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Remarks on the positivity of the cotangent bundle of a K3
surface

Frank Gounelas and John Christian Ottem

Abstract. Using recent results of Bayer–Macrì, we compute in many cases the pseudoeffective and
nef cones of the projectivised cotangent bundle of a smooth projective K3 surface. We then use
these results to construct explicit families of smooth curves on which the restriction of the cotangent
bundle is not semistable (and hence not nef). In particular, this leads to a counterexample to a
question of Campana–Peternell.
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Remarques sur la positivité du fibré cotangent d’une surface K3

Résumé. En utilisant des résultats récents de Bayer–Macrì, nous calculons dans de nombreux
cas le cône pseudoeffectif et le cône nef du projectivisé du fibré cotangent d’une surface K3
projective. Nous utilisons ensuite ces résultats pour construire des familles explicites de courbes
lisses sur lesquelles la restriction du fibré cotangent n’est pas semi-stable (et n’est donc pas nef). En
particulier, cela fournit une réponse négative à une question de Campana–Peternell.
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1. Introduction

Miyaoka proved that the cotangent bundle of a non-uniruled variety is generically nef, in the sense that
its restriction to a sufficiently ample and general complete intersection curve is a nef vector bundle [MR84].
This in turn has many interesting geometric consequences; see [CP11,Pet11] for more general properties of
such vector bundles, in particular for the tangent and cotangent bundles. The starting point of the present
paper was the following question of Campana and Peternell:

Question 1.1 (Question 1.6 in [CP11]). Let f : X → Y be a birational morphism of smooth projective
non-uniruled varieties. Is f ∗Ω1

Y generically nef?

We answer this question in the negative, by constructing a certain blow-up f : X→ S of a K3 surface.
Let us sketch the construction. Let S be a generic quartic surface and let P(Ω1

S ) denote the projectivisation
of the cotangent bundle. Let L = O

P(Ω1
S )
(1) be the relative hyperplane bundle and H the pullback of the

polarisation on S . Then one finds that D = L+2H is a base-point free ample divisor (see Proposition 3.1),
so a generic element X ∈ |D | is a smooth surface and the projection π : X→ S is birational. Moreover, as
L ·D2 < 0, the canonical quotient π∗Ω1

S → L→ 0, shows that π∗Ω1
S is not nef restricted to any smooth

curve C ⊂ X in the (ample) linear system |mD |X |. In particular π∗Ω1
S is not generically nef.

This example has other interesting features. For instance, the curve C maps isomorphically to a
(movable) smooth curve D ⊂ S with the property that Ω1

S |D is not nef, and hence not stable. This
addresses [CP19, Example 4.3], which asks about explicit examples of curves destabilising the cotangent
bundle of a K3. We show more generally the following:
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Theorem A. Let (S,OS(1)) be a general polarised K3 surface of degree d.
(i) If d = 2 then there is a positive-dimensional family of smooth curves C in |OS(6)| so that Ω1

S |C is not
semistable.

(ii) If d = 4,6 there are families as above in |OS(3)| (and another in |OS(4)| if d = 4).
(iii) If d = 8 there is a family in |OS(3)| so that Ω1

S |C is strictly semistable.

These results should be compared with the results of Bogomolov and Hein (see Theorem 2.2), which
essentially say that if either the degree of the polarisation or the multiple of the polarisation in which the
curve lies is high, then there can be no smooth destabilising curves, and also that a general curve in any
multiple of the polarisation is not destabilising.

More generally, one can ask how the sets of all curves and effective divisors on P(Ω1
S ) reflect the geometric

properties of S . In particular this is closely related to describing the nef and effective cones on P(Ω1
S ),

and in turn the existence of sections of the twisted symmetric differentials Sa(Ω1
S )⊗OS(b). These subjects

have a long history, going back to the work of Kobayashi [Kob80], who showed that a simply connected
Calabi–Yau variety has no symmetric differentials, i.e., H0(X,SmΩ1

X) = 0 for all m ≥ 1. For K3 surfaces, this
was extended by Nakayama [Nak04], who showed that in fact L = O

P(Ω1
S )
(1) is not even pseudoeffective on

P(Ω1
S ) (i.e., its class is not a limit of effective classes). Very recently this was extended to simply connected

Calabi–Yau threefolds by Druel [Dru18, Theorem 6.1] and by Höring–Peternell [HP19] to all dimensions.
In general computing these cones explicitly seems like a difficult problem. In some low-degree cases one

can use the well-known projective models to study the cohomology of the symmetric powers of the cotangent
bundle, but in general the cones seem to depend on the degree d in a rather subtle way. We are able to
solve the problem at least for infinitely many d, using results of Bayer–Macrì.

The starting observation is that P(Ω1
S ) embeds in the Hilbert scheme S[2] as the exceptional divisor of

the Hilbert–Chow morphism, so one can try restricting extremal divisors from the pseudoeffective and nef
cones of S[2] to P(Ω1

S ), which are known from the results of Bayer–Macrì [BM14]: the effective cone Eff(S[2])
(resp. nef cone) is spanned by B (resp. H̃ ) and one more extremal ray which in what follows we call the
second extremal ray (see Theorem 2.4). We prove that the restriction of this second ray is indeed extremal for
infinitely many d, but also that this is not always the case. In what follows, we will consider the Pell-type
equation

(1.1) x2 − 4ty2 = 5.

Theorem B (See Section 3). Let (S,OS(1)) be a primitively polarised K3 surface of degree d = 2t and Picard
number one. First, if t is a square and (1.1) has no solution, then

Eff(P(Ω1
S )) = Nef(P(Ω1

S )) =
〈
H,L+

2
√
t
H

〉
.

Next, the restriction of the second extremal ray of Eff(S[2]) is extremal on Eff(P(Ω1
S )) if the following three

conditions hold

(i) t is not a square,
(ii) (1.1) has no solutions,
(iii) the minimal solution (a,b) of x2 − ty2 = 1 has b even.

Finally, the restriction of the second extremal ray of Nef(S[2]) is extremal on Nef(P(Ω1
S )) if (1.1) has a solution.

In particular we know the effective cone of P(Ω1
S ) if

d = 4,8,12,18,20,24,26,32,34,36, . . . ,

whereas we know the nef cone if

d = 2,8,10,18,22,32,38,50,58,62, . . . .
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We emphasise that in the above cases the cones are explicitly computable, the slopes given in terms of
solutions to Pell-type equations. We defer to Section 3 for particulars.

