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Fujiki relations and fibrations of irreducible symplectic
varieties

Martin Schwald

Abstract. This paper concerns different types of singular complex projective varieties generalizing
irreducible symplectic manifolds. We deduce from known results that the generalized Beauville-
Bogomolov form satisfies the Fujiki relations and has rank

(
3,0,b2(X) − 3

)
. This enables us to

study fibrations of these varieties; imposing the newer definition from [GKP16, Definition 8.16.2] we
show that they behave much like irreducible symplectic manifolds.

Keywords. irreducible symplectic, primitive symplectic, symplectic singularities, Lagrangian
fibrations, Fujiki relation

2010 Mathematics Subject Classification. 14E99, 14D99, 14J99

[Français]

Relations de Fujiki et fibrations de variétés symplectiques irréductibles

Résumé. Cet article concerne différents types de variétés projectives complexes singulières qui
généralisent les variétés symplectiques irréductibles. Nous déduisons de résultats connus que la
forme quadratique de Beauville-Bogomolov généralisée vérifie les relations de Fujiki et a pour
signature (3,0,b2(X)− 3). Cela nous permet d’étudier les fibrations de ces variétés ; en imposant
la récente définition 8.16.2 issue de [GKP16], nous montrons qu’elles se comportent de façon très
similaire aux variétés symplectiques irréductibles lisses.
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1. Introduction

1.1. Symplectic varieties

Irreducible symplectic manifolds were introduced by Beauville [Bea83b, p. 763f] and play an important role
in the structure theory of complex manifolds of Kodaira dimension zero as they occur as factors in the
famous Beauville-Bogomolov decomposition theorem [Bea83b, th. 2]. A singular version of the decomposition
theorem was recently proved [HP19, Theorem 1.5], building on the work of [GKP16, GGK19, DG18, Dru18].
Remarkably, the class of singular symplectic factors emerging from this approach [GKP16, Definition 8.16.2],
we call them here primitive symplectic varieties, differs from the types of singular symplectic varieties studied
before.

To understand the geometry of primitive symplectic varieties better, we want to classify their fibrations.
Our main results show that they behave much like irreducible symplectic manifolds and are arguably closer
to them than other definitions. While we prove in Theorem 2 and 3 that many of the properties that are
well known for irreducible symplectic manifolds hold for a bigger class of symplectic varieties, which we call
here irreducible symplectic varieties, Theorem 4 holds for primitive symplectic varieties but not completely for
irreducible symplectic varieties.

We briefly recall the relevant definitions required to state our main results. The different notions in the
literature generalizing holomorphic symplectic manifolds to a singular setting agree in the existence of a
symplectic form on the smooth locus, which is best seen as a reflexive 2-form.
Reflexive differential forms are holomorphic p-forms on the smooth locus Xreg of a normal variety X. We

denote the associated sheaf on X by Ω
[p]
X and get

Ω
[p]
X � i∗Ω

p
Xreg

� (Ωp
X)
∗∗ and H0(X,Ω[p]

X ) � H0(Xreg,Ω
p
Xreg

),

where i : Xreg ↪→X is the inclusion. These forms satisfy good pull back properties, see Section 2.1. We
recommend [Har80] for a reference on reflexive sheaves and [GKKP11, I–III], [KP16, I] for more information
on reflexive differential forms.

A quasi-étale morphism π : X ′→X is a finite surjective morphism between complex varieties that is étale
outside of an analytic subset Z ⊂ X ′ with codimZ ≥ 2.

Definition 1 (Symplectic varieties). Let X be a normal, complex projective variety.

(1) A symplectic form on X is a reflexive form ω ∈ H0(X,Ω[2]
X ) that is non-degenerate at every point

x ∈ Xreg.

(2) The pair (X,ω) is called a symplectic variety if for every resolution of singularities ν : X̃→X there is a
holomorphic form ω̃ ∈ H0(X̃,Ω2

X̃
) that coincides with ν∗ω over Xreg. We say that ν

∗ω extends to ω̃ on

X̃.
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(3) A symplectic variety (X,ω) is called irreducible symplectic if its irregularity h1(X, OX) vanishes and if
h0(X,Ω[2]

X ) = 1.

(4) We call an irreducible symplectic variety (X,ω) Namikawa symplectic if X is Q-factorial with
codimCXsing ≥ 4.

(5) We call a symplectic variety primitive symplectic if for all quasi-étale morphisms π : X ′→X with X ′

normal the reflexive1 pullback π∗ω ∈ H0(X ′ ,Ω[2]
X ′ ) generates the exterior algebra of reflexive forms on X

′ ,
so ⊕

p∈N
H0(X ′ ,Ω[p]

X ′ ) = C [π∗ω] .

Section 2.5 reviews properties of these notions and discusses their relations. Symplectic varieties were
introduced by Beauville [Bea00, Definition 1.1].

Namikawa symplectic varieties, most prominently studied by Namikawa and Matsushita, have a well-
behaved deformation theory [Nam01c]. Primitive symplectic varieties are building blocks in a singular
version of the Beauville-Bogomolov decomposition theorem. Using [GKP16, Proposition 6.9], we can consider
irreducible symplectic varieties as a natural generalization of these two notions.
Irreducible symplectic manifolds are by definition simply connected, smooth irreducible symplectic varieties

[Bea83b, p. 763f]. Using the Beauville-Bogomolov decomposition theorem we show that a smooth irreducible
symplectic variety is always either simply connected or an étale quotient of an Abelian variety by a finite
group of biholomorphic automorphisms, see Lemma 13. It is unknown if the latter case really occurs.

Irreducible symplectic manifolds are always primitive symplectic by [Bea83b, prop. 3]. In the singular
case being primitive symplectic is known to be more restrictive, see Example 26. This is our motivation to
study how their geometric properties differ.

1.2. Main results

On an irreducible symplectic variety X, Namikawa and Kirschner constructed in [Nam01c, Theorem 8 (2)],
[Kir15, Definition 3.2.7] an important quadratic form qX on H2(X, C), the Beauville-Bogomolov form. Its
definition will be recalled in Section 3. We first prove the following minor generalization of results of
Matsushita [Mat15, Proposition 4.1], [Mat01, Theorem 1.2].

Theorem 2 (Fujiki relations, index of the Beauville-Bogomolov form). Let (X,ω) be a 2n-dimensional,
irreducible symplectic variety. The Beauville-Bogomolov form qX has the following properties:

(1) There is a number cX ∈R+, called Fujiki constant, such that for all α ∈ H2(X, C) the following, so-called
Fujiki relation, holds,2

cX · qX(α)n =
∫
X
α2n.

In particular for classes of Cartier divisors d = c1
(
OX(D)

)
, this relates the Beauville-Bogomolov form to

the intersection product via cX · qX(d)n =D2n.

(2) The restriction of qX to H2(X,R)→R is a real quadratic form of index
(
3,0,b2(X)− 3

)
.

Part (2) implies the existence of a qX-orthogonal decomposition H2(X,R) = V+ ⊕V− with dimRV+ = 3,
such that qX is positive definite on V+ and negative definite on V−, see Proposition 25.

In the smooth case, these properties were proved by Fujiki and Beauville [Fuj87, Theorem 4.7], [Bea83b,
th. 5(a)]. Matsushita generalized them to Namikawa symplectic varieties [Mat01, Theorem 1.2], [Mat15,
Proposition 4.1].

Matsushita uses his versions of Theorem 2 to show that fibrations of irreducible symplectic manifolds
and Namikawa symplectic varieties have very special properties, [Mat99, Theorem 2], [Mat00, Corollary 1],
[Mat01, Corollary 1.4], [Mat15, Theorem 1.2, 1.10]. As our main results, the following Theorems 3 and 4, we

1This reflexive pullback exists e.g. due to [Har80, Proposition 1.6]
2We will recall integration on singular cohomology in Section 2.3.
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prove that all these results hold for primitive symplectic varieties and we show, which of them are also true
for all irreducible symplectic varieties.

Theorem 3 (Fibrations of irreducible symplectic varieties). Let (X,ω) be an irreducible symplectic variety
of complex dimension 2n, together with a surjective morphism f : X→B with connected fibers onto a normal,
projective variety B with 0 < dimB < 2n. Then the following properties hold.

(1) The base variety B is an n-dimensional, Q-factorial klt variety with Picard number ρ(B) = 1.

(2) The singular locus of X is mapped to a proper closed subset of B. In particular, the general fiber is smooth
and entirely contained in Xreg.

(3) The general fiber is an n-dimensional Abelian variety.

