+wl, v’
V’Sv+pr(w)l—17pr(02) V'<v+pr(w

Combining (2.14), (2.15) and (2.16), we deduce that the RHS of (2.13) can be sent in

i, <Al v’
[ rl H]]\/[ +wl,v %

v’'<v+pr(w)l

j, <A+wl, v+pr(w)!
H]
M

’

Hj,S/le,v'
!

which is nothing but [, - . So (2.13) induces a morphism
g V' <v+pr(w) p

<A, j, <A+wl, v’
hg:HZJVI j— ]—[ H]]VI e

v'<v+pr(w)!

Now fixing A and taking product over all v’ € K?M sz, such that v < pr(1), we obtain:
(2.17) hg . ]_[ HIJ\‘;IS/\’V’ N rl H[]\';IS/\HUZ,V’.
v'<pr(A) v/ <pr(A)+pr(w)!

By Definition 2.3.7,

<AV <A j,<At+wl, v o rf, <A+l
[ T B =8 HJ, = H
v'<pr(A) Vv <pr(A)+pr(w)!

We deduce from (2.17) the morphism (2.8).

(ii) By 2.3.14, we have
J<A B SA=td i Sy(A) L j <A, pr(d)
Hy; " /Hy, =Hy, MV = Hy, ;
j<Mol g SA-tatwl i Sy(Atwl) <Al pr(A+ol)
H /Hy =Hy™" = Hy :
For any 6 € Q and 6 # w, by (2.12), (2.14) and (2.15), K induces a morphism
y y 0 p
j,<A,pr(}) j<Mwl-td,v < Atel-td
HY; - [] HY, = H) :
V’Spr(/\)+pr(w)l—%pr(d)
Thus the morphism

H i< _ly hM H "</\,lV 1
H],S/\/HIJ\;I_/\ ca g H],s/\+a)l/H1]VI_ s d+w

is the zero morphism.

By (2.10) and (2.11), we deduce that

]</\/HJ <A- iH] </\+wl/H] <A-litwl

is an isomorphism. Finally, we deduce that (2.9) is an isomorphism. O
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2.5. Proof of Lemma 2.2.11

By [Xue20, Lemma 6.2.12], the action of J7;,, commutes with C g The following diagram is commutative,
where the horizontal lines are the exact sequences in 2.3.13 and 2.3.14, the vertical morphisms are constant
term morphisms:

p-wl-La H-wl -l p—w-1td
F. F FL/FL
] s
1y 15
pra M @
FG FG FG/FG
(a) \ (b) ‘ ()
p-wl-La p-wl ]4 wl . p-wl-Ld
F, Fy; /FL;
E | =
1 1y
p—yd iz H o ph—ra
FM F}, Fly/Fhy

I-
14 wl/F# @ F/Fé
cL cg[
_ —w-Ltagr S
F];\A/I wl/FZ;\J/I w—7 F’A /Fy

where the isomorphism of the lower line follows from Lemma 2.4.3. Moreover, by Corollary 2.3.17, the
vertical morphisms are isomorphisms. We deduce that the upper line is an isomorphism. O

Remark 2.5.1. To prove Lemma 2.2.8, we only need the surjectivity of the morphism in Lemma 2.2.11. But
our proof gives the isomorphism as well.

Remark 2.5.2. In Section 3, we only need to use Proposition 2.2.4 for X = F But we prefer to state
Proposition 2.2.4 for general X.

Remark 2.5.3.

(i) We do not know if the statement of Theorem 2 is still true for u € |N| because our argument uses the
Satake transform for the spherical local Hecke algebra.

(i1) Let JG := (KN\G(A)/KN, E) be the global Hecke algebra. We have J7; = J5,,- Theorem 2

uele
implies that HG N.Iw x i a HG-module of finite type.

2.5.4. Proposition 2.2.4 is proved for X satisfying the condition in 2.1.15. Now we extend it to more general
geometric points. For (1;);cs € IN', the partial Frobenius morphism

i mi \* gl =, gl
[ 12 (] [Erobly) 36w = Honiw
defined in [Lafl8, Sections 3 and 4.3] induces a commutative diagram

j, <po+K

Jr<Ho
H G,N,I,W

G,N, LW

|—>fH

[TFrob,’ (%)

G,N,I,W |l—I Frob_i"" (E)
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Since the action of J;, commutes with the action of partial Frobenius morphisms, we deduce from

j _ J»<Ho
:HG,N,I,W o= %,u 'HG,N,I,W - that
i I, <po+K
2.18 3 | A i |
( ) GN,LW [1Frob, . (%) Gu GN,LW ﬂFrob?”’ (%)

{i} i}

Let ¥ be a geometric point of X! such that for every i, the composition J — (X \ N)! P XN is over
the generic point 77 of X \ N. Then there exists X satisfying the condition in 2.1.15 and (1;);¢; € N such that

Y= ]_[Frob{_i?’ (%). (For example, for J = Froby;; A(77) we have v =[], Frob{_ji (Frob(A(7))), where Frob is
the total Frobenius so Frob(A(7)) = A(77), which satisfies 2.1.15.) We deduce from (2.18) that Proposition 2.2.4

is also true for v.

3. Global excursion operators

Recall that in Definition 2.1.11, we defined an inductive limit of E-constructible sheaves J'CJG N over

(X \ N)L. In this section, we write ﬂ{} W= J‘C]G N w to simplify the notations.
The goals of this section are Construction 3.4.6, Theorem 3.6.7 and Construction 3.7.6. For this, we need
a specialization morphism constructed in Section 3.1. We also need some variant of Drinfeld’s lemma to get

an action of Weil(F/F)! on J—C; |- in Secton 3.2.
" n

3.1. Specialization morphism

3.L1. Let I be a finite set. We denote by A : X — X! the diagonal morphism. We denote by F! the function
field of X! and 1! = Spec(F!) the generic point of X!. We fix an algebraic closure F! of F! and denote by

1! = Spec(F!) the geometric point over 1'. Moreover, we fix a specialization map
(3.9 sp:nl — A(7]).
It induces the homomorphism of specialization:

. arl
(3.2) sp*: )

j
- H; wil—
,W‘A(ﬁ) LW

By [Lafl8, Proposition 8.32], this morphism is injective.

Proposition 3.1.2. The morphism (3.2) is a bijection.

Notation 3.1.3. For any i € I, let Froby; : X! — XTI be the morphism sending (Xj)jer to (x]'-)]-el, with x; =
Frob(x;) andx]f =x; ifj#i.

Proof of Proposition 3.1.2. We only need to prove the surjectivity. The proof consists of 3 steps.
Step 1. Let pg € AE’S as in Proposition 2.2.4 such that

q ' Jr<p
(3.3) Jﬂ’WLTI = A KIS0

’7'

where 5{}':5\,’40 is the E-constructible sheaf over (X \ N)! defined in Definition 2.1.8. Let () be an open
dense subscheme of (X \ N)! such that ﬂ'f}j,”o

0 is smooth. By [Lau04, Lemma 9.2.1] (the argument is
0

recalled in the proof of Lemme 8.12 of [Lafl8]), the set {([ ];¢; Frob{r?}i)(A(q)), (m;);c; € N} is Zariski dense
in X!. Thus there exists (1;);c; € N! such that ([, Frobﬁi})(A(ﬂ)) € Q.
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n;

Step 2. The image by [];¢; Frob{i’} of the specialization map (3.1) gives a specialization map

F []_[Frob?;}] (")

iel
We have a commutative diagram:

j{jl <Ho

(3-4) LW

(TTFrob)(A(7))

o

I’W|<nFrob><A<r7>)

n:

N []_[Frob;y}] (A(T)).

iel

ﬁj* j, <Ho

Bl T _
@ W A(TErob)(yT)
sp j

L) | _
(b) LW (Erob)(yT)

where [[Frob is a shortcut of [[;; Frob{lf}. The horizontal maps are homomorphism of specialization

—~ > .
induced by sp. The vertical maps come from the morphism of sheaves inWﬂ ' H;,W'

. j, <Ho
Since J{I,W

isomorphism.

0 is smooth and ([];¢; Frob?i"})(A(q)) € (), the morphism (a) in the diagram (3.4) is an
0

Now we show that the morphism (b) in the diagram (3.4) is surjective. Since (]] Frob)(?) ~ F, by (3.3)

we have

35 3¢ ' _
(3.5) LW (rTErob) ()

Let x € ij _
LW (rTErob) ()

j, <
isomorphism, there exists by € J'C; WM 0

surjectivity of (b).