As mentioned above, we also prove that the above trick does not work in general: we show that the
restriction of the nef cone of S[2] is a strictly smaller subcone of Nef(P(Ω1

S )) in the degree four and six
cases (see Section 4). The cases in which this restriction is extremal depend on the geometry of the minimal
models of S[2], and one can find results and a classification in work of Bayer–Macrì, Hassett–Tschinkel,
Markman and others.

In the final section we analyse in more detail these contractions in the cases of K3s of degree d = 2,4,6,8,
improving bounds on, or computing the aforementioned slopes, and describe the geometry of the extremal
divisors.

Notation. We work over the complex numbers. For G a vector bundle on a variety X we say that G
is pseudoeffective, big, nef, ample if O

P(G)(1) is a pseudoeffective, big, nef, ample line bundle on P(G)
respectively. We use Grothendieck notation throughout, so that P(G) parameterises one-dimensional
quotients of G. In particular if π : P(G)→ X is the projection, we have a universal quotient line bundle
π∗G→O

P(G)(1)→ 0, and for a surjection G1→ G2→ 0 we have an induced inclusion P(G2) ⊆ P(G1) so
that O

P(G1)(1)|P(G2) = OP(G2)(1).

Acknowledgements. We would like to thank Yohan Brunebarbe and Mike Roth for numerous con-
versations which got this project started. Also thanks to N. Addington, B. Bakker, J. Guéré, B. Hassett,
H.-Y. Lin, E. Macrì, M. Mauri, G. Mongardi, K. O’Grady. We would also like to thank the Mathematisches
Forschungsinstitut of Oberwolfach for providing excellent working conditions when this project began during
a “Research in Pairs” of the authors.

2. Preliminaries

Throughout the paper we will let S denote a K3 surface with a primitive ample line bundle OS(1) of degree
d = OS(1)2, which is always an even number, so we will sometimes write d = 2t. We will mostly assume
that Pic(S) =Z, generated by OS(1). Let E = P(Ω1

S ) and π : E→ S the projection. In this case the Picard
group of E is generated by L = O

P(Ω1
S )
(1) and H = π∗OS(1). We have the following intersection numbers:

L3 = s2(Ω
1
S ) = −24, L ·H2= d,

L2 ·H = s1(Ω
1
S ) = 0, H3 = 0.

We denote by αe,d and αn,d the (positive) real numbers which are the slopes of the pseudoeffective and nef
cones of E respectively. In other words,

Eff(P(Ω1
S )) =

〈
H,L+αe,dH

〉
Nef(P(Ω1

S )) =
〈
H,L+αn,dH

〉
.

These numbers are often called the pseudoeffective and nef thresholds for Ω1
S . We denote by S[2] the Hilbert

scheme of length two subschemes on S . For a divisor H on S, we get a divisor H̃ on S[2] by taking
subschemes incident to H . We also have the Hilbert–Chow morphism

HC : S[2]→ Sym2S

taking a subscheme to its support. This gives Pic(S[2]) ' Pic(S)⊕ZB where B = 1
2E and E is the exceptional

divisor of HC (the divisor of non-reduced subschemes). Note in particular that E ' P(Ω1
S ). In terms of L

and H , we have the restrictions
H̃ |E = 2H, B|E = −L,

where the first follows from the fact that pr∗1OS(1)⊗pr
∗
2OS(1) restricts to OS(2) on the diagonal ∆ ⊂ S × S .
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2.1. Stability of restrictions

As mentioned in the introduction, the positivity of Ω1
S on a curve is closely related to stability. This is

because of Hartshorne’s theorem [Laz04, §6.4.B] which implies that on a smooth curve, a vector bundle of
degree zero is nef if and only if it is semistable. In particular,

Lemma 2.1. Let (S,OS(1)) be a K3 surface and C ⊂ S be a smooth curve. Then Ω1
S |C is nef if and only if it is

semistable.

A consequence of Yau’s Theorem is that Ω1
S is stable with respect to any polarisation. This does not

imply that the restriction to each curve C is stable, as there can be negative quotients Ω1
S |C →Q→ 0 which

do not come from quotients of Ω1
S . On the other hand, one can apply results of Bogomolov to show that for

any stable vector bundle G on a surface S , if we take a smooth curve in a (computable) high enough multiple
of the polarisation, then the restriction G|C is stable. In our case, Bogomolov’s theorem [HL10, Theorem
7.3.5] implies that if C ∈ |OS(n)| for n > 49 then Ω1

S |C is stable. In fact, if S is a K3 surface this has been
extended in various directions by Hein. Hein’s results apply to any K3 surface, but we only state them in the
case of Picard number one.

Theorem 2.2 (Hein). Let (S,OS(1)) be a smooth projective K3 surface of degree 2t and Picard number one.
(1) If t(2m− 1) > 48 then for any smooth curve C ∈ |OS(m)| we have that Ω1

S |C is a stable vector bundle.
(2) For any t ≥ 1, m ≥ 1, (t,m) , (1,1) and general curve C ∈ |OS(m)|, the restriction Ω1

S |C is semistable.

Proof. The first statement follows directly from [Hei06, Theorem 2.8]. Then (ii) follows from [Hei96, Korollar
3.11], and the fact that a general member of |OS(m)| is not hyperelliptic for these values of t and m. �

To be more concrete, for m = 1 we obtain t > 48, for m = 2, t > 16 and m = 3 gives t > 9. On the other
hand, for t ≥ 1 we obtain that m ≥ 25, which is an improvement on the bound of Bogomolov mentioned
above.

In other words finding curves which destabilise the cotangent bundle is limited to low degree K3s and low
degree multiples of the polarisation, and even more so only to small parts of the linear systems considered.
Constructing such curves in general seems out of reach, so in Section 4 we proceed on a case by case basis.

An initial natural attempt is to consider the ramification curves of a generic projection S → P
2. The

starting point here is the fact that in the degree two case, the ramification curve C of the degree two cover
f : S→ P

2 is smooth, and the restriction of Ω1
S to it is not semistable (see Section 4.1). As explained in the

proof below, these curves lie in |OS(3)|, so Hein’s Theorem 2.2 implies that they cannot be destabilising if
t > 9.