(4) Every fiber component of f is an n-dimensional Lagrangian subvariety3 of X and does not lie completely
in Xsing.

Theorem 4 (Fibrations of primitive symplectic varieties). Let f : X→B be as in Theorem 3. If X is a primitive
symplectic variety, then the following holds.

(1) The base variety B is Fano, so −KB is ample.
(2) If B is smooth, then B � Pn.

Both parts of Theorem 4 were known to hold for all irreducible symplectic manifolds [Mat01, Theorem 2 (3)],
[Hwa08, Theorem 1.2], [GL14, Theorem 1.1]. It is remarkable that if X is an irreducible symplectic variety,
then KB can vanish, hence part 1 can fail for irreducible symplectic varieties, as Example 26 shows.

To prove the results on fibrations we work as much as possible on the singular variety X. We hope that
this will also allow to tackle further questions on Lagrangian fibrations. Open problems are for example a
classification of the singular fibers and of the possible base varieties B. We still know little about its possible
singularities. When X is smooth, it is conjectured that B is also smooth, but so far this got only proved for
dimX ≤ 4 by Huybrechts–Xu and Ou [HX19], [Ou16, Theorem 1.2]. In general B can certainly be singular,
even if X is primitive symplectic, [Mat15, Theorem 1.9].

1.3. Outline of the paper

We present in 2.1–2.4 our most important methods to prove our main theorems. They are the general
extension theorem for differential forms from [GKKP11, Theorem 1.4], the existence of terminal models
from [BCHM10, Corollary 1.4.3] and results on the Hodge theory of klt varieties that we explain in detail
in [Sch17]. In particular we will need the Hodge decomposition of H2(X, C) and a singular version of the
Hodge-Riemann bilinear relations.

After recapitulating well-known properties of symplectic varieties in 2.5, we prove that terminal models
of irreducible or primitive symplectic varieties are Namikawa or primitive symplectic, respectively. In 2.6
we prove in Theorem 15 that singular fibers of Lagrangian fibrations are automatically also Lagrangian,
implying that Lagrangian fibrations are always equidimensional. This requires a careful revision of the
definitions of Lagrangian subvarieties and a subtle inductive argument. Theorem 15 will be used to show that
the general fiber of a Lagrangian fibration is an Abelian variety, which in fact holds for fibrations of every
symplectic variety. Here we make use of a recently proven special case of the Lipman-Zariski conjecture,
which makes the proof even easier and more geometric than Matsushita’s proof of [Mat01, Corollary 1.4 (2)].
We explain in Section 3 how the Beauville-Bogomolov form qX is defined in the singular setting in a way
that is most suitable for direct computations in H2(X, C).

In Section 4 we finally prove our main results. We deduce the Fujiki relation directly from a terminal
model, and use our Hodge theoretic methods to calculate the index of qX by hand similarly like Matsushita.
Theorem 2 is essential to prove the rest of Theorem 3 in the spirit of Matsushita’s proof of [Mat01,
Corollary 1.4]. Proving that B is Q-factorial becomes particularly involved because handling Weil divisors is
much harder in the singular case. The proof of Theorem 4 uses the branched covering trick and going over
to a terminal model, which we have seen to be primitive symplectic again.

3We discuss the definition of Lagrangian subvarieties in Section 2.6.
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1.4. Conventions

We use the terminology of [Har77], in particular varieties are defined to be irreducible. We denote the
smooth and the singular locus of a variety X by Xreg and Xsing, respectively. For the terminology of the
Minimal Model Program we refer to [KM98], but we use the sloppy term klt variety for a variety X that
carries an effective Weil divisor D, such that the pair (X,D) is klt according to [KM98, Definition 2.34].

1.5. Acknowledgment

The results of this paper are an improved version of results of my PhD thesis, answering also Questions 6,
8 and Conjecture 7 that were stated in the introduction of the thesis, [Sch17]. I want to thank my supervisor
S. Kebekus, as well as K. Oguiso, D. Greb, P. Graf, T. Kirschner and B. Taji for their advice and fruitful
discussions. Special thanks to the anonymous referee for several corrections and improvements.

2. Methods

We recall here the extension theorem, terminal models, integration over singular cohomology classes
and results on the Hodge theory for klt varieties. We recapitulate well-known properties of symplectic
varieties that will imply that terminal models of irreducible or primitive symplectic varieties are Namikawa
or primitive symplectic, respectively. Then we discuss the notions of Lagrangian subvarieties and fibrations
and examine their singular fibers.

2.1. Extension Theorem

The extension theorem for differential forms [GKKP11, Theorem 1.4] shows that on a klt variety X the

pullback of every reflexive form α ∈ H0(X,Ω[p]
X ) to a resolution of singularities can be extended over the

exceptional locus. This allows us to construct pullbacks of reflexive forms along more general morphisms.

Theorem 5 (Pullbacks of reflexive forms, [Keb13, Theorem 1.3]). Let f : Y→X be a morphism between normal,
complex quasi-projective varieties where X is a klt variety. Then for every p there is a natural pullback morphism

f ∗Ω
[p]
X →Ω

[p]
Y , consistent with the natural pullback of Kähler differentials on Xreg. �

The consistency with the natural pullback of Kähler differentials is made precise in [Keb13, Theorem 5.2].
We will only consider the case when f : Y→X is surjective. Then this consistency means that the pullback

morphism f ∗Ω
[p]
X →Ω

[p]
Y agrees with the usual pullback of Kähler differentials wherever X and Y are smooth.

In other words, for every α ∈ H0(X,Ω[p]
X ) there is an α̃ ∈ H0(Y ,Ω[p]

Y ) that restricts on Yreg ∩ f −1(Xreg) to

the natural pullback f ∗(α
∣∣∣
Xreg

) of Kähler differentials. We call α̃ an extension of f ∗α to Y . Pulling back

reflexive forms is contravariant functorial with respect to f .

2.2. Terminal models

While not every singular variety admits a crepant resolution, complex projective klt varieties have always
a terminal model. For canonical singularities a terminal model is a crepant partial resolution. This is an easy
special case of [BCHM10, Corollary 1.4.3].

Theorem 6 (Terminal models, [BCHM10, page 413]). Let X be a complex projective variety with canonical

singularities. Then every resolution ν : X̃→X of X factors as X̃
π̃−→ Y

π−→ X, where π̃,π are birational and Y is
a Q-factorial variety with at most terminal singularities, such that π∗KX = KY . We call Y a terminal model of
X. �

2.3. Integration of singular top classes

Recall that we integrate a top singular cohomology class φ ∈ H2n(X, C) over an n-dimensional, compact,
complex variety X as

∫
X
φ ..= [X]∩φ. Here [X] ∈ H2n(X,Z) denotes the canonical fundamental class of X,
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induced by the complex structure on its smooth locus Xreg, [Sch17, Section 2.5]. This integration commutes
with pullbacks by bimeromorphic maps.

Lemma 7 (Pullbacks of integrals, [Sch17, Lemma 22]). If f : X→Y is a bimeromorphic morphism of compact,
complex varieties, then

∫
Y
α =

∫
X
f ∗α for all α ∈ H2n(Y , C). �

2.4. Hodge Theory for klt varieties

When X is a compact complex variety with rational singularities, Namikawa noted in [Nam06, p. 143]
that for every resolution of singularities ν : X̃→ X the pullback morphism ν∗ : H2(X, C)→ H2(X̃, C) is an
embedding and therefore the Hodge structure on H2(X, C) is pure of weight two. By similar arguments

like in [Kal06, Lemma 2.7] it can be seen that for every reflexive 2-form α ∈ H0(X,Ω[2]
X ) for which f ∗α

extends to a form α̃ ∈ H0(X̃,Ω2
X) there is a class α ∈ H2(X, C) with f ∗α = [α̃] ∈ H2(X̃, C). When we have

an extension theorem for reflexive forms on X like Theorem 5, it follows that α 7→ α defines an isomorphism

H0(X,Ω[2]
X ) � H2,0(X). The author worked this out and drew the following consequences in his thesis.

Theorem 8 (Hodge decomposition of H2(X, C), [Sch17, Theorem 37], cf. also [Kir15, B.2.7–B.2.9], [GKP16,

Proposition 6.9]). When X is a complex projective klt variety, then we have H2,0(X) � H0(X,Ω[2]
X ) and

H0,2(X) � H2(X, OX). For every resolution ν : X̃ → X the pullback morphism ν∗ : Ha,b(X) → Ha,b(X̃) is
bijective for (a,b) = (2,0) or (0,2) and injective for (a,b) = (1,1).

