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Mirror symmetry for Nahm branes
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Abstract. The Dirac-Higgs bundle is a hyperholomorphic bundle over the moduli space of stable
Higgs bundles of coprime rank and degree. We provide an algebraic generalization to the case
of trivial degree and the rank higher than 1. This allow us to generalize to this case the Nahm
transform defined by Frejlich and the second named author, which, out of a stable Higgs bundle,
produces a vector bundle with connection over the moduli space of rank 1 Higgs bundles. By
performing the higher rank Nahm transform we obtain a hyperholomorphic bundle with connection
over the moduli space of stable Higgs bundles of rank #n and degree 0, twisted by the gerbe of
liftings of the projective universal bundle.

Such hyperholomorphic vector bundles over the moduli space of stable Higgs bundles can be
seen, in the physicist’s language, as (BBB)-branes twisted by the above mentioned gerbe. We
refer to these objects as Nahm branes. Finally, we study the behaviour of Nahm branes under
Fourier-Mukai transform over the smooth locus of the Hitchin fibration, checking that the resulting
objects are supported on a Lagrangian multisection of the Hitchin fibration, so they describe partial
data of (BAA)-branes.
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1. Introduction

11. Context

The Nahm transform was originally described as a geometrical correspondence between solutions of the
self-duality Yang-Mills equations (also known as instantons) in IR* which are invariant under dual groups of
translations [ADHM?78, Nah82, Nah84, Hit83, CG84, BvB89, Nak93, Jar02]. In [Jar04], the second-named
author reviewed the Nahm transform in several situations and gave an interpretation as a nonlinear version
of the Fourier transform which, given a family of self-dual connections over a spin four-manifold with
non-negative scalar curvature, produces a vector bundle with connection over the parametrizing space of the
family. Such bundle is constructed by considering, at each point of the parametrizing space, the cokernel of
the associated Dirac operator. The connection is hyperkédhler whenever both varieties, the base manifold
and the parametrizing space, are hyperkahler.

The study of instantons that are invariant under translations in two directions led Hitchin to introduce
Higgs bundles in [Hit87a] as solutions of the dimensional reduction to a Riemann surface of the self-dual
connections in 4 dimensions. It turns out that the moduli space M of Higgs bundles has a very rich
geometry; in particular, it can be constructed as a hyperkidhler quotient in the context of gauge theory
[Hit87a, Sim94, Sim95, Don87, Cor88] inheriting a hyperkihler structure. When the rank and the degree
are coprime, all semistable Higgs bundles are stable, and Hausel [Hau98] showed that a universal bundle
exists. In degree 0, however, there is no universal bundle over the stable locus M® or even over any other
Zariski open set of the moduli space (see Ramanan [Ram73] and Drezet and Narasimhan [DN89] for a proof
in the case of vector bundles that extends naturally to Higgs bundles). There exists nonetheless a local
universal bundle in the étale topology of the moduli space of stable Higgs bundles M®, as indicated by
Simpson [Sim95].

Another important feature of the moduli space M of stable Higgs bundles with coprime rank and degree
is the existence of the so called Dirac-Higgs bundle, originally considered by Hitchin and studied in detail
by Hausel in [Hau98]|. Later, Blaavand [Blal5] extended the construction of the Dirac-Higgs bundle to the
moduli space of parabolic Higgs bundles.

One way to describe the Dirac-Higgs bundle is as the hyperholomorphic bundle on M obtained via the
Nahm transform, as defined in [F]J08], associated to the universal bundle. To be more precise, the Nahm
transform of a Higgs bundle is defined by considering the index bundle associated to the family obtained
by twisting the original Higgs bundle with the universal family of rank 1 Higgs bundles. This transform
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underlies the Fourier-Mukai transform for Higgs bundles defined by Bonsdorff [Bon06], which also equipped
it with an autodual connection [Bonl0].

Another interesting feature of the moduli space M of Higgs bundles is that it admits a fibration M — B
over a vector space, becoming an algebraically completely integrable system [Hit87b] which is known as
the Hitchin system. The notion of Higgs bundles generalizes naturally to any structure group G. It was
shown in [HT03, DG02, DP12] that Hitchin systems for Langlands dual structure groups, G and G, are dual,
satisfying thereby the requirements of being Strominger- Yau-Zaslow (SYZ) mirror partners [SYZ96], which
allows for the identification of T-duality with mirror symmetry between them. Since the group G = GL(#,C)
is Langlands self-dual, we obtain a self-dual Hitchin system in this case, which is the one that we study in
this paper.