Proposition 2.3. Let (S,OS(1)) be a K3 surface of degree 2t > 2 and S ⊂ P
t+1 the induced embedding. For a

linear space Λ = P
t−1 ⊂ P

t+1 denote by RΛ ⊂ S the ramification divisor of the projection S→ P
2 from Λ. If Λ

is general and t ≤ 3 then Ω1
S |RΛ

is not semistable, whereas for t = 4 it is strictly semistable.

Proof. From [CF11] we know that since Λ is general, the projection S → P
2 is a morphism and RΛ is a

smooth irreducible curve in |OS(3)|. Consider the natural morphism φ : P(Ω1
S )→Gr(2, t +2) (see Section

3). This factors as

P(Ω1
S ) ⊂ P(Ω1

P
t+1 |S ) ⊂ P(Ω1

P
t+1) = P(U∨)

p
−→Gr(2, t +2)

where U is the universal subbundle on the Grassmannian and p is the bundle projection. Let us consider
σ2 ⊂ Gr(2, t + 1) the Schubert cycle parameterising lines meeting the (t − 1)-plane Λ. The class φ∗σ2 is
represented by a smooth curve C ⊂ P(Ω1

S ) whose image in S is a curve whose points correspond to lines
meeting S with multiplicity at least two that also meet Λ, i.e. the curve RΛ. We claim that L is negative on
this curve.
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To compute the class of C, note that σ2 = c21(U
∨) − c2(U∨). On P(U∨), the line bundle O

P(U∨)(1)
corresponds to H and g = L + 2H corresponds to the pullback of the Plücker polarisation. Using the
Grothendieck relation on P(U∨) we find that φ∗σ2 = L2 +3L ·H +3H2. This gives L ·φ∗σ2 = 6t −24 which
is negative if t ≤ 3, so L ·C < 0. Since RΛ is smooth, we have from Lemma 2.1 that Ω1

S |RΛ
is not semistable

for t ≤ 3. If t = 4, we get a degree zero quotient of the vector bundle π∗Ω1
S restricted to the curve C, and

hence by pushing down a degree zero quotient on RΛ. Hence Ω1
S |RΛ

is semistable as it is an extension of
degree zero line bundles, but not stable. �

2.2. Results of Bayer–Macrì

To approach the computation of the pseudoeffective and nef cones of P(Ω1
S ), we will repeatedly be using

the results of Bayer–Macrì [BM14, Section 13]. Note that the pseudoeffective and movable cones are dual
under the Beauville–Bogomolov–Fujiki form, which allows the computation of the former from the results loc.
cit. on the latter (see [BM14, p.570]).

Theorem 2.4 (Theorem 13.1 and 13.3 in [BM14]). Let (S,OS(1)) be a polarised K3 surface of degree 2t and
Picard number one.

(1) Assume the equation x2 − 4ty2 = 5 has no solutions.
(a) If t is a perfect square then Nef(S[2]) = Mov(S[2]) = 〈H̃, H̃ −

√
tB〉, Eff(S[2]) = 〈B,H̃ −

√
tB〉.

(b) If t is not a perfect square then x2 − ty2 = 1 has a minimal solution1 (a,b) and the cones are given by
Nef(S[2]) = Mov(S[2]) = 〈H̃, H̃ − t baB〉 and Eff(S

[2]) = 〈B,H̃ − abB〉.
(2) If the equation x2 − 4ty2 = 5 has a minimal solution (c,d) then2 Nef(S[2]) = 〈H̃, H̃ − 2t dcB〉 whereas

Mov(S[2]) and Eff(S[2]) are as in Case (1).

The above results in fact give a complete picture of the birational models of S[2]. We give a short
description here as they will be important in what follows. First note that one extremal ray of the movable
cone of S[2] is given by H̃ , and it induces the Hilbert–Chow contraction to Sym2S . We now describe the
other ray of the movable cone, which we will often call the second extremal ray. Firstly, assume that the
Pell-type equation

x2 − 4ty2 = 5

does not have a solution. If t is a square we have a Lagrangian fibration S[2]→ P
2, and hence the second

boundaries of Nef(S[2]) and Eff(S[2]) agree. If t is not a square then (see [DM17, Proposition 3.6]) there is a
divisorial contraction S[2]→ Y contracting an irreducible divisor D to a smooth K3 surface T ⊂ Y and the
restriction to D is a P

1-fibration D→ T (in the sense that the general fibre is P1). We note that like in the
example of the Hilbert–Chow contraction to Sym2S , the variety Y need not be smooth.

If on the other hand the above Pell-type equation does have a solution, then there is a finite sequence
of Mukai flops to a smooth irreducible holomorphic symplectic variety S[2] d X+ which, as above, either
admits a divisorial contraction X+→ Y , contracting an irreducible divisor D→ T to a smooth K3 surface
T (if t is not a square), or has a Lagrangian fibration X+→ P

2 (if t is a square).

3. The cones of divisors of P(Ω1
S)

We begin with some simple bounds for the nef and pseudoeffective cones on P(Ω1
X) for a smooth projective

variety X ⊂ P
n. A convenient ingredient here is the morphism

(3.1) f : P(Ω1
X)→Gr(2,n+1)

1Minimal meaning a is minimal and a,b > 0.
2Note there is a typo in [BM14, 13.3(b)], fixed here.
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which associates a tangent vector to the corresponding point in the Grassmannian. For L the tautological line
bundle on P(Ω1

X) and H the polarisation on X as in Section 2, one checks that f ∗OGr(2,n+1)(1) = L+2H .
When f maps to a lower-dimensional variety, L+2H is extremal in the nef cone as well as the pseudoeffective
cone.

Proposition 3.1. The vector bundle Ω1
P
n(m) is nef if and only if m ≥ 2. More precisely,

Nef(P(Ω1
P
n)) = Eff(P(Ω1

P
n)) = 〈H,L+2H〉 .

Moreover, if X ⊆ P
n is a smooth subvariety, then L+2H is nef, and ample if and only if X does not contain a line.