Remark 9. Let X be a complex projective klt variety. Every reflexive two-form α on X defines by Theorem 8 a
unique cohomology class in H2(X, C) that we denote by α. When f : Y → X is a morphism of complex projective
klt varieties and α̃ the extension of f ∗α to Y by Theorem 5, then we have α̃ = f ∗α in H2(Y , C) because pulling
back is a morphism of Hodge structures.

Corollary 10 (Bilinear relations on klt varieties, [Sch17, Corollary 42]). Let X be an n-dimensional, complex
projective klt variety. Every ample class a ∈ H2(X,R) induces a sesquilinear form ψX,a on Hk(X, C) defined by

(v,w) 7→ (−1)
k(k−1)

2 ·
∫
X
v ∪w∪ an−k .

The so-called Hodge-Riemann bilinear relation ip−q ·ψX,a(v,v) > 0 holds for any non-zero v with v ∪ an−k+1 = 0
that can be written as the cup product of classes v1, . . . , vr ∈ H2(X, C) .
We write p ..=

∑
pj , q ..=

∑
qj and k ..= p+ q where (pj ,qj ) are such that the αj lie in the Hpj ,qj (X)-part of the

Hodge decomposition of H2(X, C). �

2.5. Properties of symplectic varieties

A symplectic variety has trivial canonical class, as the top exterior power of the symplectic form trivializes
the canonical sheaf. It follows that symplectic varieties have canonical singularities [Bea00, Proposition 1.3],
[KM98, Corollary 5.24]. Furthermore, Namikawa showed that a symplectic variety has at most terminal
singularities if and only if its singular locus is at least of codimension four, [Nam01a, Corollary 1].

We point out that Matsushita uses in [Mat01] the property h2(X, OX) = 1 of irreducible symplectic

varieties instead of h0(X,Ω[2]
X ) = 1. It follows from Theorem 8 that these two conditions are equivalent by

the Hodge symmetry.

Proposition 11. Every terminal model π : Y→X of an irreducible symplectic variety (X,ω) is a Namikawa
symplectic variety with the extension ω′ ∈ H0(Y ,Ω[2]

Y ) of π∗ω to Y from Theorem 5.

Proof. Namikawa proved that Y is again symplectic [Nam06, Remark 1]. Let π̃ : X̃→Y be a resolution of
Y . Then h1(Y , OY ) = h1(X̃, OX̃) = h1(X, OX) = 0 as the irregularity is a birational invariant for varieties

with rational singularities and h0(Y ,Ω[2]
Y ) = h0(X,Ω[2]

X ) = 1 by Theorem 5. Hence (Y ,ω̃) is Namikawa
symplectic by [Nam01a, Corollary 1]. �
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Proposition 12. Every terminal model π : Y→X of a primitive symplectic variety (X,ω) is primitive symplectic
with the extension ω′ ∈ H0(Y ,Ω[2]

Y ) of π∗ω to Y .

Proof. Let g : Y ′→Y be quasi-étale with Y ′ normal. Then the Stein factorization of π ◦ g , [Har77, Corol-
lary III.11.5], gives a morphism π′ : Y ′ → X ′ with connected fibers and a finite morphism h : X ′ → X
with π ◦ g = h ◦ π′ . Hence π′ is birational because π ◦ g is generically finite. If g is étale outside of
V ⊂ Y ′ , then h is étale outside of π′(V ) because π and π′ induce isomorphisms on the function fields.
Thus h is a quasi-étale. We note that normal, quasi-étale covers of klt varieties are also klt varieties
by [KM98, Proposition 5.20]. A resolution X̃ of X ′ is also a resolution of Y ′ and Theorem 5 implies

H0(Y ′ ,Ω[p]
Y ′ ) � H0(X̃,Ωp

X̃
) � H0(X ′ ,Ω[p]

X ′ ) for all p. As X is primitive symplectic and pulling back reflexive
forms is functorial, the reflexive forms on Y ′ get generated by (π′)∗h∗ω = g∗ω′ . �

While we cannot prove that smooth irreducible symplectic varieties are irreducible symplectic manifolds
as they were defined by Beauville, we can prove the following Lemma, which is related to [HNW11,
Proposition A.1].

Lemma 13. Let (X,ω) be a smooth, irreducible symplectic variety in the sense of Definition 1. Then X is either
simply connected or an étale quotient of an Abelian variety by a finite group of biholomorphic automorphisms.

Proof. By the Beauville-Bogomolov decomposition theorem, there is a finite étale covering π : X̂→ X that
splits as a product X̂ � T ×X ′ ×Y , where T is a complex torus, X ′ :=

∏k
i=1Xi is the product of irreducible

symplectic manifolds Xi , and Y a product of at least three-dimensional Calabi-Yau manifolds. By going over
to a finite étale covering of X̂ we may assume π to be a Galois covering, so X � X̂/G for G ⊂ Aut X̂ a group
of biholomorphic automorphisms of X̂ with |G| = degπ.

We can identify H0(X,Ω2
X) with the space of G-invariant holomorphic 2-forms H2(X̂,Ω2

X̂
)G, hence the

latter one is generated by the pullback π∗ω of the symplectic form. As

h0(X ′ ,Ω1
X ′ ) = h0(Y ,Ω1

Y ) = h0(Y ,Ω2
Y ) = 0,

we get by the Künneth formula a decomposition π∗ω = π∗T η +π
∗
X ′ω

′ , where πT : X̂→ T and πX ′ : X̂→ X ′

are the projections, and η ∈ H0(T ,Ω2
T ), ω

′ ∈ H0(X ′ ,Ω2
X ′ ) are 2-forms on the factors. As π is étale, π∗ω is

also non-degenerate, hence Y is trivial and the forms η and ω′ are non-degenerate as well.
For every f ∈ Aut(X̂) there are automorphisms g ∈ Aut(T ) and h ∈ Aut(X ′) such that f = (g,h) [Bea83a,

p. 8, Lemma], so π∗T η and π∗X ′ω
′ are G-invariant holomorphic 2-forms on X̂. As h0(X,Ω2

X) = 1, it follows
that either T or X ′ has to be trivial. If X ′ is trivial then X � T /G and the proof is complete.4

Hence we can assume from now on that T is trivial, so X � X ′/G. In this case, we show that every
automorphism f ∈ Aut(X ′) has a fixed point. For this, let ωi be the pullbacks of the symplectic forms
of the factors Xi to X ′ . By [Bea83b, p. 762f, prop. 3-4] and the Künneth formula,

⊕
p∈NH0(X ′ ,Ωp

X ′ ) is

generated by the wedge products of the ωi . In particular Hj,0(X ′) = 0 for all odd j . As (X,ω) is symplectic,
f ∗ preserves a symplectic form on X ′ . By rescaling the ωi we may assume it to be the sum of the ωi .

By [Bea83a, p. 10, b)+c)] the automorphism f acts on X ′ by first possibly permuting isomorphic factors Xi
and then applying automorphisms fi ∈ Aut(Xi) on each factor. In particular there is a permutation σ ∈ Sk
such that for all i we have that f ∗ωi is a multiple of ωσ (i). As f ∗ preserves the sum of the ωi , it simply
permutes the ωi , as well as their wedge products. Therefore tr(f ∗|H j,0(X ′)) is zero for all odd j , non-negative
for all even j and it equals one for j = 0,2dim(X). Thus f has a fixed point by the holomorphic Lefschetz
fixed point formula, [GH94, p. 426]. As we assumed X to be smooth, it follows that G acts trivially on X ′ , so
X � X ′ is simply connected. �

2.6. Lagrangian fibrations

We show in Theorem 17 that Lagrangian fibrations are equidimensional because also their singular
fibers consist of Lagrangian subvarieties. A straightforward generalization of Matsushita’s proof of [Mat00,
Corollary 1], see Proposition 16, works for all fiber components that do not completely lie in the singular

4It is unclear if this case can occur. The argument in [HNW11, Proposition A.1] to exclude the torus factor is incomplete.
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locus. To complete the proof of Theorem 17 we use an additional inductive argument to make sure that there
are no fiber components in Xsing.

Definition 14 (Lagrangian subvariety and fibration). Let (X,ω) be a symplectic variety and F ⊂ X a subvariety
with F 1 Xsing and dimF = 1

2 dimX. If on every embedded5 resolution of singularities ν : X̃→ X of (X,F)
the extension ω̃ of ν∗ω vanishes on the strict transform of F, then we call F a Lagrangian subvariety of X.
A Lagrangian fibration of X is a surjective morphism f : X→B with connected fibers onto a normal, complex
projective variety B, such that the general fiber is a Lagrangian subvariety of X.