_ J»<Ho
=Gy 'J{I,W

. Then x =} hyay for hy € 5, and a; € H;:I?VMO

(ITErob)(nT)’

— . Since (a) is an
(ITFrob)(n")

such that a; = 5p"(b;). Moreover, the diagram (3.4) is
(TTFrob)(A(T) = 580 gram (34)

compatible with the action of J#; ;. Thus x is the image of ) hiby € J—C{’W|(n

. This proves the
Frob)(A(77))

Step 3. As in the proof of Proposition 8.31 in [Lafl8], we have a commutative diagram

vl
LW (rTErob) ()
:Ln,.da';a

5/ |
LW A(ﬁ)

O

(3.2)

I'W’mFrob)(%

e
= l [Tier F{ig

J-Cj
LW

where the vertical morphisms are the partial Frobenius morphisms defined in [Lafl8, § 4.3]. The surjectivity

of (b) implies the surjectivity of (3.2).

3.2. Drinfeld’s lemma

O

Drinfeld’s lemma is first proved in [Dri89, Proposition 6.1], then generalized in [Lau04, Theorem 8.1.4]

and [Lafl8, lem. 8.2].

3.2.1. We fixed an algebraic closure FT of F! and sp in 3.11. As in [Lafl8, rem. 8.18], we define

FWeil(nI,?) = {6 € Autfq(ﬁ) |3(11;)ie; € 21, 5.1 6|(F1)perf = ]_[(Frob{i})”"},

i€l

where (FT)Perf is the perfection of F, Froby;, is the partial Frobenius defined in Notation 3.1.3.
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3.2.2. Note that we have 711(1,7]) = Gal(F/F). Let Weil(#,7]) be the Weil group in 771(7,7) (also denoted
by Weil(F/F)).

We have Tzl(nl,?) = Gal(ﬁ/FI). Let Weil(iql,?) be the Weil group in nl(ql,?) (also denoted by
Weil(ﬁ/FI)). That is to say,

Weil(r', 1) = {7/ € Autp(FI)|Ane Z,s.t.y = Frob”}.
q
As in [Lafl8, rem. 8.18], the specialization map sp induces an inclusion

Fo—- .. ®@—F CFI
F®E ®]1TqFCF.

We denote F; := IF_4®E®EF ®F, ®FIF_q where F is the i-th term. We have morphisms

q
I 1 —\I
a(n' ) = L,y o (vl e

Weil(y', nT) = Weil(,7)!, v += (7| Dier
(depending on the choice of sp) and

where Z! has the discrete topology.

3.2.3. We denote by Frob: FT — FI the absolute Frobenius morphism over IF,. We have a morphism
Weil(r!, nT) — FWeil(n!, 1)
(3.6)
y +> Frob™"-y

We have a surjective morphism

W FWeil(n!, 1) - Weil(1,77)!

(3.7) T
o (Frob{i} -O|F—I_)id
depending on the choice of sp). We have
(dep g p)
(3.8) 0 — 75" (!, 1) — FWeil(y!,7]) —= Z —= 0
| T
0 —— 15" (1, 7)1 —— Weil(,7)! 7! 0

Let Q be the kernel of W (not depending on the choice of sp). Note that Q is equal to the kernel of
7§ (it yl) = 15 (g, 7).

When [ is a singleton, (3.6) is an isomorphism. Its inverse is the morphism (3.7).
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Proposition 3.2.4 (¢f. Proposition 6.1 in [Dri89]). The kernel Q is equal to the intersection of all open subgroups
of 8°°" (1!, 1), which are normal in FWeil(n", 1)
O

Proposition 3.2.4 has the following consequence.
Lemma 3.2.5. A4 continuous action ofFWeil(ql,?) on a finite set factors through Weil (17,77)!.

Proof. We denote by S a finite set and by p : FWeil(! ,F) — Aut(S) a continuous homomorphism. Then:

° Ker(p|n%eom(q,?)) = n%eom(ql,?) N Ker(p) is normal in FWeil(qI,?).
. Ker(p|ngeom(q, ?)) is an open subgroup of n%eom(nl,ﬁ), because 1 is open in Aut(S) which is a finite
1 ’

group.

Proposition 3.2.4 implies that Ker(p|ngeom contains Q. a
1

o)
Remark 3.2.6. In fact, Lemma 3.2.5 is equivalent to Proposition 3.2.4. Here is how Lemma 3.2.5 implies
Proposition 3.2.4:
By Lemma 3.2.5, the profinite completion FWeil(qI,qI)A of FWeil(qI,fyI) is equal to the profinite
completion (Weil(1, 7)) of Weil(17,7)!. Thus
Q = Ker(FWeil(y', ") — (Weil(n,77))")

= Ker(FWeil(r, T) — FWeil(y, n7)")

- A v
V open subgroup of finite index in FWeil(5j!,71)

Moreover, on the one hand, it is evident that

ﬂ V> u

V open subgroup of finite index in FWeil(r7,77) U open in 75" (41,51) normal in FWeil(y!,;T)
On the other hand, for any open subgroup U of T(‘%eom(ql ,n!) which is normal in FWeil(s;!, '), the quotient

group FWeil(qI,?) /U is an extension of Z! by n%eom(ql ,?)/U. Since an extension of Z! by a finite group

ﬂ VU= 1.

V open subgroup of finite index in FWeil(r! ,?),VDU

M Ve M U

geom - -

V open subgroup of finite index in FWeil(r! ,?) U openin 77" (1,n!) normal in FWeil(n!,41)

injects in its profinite completion, we have
We deduce that

Remark 3.2.7. The general form of Drinfeld’s lemma is proved in [Lafl8, lem. 8.11]. Note that the equivalence
of categories

{ étale coverings of 17[ } 5 { finite sets equipped with a continuous action of 711(171 ,nh)}
induces an equivalence of categories
{ étale coverings of 1! equipped with } - { finite sets equipped with }
the action of partial Frobenius morphisms a continuous action of FWeil(n!,#!)
[Lafl8, lem. 8.11] immediately implies Lemma 3.2.5, thus Proposition 3.2.4.
Lemma 3.2.8 (Drinfeld). A4 continuous action ofFWeil(qI,?) on a Op-module of finite type factors through
Weil(n, 7).
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Proof. Let p: FWeil(qI,F) — GL,(Og) be a continuous morphism. Let Ag be a uniformizer of Of. For
any n > 1, the induced morphism p,, : FWeil(nI n!') = GL,(Og/Ag"Og) is continuous. By Lemma 3.2.5,

Ker(pn| geom contains Q. Taking the limit on # we get the lemma. |
1

(' 1))

Remark 3.2.9. In the following, Lemma 3.2.10, Lemma 3.2.11 and their proofs are due to Drinfeld and were
communicated to the author by V. Lafforgue.

Lemma 3.2.10 (Drinfeld [Dril3]). 4 continuous action ofFWeil(nI,?) on an E -vector space of finite dimension
factors through Weil(n,7)!.

Proof. Let p: FWeil(qI,F) — GL,(E) be a continuous morphism. In this case

° Ker(p|ngeom( ;=) is normal in FWeﬂ(qI,?).
1

ntnt)
geom

o Ker p| seom ) is closed in 7] (17[,?) (we do not know if it is open).

't
geom

e p(m] (171,?)) is topologically finitely generated (i.e. there exists a dense finitely generated
subgroup).!

To prove the last statement, note that T(%eom(ql ,11) is compact and the morphism p is continuous. So
geom

p(r] (171,?)) C GL,(E) is a closed subgroup. By the theory of ¢-adic Lie groups 2 in [Laz65] (recalled in
[Ser64]) or [Schll], GL,(E) is an ¢-adic Lie group. By [Ser64, § 1.3], any closed subgroup of an ¢-adic Lie
group is still an £-adic Lie group. By [Ser64, th. 2|, any ¢-adic Lie group is topologically finitely generated.
We deduce that p(m geom(ﬂl n')) is topologically finitely generated. Then apply Lemma 3.2.11 below to

H= Ker(p|n%eom( 1 )) We deduce that Ker(p| geom )) contains Q. O

Lt

Lemma 3.2.11 (Drinfeld [Dril3]). Let H be a closed subgroup of 7(1 "y ) such that
e H is normal in FWeil(q N );

geom

o 77} (ﬂI,F)/H is topologically finitely generated.
Then H contains Q.