The rich geometry of the moduli space of Higgs bundles M makes it an object of interest for theoretical
physics. In [BJSV95, HMS95] it was shown that the dimensional reduction of an N = 4 Super Yang-Mills
theory in 4 dimensions gives a 2 dimensional sigma model with hyperkihler target M, and, hence, S-duality
in the former becomes T-duality (mirror symmetry) in the latter. This was the starting point for the
ground-breaking article by Kapustin and Witten [KW07] (see also [Witl8]), where they relate the Geometric
Langlands Conjecture and S-duality in the original N = 4 super Yang-Mills theory. Following Kapustin and
Witten, a (BBB)-brane is a pair consisting of a hyperkéhler submanifold and a hyperholomorphic vector
bundle. Similarly, a (BAA)-brane is given by a submanifold which is complex Lagrangian with respect to the
first Kdhler structure, and a flat vector bundle. In String Theory, branes are geometrical objects that encode
the Dirichlet boundary conditions, and mirror symmetry [KWO07, Witl8] predicts a 1-1 correspondence
between (BBB)-branes on the moduli space of G-Higgs bundles and (BAA)-branes on its G counterpart.

Motivated by this context, many authors have studied branes in moduli spaces of Higgs bundles, see
for instance [Hitl6, Hitl7, Gail8, BSI4, BS16, BS19, BG15, HS18, BCFG19, Bral7, FP17, FGOP, HMP] and
[AFESI8] for a survey on this topic, and the geometry of these objects has been intensively described
[BS16, BGH16, BGH19, GW20, Bail8, Bai20, CFF19, Schl2]. More generally, due to their intrinsic geometric
interest, one can also study hyperkéhler and complex Lagrangian submanifolds on other classes of hyperkéhler
manifolds, like quiver varieties [FJM17, HS19], and moduli spaces of stable sheaves on symplectic surfaces

[FJM19].

1.2. Our constructions

In this paper we generalize the constructions of the Dirac-Higgs bundle and the Nahm transform of a
stable Higgs bundle to the case of trivial degree and rank higher than 1. This provides a class of (space
filling) (BBB)-branes that we transform under Fourier-Mukai, obtaining a partial description of the mirror
dual (BAA)-brane.

In the case of coprime rank and degree, the universal Higgs bundle plays a central role in the construction
of the Dirac-Higgs bundle. In our case, however, there is no universal Higgs bundle at hand, not even
locally. To surpass this obstacle, we consider the gerbe of liftings of the projective universal bundle!, and we
introduce the notions of sheaves twisted and shifted by such gerbe. We can then construct the Dirac-Higgs
bundle as a vector bundle twisted by our gerbe, showing that it is equipped with a hyperholomorphic
connection. The techniques used in the construction of the Dirac-Higgs bundle can then be applied to
define the Nahm transform of a stable Higgs bundle which is, again, a bundle twisted by our gerbe and
equipped with a hyperholomorphic connection. This constitutes a family of (BBB)-branes (one for each
stable Higgs bundle) which we call Nahm branes.

The second step is to study the behaviour of these Nahm branes under mirror symmetry. We work over the
smooth locus of the Hitchin fibration, where mirror symmetry is expected to be realized via Fourier-Mukai
transform. We check that the transformed sheaf is supported on a complex Lagrangian multisection of

We are grateful to the anonymous referee for suggesting this approach.
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the Hitchin fibration. This is part of the data of a (BAA)-brane, providing evidence for the existence of a
correspondence between (BBB) and (BAA)-branes conjectured by Kapustin and Witten.

1.3. Organization of the paper

In Sections 2.1 and 2.2 we review the properties of the theory of Higgs bundles and the Hitchin system. In
Section 2.3 we survey, after restricting ourselves to the smooth locus of the Hitchin fibration, the Fourier-
Mukai transform, which is expected to realize mirror symmetry in this context. In Section 2.4 we review
gerbes and the notions of sheaves twisted by a gerbe, we also describe an example of gerbe over the moduli
space of Higgs bundles of particular importance for us, the gerbe of liftings of the projective universal bundle.
In Section 2.5 we review the Dirac-Higgs bundle in general, and we provide an algebraic construction over
the moduli space of Higgs bundles with 0 degree as a bundle twisted by the gerbe of liftings. In Section 3
we study the behaviour of spectral data of Higgs bundles under tensorization, crucial for understanding our
generalization of the Nahm transform of a stable Higgs bundle to rank higher than 1, which we achieve in
Section 4, thereby constructing Nahm (BBB)-branes. In Section 5.1 we adapt the Fourier-Mukai transform
for sheaves twisted by a gerbe, in order to study in Sections 5.2 and 5.3, respectively, the transform of the
Dirac-Higgs bundle and of the Nahm brane associated to any stable Higgs bundle.

2. Geometry of the Hitchin system

2.1. Non-abelian Hodge theory

In this section we introduce the moduli space of Higgs bundles, an object with an extremely rich geometry.
In particular, it is equipped with a hyperkihler structure.

Let us consider a smooth projective curve X over C of genus ¢ > 2. Denote by IE the unique up to
isomorphism C*-bundle of rank 7 over X and consider a Hermitian metric /1 on it. Denote by G the Gauge
group of unitary automorphism of IE preserving the metric, and its complexification, G, parametrizing all
automorphisms of [E. Recall that [E equipped with a Dolbeault operator OF gives rise to a holomorphic
vector bundle E. Out of d¢ and the metric 4, one can construct g and 0f + Of is a unitary connection on
E.