The notion of Lagrangian subvarieties does not depend on the chosen embedded resolution because
for two resolutions we can go over to a common resolution. Our definition is consistent with Matsushita’s
definition, [Mat00, Definition 1], [Mat05, Definition 1.2]. The following criteria can be used to test if a
subvariety is Lagrangian.

Lemma 15 (Criteria of Lagrangian subvarieties). Let F be a subvariety of a symplectic variety (X,ω) with
F 1 Xsing and dimF ≥ 1

2 dimX. Then the following assertions hold.

(1) F is Lagrangian if and only if ω
∣∣∣
Xreg∩Freg

vanishes as a Kähler differential on Xreg ∩Freg.

(2) F is Lagrangian if i∗ω = 0 ∈ H2(F, C) for the inclusion i : F ↪→X. The converse holds if F is a klt variety.

Proof of (1). Let ν : X̃→X be an embedded resolution of (X,F) with strict transform ĩ : F̃ ↪→ X̃ of F and
extension ω̃ of ν∗ω to X̃. As ν is an isomorphism over a dense open subset, the assumption F 1 Xsing

implies that the conditions ω
∣∣∣
Xreg∩Freg

= 0 and ω̃
∣∣∣
F̃
= 0 are equivalent. Moreover, linear algebra shows that

both latter conditions imply dimF ≤ 1
2 dimX because ω is non-degenerate on Xreg, [Nam01b, Lemma 1.1].

Together with the assumption dimF ≥ 1
2 dimX this implies that the conditions ω

∣∣∣
Xreg∩Freg

= 0 and ω̃
∣∣∣
F̃
= 0

are both equivalent to F being a Lagrangian subvariety of X.

Proof of (2). By Remark 9 we have ω̃ = ν∗ω and therefore

ω̃
∣∣∣
F̃
= ĩ∗ν∗ω = ν|∗

F̃
i∗ω ∈ H2(F̃, C).

Hence the condition i∗ω = 0 implies ω̃
∣∣∣
F̃
= 0, which, like in part (1), under the given assumptions is

equivalent to F being Lagrangian. The converse implication holds if F is a klt variety because then
ν|∗
F̃
: H2(F, C)→H2(F̃, C) is injective by Theorem 8. �

The following result is a straightforward generalization of [Mat00, Corollary 1].

Proposition 16. Let f : X→B be a Lagrangian fibration of a symplectic variety (X,ω). Then for every fiber F of
f the pullback i∗ω of the symplectic class vanishes in H2(F, C), where i : F→X denotes the inclusion. Thus also
i′∗ω = 0 ∈ H2(F′ , C) for every fiber component i′ : F′→X of F.

Proof. The Leray spectral sequence for f and the sheaf OX gives the map d2 : H2(X, OX)→H0(B, R2f∗OX).
The class ω lies in H2(X, OX). Let i : F→X be the fiber over a point p ∈ B with residue field C(p). Then
the proper base change map R2f∗OX ⊗OX C(p)

∼−→ H2(F, OF) sends d2(ω)⊗ 1 to i∗ω ∈ H2(F, OF).
As the general fiber is Lagrangian, not completely contained in Xsing and has canonical singularities by

Lemma 28, the section d2(ω) vanishes at the general point p ∈ B by Lemma 15. Therefore this section is
torsion in R2f∗OX . However, as X is symplectic, the canonical sheaf of X is trivial, so ωX � OX . Hence the
sheaf R2f∗OX is torsion-free by Kollár’s torsion-freeness Theorem, which also holds in the singular case, see
Theorem 29 in the appendix. Thus d2(ω) = 0, so for every fiber i : F→X the class i∗ω vanishes. Moreover
i′∗ω = 0 because i′ factors through i. �

Theorem 17. Let f : X→B be a Lagrangian fibration of a symplectic variety (X,ω). Then every component of
each fiber of f does not lie completely in Xsing and is Lagrangian. In particular f is equidimensional.

5A resolution of singularities ν : X̃→ X that is an isomorphism over Xreg and for which the strict transform ν−1(F ∩Xreg) of F
is smooth
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Proof. We prove this theorem by induction over the dimension of X. If X is a surface, all fibers of f
are curves. As X is normal, it has only isolated singularities and no fiber component can lie in Xsing.
By Proposition 16 the symplectic class vanishes on every fiber component F′ . Hence F′ is a Lagrangian
subvariety of X by Lemma 15 and the theorem is proven for dimX = 2.

We assume now 2n ..= dimX > 2 and that the theorem is already proven for all lower dimensional
symplectic varieties. Let i′ : F′ ↪→X be a component of a fiber F of f . Let Z be an irreducible component
of Xsing. We consider the restriction f

∣∣∣
Z

and the lifted morphism f : Z→f (Z) between the normalizations.

Then by [Mat15, Theorem 3.1] the normalization Z is a symplectic variety and f is a Lagrangian fibration.
By the induction hypothesis, we know that f is equidimensional, so every fiber of f has dimension at most
n − 1. Hence the dimension of all fibers of f

∣∣∣
Z

is also at most n − 1. However, by the fiber dimension
theorem, [Sha94, Theorem 1.25], we have dimF′ ≥ n, so F′ 1 Z and F′ cannot lie completely in Xsing. Now
Proposition 16 implies i′∗ω = 0, so F′ is by Lemma 15 an n-dimensional Lagrangian subvariety of X. This
completes the induction. �

3. Generalized Beauville-Bogomolov form

Namikawa defined a generalized Beauville-Bogomolov form on every Namikawa symplectic variety X by
pulling back everything to a resolution of singularities X̃ and then calculating Beauville’s formula [Bea83b,
p. 772]. We prefer working with Kirschner’s idea to calculate all integrals directly on the singular cohomology
of X, which makes explicit calculations easier. Both approaches are equivalent, compatible with pullbacks
and, after a suitable normalizing, define for every irreducible symplectic variety a uniquely determined
quadratic form qX on H2(X, C).

3.1. Definitions of the Beauville-Bogomolov form

Definition 18 (Beauville-Bogomolov form, cf. [Nam01c, Theorem 8 (2)]). Let (X,ω) be a 2n-dimensional,
irreducible symplectic variety with a resolution ν : X̃→X and extension ω̃ ∈ H0(X̃,Ω2

X̃
) of ν∗ω to X̃. We consider

the pullbacks ν∗α =.. α̃ of classes α ∈ H2(X, C) as the classes of two-forms. Then the Beauville-Bogomolov form
on X is the quadratic form qX,ω : H2(X, C)→C with

qX,ω(α) ..=
n
2

∫
X̃
(ω̃ω̃)n−1α̃2 + (1−n)

(∫
X̃
ω̃nω̃

n−1
α̃
)
·
(∫

X̃
ω̃n−1ω̃

n
α̃
)

for all α ∈ H2(X, C). The products and powers denote wedge products of forms.

The form qX,ω does not depend on the chosen resolution. Given two resolutions ν, ν′ of X, this can be
seen by going over to a common resolution factoring through ν and ν′ .

A resolution X̃ does not need to be symplectic again. Note that thus we cannot trivially deduce all
properties of qX,ω from the smooth case by considering X̃.

Definition 19 (Beauville-Bogomolov form, cf. [Kir15, Notation 3.2.1.]). Let X be a 2n-dimensional, complex
projective variety. We define for every class w ∈ H2(X, C) a quadratic form qX,w : H2(X, C)→C with

qX,w(v) ..=
n
2

∫
X
(ww)n−1v2 + (1−n)

(∫
X
wnwn−1v

)
·
(∫

X
wn−1wnv

)
for all v ∈ H2(X, C). Here the products and powers denote the cup product in the cohomology ring H∗(X, C).
Using our notation from Remark 9, for an irreducible symplectic variety (X,ω) the quadratic form qX,ω is called
Beauville-Bogomolov form on X.

In order to obtain a uniquely determined quadratic form qX on an irreducible symplectic variety X, it is
convenient to normalize the symplectic class. The following Lemma ensures that the definition will be well
defined.
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Lemma 20 (Existence and uniqueness of the normalizing). Let X be a 2n-dimensional, irreducible symplectic
variety X. For all v ∈ H2(X, C) we denote I(v) ..=

∫
X
(vv)n. Every symplectic class ω ∈ H2(X,Ω[2]

X ) \ {0} induces
a normalized class w ..= I(ω)−

1
2n ·ω with I(w) = 1. The corresponding Beauville-Bogomolov form qX,w does not

depend on the choice of ω.