Proof. For any finite group L, we define

Up := m Ker(n%eom(ql,ﬁ) L L

f trivial on H

Since 75 (1! ,F)/H is topologically finitely generated, there is only a finite number of morphisms f in

the right hand side. Thus UL is an open subgroup of nleom(q n ) Moreover, by definition, Uy is preserved
by any automorphism of 7" (17!, 7!) which preserves H. By hypothesis H is normal in FWeil(y/!, 71). Wi

deduce that U; is normal in FWeil(!, 7 ) Then by Proposition 3.2.4, U} contains Q.
Since n%eom(ql,ql ) is profinite and H is a closed and normal subgroup, the quotient group
geom

r§ " (!, y1)/H s profinite. So 7™ (4, yT)/H = lim 7§ (!, y1)/Up. Thus H = N[ fuiee group UL
which contains Q. O

3.212. Let A be a finitely generated commutative E-algebra. Let M be an A-module of finite type.
By (3.8), we have 0 — n%eom(ql,m) — FWeil(in,?) — Z!' — 0. An action of FWeil(qI,?) on M is

said to be continuous if M is a union of finite dimensional E-vector subspaces which are stable under

n%eom(ql,ql) and on which the action of n%eom(ﬂl, n') is continuous.

IAlso called "of finite type" in some literature.

2Also called "analytical ¢-adic groups”
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This implies that for any finite codimensional ideal I of A, the action of FWeil(qI,?) on M/IM is

continuous.

Lemma 3.2.13. Let A and M as in 3.2.12. A continuous A-linear action ofFWeil(qI,?) on M factors through
Weil(r7, 7).

Proof. For any maximal ideal m of A, since A is finitely generated over E (in particular A is Noetherian),
for any n € IN, the quotient A/m” is of finite dimension over E. Since M is an A-module of finite type,
M/m"M is an A/m"-module of finite type. Thus M/m"M is an E-vector space of finite dimension.

Applying Lemma 3.2.10 to M/m"M, we deduce that the action of Q on M/m"M is trivial. Since A is
Noetherian, for any g € Q and x € M, we have

g-x—x€ ﬂ ﬁm”M (é) ﬂ Ker(M — My,) ® {0}.

m max ideal n=1 m max ideal
where My, is the localization of M on A —m. (a) follows from [Mat89, Theorem 8.9] and (b) follows from
[Mat89, Theorem 4.6]. We deduce that q-x = x. Thus the action of Q on M is trivial. O

3.2.14. By the discussion after remarque 8.18 of [Lafl8], we have a continuous action of FWeil(qI,?) on
H}’W — (depending on the choice of ? and sp) which combines the action of 7t (17’ ,F) and the action of
the partial Frobenius morphisms.

Concretely, let 0 € FWeil(qI,F) such that 6| (Fpert = [Ticr Frob{_i?i . It induces a specialization map (which

is in fact a morphism):

_d. — —
spg - ]_[Frob{i}’(ql) — nl.
i€l

The action of 6 on 9—(; W‘*, is defined to be the composition:
Y/

—d;
niel F(,‘)l

_dl —_
[Tier FrOb[i} (1"

Sp, ; .
_ 2 )
o LW

j
Hiw Lw

—

1/,1

where the second map is the partial Frobenius morphism on J'C; w defined in [Lafl8, § 4.3].
j . j, < j, < . . .
To see that this action is continuous, note that J—C} W|f =lim 9'(% WM |f. Each in- W/u ’f is finite dimen-
’ ’1[ —U ’ 711 s rll

_ — i<
sional and stable by 75°°" (11, 1); and the action of 7" (!, 5!) is continuous on ﬂ-f; WP

7]71.

Proposition 3.2.15. The action ofFWeil(qI,F) on J{;. W|7 factors through Weil(n7,77)!.
T

Proof. The action of FWeil(qI,?) on fH; W‘T commutes with the action of the Hecke algebra J7 ,,.
i

The Hecke algebra J7i; , is finitely generated over E and is commutative. By Theorem 2, fJ'CiW — s

n
a JG,,-module of finite type. Applying Lemma 3.2.13 to A = J¢;,, and M = %;,W',Tz’ we obtain the

proposition.
O

Remark 3.2.16. Proposition 3.2.15 generalizes [Lafl8, prop. 8.27].

3.3. More on Drinfeld’s lemma

We need the following variant of [Lafl8, lem. 8.2].
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3.3.1. As in [Del80, § 11.10], let Y be a connected scheme of finite type over IF,. Let 77y be a geometric
generic point of Y. We define the Weil group Weil(Y,7y) as the inverse image of Weil(IF_q/IFq) in 7t (Y,77y).
A Weil E-sheaf J on Y consists a pair (7, ¢), where F is a constructible E-sheaf on Y = Y}%( IF_q, equipped

q

with an action of Weil(IF_q/IFq): ¢ : (Idy x Frob)*F — F.

The category of smooth E-sheaves over Y is a full subcategory of the category of smooth Weil E-sheaves
over Y.

We have an equivalence of categories

{smooth Weil E-sheaves over Y} — {continuous finite dimensional E -representations of Weil(Y,77y)}.

Lemma 3.3.2 (rational coefficients version of lemme 8.2 in [Lafl8]). Let U be an open dense subscheme of X.
We have an equivalence between

(a) the category of smooth Weil E -sheaves over U', equipped with the partial Frobenius morphisms;
(b) the category of continuous representations of Weil(U, 7)1 on E -vector spaces of finite dimension.
which is characterized by the following two facts as in [Lafl8, lem. 8.2]:

o the composition with the restriction functor of the representations of Weil(U,7)! to the representations of
Weil(U, 7)) (diagonally) is the functor & — El AT

o if (Fi)icr is a family of smooth Weil E-sheaves over U, then the image of the functor of Ric;F; is
(giel‘rfi”A(ﬁ) = ®i€1(fﬂ-)|ﬁ equipped with the action of Weil(U, ﬁ)l coming from the fact that each (fﬂ-)l
is equipped with an action of Weil(U, 7).

[

3.3.3. As in [Lafl8, rem. 8.3], the functor (b) — (a) is explicit: the image of a continuous representation
Weil(U,77)! — GL(V) where V is a E-vector space of finite dimension, is the smooth Weil E-sheaf F over
U associated to the continuous representation Weil(UT, A(77)) — Weil(U,7)! — GL(V).

Proof of Lemma 3.3.2. ("hard" direction, the functor (a) to (b)) Let £ be a smooth Weil E-sheaf over U’
equipped with the partial Frobenius morphisms. It induces a continuous morphism

FWeil(n!, 1) — Aut(E|q—,).
By Lemma 3.2.10, this morphism factors through Weil(1, 7). We deduce a continuous morphism:
Weil(n,7)! — Aut(EL]—,).

Since £ is unramified over U!, the above morphism factors through Weil(U,7)!. We deduce a continuous
morphism:

Weil(U, 7)) — Aut(5|17,).
Since £ is smooth over U’, the homomorphism of specialization sp* : E|A(ﬁ) — ELTI is an isomorphism. We

deduce a continuous morphism (not depending on ? and sp):

Weil(U, )" — Aut(E| A

We will also need the following lemma, whose proof is the same as in [Lafl8, lem. 8.12].

Lemma 3.3.4 (rational coefficients version of lemme 8.12 in [Laf18]). Let Q be an open dense subscheme of X' .
Let £ be a smooth E -sheaf over Q) equipped with the partial Frobenius morphisms. Then there exists an open dense
subscheme U of X such that £ can be extended to a smooth E -sheaf over U'. O



Cohomologies of stacks of shtukas 25

3.4. Excursion operators

The goal of this subsection is to construct the excursion operators in Construction 3.4.6. We begin with
some preparations.

Construction 3.4.1. Let (y;);c; € Weil(n1,7)!. We construct an action of (y;)ier on TH} Wl ag) forany j e Z as
’ Ui

the composition of morphisms

‘ o .
3.9 9| 7l
(3.9) LW|ag — = LWl
l(%‘)iel
‘ (sp") ! j
9| 50 |
PWlag -~ ~ P

where the isomorphism 5p* is defined in 3.1.1 and Proposition 3.1.2, the action of Weil(n,7)! on iH;,W 7 is defined
in Proposition 3.2.75.