Proof. The equality of the cones follows from the preceding paragraph. The surjection Ω1
P
n |X →Ω1

X allows
us to factor f as P(Ω1

X) ⊂ P(Ω1
P
n |X) ⊂ P(Ω1

P
n)→Gr(2,n+1). So L+2H is base-point free, and ample if

and only if f is finite, i.e., when X does not contain a line. �

Thus, if X ⊂ P
n a smooth subvariety, the slope of the nef cone of P(Ω1

X) (with respect to O
P
n(1)|X ) is

at most 2. Using results of Section 2.2, we can improve this in the case of K3 surfaces. Note first that if
S a K3 surface of degree 2t, then the nef cone is contained in the positive cone {D |D3 ≥ 0}. However,
the boundary divisor L+ 2√

t
H of this cone can in general fail to be nef (see Section 4). Nevertheless, the

following shows these two cones approximate each other if t is large.

Proposition 3.2. Let (S,OS(1)) be a K3 surface of degree d = 2t and Picard number one. Then for t > 1 we have

αn,2t ≤
2√
t − 5

4

and αe,2t ≤
2
√
t
.

There are similar lower bounds for αn,2t ,αe,2t , showing that they both limit to
2√
t
for large t.

Proof. From Theorem 2.4 the nef cone of S[2] is determined by the fundamental solution to the Pell-type
equation x2 −4ty2 = 5. Assume first that this has no solutions. In this case the nef and movable cones agree.
First, if t is a square then the divisor H̃ −

√
tB is the boundary of the nef cone. If t is not a square, for a

solution (x,y) of x2 − ty2 = 1, we must have x ≥
√
t. Rewriting the equation as

y

x
=

1
√
t

√
x2 − 1
x2

shows that y
x ≥

√
t−1
t , and so we find that the divisor H̃ −

√
t − 1B is nef. If x2 − 4ty2 = 5 has a solution,

then for such a solution (x1, y1) with x1 > 0 minimal and y1 > 0, the boundary of the nef cone is given by
H̃ − 2t y1x1B. It must be that x1 ≥ 2

√
t from which the Pell-type equation gives

y1
x1
≥
√
4t − 5
4t

.

This implies that H̃ − aB is nef for a =
√
4t−5
2 . From this we see that regardless of whether x2 − 4ty2 = 5 has

a solution or not, the divisor (H̃ −
√
t − 5

4B)
∣∣∣
E
= 2H +

√
t − 5

4L is nef on E which implies the result.

For the effective slope, if t is a square then from Theorem 2.4 we have that D = H̃ −
√
tB is nef and

extremal on S[2], and since D3 = 0, the same is true for the restriction L+ 2√
t
H on E. If t is not a square,

then working as above we see that any minimal solution (a,b) to this equation must satisfy b
a <

1√
t
, which

means that H̃ −
√
tB is pseudoeffective on S[2] and hence so is its restriction L+ 2√

t
H .

The lower bound from αe,2t comes from the fact that an effective divisor D must satisfy the inequality

D(
√
t − 5

4L+2H)2 ≥ 0. This gives 8t−15
2t
√
4t−5

< αe,2t , and this expression is asymptotic to 2√
t
. There is a similar

lower bound for αn,2t obtained by squaring a movable class on S[2]. �
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We will see below that the bound for αe,2t is actually attained for infinitely many d. First, we prove the
following result for the nef cone:

Theorem 3.3. Let (S,OS(1)) be a K3 surface of degree 2t and Picard number one. Assume that either t is a
square or that x2 − 4ty2 = 5 has a solution. Then the restriction map

(3.2) Nef(S[2])→Nef(E)

is an isomorphism.

Proof. Dually, it suffices to prove that the inclusion map i : E→ S[2] induces a surjective map on the cones
of curves i∗ : NE(E)→ NE(S[2]). In the Picard number one case, NE(S[2]) is generated by a fibre of the
Hilbert–Chow contraction (which is already contained in E) and some other extremal class l. We use
the description of the nef cone of S[2] due to Bayer–Macrì to show that l = i∗R for some effective 1-cycle
R ∈NE(E). From [DM17, Proposition 3.6] there are three cases to consider

(i) There is a primitive integral nef class D with square zero with respect to the Beauville–Bogomolov–
Fujiki form. Here l corresponds to a curve in one of the fibres of the associated Lagrangian fibration
S[2]→ P

2.
(ii) There is a Mukai flop S[2] d X+ and the class l corresponds to a line in the flopped projective plane

P = P
2.

(iii) There is a divisorial contraction π : S[2]→ Z contracting a divisor D, and l corresponds to a fibre of
π|D :D→ Y .

The conditions on t imply in particular that we are not in case (iii), so we consider the other two. In
case (i) we have D |3E = 0 and so D is also extremal on E, meaning the restriction map (3.2) is indeed an
isomorphism.

In case (ii), note first that P ∩E , ∅: If not then the class of a line would have to also satisfy H̃ · ` = 0, but
this does not happen though as the Hilbert–Chow morphism does not contract `. This means that P and E
intersect along a curve R, and ` equals a multiple of i∗R. �

Remark 3.4. In case (iii), the map (3.2) is not always an isomorphism. This is because the divisorial
contraction S[2]→ Z may restrict to a finite map on E. This happens for instance when the degree is four
or six (see Sections 4.2 and 4.3).

We now turn to the problem of computing the pseudoeffective cone of P(Ω1
S ) of a K3 surface S in some

special situations. First we observe that if the Hilbert scheme admits a Lagrangian fibration S[2] → P
2,

i.e., when t ≥ 2 is a square and Equation (1.1) has no solution, we have that the second extremal divisors of
Eff(S[2]) and Nef(S[2]) agree, and since E is mapped to a lower-dimensional variety, this extremal divisor
H̃−
√
tB restricts to an extremal ray of both Eff(E) and Nef(E). In particular, the above bound of Proposition

3.2 is optimal for infinitely many values of d.

Corollary 3.5. Let (S,OS(1)) be a K3 surface of degree 2t and assume that t is a square and that x2 −4ty2 = 5
has no solutions. Then

Eff(P(Ω1
S )) = Nef(P(Ω1

S )) =
〈
H,L+

2
√
t
H

〉
.