A Higgs pair of rank 1 on X is pair (0, @) where g is a Dolbeault operator on [E fixing an integrable
complex structure on it, and ¢ is an element of Q;('O (End([E)). Note that the space A of Higgs pairs is an
affine space modeled in the infinite dimensional vector space Q?(’l (End(E)) @Q;(’O (End(E)).

A Higgs bundle over X is a Higgs pair (5}5,(p) satisfying Ok @ = 0 (hence Jg ¢* = 0, where @™ is the
adjoint of ¢ with respect to the metric h). Equivalently, a Higgs bundle is a pair £ = (E, @), where E
is a holomorphic vector bundle on X, and ¢ € H(X,End(E) ® Kx) is a holomorphic section of the
endomorphisms bundle, twisted by the canonical bundle K. Let us write B < A for the GC-invariant subset
parametrizing Higgs bundles.

Recall from [Hit87a, Sim94, Nit91] that a Higgs bundle £ is said to be (semi)stable if every proper,
non-trivial, ¢-invariant sub-bundle F < E satisfies

degF
rkF

degE
rkE

< (<)

In addition, £ is polystable if it is a direct sum of semistable bundles &; = (E;, ¢;), all with the same slope
degE;/rkE;. It is possible to construct [Hit87a, Sim94, Sim95, Nit91] the moduli space,

M =B//GE,
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of rank 1 and degree 0 semistable Higgs bundles on X. The locus of stable Higgs bundles M* < M is a
dense open subset identified with the quotient under G of B < B, the set of stable Higgs bundles. When
we need to specify the rank 7 we shall write M,, and MS".

Non-abelian Hodge theory establishes the existence of a homeomorphism [Hit87a, Sim94, Sim95, Don87,
Cor88] between M and the moduli space of flat connections of rank n. This is a consequence of the
construction of these moduli spaces as a hyperkihler quotient of the space of Higgs pairs A by the gauge
group GC of complex automorphisms of IE. Tangent to any Higgs pair (OF, @) we can consider its infinitesimal
deformations a dz € Q%l (End(IE)) and pdz e Q;’O (End(IE)), with z being a holomorphic coordinate of
the base curve. Also, we consider a*dz e Q;’O(End(IE)) and @*dz e Q%I(End(IE)) to be infinitesimal
deformations of 0p and @™ respectively. The hyperkihler structure on A is given by the following metric on
this space,

~rp e . 1 - e .o .o _
(2 §((ar,¢1), (a2, ¢2)) = EL“(“T@ +aya1+ @197 + @297)dz A dz,

and the complex structures ', T2 and I3 = T'T2. We denote by &/ (-,-) = g(,, I/(-)) the associated Kihler
forms and consider the symplectic forms A = &It 4 i@/ which are holomorphic for the corresponding
I7.

From each of the Kihler forms &/ one can construct a moment map /. The space of Higgs bundles
B can be identified with (#%)~!(0) n (43)~1(0) inside A. Then, after an infinite-dimensional version of
Kempf-Ness theorem, M can be identified with the hyperkihler quotient

M= (u')71(0) n (1) 7H(0) n (7)1 (0)/G.

The G-invariant complex structures I/ descend naturally to complex structures I'/ on M. Also, the 2-forms
@/ and A are G-invariant, so they provide naturally the Kihler forms w! on M, and the holomorphic
symplectic forms AJ.

Given a Higgs bundle £ = (E, @), consider the complex

C::End(E) "% End(E) @ Ky,
which induces the following exact sequence

0 —— HO(C2) — HO(End(E)) ~ HO(End(E)®Ky) )

[» H'(Cp) —1 5 HY(End(E)) Lol H'(End(E) ®Ky) — H?*(C3) — 0.

where HP(C}) are the hypercohomology groups for the complex Cy. If € is stable, H’(Cg) ~ H?(C?) =~ C
so H'(C?) has fixed dimension 2n%(g — 1) + 2 and, furthermore, it can be identified with the tangent space
TeMst = H! (Cg). Then, M?t is smooth, and since M®' © M is a dense open subset, one has that

dimM = 2n%(g—1) + 2.