Lemma 3.4.2 (¢f lemme 9.4 in [Lafl8] for the Hecke-finite part). For any j € Z, the action of Weil(11,7)! on
j{},w A) defined in Construction 3.4.1 is independent of the choice of ' and sp.

We need some preparations before the proof.
3.4.3. Let .# be an ideal of J7; , of finite codimension. Let H;,WLW/Q% . fH{,W‘qI be the quotient sheaf. It

is stable under the action of the partial Frobenius morphisms. By Theorem 2, %{'WLTI is of finite type as

FG,,-module, thus ﬂ{; W| I/J . J{; W|  isa constructible (and smooth) sheaf over ;71. By Lemma 3.3.4
i i

applied to this sheaf, there exists an open subscheme U C X \ N and a smooth E-sheaf E over U’ such that

(3.10) E|,, = %f’w'ql/ﬂ i,
We define a natural morphism f as the following composition of morphisms:
(3.11) Wl 17 5| T 9| 9|
HAG) AG) iyt 't
lf = L (3.10)
E|A(ﬁ) (sp")! 5|,71

where both sp* and (sp*)~! are defined by the same specialization map sp fixed in 3.L1 (thus f is independent

of the choice of i/ and sp). The isomorphism of the upper line follows from Proposition 3.1.2. The
isomorphism of the lower line follows from the fact that £ is smooth.

3.4.4. TFor any maximal ideal m of J7; ,, we denote by (J—C} W|A(*))1{‘\I the m-adic completion of fH; W oy
’ 1 ’ n
By Theorem 2, U{f- e is of finite type as J¢; ;,-module. By [Mat89, Theorem 4.6], the morphism
, 7
312 Wl =],
12 NG E[( L]y

is injective.
Proof of Lemma 3.4.2. The proof consists of 2 steps.
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Step 1. Let .# and f defined as in 3.4.3. The morphism f is compatible with the action of Weil(n,7)’,

where

e the actions on j‘CI wl- Ii and on E| are given by Lemma 3.2.10;
e the action on J'CI W|A(*) /I -H; W|A(*) is induced by sp* (defined in Construction 3.4.1);
A A -
e the action on E|A _ is given by Lemma 3.3.2, hence is independent of the choice of 7 and sp.

By 3.4.3, f is independent of the choice of 11 and 5p. We deduce that the action of Weil(17,7)! o
9—(} W| /J J—C ’ __is independent of the choice of ! and sp.

Step 2. Through the morphism (3.12), the action of Weil(77,7)! on fH{ W|A(*) is compatible with the action
’ n
j{] | A
on nm( LW A(*))m

Applying Step 1 to .# = m", n € N, we deduce that the action of Weil(;,7)! on ]_[m(f]'C; Wlam)

independent of the choice of 171 and sp. So is the action of Weil(q,ﬁ)l on CH; W|A(f : =
! i

) is

3.4.5. Let I be a finite set and W be a representation of G'. Let x € W and & € W* be invariant under the

diagonal action of G. We denote by E(x.\n) the constant sheaf over X \ N. In [Lafl8, défi. 5.1-5.2] and the
beginning of Section 9 of loc. cit., V. Lafforgue defined the creation operator

(3.13) et : C.(Bung n(F,)/E, E) 8 E(xn) — H0 | AN
and the annihilation operator
b —
(3.14) el : %?’W|A(X\N) — Cc(Bung y(FF,)/E,E) R E(xn)-
We d (resp e ' ]) the restriction of (3.13) (resp. (3.14)) on 7.

Construction 3.4.6. Let I, W, x and & as in 34.5. Let (y;)ic; € Weil(, 7). We construct an excursion
operator S;w x,&, (v O Co(Bung n(IF,)/E, E) as the composition of morphisms:

)/Z,E) — H?

CC(BunG,N(IFq I,W|A(ﬁ)
' l(?’i)iel

~ ’7
Cc(Bung n(IF,;)/E,E) J{?WlA(ﬁ)

where the action of (v;)icr is defined in Construction 3.4.1.
The action of S w x,&,(y,),; commutes with the action of the global Hecke algebra 7 = C.(Ky\G(A)/Ky, E).
Thus

SI;W;X,é,()/,')ig € El’ld,fc (CC(BunG’N(IFq )/E, E))

Remark 3.4.7. Let CcuSp(BunG’N(IFq)/E,E) be the vector subspace of cuspidal automorphic forms. It
on C¢ P(Bungy(F,)/E, E)

is well-known that it is of finite dimension. The restriction of S w x.¢ ().,

coincides with the excursion operator defined in [Lafl8, défi.-prop. 9.1].

Remark 3.4.8. In [Lafl8, défi. 9.3], the notation Hj v is used for the Hecke-finite part of the cohomology
group in degree 0, which we denote in this paper by (}C?’WIA(ﬁ))Hf' In this paper, the notation HI],W is used

. T j
for the cohomology group in degree j, which is also denoted by J_CI,W|A(7)



Cohomologies of stacks of shtukas 27

Now we extend the properties satisfied by the excursion operators acting on CguSp(BunG,N(IFq )/E,E)
(proven in [Lafl8, Sections 9 and 10]) to the excursion operators acting on C.(Bung n(IF;)/E,E).

Lemma 3.4.9. The properties in [Lafl8, lem. 10.1] for the excursion operators acting on CEuSp(BunG,N(IFq )/E,E)
extend to the same properties for the excursion operators acting on C.(Bung n(IF;)/E, E) with the same proof. In
particular, the excursion operators commute with each other.

Lemma 3.4.10 (¢f: lemme 10.6 in [Lafl8] for the cuspidal part). The excursion operator Spw x¢,(y,),., depends
onlyon I, f and (y;)ic;, where f € O(E\@I/a) is the function given by f : (gi)ic1 /> (&,(gi)ier - X)-
The proof is the same as in [Lafl8, lemme 10.6].

3.4.11. For any place v of X, fix an algebraic closure F,, of F, and fix the embeddings such that the following
diagram commutes:

(3.15) F——F,

F——=F,.
Let k, be the residue field of F, and let E be the residue field of the maximal unramified extension of F,
in F,. Let ¥ = Spec(k, ) be the associated geometric point over v = Spec(k,). Let
(3.16) Sp, i >V

be the specialization map associated to F C F,. We denote still by sp, the image by A of the above
specialization map (3.16)

(3.17) sp, : A1) = A®@).
The inclusion F C F, induces Weil(F,/F,) C Weil(F/F).

Lemma 3.4.12 (¢f. lemme 10.4 in [Lafl8] for the cuspidal part). Let v be a place in X \ N. Let us consider
(vi)ier € Weil(F,/F,)! c Weil(F/F)!. Let d; = deg(y;). We have a commutative diagram

Cc(Bung n(IF;)/E,E)
et
. \
39| il 39|
LW la@) LW lA()
[Tier F?,‘?g(v)di \ (Vidier
39| > 39|
LWIA®@) LWIA()
el
eg‘ﬁ
Cc(BunG,N(IFq )/E, E)

where [ [;c; F?ng)d" is the partial Frobenius morphism, eﬁ
v.

_ (resp. C’% |7) is the restriction of (3.13) (resp. (3.14)) on
v

The proof will be given in the next subsection.
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3.4.13. Let V be a representation of G and V* be the dual of V. Let oy:1-> VeV andevy: VV* -1
be the canonical morphisms.

Let v € |X \ N|. Let hy ,, € 7, be the spherical function associated to V by the Satake isomorphism.
Let T(hy ) be the Hecke operator on C.(Bung n(IF;)/E, E) associated to hy ,.

Lemma 3.4.14 (¢f. lemme 10.2 in [Laf18] for the cuspidal part). Letd € N and y € Weil(F,/F,) C Weil(F/F)
such that deg(y) = d. Then S(12),vav+s,,evy,(y,1) depends only on d, and if d =1 it equals to T (hy ;).

Proof. This follows from Lemma 3.4.12 above and [Lafl8, prop. 6.2] (where the statement is already for the
whole cohomology, not only for the cuspidal part).
O

Proposition 3.4.15 (¢ lemme 10.10 in [Lafl8] for the cuspidal part). Forany I and f, Sy 7)., depends only
on the image of (y;)ic; in Weil(X \ N, 17)

Proof. (The argument is the same as in [Lafl8, lem. 10.10].)
Let (8;)icr € (I,)! € Weil(F,/F,)! ¢ Weil(F/F)!. Applying Lemma 3.4.12 to d; = 0, we deduce that the image
of C.(Bung n(IF,)/E,E) in :H?WLT’ is invariant by (I,)!. Thus for (y;)ic; € Weil(F/F)! and (;);c; € (L)',
we have Sy ¢ (y,) = S1,f,(6,7,)- We have this for any choice of inclusion FCF,.