Proof. As X is irreducible symplectic, every symplectic class α ∈ H0(X,Ω[2]
X ) \ {0} on X differs only by a

constant factor from the class ω, say α = cω for c ∈ C×. One computes easily that the normalized classes of
cω and ω only differ by a factor c

|c| of absolute value one. We see directly from Definition 19 that this does
not affect qX,w. �

Definition 21 (Normalized Beauville-Bogomolov form). Let X be an irreducible symplectic variety. The
normalized Beauville-Bogomolov form is defined as qX ..= qX,w for any class w ∈ H2,0(X) with I(w) = 1.

Remark 22 (The symmetric bilinear form). The Beauville-Bogomolov form qX on an irreducible symplectic
variety (X,ω) is induced by a symmetric bilinear form. Like Matsushita we also denote it by qX , but with two
arguments. We have the usual formula qX(a,b) =

1
2

(
qX(a+ b)− qX(a)− qX(b)

)
for all a,b ∈ H2(X, C).

3.2. Equivalence of the definitions and behaviour under pullbacks

To relate Namikawa’s and Kirschner’s definitions of the Beauville-Bogomolov form, we prove in the
following lemma that the Definitions 19 and 21 behave well under pullbacks along birational morphisms.

Lemma 23. Let π : Y→X be a birational morphism from a normal, complex projective variety Y to a symplectic

variety (X,ω) with an extension ω′ ∈ H0(Y ,Ω[2]
Y ) of π∗ω. Then ω is normalized if and only if ω′ is normalized

and we have

qX,ω = qY ,ω′ ◦π∗ and qX = qY ◦π∗.
Proof. We noted in Lemma 7 that the integration of top cohomology classes is compatible with pullbacks
under birational morphisms. For every v,w ∈ H2(X, C) we can apply this to the occurring integrals in
Definition 19 of the Beauville-Bogomolov form, such that we get the relation qX,w(v) = qY ,π∗w(π∗v) for all
v,w ∈ H2(X, C). Together with π∗ω =ω′ ∈ H2(Y , C) by Remark 9 this shows the first equality. Similarly we
see I(ω) = I(π∗ω) = I(ω′), which concludes the proof. �

Corollary 24 (Equivalence of the definitions, cf. [Kir15, Proposition 3.2.15]). On every irreducible symplectic
variety (X,ω) Namikawa’s and Kirschner’s definitions of the Beauville-Bogomolov form are equivalent in terms of
qX,ω = qX,ω.

Proof. Let ν : X̃→X be a resolution and ω̃ the extension of ν∗ω to X̃. Using the notation of Kirschner’s
Definition 19, we can write Namikawa’s Definition 18 as qX,ω = qX̃,ω̃ ◦ ν∗. This equals qX,ω by Lemma 23. �

4. Proofs of the main results

4.1. Fujiki relations and the index of the Beauville-Bogomolov form

A natural approach to prove Theorem 2 would be to pass to a resolution of singularities, but this might
not be a symplectic variety anymore. Instead, we deduce the Fujiki relation from a terminal model, which we
have seen to be a Namikawa symplectic variety. Part (2) of Theorem 2 will follow directly from Proposition 25
that contains more information about the decomposition of H2(X, C). The Hodge theory of H2(X, C) and
the Fujiki relations allow us to calculate the index by hand.

Proof of Theorem 2, part (1). Let X be a 2n-dimensional, irreducible symplectic variety with normalized
Beauville-Bogomolov form qX on H2(X, C) as in Definition 21. We need to show that there is a constant
cX ∈R+, such that for all v ∈ H2(X, C) we have the Fujiki relation cX · qX(v)n =

∫
X
v2n.

We write qX = qX,ω for a normalized symplectic class ω with
∫
X
(ωω)n = 1. We take a terminal model

π : Y→X of X together with an extension ω′ ∈ H2(Y ,Ω[2]
Y ) of π∗ω from Theorem 5. Then (Y ,ω′) is a
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Namikawa symplectic variety by Proposition 11. We have qY = qY ,ω′ and qX = qY ◦π∗ by Lemma 23. Now we
apply [Mat01, Theorem 1.2] to Y to get a cY ∈R+, such that for all u ∈ H2(Y , C) we get cY ·qY (u)n =

∫
Y
u2n.

Then by the Lemmas 23 and 7 we get for every v ∈ H2(X, C):

cY · qX(v)n = cY · qY (π∗v)n =
∫
Y
(π∗v)2n =

∫
Y
π∗(v2n) =

∫
X
v2n

Hence we have proved the Fujiki relation for the constant cX ..= cY . �

Proposition 25 (Index of the Beauville Bogomolov form qX ). Let (X,ω) be a 2n-dimensional, irreducible
symplectic variety with normalized Beauville-Bogomolov form qX = qX,w for w ∈ H2(X, C), and let a ∈ H2(X,R)
be an ample class.
Restricting qX gives a real quadratic form H2(X,R)→R and we get the qX -orthogonal decomposition

H2(X,R) = V+ ⊕ V−, where V+ ..= 〈w+w, iw − iw, a〉R is a 3-dimensional space on which qX is positive
definite and

V−
..= a⊥ ∩H1,1(X)∩H2(X,R) = {d ∈ H1,1(X)∩H2(X,R) | qX(d,a) = 0}

is a space on which qX is negative definite.

Proof that restricting qX gives a real form. An easy computation for arbitrary v ∈ H2(X,C) shows that
qX,w

(
v
)
= qX,w(v), using that the integrals are compatible with complex conjugation. Hence restricting gives

a real quadratic form H2(X,R)→R.

Proof of V+ ⊥ V− and the positivity of qX on V+ (cf. [Mat01, (2.1)]). We can use
∫
X
(ww)n = 1 and the formula

from Remark 22 to calculate the Beauville-Bogomolov bilinear form qX on the classes w +w, iw − iw, a.
The Hodge decomposition from Theorem 8 allows us to calculate the occurring integrals via the usual
type considerations, which gives the relations qX(w + w) = qX(iw − iw) = 1, qX(w + w, iw − iw) = 0,
qX(w+w, v) = qX(iw − iw, v) = 0 for all v ∈ H1,1(X), and qX(a) =

n
2

∫
X
(ww)n−1a2.

Therefore w +w, iw − iw and a are orthogonal with respect to qX . The two subspaces V+ and V−
of H2(X, C) are likewise orthogonal. The restriction qX

∣∣∣
V+

is diagonal with eigenvalues 1, 1, qX(a). As

wn−1 ∪ a3 = 0 by type considerations, the Hodge-Riemann bilinear relations, Corollary 10, show that
qX(a) =

n
2ψX,a(w

n−1,wn−1) is positive and therefore qX is positive definite on V+.

Proof that V+ ⊕V− = H2(X,R). The classes w+w, iw − iw and a are obviously real. On the other hand, as
X is irreducible symplectic, {w,w} is a C-basis of H2,0(X)⊕H0,2(X). Hence every real class v ∈ H2(X,R)
can be decomposed as v = αw+ v1,1 + βw with α = β ∈ C and v1,1 = v1,1 ∈ H1,1(X)∩H2(X,R). We note

qX(v1,1 −λa,a) = 0 for λ ..= qX (v1,1,a)
qX (a)

∈R. This gives the decomposition

v = Re(α) · (w+w) + Im(α) · (iw − iw) +λa︸                                            ︷︷                                            ︸
∈V+

+v1,1 −λa︸    ︷︷    ︸
∈V−

Hence we get V+ +V− = H2(X,R). The directness of this sum decomposition will follow from the
negativity of qX on V−.

Proof of the negativity of qX on V−. (Cf. [Mat01, (2.4)]) Every class d in the space V− is a real class of type
(1,1) with qX(d,a) = 0. We need to show qX(d) < 0 if d , 0. We use the Fujiki relations on X to calculate
for every t ∈R: ∫

X
(td + a)2n = cX · qX(td + a)n = cX ·

(
t2qX(d) + tqX(d,a)︸   ︷︷   ︸

=0

+qX(a)
)n
.

Comparing the t and t2-terms on both sides yields d ∪ a2n−1 = 0 and

(2n− 1) ·
∫
X
(d2 ∪ a2n−2) = cX · qX(d) · qX(a)n−1.
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We have d = d because d is real. Therefore the Hodge-Riemann bilinear relations, Corollary 10, imply∫
X
(d2 ∪ a2n−2) = ψX,a(d,d) < 0 and hence q(d) < 0. �

4.2. Fibrations of irreducible symplectic varieties

Let (X,ω) be an irreducible symplectic variety of complex dimension 2n, together with a surjective
morphism f : X→B with connected fibers onto a normal, complex projective variety B with dimension
0 < dimB < 2n. We subdivide the proof of Theorem 3 into seven steps, which we will prove in the following
order:

(1a) dimB = n.