Thanks to Serre duality, ¢ € H?(End(E) ® Kx) can also be regarded as an element of the dual space
H'(End(E))*; one can define a 1-form 0 on M*! as the composition of the map 7 : TH! (C2) — H'(End(E))
and the pairing with ¢, i.e. 6(v) = (@,1(v)), for each v € H'(C?). Hence, d0 is proportional to the

holomorphic symplectic form A!, obtained from Al

2.2. The Hitchin fibration

Besides its hyperkédhler nature, the moduli space of Higgs bundles is equipped with the structure of
an algebraically completely integrable system by means of the spectral correspondence that we revise
[Hit87b, BNR89, Sim95] in this section.
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Let (q1,...,9,) be a basis of GL(n, C)-invariant polynomials with deg(q;) = i. The Hitchin fibration is
the dominant morphism
h: M — B:=@",H(X,KY)
(Ep) — (q1(@)-- 4u(®)),
and we refer to B as the Hitchin base. Consider the total space Tot(Ky) of the canonical bundle, and
the obvious algebraic surjection p : Tot(Kyx) — X; let A be the tautological section of the pullback

bundle p*Kyx — Tot(Kx). Given an element b = (by,...,b,) € B we construct the associated spectral curve
Sy < Tot(Ky ) by considering the vanishing locus of the section

An _i_p*bl/\nfl N +P*bn71/\+P*bn c HO(X,p*K)(?n).

Restricting p to Sy, yields a finite morphism pj, : S; — X of degree n.

One can further consider the pull-back of p*Kg?n to the product Tot(Ky) x B, which is naturally equipped
with a section obtained by pull-back of A. Seeing the b; as coordinates in B, one obtains a second section of
our bundle, whose vanishing locus provides naturally a family of spectral curves S < Tot(Kx) x B for which
we naturally have that S n (Tot(Ky) x {b}) = S;. Restricting the projection p x 15 : Tot(Kx) x B— X x B,
we obtain a finite morphism of degree n:

2.2) p:8—XxB

For every b € B, the corresponding spectral curve S, belongs to the linear system |nX|, and, by Bertini’s
theorem, it is generically smooth and irreducible. Furthermore, since the canonical divisor of the symplectic
surface Tot(Ky) is zero, the genus of S, is given by

(2.3) d:=g(Sy)=1+n*(g—1).

Thanks to Riemann-Roch theorem, p,Os, is a degree —(n? —n)(g — 1) vector bundle of rank n. This
motivates the notation

6:=(n*—n)(g—1).
Following [BNR89], we consider the push-forward
(2.4) Ep:=p.L

of a torsion free sheaf L on S of rank 1 and degree o, which is a vector bundle on X of rank 7 and degree
0 +deg(m,Os,) = 0. We consider as well the multiplication by the restriction to S;, of tautological section,
Ap : Os, — Os, ® p*Kx. Note that this induces the following twisted endomorphism of L

Yp,: L — Lp*Kx
s —  SQAy.

whose push-forward returns the Higgs field
(25) ¢ =pxpp: EL = EL®Kx,

so that b = h(¢@). Thanks to the spectral correspondence [Hit87b, BNR89, Sim95, Sch98, dCatl7], each
Hitchin fibre is identified with the compactified Jacobian of the corresponding spectral curve

H1 (b) = Tac’ (Sp):

. . . A 0 1.
Fixing a point xy € X in our curve, we construct a smooth section ¢ : B — Jacy(S) by considering for

every b the line bundle pZOX(x0)®(”_1)(g ~1) on S Such choice induces the following identification

(2.6) Jacy (S) =TJacy(S).
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2.3. Fourier-Mukai transform and mirror symmetry for the Hitchin system

A very active field of research is the occurrence of mirror symmetry phenomena between Higgs moduli
spaces of pairs of Langlands dual groups. In the so-called semi-classical limit, mirror symmetry is expected
to be realised via a Fourier-Mukai transform relative to the Hitchin fibration. In this section we review
this correspondence within the framework of the moduli space of Higgs bundles for GL(n,C), which is
Langlands self-dual. Hence, the mirror of M is (conjecturally) itself. Even if the Fourier-Mukai transform
extends out of the locus of smooth Hitchin fibres [Aril3, MRV19a, MRV19b], we restrict here to the original
construction of Mukai over (families of) abelian varieties. We do so because the locus of smooth Hitchin
fibres is dense in the Higgs moduli space, hence the study of the duality there is enough for our purposes.

Let us denote by B’ — B the Zariski open subset given by those points b € B such that S;, is smooth. We
denote the restriction of S and M to B’ by

S =8|y
and

(2.7) M’ = M|y = Jac3, (S)).

Note that all the points of M’ are associated to line bundles over smooth spectral curves, which are
automatically stable. Therefore, M’ is contained in the stable locus,

M < MSt,

By the autoduality of smooth relative jacobians, we know that ]ac%, (S ~ ]acg,(S/)v; it thus follows from
(2.7) that this is further isomorphic to ]ac%, (8)Y =~ M. Then, one can consider the commuting diagram

]acg,(S/) X pr ]acg,(S’)v

(2.8) M ~ ]acg, (S M =~ ]acg, (8"v

where G is the constant section considered in Section 2.2, and ¢ is the section given by considering the

B/

structural sheaf on each Jac®(S;).

We will study mirror symmetry in the sense of Strominger-Yau-Zaslow [SYZ96] in this context.