Since Weil(X \ N, 7)) is the quotient of Weil(#,7]) by the subgroup generated by the I, for v € X \ N and
their conjugates, we deduce that S; ¢ (,,) depends only on the image of (y;) by Weil(, )l — Weil(X\N,77)L.
d

Remark 3.4.16. The statement [Lafl8, prop. 8.10] can be generalized to the excursion operators acting on
Cc(Bung n(IF;)/E, E) and the proof is the same. So we will not state them here.

3.5. Proof of Lemma 3.4.12
Lemma 3.4.12 will follow from Lemma 3.5.4 below.

Lemma 3.5.1 (rational coefficients version of lemme 8.15 in [Lafl8]). Let U be an open subscheme of X. We
denote by j' : U' < X! the inclusion. Let & be a smooth E-sheaf over U', equipped with the partial Frobenius
morphisms. Let v be a place in X as in 3.4.71. Let (y;)ic; and (d;);c; as in Lemma 3.4.12. Then the following
diagram is commutative

(sp,)"
.I v
(3.18) (G)Elymy — Elam)
nzel ?,Tg j l(%):a
(spy)
.I v
G)-Elzm) E|A<ﬁ>

where the vertical map on the right is the action of Weil(U,7)! on E| AG)

Proof. (The argument is the same as in [Lafl8, lem. 8.15].) It is enough to prove the lemma with E of the
form ®;c;E; (as in Lemma 3.3.2). Noting j: U < X the inclusion, we have ((j*).Ek |A = ®jer(j:ki | Thus

given by Lemma 3.3.2.

it is enough to prove the lemma in the case where I is a singleton. In th1s case, the commutat1v1ty follows
from the definition of deg : Weil(F,/F,) — Weil(k(v)/k(v)) by restriction of the action on the maximal
unramified extension of F, on its residue field. m|

we have

3.5.2. By [Lafl8, § 4.3], for any (d;);c; € Z', there exists x € AY
morphisms of partial Frobenius

, such that for any y € At

Gad Gad»>

d < j, <
]_[F eg(v ] M N g_q Wﬂ+’< )
A(?) ’ AW)
iel
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Lemma 3.5.3. Let .7 be an ideal of 745, of finite codimension as in 3.4.3. Let (y;)ic; and (d;);c; as in Lemma

3.4.12. For any p € At the following diagram is commutative

Gad»
j < (sp, ) j
W | J{IW| ) ‘
niel ?,Tg L l(?’i)ie[
j, Sptx (sp, )" ]
i %w' 175 |

Proof. Let £ and U as defined in 3.4.3. There exists an open subscheme Q of U such that 3—(;5\/’4 and
J{}:‘%VWK are smooth over Q). Let 1: Q < U’ and jo : Q < X! be the inclusions. We have j = j o1 Since

both (] )’ 9—[; w and E are smooth over (), the morphism

j<p
(3.19) Hw,,

- i]'q,w|17, - j{i,wL],/j ' }C{,w’q, = El,ﬂ
extends to a morphism

(3.20) (il ae st — K.

By adjunction, this morphism induces a morphism (the fonctors are not derived)
(3.21 G = () E = (1)LE

where the isomorphism follows from the fact that E is smooth over U’ so the adjunction morphism £ — 1,1°E
is an isomorphism. Similarly, we have a morphism

(3.22) H I s (1) E ~ ().E
The following diagram is commutative

3.93 FI K
(3:23) LW a@

deg deg
l_[zel L lnlel {i}

g_cj,S/A+K

Applying Lemma 3.5.1 to £, we deduce that the following diagram (which is the composition of (3.23) and
(3.18)) is commutative

j, <
(3.24) Hw

A@)
[Tier ﬁeg dl l()’i)ie[

j_cj,S}dH{

A@)
Taking into account the isomorphism
Wl /79| S EL
L I AT Y I
defined in 3.4.3, we deduce the lemma.
(By construction, it is easy to verify that the compositions of morphisms

S0, o j
TR
— Hag T Hwlyg g

J<p
Hiw A®@) A7)
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and
I %f%j| %j’ 7.9
"W law) L I AL N S

A1)
are the same.) U

Lemma 3.5.4 (¢f lemme 10.4 in [Lafl8] for the cuspidal part). Let v € |X \ N|. Let (y;);er € Weil(F,/F,)!
with degree (d;)ic; € Z!. Then for any j € Z, the following diagram is commutative:

(sp,)

%j| %j'
"Wla@) PWlag
nzel F?ITg(V)di l/ l (71)1el
i (sp,)"
%J| ——l—>H]|
LWlA@) LWiaap

Proof. Applying Lemma 3.5.3 to .# =m", n € IN, we deduce that the following diagram is commutative

' (sp,)" '
3.5 ke : %J| A
(3.25) LW | @) [ o (F A(ﬁ))m
[Tier F?x‘Tg(V)di L j(yi)iel
‘ (sp,)* '
G S v 3 ' A
LW |z@) [T (F A(ﬁ))m

By 3.4.4, we deduce that the following diagram is commutative

3.26 = Hj|
(8-20) LW a@) LWa@p
[Tier F({iz'?g(wdi j l (Vidier
' (sp,) '
j_(:],éyﬂc v 9] |
PV lam) PWlam)
Taking the limit on y, we deduce Lemma 3.5.4. O

Remark 3.5.5. For another proof of Lemma 3.5.4, see the first version of this paper on the arXiv.

3.6. Langlands parametrizations
Definition 3.6.1. We denote by B~ the sub-E-algebra of
Endﬁ%(CdBunGAAH%VE,E»

generated by all the excursion operators Sj ¢ (;,)..,- It may be infinite dimensional. By Lemma 3.4.9, B~ is
commutative.

By Lemma 3.4.14, B~ contains the Hecke algebras at all the places of X \ N.

3.6.2. Let u € [ X\ N|. Let . be an ideal of %, of finite codimension. By Proposition 1, the quotient
E-vector space

(3.27) CC(BunG,N(IFq)/E,E)/J . CC(BunG,N(IFq)/E,E)
is of finite dimension.

Remark 3.6.3. In the case dim J7; ,/.# = 1, we have .# = Ker x for some character x : 7, — E. In this
case (3.27) is the largest quotient of C.(Bung n(IF;)/E, Q) on which 75 , acts by x.
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3.6.4. Replacing TH?'W AG) in Construction 3.4.6 by the quotient j{?,w| A (ﬁ)/ S - .‘H?,W| Ay We define the
excursion operators Sy ¢ (,,) acting on (3.27). All the properties in § 3.4 are still true for 5 ¢ (,,) acting on
this quotient vector space.

Definition 3.6.5. We denote by B , the sub-E-algebra of
End . (Cc(Bung n(F,)/E, E)/.7 - Cc(Bung,y (F,)/, E))

generated by all the excursion operators Sj (;,).,- It is finite dimensional. By Lemma 3.4.9, B, is
commutative.

By Lemma 3.4.14, B , contains the Hecke algebras at all the places of X \ N.
Lemma 3.6.6 (c¢f. proposition 10.10 in [Lafl8] for the cuspidal part). The morphism
Weil X \N, 7)) =By, (yi)ier = Sp1,0)
is continuous, where B 5 is endowed with the E -adic topology.

Proof. The proof is the same as [Lafl8, prop. 10.10], except that we use Lemma 3.5.4 (of this paper) instead
of [Lafl8, lem. 10.4]. O

Then we use the same arguments as in [Lafl8] Section 11, except that we replace CEHSP(BunG,N(IFq )/2,Qp)
by C.(Bungn(F,)/E,Q¢)/7 - C.(Bung n(IF,)/E, Q) and replace 71 (X \ N,7) by Weil(X \ N,77). We

obtain:
Theorem 3.6.7. We have a canonical decomposition of C.(Kyn\G(A)/Ky, Q;)-modules

Cc(BunG,N (IFq)/EJ Q_Z)/f : Cc(BunG,N(qu)/Ef@) =®y Do

o~ —

where the direct sum is indexed by G(Qy)-conjugacy classes of morphisms o : Weil(F/F) — E(Q_g) defined over a
finite extension of Qg, continuous, semisimple and unramified outside N .