(4a) The general fiber is a Lagrangian subvariety of X.

(4b) Every fiber component of f is an n-dimensional Lagrangian subvariety of X and does not lie
completely in Xsing.

(3a) The general fiber is smooth.

(3b) The general fiber is an Abelian variety.

(2) X is smooth along the general fiber and f (Xsing) ⊂ B is a proper closed subset.

(1b) B is a Q-factorial klt variety with ρ(B) = 1.

Proof of Theorem 3. For the proof we choose very ample divisors A on X and H on B. We denote their first
Chern classes by a ∈ H2(X, C) and h ∈ H2(B, C). For every class d = c1

(
OB(D)

)
that comes from a Cartier

divisor D on B we get (f ∗D)2n = 0. Moreover, the Fujiki relation (f ∗D)2n = cX · qX(f ∗d)n gives

(1) qX(f
∗d) = 0.

Proof of (1a). (Cf. [Mat01, (3.2)]) We calculate for every t ∈R+

(A+ tf ∗H)2n = cX · qX(a+ tf ∗h)n = cX ·
(
qX(a) + 2tqX(a,f

∗h)
)n

by Equation (1). We see from the t-coefficient that qX(a,f ∗h) is positive because A is ample:

(2) qX(a,f
∗h) =

A2n−1.f ∗H

cX · qX(a)n−1
> 0.

Therefore the tk-coefficient
(2n
k

)
·A2n−k .(f ∗H)k vanishes for k > n, but survives for k = n:(
2n
n

)
·An.(f ∗H)n = 2ncX · qX(a,f ∗h)n > 0.

This shows dimB = n.

Proof of (4a). (Cf. [Mat01, (3.3)]) We consider a general fiber F over a smooth point b ∈ B and the embedding
i : F ↪→X. By Lemma 28 in the appendix the general fiber F fulfills Freg = F ∩Xreg and has at most canonical
singularities. Therefore, considering the symplectic form ω as a holomorphic form on the smooth locus

Xreg, we can restrict ω to F ∩Xreg and obtain a reflexive form on F, which we denote by ω
∣∣∣
F
∈ H2(F,Ω[2]

F ).

By Lemma 15 we need to prove ω
∣∣∣
F
= 0 to show that F is a Lagrangian subvariety of X.

We note ω|F = i∗w for w ..=ω and that i∗a is an ample class on F. The idea is now to show

(3)
∫
F
i∗(wwan−2) = 0.

This integral equals ψF,i∗a(i∗w,i∗w) and by the Hodge-Riemann bilinear relations, Corollary 10, it vanishes
if and only if ω

∣∣∣
F
= 0, otherwise it is positive.

As X,F,B are compact, complex varieties, they have canonical fundamental classes [X] ∈ H4n(X,Z),
[F] ∈ H2n(F,Z), [B] ∈ H2n(B,Z). By definition, we have Hn = [B]∩hn, so the class [B]∨ ..= 1

Hnhn ∈ H2n(B,Z)
is dual to [B].
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If X,F,B are smooth, Poincaré duality gives the equality

(4) [X]∩ f ∗
(
[B]∨

)
= i∗[F]

in H2n(X,Z). Going over to a commutative diagram of resolutions and doing calculations with the projection
formula shows that equation (4) holds also in the singular case, [Sch17, Lemma 63]. We use this to calculate
the integral (3).∫

F
i∗(wwan−2) = [F]∩ i∗(wwan−2)

= i∗[F]∩wwan−2 Projection formula

=
1
Hn

(
[X]∩ (f ∗h)n

)
∩wwan−2 By equation (4)

=
1
Hn [X]∩

(
wwan−2 ∪ (f ∗h)n

)
[Bre97, Theorem VI 5.2.(3)]

=
1
Hn

∫
X
wwan−2(f ∗h)n

We calculate the latter integral as a term of the following Fujiki relation for s, t ∈R+.∫
X
(w+w+ sa+ tf ∗h)2n = cX · qX(w+w+ sa+ tf ∗h)n

= cX ·
(
qX(w+w) + s2qX(a) + 2stqX(a,f

∗h)
)n

In the last step we used the vanishing of qX(f ∗h) by equation (1) and the vanishing of qX(w + w,a)
and qX(w +w,f ∗h) that follows directly from the definition of the Beauville-Bogomolov form via type
considerations. Comparing the sn−2tn-terms gives

∫
X
wwan−2(f ∗h)n = 0 and therefore ω

∣∣∣
F
= 0.

Proof of (4b). By part (4a) f is a Lagrangian fibration. Hence part (4b) follows from Theorem 17.

Proof of (3a). Let I denote the ideal sheaf corresponding to F on X and NF/X ..= Hom(I /I2,OF) the
normal sheaf of F in X. As F is a general fiber, we have NF/X |Freg � NFreg/Xreg

by Lemma 28. As F is

Lagrangian, contracting with the symplectic form gives the well-known isomorphism NFreg/Xreg
�Ω1

Freg
.

The differential df induces a morphism TXreg
|Freg → TbB×Freg, where we consider TbB×Freg as a free sheaf

of rank n on Freg. The kernel of df is exactly TFreg and df is surjective because of dimB+dimF = dimX.
The exact sequence of the tangent complex, [Har77, page 182], gives us NFreg/Xreg

� TXreg
|Freg/TFreg � TbB×Freg,

so the normal bundle NFreg/Xreg
is also free of rank n.

Being the dual of a coherent sheaf, NF/X is reflexive, [Har80, Corollary 1.2]. As F is normal, the

isomorphism NF/X |Freg
∼−→Ω1

Freg
extends uniquely to an isomorphism NF/X

∼−→Ω
[1]
F of free sheaves on F,

[Har80, Proposition 1.6].

Therefore the tangent sheaf TF =
(
Ω

[1]
F

)∗
is globally free and F is smooth by the Lipman-Zariski conjecture,

which is already proven for the singularities of the minimal model program, [GKKP11, Theorem 6.1], [GK14,
Corollary 1.3], [Dru14, Theorem 1.1].

Proof of (3b). As we showed in part (3a) that the general fiber F of f is a compact Kähler manifold with
globally free tangent sheaf, we may directly conclude by [Wan54, Corollary 2] that F is an Abelian variety. A
more algebraic argument is to use the freeness of Ω1

F , so h0(F,Ω1
F) = dimF. The Kodaira dimension κ(F)

is zero because KF = 0. Then by [Kaw81, Corollary 2] the Albanese morphism α : F→Alb(F) is a birational
morphism to the Abelian variety Alb(F). In fact α is an isomorphism because KF is numerically effective.

Proof of (2). As Xsing is closed and f is proper, f (Xsing) is closed too. By part (3a) the general fiber F of
f is smooth. It is completely contained in Xreg by Lemma 27 in the appendix. Thus f (Xsing) is a proper
closed subset of B.
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Proof of (1b). We may assume here that X is Namikawa symplectic, as for the following argument we can
go over to a terminal model of X. Let D be a Weil divisor on B and X0

..= f −1(Breg). As D is Cartier

on Breg, we can consider the pullback f |∗X0
(D

∣∣∣
Breg

). This induces a divisor D̃ on X by taking the closures

of its components. Then mD̃ is Cartier for an m ∈ N>0 because X is Q-factorial, and we get a class
d ..= 1

mc1
(
OX(mD̃)

)
in H2(X,C).

We have codim(X \X0) = codimBsing ≥ 2 because f is equidimensional by part (4b) and B is normal.

Hence no component of D̃ or D lies outside of X0 or Breg, respectively. This implies f∗D̃ = D as Weil

divisors and if D is Cartier also D̃ = f ∗D and d = f ∗c1
(
OB(D)

)
.

Like in [Mat99, Step 4], we calculate now for t ∈R the Fujiki relation

(D̃ + tf ∗H + sA)2n

= cX ·
(
qX(d) + s

2qX(a) + 2tqX(d,f
∗h) + 2sqX(d,a) + 2stqX(f

∗h,a)
)n
,

where we used qX(f ∗h) = 0, and compare coefficients. Considering the constant term, of tn and of tn−1sn−1

gives constants c1, . . . , c4 ∈Q+ with

D̃2n = c1 · qX(d)n

D̃n.(f ∗H)n = c2 · qX(d,f ∗h)n

D̃2.(f ∗H)n−1.An−1 = c3 · qX(d)qX(f ∗h,a)n−1

+ c4 · qX(d,f ∗h)qX(d,a)qX(f ∗h,a)n−2.