We remark, however that Nef(E) need not equal 〈H,L + 2√
t
B〉 in general - this happens for instance for

quartic surfaces (see below).
We will now focus our attention on K3 surfaces S of Picard number one and degree d = 2t so that S[2]

has two divisorial contractions, namely the Hilbert–Chow and a contraction to a normal variety Y . We
denote the extremal divisor of this contraction by D ⊂ S[2]. As pointed out in an earlier section, the image
of D via the contraction is a smooth K3 surface T ⊂ Y .
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Proposition 3.6. Let (S,OS(1) be a K3 surface of degree 2t and Picard number one. Assume that t is not a
square and x2 − 4ty2 = 5 has no solutions3. In the notation above, assume furthermore that the contracted divisor
is D ' P(Ω1

T ) for T a K3 surface. Then
Eff(E) = 〈D |E ,H〉.

Proof. We want to show that D |E is extremal in the pseudoeffective cone, or equivalently that h0(E,mD |E)
grows at most quadratically in m. First note that h0(S[2],mD) = 1, since D is an exceptional divisor. From
the exact sequence

0→OS [2](mD −E)→OS [2](mD)→OE(mD)→ 0

we see that it suffices to show that h1(S[2],mD −E) is bounded as a function of m, namely that for m large
enough the dimension of this vector space stabilises; this will imply that mD |E can only have one section.
For this, we consider the sequence

0→OS [2]((m− 1)D −E)→OS [2](mD −E)→OD(mD −E)→ 0.

It suffices to prove that H1(D,OD(mD −E)) = 0 for m large, because then the maps

H1(S[2],OS [2]((m− 1)D −E)) −→ H1(S[2],OS [2](mD −E))

are eventually surjective, and so the dimensions h1(S[2],mD − E) must stabilise. Let p : D → T the
projection and write E|D = O

P(Ω1
T )
(a)⊗ p∗OT (b) for positive integers a,b. Note that by adjunction we have

OD(D) 'ωD =O
P(ΩT )(−2). Using the Leray spectral sequence we now find

H1(D,OD(mD −E)) = H1(P(Ω1
T ),OP(Ω1

T )
(−(2m+ a))⊗ p∗OT (−b))

= H0(T , (S2m+a−2Ω1
T )⊗OT (−b)),

and this is zero for m� 0, since Ω1
T is not pseudoeffective. �

Remark 3.7. The above method of proof cannot work in general as Hassett and Macrì explained to us that
in degree 16, the second extremal divisor is not even isomorphic to a projective bundle.

A classical case where the assumptions are satisfied is when S[2] admits an involution (which is not
induced from an involution of S); this happens for instance when S is a quartic surface (see Section 4.2 for
details). In fact, the main theorem of [BCNWS16], gives a complete classification of the degrees for which
S[2] admits an involution which acts non-trivially on the cones of divisors. In this case the second extremal
effective divisor D of S[2] is simply the image of E under the involution.

More generally, the proposition applies in the case of ambiguous Hilbert schemes of Hassett (see [Has00,
Proposition 6.2.2]). Here we say that S[2] is ambiguous if there exists a smooth K3 surface T so that either T
is not isomorphic to S yet has

T [2] ' S[2],
or T is isomorphic to S but there exists an isomorphism S[2] ' T [2] not induced by one between T and
S . In either case we have D ' P(Ω1

T ). In fact there exists a classification in [DM17, Proposition 3.14]
or [Zuf19, Theorem 7.3], depending only on d, giving when S is ambiguous - namely for (S,OS(1)) a K3
surface of Picard number one and degree 2t, then S[2] is ambiguous if and only if the three listed conditions
of the following theorem are fulfilled. To summarise one obtains the following.

Theorem 3.8. Let (S,OS(1)) be a K3 surface of degree 2t and Picard number one. Assume the following three
conditions hold

(1) t is not a square,
(2) x2 − 4ty2 = 5 has no solutions,
(3) the minimal solution (a,b) of x2 − ty2 = 1 has b even.

3Equivalently S[2] has two divisorial contractions, see the discussion after Theorem 2.4.
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Then Eff(E) = 〈H,D |E〉 where D the second extremal divisor from Eff(S[2]).

4. Examples in low degrees

We work through the first four cases of degree d = 2t Picard number one K3 surfaces, in each case
applying and extending the results of the previous section and explain the underlying geometry of the
numbers. Note that some values of αe,d ,αn,d of low degree K3s were computed in [OP96], although their
results are incorrect in the degree 4 case. We correct this below and study the problem for K3 surfaces of
Picard number one of degree d ≤ 8. We summarise the results in the following table.

d αe,d αn,d

2 ≤ 2 3

4 4
3

√
2 < αn,4 <

3
2

6 1 6
5 < αn,6 <

4
3

8 1 1

Table 1. Eff(P(Ω1
S )) = 〈H,L+αe,dH〉,Nef(P(Ω1

S )) = 〈H,L+αn,dH〉

In addition, following Section 2.1, we give examples of positive dimensional families of smooth curves in
S so that Ω1

S |C is not semistable on the general member.

4.1. d = 2, Double covers of P2

Let S be a generic degree two K3 surface, and let f : S → P
2 be the double cover with ramification

divisor R and branch locus a plane sextic curve C. There is an exact sequence

(4.1) 0→ f ∗Ω1
P

2 →Ω1
S →Ω1

f → 0.

Here f restricts to an isomorphism on R, which from the standard cotangent sequence corresponding to the
composition R ⊂ S → P

2 implies that Ω1
f |R = OS(−R)|R = OR(−3). In particular after restricting to R we

obtain a negative quotient Ω1
S |R→OR(−3)→ 0. This gives not only a smooth curve in S which destabilises

the cotangent bundle, but also a curve C ⊂ E = P(Ω1
S ) which is extremal in the cone of curves. Indeed C

is exactly the intersection of the P
2 ⊂ S[2] (given by the preimages of S → P

2) with E, and so it can be
contracted to a point.

From Theorem 2.4 we have that Nef(S[2]) = 〈H̃, H̃ − 2
3B〉, Mov(S[2]) = Eff(S[2]) = 〈B,H̃ −B〉 and that the

second birational model of S[2] in this case is a rational Lagrangian fibration, i.e., a Lagrangian fibration
after a single flop of the aforementioned P

2 (see [Bak15, Example 9(i)] for further description of the geometry).
From Theorem 3.3 one computes that the divisor (H̃ − 2

3B)|E = 2
3L+2H is extremal in the nef cone of E

and so αn,2 = 3. Similarly, the restriction (H̃ −B)|E = L+2H is effective on E (and in fact it is movable).
We come now to movable curves destabilising the cotangent bundle.