This decomposition is characterized by the following property: 9, is equal to the generalized eigenspace 5,
associated to the character v of B ; defined by v(Sy f,(y,)..,) = f((0(Vi))ier)-

It is compatible with the Satake isomorphism at every place v of X \ N: for any irreducible representation
Vv ofa, we denote by T (hy ) the Hecke operator at v associated to V. Then ), is included in the generalized
eigenspace of T (hy ) for the eigenvalue v(T (hy ,)) = xv(o(Frob,)), where xv is the character of V and Frob,
is an arbitary lifting of the Frobenius element on v.

Remark 3.6.8. Contrary to the case of the cuspidal part CguSp(BunG,N(qu)/E,@) in [Lafl8], here the
actions of the Hecke operators on CC(BunG'N(IFq)/E,Q_g)/J : CC(BunG,N(IFq)/E,@) are not always diago-
nalizable.

3.7. Excursion operators on cohomology groups

3.7.1. Let ] be a finite set and V be a representation of G/. Let j € Z. Applying Definition 2.1.11 to | and V,
we define ﬂ}’v, which is an inductive limit of constructible sheaves on (X \ N)/.

Let I be a finite set and W be a representation of G!. Let x € W and & € W* be invariant under the

diagonal action of G. Let (Vi)ier € Weil(n,ﬁ)l. We will construct an excursion operator Sy y y ¢ ( on

Vidiel
H]],V = J—C}’V N where A/ : X \ N < (X \ N/ is the diagonal morphism.

Proposition 3.7.2 (¢f proposition 4.12 in [Lafl8]). Let Iy, I, be two finite sets and C : Iy — I, be a map.
Let A¢ : xb - xI, (Xj)jer, P> (X¢(i))ier, be the morphism associated to C. Let W be a representation of
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Gl'. We denote by W the representation ofal2 which is the composition of W with the morphism Gk — Gh,
(8j)jer, = (8c(i))ier,- Then there is a canonical isomorphism of sheaves over (X \ N)b:
A% (gl ~ agd
X AL (G w) — HIZ,WC'
This is called the fusion.

3.7.3. In the following the unions J U and ] U {0} always mean the disjoint unions. Applying the above
proposition to the map | < J U {0}, we deduce

] ~ gl
I v BExN) = T 00, var-
Let C: I - {0}. Applying the above proposition to the map (Id;,C): JUI - J U {0}, and denoting by
Al': X < X! the diagonal morphism, we deduce

3 > J{j

JULVEW](x \NYxAl(X\N) {0}, VW

Definition 3.7.4 (see définition 5.1 in [Lafl8] where the notations are different). The creation morphism Cﬁ
is defined to be the composition

(328) K ®Exy = 3 Y ED g e
: A% (X\N) JU{0}, VRl JU{0},VRWC

]
JOLVBW X (N) %Al (X\N)’
where the middle morphism is the functoriality of the cohomology for (Idy,x): V&1 — V& W¢ ([Lafl8,
notation 4.9)).
The annihilation morphism (‘3'2E is defined to be the composition

. ~ ; H(Idy =E) i
] ] ]
(3.29) H = 3G 0 vews = Iy, vm

v
—-H; ,RE .
JULVEW](x Ny xAl(X\N) Ly = EENN)

{0},Vm

where the middle morphism is the functoriality of the cohomology for (Idy,&): VRWS — V1.
3.7.5. We restrict (3.28) to AJV{0}(77) and obtain

—>J—Cj

#
Cx JULVRW

L3¢ ’ .
AN A1)
We restrict (3.29) to A/Y1%)(77) and obtain

|,
w7 i

bl . gl
Ce 7 Horvew

Construction 3.7.6. With the notations in 3.7.1, we construct an excursion operator Sy w x¢ (y,),., acting on
H ]j’v = J-C}I,V ) as the composition of morphisms:

, et .

MA/@ % UI'V®W|AIU'@

L(Vi)ie[

iy

PYinip JOLVEW | Aur i
where the action of Weil(1,7)! on H}ULV®W|AIUI@ is given by (1,1d;) : Weil(n,77)! < Weil(,7)/V! and by

Construction 3.4.7 applied to J U 1.

Remark 3.7.7. When ] =@ and V =1, this construction coincides with Construction 3.4.6.
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The vector space H ]{V is equipped with an action of the global Hecke algebra .7#; and an action of
Weil(7,77) (Construction 3.4.1 applied to J).

Lemma 3.7.8. The action of Syw xe, (7). O% H]],V commutes with the action of F¢; and the action of

Weil (1, 7).

el

Proof. For the Hecke algebra: by [Lafl8], the action of Hecke algebra commutes with the functoriality, the
fusion, the action of the partial Frobenius morphisms and the action of Galois groups.
For Weil(1,77)): by [Lafl8], the action of Weil(7,77)) commutes with the functoriality and the fusion.

Moreover, by the above construction, the action of Weil(1, 7)) on J—C}U[’wa A is given by
(Idj, 1) : Weil(r, 7)) — Weil(17,77) x Weil(n,77)"

and the action of Weil(1,7)! on fH}.w’wa NE is given by

n
(1,1d;) : Weil(r7,77)F — Weil(1,77) x Weil(1,7)".

Thus the action of Weil(7,77) commutes with the action of Weil(1,7)!. O

€l

sends the Hecke finite part H ]J‘EI f ([Laf18, défi. 8.19]) to et

Remark 3.7.9. By Lemma 3.7.8, 51w x¢,(7,); AT

Proposition 3.7.10. The excursion operators constructed in Construction 3.7.6 above have the same properties as
in Section 3.4. Moreover, for any u € | X \ N| and any ideal .9 of A7, of finite codimension, the quotient E -vector

space H]]’V/f . H]],V has finite dimension and admits a similar decomposition as in Theorem 3.6.7.

4. Compatibility with the constant term morphisms

4.1. Commutativity of the excursion operators and the constant term morphisms

4.11. Let P be a parabolic subgroup of G and M its Levi quotient. In [Xue20, § 1.5], for any v € K?M /700 We
have defined an open and closed substack BunKA’N of Buny, y and we have Buny;y = |

P(

v
—~0 Bun .
veAS . DUIMN

) On)
As in [Xue20, § 3.4], let Bun,; \(IF;) = Bunj, \(IF;) X G(On). We have defined the constant term
morphism Cg’v : Cc(Bung n(IF,)/E,E) — CC(Bun;\}’LN(IFq )/Z, E), which coincides with the classical constant

term morphism ([Xue20, Remark 3.5.11 and Example 3.5.15]).

4.1.2. Let I be a finite set and W be a representation of G'. Let x € W and & € W* be invariant by the

diagonal action of G. Let (vi)ier € Weil(17,77)!. In Construction 3.4.1 and Construction 3.4.6, we defined
G
LW, &, (Vidier

Weil(1,77)! on 3{;\2’131 w (defined in Definition 2.3.7, where we view W as a representation of M! via

the excursion operator S acting on C.(Bungn(IF;)/E,E). Similarly, we define an action of

M! < @) to be the composition of morphisms

* *\—1
0y sp 0,y Vidier . 0v (sp) 0,y
M,N,I,W A(ﬁ) M,N,I,W 7]1 M,N,I,W 711 M,N,I,W A(ﬁ)
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: M
and we define the excursion operator iy, £
of morphisms:
C(Buny; (IF;)/E, E)

e

et

(i), 2Cting on CC(Bun;\Z'N(IFq)/E,E) to be the composition

"0,v
N
M,N,I,W A7)

l(yi)iel

’ — < /0,
Cc(Buny; \(IF,)/E,E) =—— J'CM,KI,I,W A

Proposition 4.1.3. Forany v € KQZQM/ZGJ the following diagram is commutative:

SG

_ LW.xE(rie —
Cc(Bung n(F,)/Z, E) — C.(Bung n(FF,)/E, E)
lcgv . l ch
’ SI,W,)C,{,( iie ’
C.(Buny, \(FF,)/E, E) "= C,(Buny} \(F,)/E, E).

Proof. The proof consists of 4 parts.