We show that all three intersection products vanish. For this we may substitute the factors H by general
hyperplane sections Hi of B. By Bertini’s Theorem H1, . . . ,Hn−1 intersect in a smooth curve C ⊂ Breg that

meets D transversally in finitely many points in Breg, [Aki51]. Thus the intersection products D̃n.(f ∗H)n

and D̃2.(f ∗H)n−1.An−1 can be calculated over Breg. As X is Cohen Macaulay and f equidimensional, the

restriction f
∣∣∣
X0

is flat, [Eis95, Theorem 18.16]. By [Ful98, Proposition 2.5d] we can calculate

D̃n.(f ∗H)n = f ∗(D |nBreg
.H |nBreg

) = 0,

D̃2.(f ∗H)n−1.An−1 = f ∗(D |2Breg
.H |n−1Breg

).A|n−1X0
= 0

because dimB = n. Hence qX(d,f ∗h) = 0, and due to qX(f ∗h,a) > 0 also qX(d) = 0, which gives D̃2n = 0.
The vanishing of qX(d,f ∗h), qX(d), qX(f ∗h) give the Fujiki relation (D̃−λf ∗H)2n = cX ·qX(d−λf ∗h)n = 0

for every λ ∈R. For λ ..= D̃.A2n−1

f ∗H.A2n−1 ∈Q we get also (D̃ −λf ∗H).A2n−1 = 0, thus the t2n−1 terms of the Fujiki
relation

(D̃ −λf ∗H + tA)2n = cX · (2tqX(d −λf ∗h,a) + t2qX(a))n

vanish. So qX(d − λf ∗h,a) = 0 and therefore d − λf ∗h ∈ a⊥ ∩H1,1(X) ∩H2(X,R). The form qX is by
Proposition 25 negative definite on this space, so d = λf ∗h in H2(X,Q) and D̃ ≡ λf ∗H .

Now, if like in Matsushita’s setting D is Q-Cartier, we get D ≡ λH by the projection formula, so ρ(B) = 1.
In the general case we show that D is numerically Q-Cartier in the sense of [HMP15]. This means that we
have to construct for any resolution µ : B̃→B a µ-trivial Q-Cartier divisor D ′ on B̃ with µ∗D

′ =D .
For every resolution µ : B̃→B the fiber product X ×B B̃ consists of the exceptional components of µ and a

component Y that is isomorphic to the graph of f and lies birational over X. Hence we can construct a
commutative diagram of resolutions

(5)

X̃ X

B̃ B

ν

µ

f̃ f
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by taking X̃ to be a resolution of Y , together with the morphisms ν, f̃ induced by the projections from
the fiber product onto X,B. We consider D ′ ..= f̃∗ν∗D̃ . As ν∗D̃ ≡ λν∗f ∗H = λf̃ ∗µ∗H , we have D ′ ≡ λµ∗H ,
which is µ-trivial with µ∗D

′ = µ∗f̃∗ν∗D̃ = f∗ν∗ν∗D̃ =D, so D is numerically Q-Cartier.
Fujino’s result [Fuj99, Theorem 1.2] shows that B is a klt variety, so it has rational singularities. Hence by

[HMP15, Theorem 5.11] D is Q-Cartier, so B is Q-factorial. �

4.3. Fibrations of primitive symplectic varieties

We give an example showing that part 1 of Theorem 4 can fail for an irreducible symplectic variety. The
idea is due to Matsushita and was worked out by Sawon [Mat01, p. 7f], [Saw14, Lemma 15].

Example 26. Consider the elliptic curve E = C/Γ with the lattice Γ =Z+Z · ζ6, where ζ6 is a primitive sixth
root of unity, and the 6-torus T ..= E6. The maps

C6→ C6

(z1, . . . , z6) 7→ (ζ6z1,ζ
5
6z2,−z3,−z4,ζ

2
6z5,ζ

4
6z6)

(z1, . . . , z6) 7→ (z5, z6, z1, z2, z3, z4)

generate a group of automorphisms of C6 preserving Γ 6 ⊂ C6, which induces a subgroupG ⊂ AutT . Then X ..= T /G
is an irreducible symplectic variety with ω ..= dz1 ∧ dz2 + dz3 ∧ dz4 + dz5 ∧ dz6, [Bea00, Proposition 2.4].
However, it is not primitive symplectic, as it carries holomorphic 3-forms. The group G also acts on the subtorus
T ′ with coordinates (z1, z3, z5) and the quotient B ..= T ′/G carries the holomorphic form dz1 ∧ dz3 ∧ dz5, hence
KB = 0, and B has canonical singularities due to the Reid–Tai criterion [Kol13, Theorem 3.21].

Proof of Theorem 4. Let (X,ω) be a primitive symplectic variety with a morphism f : X→B like in Theorem 4.
We have to show the following two parts.

(1) The base variety B is Fano.

(2) If B is smooth, then B � Pn.

Proof of (1). As B is Q-factorial with ρ(B) = 1 by Theorem 3, the canonical divisor KB is Q-Cartier with
KB ≡ tH for a t ∈Q. By the Iitaka conjecture, which due to Kawamata is known to hold in this special case,
see Theorem 30 in the appendix, we have κ(B) ≤ 0, so t ≤ 0. Therefore we only need to exclude the case
t = 0. Up to here this is the same idea as in [Mat99, step 5].

We assume that KB is numerically trivial. Applying [Kaw85, Theorem 8.2] to a terminal model of B shows
that there is a d ∈N>0, such that OB(dKB) � OB is trivial. As the canonical sheaf is a reflexive sheaf that
is locally free on Xreg, we can go over to a ramified cyclic covering like in [KM98, 2.52–2.53]. This is a
finite morphism p : B̂→B with p∗OB(KB) = OB̂ that is étale of degree d over Xreg and possibly branched
over Xsing. Hence p is quasi-étale because X is normal. The variety B̂ is by [KM98, Proposition 5.20] also
a klt variety. We consider the fiber product X ×B B̂ and take the normalization X̂ of any component that
lies over Xreg. The projections from the fiber product give a lift f̂ : X̂→ B̂ of the morphism f with KB̂ = 0

and a quasi-étale morphism π : X̂→X. There is a non-zero reflexive form α ∈ H0(B̂,Ω[n]
B̂
) and, as B̂ is

a klt variety, we can pull it back by Theorem 5 to a non-zero reflexive form f̂ ∗α ∈ H0(X̂,Ω[n]
X̂
). As f̂ ∗α

is not zero, n has to be even and f̂ ∗α a multiple of π∗(ω)n/2 because X is primitive symplectic. This is a
contradiction because f̂ ∗α2 = 0, but π∗ωn has no zeros.

Proof of (2). As X is primitive symplectic, every terminal model π : Y→X of X is also primitive symplectic

by Proposition 12. Then hp(Y , OY ) = h0(Y ,Ω[p]
X ) for all p by Hodge symmetry, [GKP16, Proposition 6.9],

so Y is cohomologically irreducible symplectic in Matsushita’s terminology, [Mat15, Definition 1.6]. Applying
Matsushita’s result [Mat15, Theorem 1.10] to f ◦π : Y→B shows B � Pn if B is smooth. �
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Appendix

We explain here some probably well-known results used in the main proofs above. Lemma 27 can be seen
as a special case of [Kol96, Theorem I.6.5]. Theorems 29 and 30 are easy but useful consequences of results
of Kollár and Kawamata.

Lemma 27 (Smoothness at general fibers). Let f : X→Y be a surjective morphism of complex varieties with a
general fiber F. If F is smooth at a point x ∈ F, then X is smooth at x.

Proof. Let X, Y be n+ r and n-dimensional, respectively. A general fiber F lies over a smooth point y ∈ Y
and has the dimension r by the fiber dimension theorem. Consider a smooth point x ∈ F with maximal
ideals mX,x ⊂ OX,x and mF,x ⊂ OF,x and the maximal ideal mY ,y ⊂ OY ,y of y. As y ∈ Y and x ∈ F are

regular, we can write mF,x = (φ1, . . . ,φr ) and mY ,y = (ψ1, . . . ,ψn). The ideal sheaf sequence for F ⊂ X allows

us to extend the φi to functions φi ∈mX,x ⊂ OX,x. Then it can easily be checked that we get a short exact
sequence

0→f ∗mY ,y→mX,x→mF,x→0

that shows mX,x = (f ∗ψ1, . . . , f
∗ψn,φ1, . . . ,φr ). Hence x ∈ X is regular and also smooth because we work

over a perfect field. �

Lemma 28 (Singularities of general fibers). Let f : X→Y be a surjective morphism of complex varieties with
connected fibers, where X is normal. Then the general fiber F is irreducible with Fsing = F ∩Xsing. When X has
canonical (resp. terminal) singularities, the general fiber also has canonical (resp. terminal) singularities.