Since the relative scheme M’ = ]acg, (8’) has a section 4, it is well known (see [BLR90, 8.2, Proposition
4] for instance) that its relative Jacobian carries a Poincaré bundle

P —Jack (S') xp Jack, (S")".
With it, we can consider the relative Fourier-Mukai transforms

RS : D} (Jack,(S") = DL (M) — Db (Jacd(S)¥) = D} (M)

and
(2.10) RF : D} (Jach,(S')") = Dj,(M') — Df (Jach,(S")) = D, (M)

G* —  G*:= R, (P*Q1*G).

After [Muk8l], this is an equivalence of categories since

Jac

(2.11) RF oRYF =[d]o (1‘1)*,
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where 1 ]_ai denotes the involution given by inverting elements on each Jac®(S;) under the group structure
(recall (2.6)), and d is defined in (2.3).
We say that a sheaf F on ]acg, (S8") is €-WIT (after Weak Index Theorem) if its image under R¥ is a

complex supported in degree €. Let us denote by Wit, (]acg, (S )) the category of £-WIT sheaves. It follows

from (2.11) that the Fourier-Mukai transform RY induces an equivalence of categories
R : Wit, (Jacg,(&)) =L Wity (Jacg, (S/)>
with inverse R% .

2.4. Flat unitary gerbes and the universal bundle

When the rank and the degree are coprime, the moduli space of stable Higgs bundles is fine and the
universal bundle plays an important role in the construction of the Dirac-Higgs bundle (see Section 2.5
below). In our case, with the degree being trivial, there is no universal bundle at hand, not even over the
stable locus or any other Zariski open subset of the moduli space (this was proven for vector bundles by
Ramanan [Ram73] and reproved by Drezet and Narasimhan [DN89] but a similar discussion holds for Higgs
bundles). The best we have at hand is a local universal bundle in the étale topology constructed by Simpson
[Sim95].

Since our universal bundle only exists locally, we need to introduce gerbes. We refer to [HitOl] for a nice
introduction to gerbes. Given an algebraic variety Y, denote by Tors(U(1),Y) the group of U(1)-torsors
over Y, i.e. the group of flat unitary line bundles on Y. A flat unitary gerbe in the étale topology on Y
is a sheaf of categories in the étale topology over Y such that its restriction to each étale open subset
Y’ — Y is a torsor for the group Tors(U(1),Y’). Given an étale covering {Y; — Y}/, a gerbe provides a
category (a groupoid indeed) for every Y;, the natural transformations of these categories in the intersections
Yij :=Y; Xy Y; are realized via tensoring by flat unitary line bundles L;; — Y;;. Therefore, a gerbe defines a
set of flat unitary line bundles over the intersections {L,-j — Yij}i,jel such that L;; = Lj_il and over the triple
intersections Yjjx := Y; Xy Y Xy Y, one has that C?}Lij ®C;‘ijk®C;:iLki is isomorphic to the trivial bundle
on Y;j, being C;; the obvious projection Y;jx — Y.

If B is a flat unitary gerbe in the étale topology and {Y; — Y}, is an étale cover of Y, a B-twisted
sheaf F is a set of sheaves {F; — Y;};c such that on each intersection C}'F; = L;; ®C]’-"F]-, where ; denotes
the projection Y; xy Y; — Y;. In this case, we also say that the cover {Y;}es is fine enough for F. A
p-twisted sheaf F is a fB-twisted vector bundle of rank n if all the F; are locally free sheaves of rank n.
We say that V = {V;};c; is a connection on the S-twisted vector bundle F if V; is a connection on each
of the F; satisfying the compatibility relations 'V, = 1, ® C?Vj + Vi ® 16]?“13]-) where V;; is the flat
unitary connection naturally defined on L;; via the flat unitary gerbe . Given two f-twisted sheaves
Fy = {F,; — Yi}ic; and F) = {F,; — Y;},c; that are fine enough for the same étale covering, a morphism
1 : F; — F, of p-twisted sheaves is a collection of morphisms of sheaves {1); : F;; — F;;}ic; satisfying
Crpp =1 L; ® C]’." pj for any 7,j € I. In a similar way, the notions of quotient of sheaves, complex of sheaves
and cohomology generalize naturally to the context of f-twisted sheaves. If f : Z — Y is a morphism of
algebraic varieties, § a flat unitary gerbe in the étale topology over Y and F a f-twisted sheaf on Y, we
define f*F to be {f*F; — Y; xy Z}, where f; : Y; xy Z — Y is the projection to the first factor and we note
that {Y; xy Z — Z};cs is an étale covering. Similarly, for a f*B-twisted sheaf F on Z with a fine enough
étale covering of the form {Y; xy Z — Z};.|, we set f,F:= {f; .,Fi — Y;};c;. Thanks to the projection
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formula and base-change theorems, f.F is a S-twisted sheaf as

(Ci xy 12)" (fisFi) = fij (CFFi)
= fij (L ®CTE;)
> fiin (fi?Lij@)C;‘ij)
> Lij® fij [ Fj
=~ Lii®(Cj xy 12)* fi «Fj,

where f;; denotes the projection Y;; xy Z — Y.