Step 1. The constant term morphisms commute with the creation operators: the following diagram is

commutative
H(x)
(4.1) Ce(Bung,n(F,)/Z, E) = 2 011 |ﬁ -,
LCE’” (a)
Ce(Bunyy (B, )/E,E) = 3007 o)) |ﬁ X

x:!
c
0 NI j_cOG

G,N {0}, Wt ]

N, LW | A7)

P,
-1
X¢;

0,v
—H,,
7 ~ M,N,I,W A7)

7]

e (b)

0,v
M,N,{0}, WU

where W is the representation of G via the diagonal inclusion G — G, )(;11 and JH(x) are defined in

[Lafl8, déf. 5.1] and €} = ;! 0 H(x).

Indeed, the commutativity of (a) comes from the fact that GZ’V is functorial on W. The commutativity of

(b) follows from Lemma 4.1.5 below applied to | = {0}.

Step 2. The constant term morphisms commute with the specialization morphisms: the following diagram

is commutative:

4.2 f}{j ’
( ) G,N,I,W A7)
sp*

P,
jer
—_—

N
’I’WA(ﬁ) ~

/j’
j-CM,N

sp
T>J‘C

]
GN,ILW| T

n
P,
LGGV
/j’v

M,N,I,W |—T*
oy

Indeed, by [Xue20, § 3.5.6], for any u € A*Qandve KQZQM/ZG’ the morphism GZ'S”'V is defined over

Gad

Q=M which is an open subscheme of X! containing A(77). We have a morphism of sheaves

i, <
S A —H

"L<uv
MN,LW|q<pv’
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Since the homomorphism of specialization is functorial, for any y € AE’S, it induces a commutative diagram:
. j,<p sp’ j,<p
(4.3) HoNLw|pm = Ho N wlr
)
jelgﬂl,v legﬁu,v
SRS sp’ SRS
HuNiw|y o — TN wl+
A(m) 1

Moreover, by [Xue20, Remark 3.5.4], for py < py, we have Q=F2Y C Q=M. By [Xue20, § 3.5.9], we have
a commutative diagram:

g_cj’ S,”‘1

Jr<H2
G,N,I,W }CG,N,I,W

Usr.v

P,<py,v P,<pp,v

"j<pv
J-CM,N,I,W

Usrv

"Jr<pa, v
Uy T TN LW

UsH2:v

The diagram (4.3) is compatible with y; < p,. Taking the inductive limit on y in (4.3), we deduce that the
diagram (4.2) is commutative.
Step 3. The following diagram is commutative:

j (Vi)ier j
(4.4) Hon1w i Hennw "
jegv Legy
i (Vi)ier "iv
%M,N,I,W‘Wﬁ M,N,I,W '/TI

Indeed, by Lemma 4.1.7 below, @g'v commutes with the partial Frobenius morphisms. And Gg'v commutes
with the action of 7ty (1! ,F) (since GZ’V is defined over #'). So the constant term morphism commutes with
the action of FWeil(qI,?) and thus with the action of Weil(F/F)!.

Step 4. The constant term morphisms commute with the annihilation operators: in the same way as in
Step L i

414. Let I, ] be two finite sets and C : I — ] be a map. Let A : X - X1 (xj)jej P> (xg(i))ier be the
morphism associated to C. Let W be a representation of G! (resp. M! ). We denote by W the representation
of G/ (resp. M/) which is the composition of W with the morphism G -G, (&j)ier > (8c(i))ier (resp.

M - M, (m})ier > (mei))ier)- Let 17} be the generic point of X/. Fix a geometric point 1/ over 11].
Lemma 4.1.5 (The constant term morphisms commute with the fusion). The following diagram is commutative:

i < g
G,N,I,W AC(W) ~ G,N,],W¢

P, P,
jecv lecv

i Xt i
}CM;N;I;W AC(W) ~ j{M,NJ;WC

T

where x ¢ are defined in Proposition 3.7.2 applied to the reductive group G and to the reductive group M respectively.

Proof. The proof consists of 3 steps.
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Step 1. By [BD99, Section 5.3] or [BRI8, Section 15|, we have a commutative diagram of Beilinson-Drinfeld
grassmannians (see [Xue20, Definition 1.1.11 and 3.1.2] for a reminder of definitions and vertical morphisms):

X:
Grwe —= Grewly ) — Grerw
C
i0 i0
AP

C
— Grp 1w

Grpwe —== Grpwly ) L

0
Lot

AM
C
Gry g we —= Grmpwl Ay = GImrw

where all squares are cartesian. Moreover, we have a commutative diagram of categories, where the back
and front faces are recalled in [Xue20, Theorem 3.2.6] applied to I and ] respectively.

MV (7(?)1(1';])' MV
Perlem(GrG,I,E) PerM,ym(GrM,I;E)

(7)) (i)

Pervg, (Grg,y, EMV Pervy, (Grpp, EYMV

RepE(MI)

— —

Rep(G)) Res Repy(M/)
By loc. cit. Theorem 3.2.6, there exists canonical isomorphisms

(4.5) (IO S w = Smrws (TIPS 1 we = Sa g we.

The commutativity of the left and right face follows from the compatibility of the geometric Satake equivalence
with the fusion. In other words, there exists canonical isomorphisms

(4.6) (AE)*SG,I,W ~Serwer  (AY)Syw = Swywe

The commutativity of the bottom face is evident.
We deduce a commutative diagram:

(4.7) (ﬂ?)!(i}))*(Ag)*SG,I,W — (i) S 6,5, we

base change l ~

(A (D) S6.1w ~

l:

(AP 8pg,L,w ——— St jwe-
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Step 2. Similarly, we have a commutative diagram of stacks of shtukas, where all squares are cartesian:

AZ
Chtg,y,j,we — Chtgn 1w | Ay = Chtenw

1y I

AP
’ ’ C ,
Cht, y jwe == Chtpn 1w | gy~ Chtpnw
U9 T
AM

) ) C ’
Chty; y ;we = Chty N 1w | AX) T Chty N, 1w

By loc. cit. Definition 2.4.5, T n 1w is defined as the inverse image of S by the morphism
ChtG,N,I,W — [GI,oo\GrG,I,W]' Thus (4()) implies

G\* M \*
(4.8) (AZ)Fenrw =TFongwe: (A7) Funw = Fyrn g we:

Moreover, in loc. cit. (3.31), we constructed a canonical morphism:
(4.9) (i) TNt w = Fapnws  (resp. (i) Fon g we = Fyp g we)-

The construction uses the isomorphism (4.5) and Try, , : (1cr,4)1(7c1 4)" — 1d (resp. Try,, - (T(]'d)[(T(],d)! — 1d),
where 71 4 (resp. 7 4) is defined in the following diagram:

AP
’ ’ C ’
Chtp,N,],wc = ChtP,N,I,W |AC(X/) ChtP,N,I,W

7,4 l T d

—_—) —_—)
Chty njwe —= Chty nrw —— Chty N 1w

|AC (x/)
”?,d l 0,
A

7 7 - ]
Chtyy npwe === Chthn i w |y ) — Chtiniw

where 17 = T(?d omyy and 1y = T(?d O T4
The above diagram is commutative and all squares are cartesian. By [SGA4, XVIII, th. 2.9], the trace
morphism is compatible with base change, thus

(4.10) Try,, = (AY) Try,, -
We deduce from (4.7), (4.8), (4.9) and (4.10) a commutative diagram:
(4.11) (i) (AZ) Fo N 1w —= (i) Fon g we

base change L =

(A (i) TN w (4.5)+Trr,

(4.5)+Trn1'd l
M \* =
(A ) TN w — Fmn g we

Step 3. In loc. cit. 3.5.6, we defined

’

I <pv

Pv . ar <y
Cor It ysey T MIN LW

G,N,ILW

Uswv
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Pv , qr<p jspv
(resp. ec,] ':HG,N,],WC Usmy _)j{M,NJ,WC Usw)

by using adjj; : Id — (i7).(i;)" (resp. adjj; : Id — (iy).(i})") and (4.9). The adjunction morphism is compatible
with base change, thus

adj; = (Ag)*adji,~
This fact together with the commutativity of the diagram (4.11) induce a commutative diagram

Gywe s <H = J,<p
(4.12) A HEN LW e~ HaNg W | opr

P,v P,
lem l@cf

Mysa, ISV > SRITRY
(AC ) }CM:N:I:W USM'V f]-(:1\/1,1\[,],‘/\/(: US"’V.
In particular, we have a commutative diagram:
Gl =H X qphsn ‘
. — |-
GN,ILW Ay GNJWET
l@é’j leé']
g_f’j,Sy,v X C}C’j,Sy,v
. — |—-
M,N,I,W A7) M,N,],W ]
Taking the limit on y, we prove the lemma. a
o, Iy . .
4.1.6. For any partition (Iy,---,Ij) of I, let Cht(GlN I ’{/\), be the stack of iterated shtukas defined in [Lafl8,
(I 1), & (I, 1)

défi. 2.1] and let F5 1y~ be the perverse sheaf on Chtsy 1}, /E defined in loc. cit. définition 4.5. Note
that Chtg n; w defined in 2.1.1 corresponds to the partition (I). Moreover, by loc. cit. corollaire 2.18 and
définition 4.1, there is an equality:

5, <u _pi =
Henw =R (po), (:TG,N,I,W |cht§f‘N,,,W/E)
(4.13)

' (I Ix), &
=R F
(IJG)!( GN,I,W Chtg}m,ll‘,;v),w/a)
c . I, 1 ] . . . . .
In loc. cit. § 3 and 4.3, Cht(GfN,I,}I(X/ and thus iH]G,N, 1w are equipped with the partial Frobenuis morphisms.
Lemma 4.1.7. The constant term morphisms commute with the partial Frobenius morphisms.