Proof. A general fiber F lies over a smooth point y ∈ Y . Let Ly denote the linear system of hyperplanes
passing through y. Then the fiber F is the base locus of the linear system f ∗Ly . The general member of
f ∗Ly is normal with singularities contained in Xsing [BS95, Theorem 1.7.1.1]. It follows by induction over
the codimension of F that F is normal with Fsing ⊂ F ∩Xsing. On the other hand, a smooth point of F is
by Lemma 27 also a smooth point of X. This gives the equality Fsing = F ∩Xsing. As F is normal and
connected, it is also irreducible.

When ν : X̃→X is a resolution, the same argument shows that the strict transform F̃ of F is smooth. The
adjunction formula allows to compare the minimal discrepancies as discr(F) ≥ discr(X), which shows that F
also has canonical (resp. terminal) singularities if X does.

�

Theorem 29 (Kollár’s torsion-freeness). Let f : X→B be a surjective morphism with connected fibers between
complex projective varieties, where X has rational singularities. Then all higher direct image sheaves Rif∗ωX for
i ≥ 0 are torsion-free sheaves on B.

Proof. Let ν : X̃→X be a resolution of singularities. We consider the Grothendieck spectral sequence for
the functors ν∗, f∗ and the canonical sheaf ωX̃ =Ωn

X̃
.

E
pq
2 = Rpf∗(R

qν∗ωX̃)⇒Rp+q(f ◦ ν)∗ωX̃
By Grauert-Riemenschneider vanishing all higher direct images Rqν∗ωX̃ vanish for q > 0, [Laz04, Theo-

rem 4.3.9]. Hence we are only left with the row E
p0
2 and the spectral sequence degenerates already on E2.

As X has rational singularities, we have ν∗ωX̃ =ωX by [KM98, Lemma 5.12]. This gives us

Rpf∗ωX � R
pf∗(ν∗ωX̃) � R

p(f ◦ ν)∗ωX̃ .

The latter sheaf is torsion-free by Kollár’s result [Kol86, Theorem 2.1]. �

Theorem 30 (Reduction of the Iitaka conjecture to the minimal model program). Let f : X→B be a
surjective morphism with connected fibers between normal, complex projective varieties. If the general fiber F
has a good minimal model, in other words F is birational to a variety with semiample canonical divisor, then
κ(X) ≥ κ(F) +κ(B).
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Proof. We construct a commutative diagram like diagram 5 that lifts f to a morphism f̃ between resolutions
X̃, B̃ of X,B. The fibers of f̃ are connected. The general fiber of f̃ is smooth by Lemma 28 and lies over the
general fiber of f . As the Kodaira dimension is a birational invariant, Theorem 30 follows now from the
smooth case that was proved by Kawamata, [Kaw85, Corollary 1.2]. �

References

[Aki51] Yasuo Akizuki, Theorems of Bertini on linear systems, J. Math. Soc. Japan 3 (1951), 170–180,
DOI:10.2969/jmsj/00310170.

[BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal
models for varieties of log general type, Journal of the AMS 23 (2010), 405–468, DOI:10.1090/S0894-
0347-09-00649-3.

[Bea83a] Arnaud Beauville, Some remarks on Kähler manifolds with c1 = 0, Classification of algebraic and
analytic manifolds (Katata, 1982), Progr. Math., vol. 39, Birkhäuser Boston, Boston, MA, 1983,
pp. 1–26.

[Bea83b] Arnaud Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential
Geom. 18 (1983), no. 4, 755–782 (1984), Projecteuclid:1214438181.

[Bea00] Arnaud Beauville, Symplectic singularities, Invent. Math. 139 (2000), no. 3, 541–549,
DOI:10.1007/s002229900043.

[Bre97] Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag,
New York, 1997, Corrected third printing of the 1993 original DOI:10.1007/978-1-4757-6848-0.

[BS95] Mauro C. Beltrametti and Andrew J. Sommese, The adjunction theory of complex projective vari-
eties, De Gruyter Expositions in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1995,
DOI:10.1515/9783110871746.

[DG18] Stéphane Druel and Henri Guenancia, A decomposition theorem for smoothable varieties with trivial
canonical class, J. Éc. polytech. Math. 5 (2018), 117–147, DOI:10.5802/jep.65.

[Dru14] Stéphane Druel, The Zariski-Lipman conjecture for log canonical spaces, Bull. Lond. Math. Soc. 46
(2014), no. 4, 827–835, DOI:10.1112/blms/bdu040.

[Dru18] Stéphane Druel, A decomposition theorem for singular spaces with trivial canonical class of dimension
at most five, Invent. Math. 211 (2018), no. 1, 245–296, DOI:10.1007/s00222-017-0748-y.

[Eis95] David Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in
Mathematics, vol. 150, Springer-Verlag, New York, 1995, DOI:10.1007/978-1-4612-5350-1.

[Fuj87] Akira Fujiki, On the de Rham cohomology group of a compact Kähler symplectic manifold, Algebraic
geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 105–
165.

[Fuj99] Osamu Fujino, Applications of Kawamata’s positivity theorem, Proc. Japan Acad. Ser. A Math. Sci. 75
(1999), no. 6, 75–79, DOI:10.3792/pjaa.75.75.

[Ful98] William Fulton, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete.
3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas.
3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998,
DOI:10.1007/978-1-4612-1700-8.

[GGK19] Daniel Greb, Henri Guenancia, and Stefan Kebekus, Klt varieties with trivial canonical class:
holonomy, differential forms, and fundamental groups, Geom. Topol. 23 (2019), no. 4, 2051–2124,
DOI:10.2140/gt.2019.23.2051.

[GH94] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John
Wiley & Sons Inc., New York, 1994, Reprint of the 1978 original, DOI:10.1002/9781118032527.

http://projecteuclid.org/euclid.jmsj/1261734960
http://dx.doi.org/10.1090/S0894-0347-09-00649-3
http://dx.doi.org/10.1090/S0894-0347-09-00649-3
http://projecteuclid.org/getRecord?id=euclid.jdg/1214438181
http://dx.doi.org/10.1007/s002229900043
http://dx.doi.org/10.1007/978-1-4757-6848-0
http://dx.doi.org/10.1515/9783110871746
https://doi.org/10.5802/jep.65
http://dx.doi.org/10.1112/blms/bdu040
https://doi.org/10.1007/s00222-017-0748-y
http://dx.doi.org/10.1007/978-1-4612-5350-1
http://dx.doi.org/10.3792/pjaa.75.75
http://dx.doi.org/10.1007/978-1-4612-1700-8
https://doi.org/10.2140/gt.2019.23.2051
http://dx.doi.org/10.1002/9781118032527


18 M. Schwald18 M. Schwald

[GK14] Patrick Graf and Sándor J. Kovács, An optimal extension theorem for 1-forms and the Lipman-Zariski
conjecture, Doc. Math. 19 (2014), 815–830, www.math.uni-bielefeld.de/documenta/vol-19/27.html.

[GKKP11] Daniel Greb, Stefan Kebekus, Sándor J. Kovács, and Thomas Peternell, Differential forms on log
canonical spaces, Inst. Hautes Études Sci. Publ. Math. 114 (2011), no. 1, 87–169, DOI:10.1007/s10240-
011-0036-0 An extended version with additional graphics is available as arXiv:1003.2913v4.

[GKP16] Daniel Greb, Stefan Kebekus, and Thomas Peternell, Singular spaces with trivial canonical class, Min-
imal Models and Extremal Rays, Kyoto, 2011 (Tokyo), Adv. Stud. Pure Math., vol. 70, Mathematical
Society of Japan, Tokyo, 2016, http://bookstore.ams.org/aspm-70, pp. 67–113.

[GL14] Daniel Greb and Christian Lehn, Base Manifolds for Lagrangian Fibrations on Hyperkähler Manifolds,
International Mathematics Research Notices 2014 (2014), no. 19, 5483, DOI:10.1093/imrn/rnt133.

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathe-
matics, No. 52. DOI:10.1007/978-1-4757-3849-0.

[Har80] Robin Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–176, DOI:
10.1007/BF01467074.
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