Proposition 4.1. Let S be a generic K3 surface of degree two. Then there is a 12-dimensional family of smooth
curves in |OS(6)| destabilising the cotangent bundle. They are the images of curves of class (L+3H)2 under the
projection P(Ω1

S )→ S .
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Proof. To avoid repeating the same argument we refer to the case of the quartic below in Proposition 4.3 for
what follows. We saw from the sequence (4.1) that the bundle Ω1

S(3) is globally generated, and so the divisor
D = L+3H is basepoint-free on P(Ω1

S ). This implies that there is a smooth surface S ′ ∈ |D | and a smooth
movable curve C ∈ |D |S ′ |. Now the intersection number L ·D2 is −6, which means the quotient line bundle

π∗Ω1
S |C → L|C → 0

is negative on C. Hence Ω1
S has a negative quotient when restricted to the image of C in S and so it is not

nef. We compute that K2
S ′ = −42 and KS ′ ·D = 42 meaning S ′→ S is a smooth blowup along 42 distinct

points and the image of C in S is smooth. Note that D2 ·H = 12, so that the images of these curves move in
a positive dimensional family in |OS(6)| on S . Since h0(S,Ω1

S(3)) ≥ h
0(S,f ∗Ω

P
2(3)) = 8 this family is of

dimension at least dimGr(2,8) = 12. �

4.2. d = 4, Quartics in P
3

Let S ⊂ P
3 be a quartic surface of Picard number one. As studied by Beauville in [Bea83], S[2] has an

involution i : S[2]→ S[2] which maps the reduced length two subscheme p+ q ∈ S[2] to the residual degree
two subscheme on the intersection S ∩ `p,q of S with the line through p and q. When S has Picard number
one, this involution must swap the boundaries of the pseudoeffective and nef cones.

There is a natural morphism f : S[2]→Gr(2,4) taking a 0-cycle of degree two and associating to it the
line in P

3 spanned by the two points. Since a general line meets S in four points, this is generically finite of
degree

(4
2
)
= 6. In terms of H̃,B the Plücker polarisation pulls back to H̃ −B. In particular H̃ −B is fixed

by the involution i. From this, one computes that i(H̃) + H̃ = 4(H̃ − B), and hence i(H̃) = 3H̃ − 4B and
i(B) = 2H̃ − 3B. These two divisors are clearly extremal in Eff(S[2]) and Nef(S[2]) respectively, so we get
Nef(S[2]) = Mov(S[2]) = 〈H̃,3H̃ − 4B〉 and Eff(S[2]) = 〈B,2H̃ − 3B〉.

4.2. The pseudoeffective cone of P(Ω1
S )

This has been computed in Theorem 3.8. Since the second boundary of the pseudoeffective cone of S[2]

restricted to E is given by (H̃ − 3
2B)|E = 3

2L+2H we obtain the following.

Corollary 4.2. Let S ⊂ P
3 be a smooth quartic surface of Picard number one. Then for L = O

P(Ω1
S )
(1) and H

the pullback of OS(1) to P(Ω1
S ) we have

Eff(P(Ω1
S )) = 〈3L+4H,H〉 .

The divisor i(E)|E = 6L+8H is effective on E. Indeed, this is exactly the surface of bitangents U0 ⊂ P(Ω1
S )

(see [Tih80, Proposition 2.3] and [Wel81, Proposition 3.14]). On the other hand, the generator 3L+4H is not
itself effective: taking symmetric powers of the standard cotangent sequence associated to a quartic in P

3

one obtains

0→ Sk−1Ω1
P

3 |S ⊗OS(−4)→ SkΩ1
P

3 |S → SkΩ1
S → 0.

We can compute the cohomology of the middle term using the sequences

0→ SkΩ1
P

3(m− 4)→ SkΩ1
P

3(m)→ SkΩ1
P

3 |S(m)→ 0

0→ SkΩ1
P

3 →OP
3(−k)⊕αk →O

P
3(−k +1)⊕βk → 0

where αk =
(k+n
k

)
and βk =

(k+n−1
k−1

)
. Hence H0(P(Ω1

S ),3L + 4H) = 0, since it is sandwiched between
H0(S,S3Ω1

P
3 |S(4)) and H1(S,S2Ω1

P
3 |S ), the first of which is zero (e.g., by Proposition 3.1), whereas the

second is zero by Kodaira vanishing.
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4.2. The Nef cone of P(Ω1
S )

Going on now to explain Remark 3.4, consider again the surface U0 = i(E) ∩ E of bitangents of S .
The Hilbert–Chow morphism restricts to a finite morphism U0 → S of degree six (see [Wel81]; counted
with multiplicities, there are six bitangent lines through any point in S). In other words, the morphism
i(E)→ Sym2(S), induced by i(H) is finite (since any curve contracted would have to lie in i(E)∩E). This
implies that the divisor i(H)|E = 4L+6H is ample on E, and hence αn,4 <

3
2 .

Now, from the computation of the pseudoeffective cone above one sees that L+
√
2H is pseudoeffective,

but (L+
√
2H)2(3L+4H) < 0 which means that L+

√
2H is not nef. Hence

√
2 < αn,4 <

3
2 .

4.2. Families of Destabilising Curves

We will give two families of destabilising curves on S, the second of which has a natural geometric
description as the family of ramification divisors from a generic projection S→ P

2.

Proposition 4.3. Let S ⊂ P
3 be a generic quartic K3 surface.

(1) There is an 8-dimensional family of smooth curves in |OS(4)| destabilising the cotangent bundle. These are the
images of the smooth curves of class (L+2H)2 in P(Ω1

S ), under the projection to S .
(2) There is a 3-dimensional family of smooth curves in |OS(3)| destabilising the cotangent bundle. Geometrically

this is the family of ramification divisors Rp of the projection morphism fp : S→ P
2 from a generic point p

and the destabilising quotient is given by Ωfp |Rp .

Proof. Observe first that the line bundle D = L+ 2H is base-point free on P(Ω1
S ) by Proposition 3.1. By

Bertini, there is a smooth surface S ′ ∈ |D |. Recall that on P(Ω1
S ), we have L3 = −24, L2 ·H = 0, L ·H2 = 4.