Given a f-twisted sheaf F; and vector bundle F, over Y, we define F; ® F; to be the f-twisted sheaf
{F1,i ®vFy — Y;}ic; where we denote by y; the étale maps Y; — Y.

As we said at the beginning of this section, Simpson [Sim95, Theorem 4.7 (4)] ensures the existence of local
universal Higgs bundles (U;,®;) — X x Z; for a certain étale covering {Z; — M5}, of the stable locus.
By universality, there exists a line bundle over each intersection L;; — Z; xy Z; satisfying U; = n;"jLij ® Uj,
where 7t;; is the obvious projection X x Z; xy Z; — Z; Xy Z;. This defines a flat unitary gerbe in the étale
topology over M that we denote by B for the rest of the paper. After having set our gerbe 3, observe that
U = {U; - X x Z;} e is a 13, B-twisted vector bundle over M®', where 7rp; : X x M — M*! is the obvious
projection. In view of this, we refer to

(U, @) = {(Uj, Di) = X x Zi}iey,
as the universal 10, B -twisted Higgs bundle. This object will be crucial in our description of the Dirac Higgs
bundle which we shall address in the next subsection.

We finish this section adapting Kapustin-Witten’s definition of a (BBB)-brane [KW07] to this context.
Suppose that Y is equipped with a hyperkihler structure, we say that (F,V) is a space filling (BBB)-brane if
F is a B-twisted vector bundle and V is a connection which is hyperholomorphic, i.e. is (1,1) with respect to
the three complex structures of Y.

2.5. The Dirac-Higgs bundle

Hitchin (see [Hit02] for instance) constructed the Dirac-Higgs bundle over the moduli space of Higgs
bundle with coprime rank and degree, showing that it can be equipped with a hyperholomorphic structure.
The Dirac-Higgs bundle was used by Hausel [Hau98] to study the cohomology of this moduli space.
Blaavand [Blal5] studied this object over the moduli space M, showing that it exists only as a differential
object. In a local sense, Hitchin’s proof of the existence of a hyperholomorphic structure on the Dirac-Higgs
bundle extends to this case, allowing us to produce (BBB)-branes out of it.

Our ultimate goal is to study the mirror dual of (BBB)-branes constructed out of the Dirac-Higgs
bundle. For this task, we shall Fourier-Mukai transform the sheaves underlying these (BBB)-branes. As
the Fourier-Mukai transform is an algebraic device, we need an algebraic construction of the Dirac-Higgs
bundle, which we address in this section. To surpass the non-existence of a universal bundle, we make use of
the flat unitary gerbe 8 defined in the étale topology of M*t.

Let us fix a Hermitian metric on the rank n topologically trivial C*-bundle [E over X. Associated to it,
consider the vector space (of infinite dimension)

Q:= Oy (E)@Qy' (B),

which comes equipped with a natural metric. Given a Higgs bundle £ = (E, @) supported on IE, we write g
for the associated Dolbeault operator and Jg for the (1,0)-part of the Chern connection constructed with
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the metric and dg. Hitchin introduced in [Hit02] the following Dirac-Higgs operators
- (aE —_<p) | (Q%(IE)) o (05®
¢* =) "\QY(E) - \Qx (E)

3 1,0 1,1
g* — @ L= Qy (E) Qy (E
£\ o) T \QY'(®) Q¢ (B) )
Let HP(£) denote the hypercohomology groups of the complex of sheaves E % E ® Kx. The key fact about

and

such operators is that
ker Ze ~ HO(E) @H?(E)
and
(2.12) kerZ} ~H'(€),
see [Hit02, Section 7] or [Blal5, Lemma 2.4.1 and Remark 2.4.2]. Hausel proved in [Hau98, Corollary 5.1.4]
that if £ is a nontrivial stable Higgs bundle of degree 0, i.e. £ # (Ox,0), then H°(&) = H2(£) = 0, so

that ker Z¢ = 0. Since the index of D¢ is —2n(g — 1), see [Blal5, Lemma 2.1.8] or [FJ08, page 1226], we
conclude that

(2.13) dimkerZ} =2n(g—1)

whenever £ is a semistable Higgs bundle of degree 0 of rank n without trivial factors. Furthermore, the
vector space ker Z¢ does not depend upon the choice of a representative within the S-equivalence class [£]
of £.

Applying the Dirac operators pointwise in B3t one obtains the corresponding morphism of trivial bundles
*:Qx B — <Q;(1(1E)®Q§(1(IE)> x B,

After (2.13), the kernel ker Z* defines a C* vector bundle of rank 21(g — 1) over B*'. If ever ker J*
descends from B to give a vector bundle on M*' we call the resulting object the Dirac-Higgs bundle. When
our moduli space is equipped with a universal family, the Dirac-Higgs bundle is defined as the pull-back of
D under the section M — B3 obtained from the universal family. The rank one case, where Mit =My, is
one of the few cases were the construction of the Dirac-Higgs bundle is possible, and it was achieved by the
second named author in [F]J08].