Proof. The construction of constant term morphisms in [Xue20] works for any partition (Iy,---,I;), i.e. we

can use

(Ilr“"Ik) i ,(Ilr“'rlk) T( /(Il"“’Ik)
(4.14) Chtg yrw <Chtp W — Chty G 1w
and the cohomological correspondence

% (Ill"'lIk) (Ilf"'flk),

(4.15) mi'Foniw = TN w
to construct the constant term morphism

Pv . s "jv
(4.16) s Honiw y —>Hyniwl -

(By (4.13), the morphism (4.16) is independent of the choice of the partition (Iy,---, I;), thus coincides with
the constant term morphism we used before.)
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The following diagram is commutative:

Fr
(L) h (Lo 1)
Cht _ —— > Cht —
G,N,I,W 7l G,N,I,W FrObll(UI)
i] iZ
’ Fr ’
I, I ) I (IZr"'}IkrIl)
Cht | N Cht
PNLW |17 P,N,I,W Frob, (71
US| T
’ Fr 7
(I, 1) n (Lo I 1)
Cht _ — > Cht —
MNLW |17 M,N,I,W Eroby, (77)

where Fry is defined in [Lafl8, § 3], the squares are Cartesian up to homeomorphism which is locally radical
(so we have proper base change).

We have a commutative diagram, where Fy, is defined in Joc. cit. proposition 3.3 and the vertical functors
come from (4.15):

R e I, 1 ~ e . Iyl Fr RN § PN
(Brp, (o) (i) (T i) —— (e (i) (B (T 1) ——= (e iy ) T
e (I, I F; (L]
(Frp, )"(F AEIQNH;\;) :1 J 1\5111\111}/(\;

(Here we use the fact that the trace morphism is compatible with base change, as in (4.11).)
We deduce that the following diagram is commutative:

FI] ’ s
1V
_ ——H
Froby, (17) M,N,LW

/]"v
M,N,I,W

i
O
Remark 4.1.8. In Section 3.7, for | a finite set, V a representation of G and j € Z, we defined the excursion
. j o . —0 .
operators acting on HG,N,],V = HG,N,],V A Similarly, for any v € AZM/ZG’ we can define excursion
operators acting on HA/JIKI] v=H Vit

M,NJ,V|A/ ) The same arguments as in the proof of Proposition 4.1.3
prove that the following diagram is commutative:

Hj SIG,w,x,é,(ri)iel Hj
CNILY GN,L,V
|ee ez
v S;\,/IW,X,év()’i)ieI v
HM,N,],V HM,N JV

where the constant term morphism Cg’v is defined in [Xue20, Remark 3.5.11].
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4.2. Compatibility of Langlands parametrizations

4.21. Let P be a parabolic subgroup of G and M its Levi quotient. For any finite set I and any function

T Y IV
f e O(GE\(G@)I/G@), let fM be the composition M@\(M@)I/M@ < G@\(G@)I/G@ = Q. For
any (¥;)ier € Weil(q,ﬁ)l , Proposition 4.1.3 implies that the following diagram is commutative:

G

—_— SI-fr(Vi)iel —_
Cc(Bung,n(IF;)/E, Q) Cc(Bung,n(IF;)/E, Q)
SM
_ C.(B Ty F /: —_ LM, (yiier _ C.(B 'y F /: PR
]_[VEAQZQM/ZG o unM,N( q) E,Qp) — > l_lveAgM/ZG o unM,N( q) =, Q).

42.2. Let u €| X\ N|. Let .# be an ideal of .7, of finite codimension. We denote by

Qs 1= Ce(Bung,n(IF;)/E, Q)[4 - Ce(Bung,y (F,)/Z, Q)

the quotient vector space. In Definition 3.6.5, we defined B , C End (29, ) the algebra of excursion
operators. Here we denote it by fBg. We have Theorem 3.6.7 for Qg ,.

4.2.3. Recall that E is a lattice in Zg5(F)\Zg(A). Let Z); be a lattice in Zy(F)\Zyp(A) small enough.
Then for any v € K?M /7 the composition

Bunj, \/E — Buny ny/E — Buny n/Ey
is an open and closed immersion. We deduce that
(417 Ce(Buny (Fy)/Z,Qr) < Ce(Buny (Fy)/Enr, Q)

Applying Proposition 1 to M, we deduce that CC(Bun;\/LN(IFq )/Em, Qp) is of finite type as Fy1,,-module.
Together with the fact that the Hecke operator hM acts on [], CC(Bun;\Z,N(IFq )/2,Qy) by translating the

component indexed by v (¢f Section 2.4), we deduce that [], CC(Bun,MV,N(]Fq)/E,@) is of finite type as
0 1,,-module.

4.2.4. Since .# is of finite codimension in J7;, and J7;, < %, is of finite type, we deduce that
I - oy, is of finite codimension in 4 ,. Thus the quotient vector space

Qs i= H Ce(Buny; (/8 Qo)[(F - Hig)- H Cc(Buny); \ (E,)/E, Q)
v v

is of finite dimension.

We denote by
BI\}LG - El’ldjg;w (QM,ﬂ)

the sub-Qg-algebra generated by all the excursion operators S%{M,(y.)d, where f € O(@@\(@@)I / 6@)

Similarly to Theorem 3.6.7, there is a canonical decomposition of J#}-modules
— M,G
(418) O, = EP 5,
p

P

where the direct sum is indexed by 6(@)-conjugacy classes of morphisms p : Weil(F/F) — G(Qg) defined
over a finite extension of Q, continuous, semisimple and unramified outside N. The decomposition is
characterized by the following property: f)lpVI’G is equal to the generalized eigenspace associated to the

character v of BA}G defined by V(S?’/]I(M’(%) )= f(p(¥i))ier)-

iel
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4.2.5. We denote by
31}1 C El’ldt%aM (QM,J)

the sub—@—algebra generated by all the excursion operators S;V(Ig Didier® where g € O(M\@\(M\@)I /M\@)
Similarly to Theorem 3.6.7, there is a canonical decomposition of .7#};-modules

(4.19) O, = P HY
p/

where the direct sum is indexed by M (Qy)-conjugacy classes of morphisms p’: Weil(F/F) — M(Qy) defined
over a finite extension of Qg, continuous, semisimple and unramified outside N. And 524 is equal to the
generalized eigenspace associated to the character v of B%I defined by 1/(5}\/(1g () 1) =g2((p’Vi))ier)-

—~—

Denote by j : M\(@) < G(Qy) the inclusion. We have
M,G _ M
(4.20) HYE = @ A,

p':Weil(F/F)>M(Qy), jop’=p

where jop’ = p is up to G(Qg)-conjugacy.

4.2.6. We have a commutative diagram as #;-modules:

Q¢ s ~ G
Gs Theorem 3.6.7 @5‘)

Ct C¢

= M,G
U,.s (4.18) ?ﬁp '

By 4.2.1, for f € O(a@\(a@)f/a@), the excursion operator S%‘M,(yi) acts on C_g(ﬁg) by f((p(¥i))ier)-

As a consequence, if C_g(f)g) #0, then p: Weil(F/F) — G(Qq) factors through

—~—

E e P
Weil(F/F) — M(Q¢) — G(Qy)
for some p’ (which may not be unique). We conclude that in this case (as .73,-modules)

CE(RS) € HYC = P F.

p:Weil(F/F)>M(Qy), jop’=p
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