Let ` = L|S ′ and h =H |S ′ = f ∗OS(1). This implies that we have the following intersection numbers for ` and
h on S ′ : `2 = −24, ` ·h = 8 and h2 = 4. It follows that ` · (`+2h) = −8. Note that D |S ′ = `+2h is nef, so the
restriction of L is not pseudoeffective on S ′ .

Denote by f : S ′ → S the restriction of π to S ; S ′ is generically a section of π, so f is birational. In
fact, computing the canonical bundle of S ′ gives KS ′ = (K

P(Ω1
S )
+D)|S ′ = 2H −L which gives that K2

S ′ = −40.
In particular f : S ′ → S must be the blow-up of S in 40 distinct points since any exceptional curve is
contracted to S so must be a fibre of P(Ω1

S )→ S . Moreover D ·KS ′ = (L + 2H) · (−L + 2H) = 40 so the
general divisor in C ∈ |D |S ′ | passes through each exceptional divisor with multiplicity one, implying that
its image C′ = f (C) in S is smooth. We have 16 = D2 ·H = π∗D2 · OS(1) and so it follows that C′ lies in
|OS(4)|. In fact we obtain an 8-dimensional family this way by intersecting two generic divisors in |D |.

The second family was already proven to be destabilising in Proposition 2.3. Using [CMT01, Proposition
2.6] we compute that for p ∈ P3 generic, the ramification divisor R is a smooth genus 19 curve and it is the
normalisation of its image, the branch divisor B. Also, the branch divisor B ⊂ P

2 is irreducible of degree 12
and from [CF11] has only cusps and nodes as singularities. Using the results loc. cit. one computes it has 12
nodes and 24 cusps, and since only the latter contribute to ramification, this implies that degΩ1

R/B = 24.
The conormal bundle I/I2 of R ⊂ S is OR(−3) and from the sequence

(4.2) 0→OR(−3)→Ω1
f |R→Ω1

R/B→ 0

we see that since the left has degree −36 and the right 24, we obtain that degΩ1
f |R = −12. From the

sequence Ω1
S |R→Ω1

f |R→ 0 we thus obtain a negative quotient, which is the desired explicit destabilising
quotient. �

4.3. d = 6, Intersections of cubics and quadrics in P
4

Here Nef(S[2]) = Mov(S[2]) = 〈H̃, H̃ − 3
2B〉 and Eff(S[2]) = 〈B,H̃ −2B〉. In this case the second birational

model is a divisorial contraction like in the t = 2 case, but S[2] is not ambiguous, so we are not in the case
of Theorem 3.8.
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We will compute the effective cone, in particular proving that αe,6 = 1, using the beautiful geometry of
S[2] related to nodal cubic fourfolds. We will also show that like in the d = 4 case, the restriction of the nef
cone from S[2] is in the interior of Nef(P(Ω1

S )), obtaining at least in this case that αn,6 <
4
3 .

Remark 4.4. One could alternatively use cohomological techniques to compute that the divisor given by the
restriction 2L+2H = (H̃ − 2B)|E is extremal in the pseudoeffective cone. We do not reproduce the proof
here as it is a lengthy computation, but it follows from the fact that S is the intersection K ∩Q ⊂ P

4 of a
smooth cubic and quadric, so one can take symmetric products of the Euler sequence restricted to K and the
cotangent sequence 0→OS(−1)→Ω1

K |S(1)→Ω1
S(1)→ 0 to show that h0(S,Sm(Ω1

S(1))) does not have
cubic growth in m.

We begin by describing a birational model of S[2], as found for example in [Has00, Lemma 6.3.1], which
is induced by M = 2H̃ − 3B. Let

Z = {x5q(x0, . . . ,x4) + c(x0, . . . ,x4) = 0} ⊂ P
5

be a general cubic fourfold with a node at p = [0,0,0,0,0,1]. Denote by Q = {q = 0},K = {c = 0} the quadric
and cubic in P

4 respectively. Projecting from p ∈ P5 onto this P
4 we obtain a rational map Z d P

4. In
the Fano scheme of lines F of Z, the locus of lines through p is parameterised by the complete intersection
S = {q = c = 0} in this P4 which is a smooth K3 surface of degree six and Picard number one. Consider now
the map

f : S[2]→ F

taking two lines `1, `2 through p and giving the residual line of intersection of Z with the plane spanned by
`1, `2. Note that this is indeed a morphism (it is not defined precisely when Z contains a 2-plane through
p, which we may assume does not happen by genericity). Starting with a line ` ∈ F \ S and considering
the plane spanned by ` and p, we obtain a residual singular conic in Z whose constituent two lines give
a unique point of S[2]. This implies that the map f is birational. Moreover one can prove that F has A1
singularities along S and is smooth otherwise. Finally S[2] is isomorphic to the blowup BlS F of F at S
(see [Has00, Lemma 6.3.1]), and M is the pullback of the Plücker polarisation. Let D denote the exceptional
divisor of f ; the map f restricts to a smooth P

1-fibration D→ S . Geometrically, this means that if one fixes
a line ` through p, then there is a family over P1 of 2-planes through ` whose residual conic is two lines
`1 + `2 ∈ S[2] passing through p.

Consider now Gr(2,4) the Grassmannian of lines in P
3, embedded as a quadric in P

5 and embed Q
from above as a hyperplane section of Gr(2,4).

Lemma 4.5. The exceptional divisor D is isomorphic to P(U∨|S ) where U is the universal bundle on Gr(2,4).

Proof. Note that points of D ⊂ S[2] parameterise pairs of lines through the node p ∈ Z so that the residual
line in the 2-plane spanned by the two lines also passes through p. Projecting from p, we see that the images
of the three lines thus lie on a line ` ⊂Q, which is a trisecant to S .

Let S denote the rank 2 spinor bundle on Q. We have S =U |Q where U is the universal subbundle on
Gr(2,4). Also S∨ ' S(1). The projective bundle π : P(S∨)→ Q parameterises lines in Q; the fiber over
q ∈ Q is the P

1 of lines ` ⊂ Q through q. We assume that S contains no lines, so for a point s ∈ S ⊂ Q,
and a line ` containing s, the intersection `∩ S consists of s and a length two subscheme ξ ∈ S . This ξ in
turn corresponds to two (possibly equal) lines `1, `2 in Z passing through p, and the residual line of these is
exactly the line corresponding to s. We have therefore defined a morphism P(S∨)→D . It is clear that this
morphism is bijective, since given `1, `2, the line ` is determined from the secant line through the images of
the projections of `1, `2 in S . �

Corollary 4.6. The divisor L+H is extremal in the effective cone, giving αe,6 = 1.