For n > 1 (and trivial degree) we have already seen that no universal bundle only exists, not even Zariski
locally. As we have seen in Section 2.4, for general rank, the best we can obtain is the 7}, f-twisted universal
bundle (U, ®@) = {(U;,®;) — X x Z;)} over the moduli space of stable Higgs bundles M*'. We can now
define the family of Dirac-type operators

(2.14) Dy QX 2 — (Q%gl(IE)@Q;'l(IED x Zi,

given by 9(*(-]1"(1)1') .= 9(*Ui,¢’i)|z' Recalling (2.13), let us denote, for every i € I, the rank 2n(g — 1) algebraic
sub-bundle of Q x Z;
D;:=kerZy; ¢
and consider
D:={D;, - Z;}
which we shall call the g-twisted Dirac-Higgs bundle.
Adapting the work of Hausel [Hau98]|, one can describe the p-twisted Dirac-Higgs bundle in terms of

the universal bundle by means of (2.12). This will show that the -twisted Dirac-Higgs bundle is, indeed, a
B-twisted bundle over M®!, what justifies its name.

iel”
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Proposition 2.1. Consider the obvious projections 7tpp : X x Mt — M and 1ty : X x Mt — X. The B-twisted
Dirac-Higgs bundle is a p-twisted bundle over M®* isomorphic to

(2.15) D= R'my, <U L n;;KX) .

Proof. Assuming the isomorphism (2.15), it follows from the projection formula that D is a S-twisted bundle
over M®t. We then focus on the proof of this isomorphism. Considering each local universal bundle (U;, ®;)
over the étale open open subset Z; — M®' and recall from Section 2.4 that we denoted 1y ; : X x Z; — Z;.
Note that

D; D;
R0 4 (Ui —4U; @n;;KX> = R*7p\pi 4 (Ui —4U; ®n;‘;1<x) =0

since, as observed above, IH?(£) = H?(E) = 0 for each £ € M. It follows from [Hau98, Corollary 5.1.4]
that

@
D; = R'myy . (Ul- —5 U @n;;KX> :
Globally, one gets (2.15), and the proof is completed. n

One can also define a connection on the f-twisted Dirac-Higgs bundle D = {D; — Z;},_;. Consider the
trivial connection d; : Q) x Z; —» Q ® Kz, where K, is the sheaf of first order differentials in Z;. Denote by
1k the identity in K7,. Consider also the embedding j; : D; < Q x Z; and the projection pr; : Q x Z; — D;
defined by the natural metric on Q) x Z;. Let us consider the connection given by the composition

Vi=(pr;®lg)od;oj
and note that this defines a connection on the f-twisted Dirac-Higgs bundle D,
V={V;:D; > D;®Kz, }ier

that we call the Dirac-Higgs connection. The importance of this connection comes from fact that the
Dirac-Higgs connection is of type (1,1) with respect to all complex structures, see in [Blal5, Theorem 2.6.3].

One can check that the V; satisfy the compatibility conditions stated in Section 2.4 and V is a connection
on the f-twisted Dirac-Higgs bundle D. Hence, it equips the Dirac-Higgs bundle with a hyperholomorphic
structure and (D, V) is a space-filling (BBB)-brane on M*.

3. Tensorization and spectral data

The morphism between Higgs moduli spaces that one obtains by considering the tensor product with
a particular Higgs bundle will be crucial in our description of the Nahm transform of high rank that we
provide in Section 4 below. In this section we explore the behaviour of the spectral data under tensorization,
generalizing partial results established in [BS16] for Higgs bundles of rank 2 and 4. This is required in
Section 5.3, during our study of the mirror branes dual to the ones we obtain after Nahm transform of high
rank.

As it is useful for the purpose of the remaining sections, we add to the notation related to the moduli
space of Higgs bundles a sub-index indicating the rank.

Let us introduce in this section the tensorization of two Higgs bundles £ = (E, ¢) and F = (F, ¢),

EQRF:=(EQF,oQlp+1:®¢).

It is well known that, if £ and F are semistable, then £ ® F is semistable too. Then, fixing some £ e M,
one can define a map

(3.)
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Remark 3.1. Note that 7§, is hyperholomorphic, meaning that it is a holomorphic morphism between
(M,,,,T}) and (M,,,,,,Ti,) for each of the i = 1, 2 or 3. As it is defined, 7% is clearly holomorphic for
i = 1. To see that it is also holomorphic for i = 2, consider the vector bundle with flat connection
(E’,VE/) corresponding to £ under the Hitchin-Kobayashi correspondence, and observe that 75, in the
complex structure I, sends the vector bundle with flat connection (F/,Vp/) corresponding to F, to
(E'QF, Vg ®@1p + 15 @ V). If 75 is holomorphic for i = 1 and i = 2, it is also holomorphic for i = 3
since this complex structure is given by the composition of the previous two.