14 F. Gounelas and J. C. Ottem14 F. Gounelas and J. C. Ottem

Proof. The line bundle l = O
P(U∨|S )(1) is ample since it induces a map P(U∨|S )→ P

3 which is finite. Indeed,
regarding P

3 as the variety of lines in Q, the preimage of a point [`] ∈ P3 consists of the points `∩S , which
is finite since S contains no lines. Note now that −D |D = −KD which equals 2l − g for g the pullback of the
hyperplane bundle on S . The curve class l2 is ample and one computes l2 · (2l − g) = (σ2

1 −2σ2) ·σ
2
1 = 0 for

σi the standard Schubert cycles, giving in particular that 2l − g is not pseudoeffective. We will finally sketch
how the proof of Proposition 3.6 implies that D = H̃ − 2B is extremal on E, giving that αe,6 = 1. To this
aim, we must show that H1(D,mD |D −E|D ) = H1(P(U∨|S ),mD |D −E|D ) vanishes for m large. This group
equals H0(S,S2m+aU |S ⊗ (detU |S )m+b), for some a,b integers. It follows from the fact that 2l − g is not
pseudoeffective as seen above, along with the isomorphism U �U∨⊗detU , that this group is zero for large
m. �

As far as the nef cone is concerned, we prove the following analogue of the degree four case.

Lemma 4.7. The restriction of the above morphism f :D ∩E→ S is finite. In particular D |E is ample.

Proof. If not there exists a line ` ⊂ Z through p, and a 1-dimensional family Ht of planes intersecting Z in l
and a double line 2lt . Consider the projection from p, π : P5−{p} → P

4, which blows down the lines through
p to S . The planes Ht give a family of lines in P

4 passing through a fixed point q ∈ S and intersecting S
with multiplicity two at some other points qt . Since S = K ∩Q, we see that Q must contain all of these lines.
But the lines of Q passing through q are parameterised by a conic and sweep out a 2-dimensional quadric
cone Q0 with vertex at p. This quadric Q0 spans a H ' P

3, and the intersection S ∩H contains S ∩Q0 and
thus has a non-reduced divisor as a component. However, this is impossible if Pic(S) =ZH . �

In particular, like in the case t = 2, we have that the restriction (2H̃ − 3B)|E = 3L+ 4H is ample on E
and one sees that the slope of the nef cone αn,6 is strictly less than 4

3 . On the other hand, we compute that
(L+ 6

5H)2 · (L+H) < 0, so in particular 4
3 < αn,6 <

6
5 .

Finally, we can as before use the map φ : P(Ω1
S )→Gr(2,6) to produce an explicit destabilising family

of curves on S . Indeed, the curve C ⊂ P(Ω1
S ) corresponding to lines tangent to S and meeting a general

P
2 ⊂ P

4, has intersection number −6 with L. Pushing this forward to S gives a 6-dimensional family of
destabilising curves in |OS(3)|.

4.4. d = 8, Intersections of three quadrics in P
5

Here Nef(S[2]) = Mov(S[2]) = 〈H̃, H̃ −2B〉 and Eff(S[2]) = 〈B,H̃ −2B〉. In this case we have a Lagrangian
fibration S[2]→ P

2 so we know both the cones from Theorem 3.3 and Corollary 3.5. The restriction of the
extremal ray of the cones of S[2] to E respectively is (H̃ − 2B)E = 2L+2H and so we find αe,8 = αn,8 = 1.

The geometry of this fibration is well understood (see [HT00, Proposition 7.1] and [Saw07, §2.1]) and we
include some details here for completeness. Consider S as the intersection of three quadrics Qi ⊂ P

5. Then
we have a morphism S[2]→ (P2)∨ ' P

2 defined by taking a 0-cycle ξ of degree two and giving the base P
1

of the pencil of quadrics (in the net spanned by the Qi ) containing the line in P
5 spanned by ξ . A fibre of

this morphism is given by the abelian surface which is the Fano scheme of lines of the threefold which is the
base locus of the corresponding pencil. In fact the general fibre will be the Jacobian of a genus two curve: a
general pencil of quadrics in P

5 is singular at precisely six points and we take the genus two curve ramified
above these six points. In particular, following the description from Theorem 3.3, it is the class of this curve
that spans the Mori cone of E, which is also equal to the movable cone of curves of E.

5. Final thoughts and questions

5.1. Bott vanishing for K3 surfaces

The following question was raised by Totaro in [Tot20].
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Question 5.1. For which polarised K3 surfaces (S,OS(1)) does Bott vanishing hold? That is, for q > 0,p ≥ 0,
is

Hq(S,Ωp ⊗OS(1)) = 0?

Here one does not assume that OS(1) is primitive. As explained in the above reference, by Kodaira
vanishing, one need only treat the case p = 1. The problem is essentially solved in [Tot20], but let us show
how one can use our above results to easily obtain Bott vanishing for K3 surfaces (S,OS(1)) of Picard
number one with OS(1)2 > 75. Indeed, using the upper bound for the nef slope αn,2t from Proposition 3.2,
we obtain that if OS(1)2 > 75, the divisor D = 3L+H is ample on E = P(Ω1

S ). Since KE = −2L, one finds
that

H1(S,Ω1
S ⊗OS(1)) = H1(E,L+H) = H1(E,KE +D) = 0

by Kodaira vanishing. In general Bott vanishing can fail; for example because χ(Ω1
S ⊗OS(1)) is negative

when S has low degree.

5.2. Questions

As noted before, we are only able to compute the cones for certain degrees of K3s, leaving several open
questions. For instance, we ask for E = P(Ω1

S ):

Question 5.2. What is the second extremal ray of Eff(E) for a degree 2 K3 surface, or more generally when
S[2] admits a flop?

Question 5.3. What is the second extremal ray of Nef(E) in degree 4 and 6, or more generally when there
is a second divisorial contraction S[2]→ Z?

Even though the slopes for S[2] are all rational numbers, the situation for P(Ω1
S ) is less clear:

Question 5.4. Let S be a K3 surface with Picard number one. Are the cones Eff(E) and Nef(E) rational
polyhedral?
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