The map given by the sum along the fibres of the canonical line bundle,
UIKX XxKx—>Kx,
will be necessary for the description of 7 under the spectral correspondence, which we address next.

Proposition 3.2. Let € be a semistable Higgs bundle with spectral data (Sg,L¢) and F a (stable) Higgs bundle,
associated to (Sr,Lr) with Sy smooth. The tensor product EQF = (EQF,p®1p + 1 ® @) is a semistable
Higgs bundle with spectral data (Legr, Scor) satisfying

(3.2) Seer = 0(Se xx Sr),
and

Legr = 04 (45Le @45 LrF),
where qc and qr denote the projections from S¢ xx S to S¢ and Sr.

Proof- Since Sr is smooth, Lz is a line bundle over Sz and g is a smooth morphism. This implies that F
is stable, so the tensor product £ ® F is semistable as £ is so.

By construction, Sgg r is a projective curve contained in Tot(Ky), and the restriction of the projection
morphism pggr : Segr — X is an nm-cover. Being defined as the push-forward under o, if Lggr has
a sub-sheaf of dimension 0, so does gzLe ® g% Lyr. We have that g¢L¢ is torsion free, as q¢ is a smooth
morphism and L¢ is torsion free. Since gL is a line bundle, q3Ls ® %L £ is also torsion-free, and this
implies that Lgg £ is torsion free as well, so the pair (Sggr, Legr) is the spectral data of some Higgs bundle.
The proof would be completed if we show that this Higgs bundle is indeed £ ® F. In view of (2.4) and
(2.5), we need to show that EQF and ¢ ® 1p + 1 ® ¢ arise as the push-forward under pgg s of Lggr and
the morphism egr : Legr — Legr ® pgi@fKX given by tensoring with the tautological section Aggr of
PeerKx:

Note that peg £ fits in the commuting diagram

o

Se xxSr Seor
\ /S@F
X,
while 7t fits in
Sg Xx S]:
qe qar
m n
(33) Se | Sr
n m
pe pPF

which is commutative and its exterior is Cartesian.



Mirror symmetry for Nahm branes 13

Denote by A¢ the tautological section of pcKx over S¢ and by A the tautological section of p’Kx over
S7. In view of the previous commutative diagrams, one has that 0*A¢g 7, géAg and g A £ are all sections
of ©*Ky, and one has the equality

O'*/\g®]: = q;/\g + q;:/\]:
Then, considering the morphism
P:qile ®qFLr — qfLle ©qFLr @ Ky
given by tensorization under 0*A¢g r, one has the decomposition
b=+ 9r,
where we define
Ve qele ®4FLr — qele ®qrLy @Ky
to be the tensorization under gz Ag, and similarly for 1’3 . Denoting by
e Le — Le ®@pgKx
the morphism obtained by tensorizarion by A¢, one has that
4)5 = q;j‘l,bg ® 1qj§L;'
One can define ¢ x analogously, obtaining
(34) Gr =15, @307
Since 0 0 pegF =T =qF opr,
pPees«leer = pear«0x(Gele ©4FLr)
=70, (qcLe ®qrLr)
= prdr«(Gcle ® qrLr).

Note that we obtain a similar expression for the last line using 7 = g¢ o pg. Also, observe that

Per«Peor = Tl = Pe s« Pe + Pr 5« PrF-

From now on, we shall focus only on the study of p £ .g }-,*1;]: as the description of pg’*Qg'*l;l)Vg is completely
analogous.
As Lr is a line bundle, the projection formula further gives

pPeer«leer = pr((4r.4sle) ® LF)
and, after (3.4),
PEAF+PF = PFa (1(q£*q§L£) ®1Pf> :
Since the exterior arrows of (3.3) provide a Cartesian diagram, and p £ is flat, flat base change allow us to
identify
pPewr+Lear = Pr+((Prpele) ®Ly)
~pr«((pFE)®LF),
and
PEAE+DF = PFa (1(p;<5) ®¢f> :
As p%E is locally free, applying again the projection formula we obtain the desired equality

Peer«Llegr = EQpr«Lr
~EQF,
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and

Prdrr 1 E@prF
=1 ®¢.
Similarly, one obtains
Pesde e = P@1r,
hence
Peer,«Veer = 9@ + 1@,
and the proof is concluded. O

Consider the semistable Higgs bundle £ = (E, @) associated to the spectral data (Lg,S¢), where Lg is a
line bundle. After Proposition 3.2, the morphism

N o _6”»
¢ ]acB,:(Sﬂn) — Jacg™ (Sum)

Lr =Sy — 0.(q¢Le ®qFLF) = Sear

corresponds to 5.

Corollary 3.3. For every semistable Higgs bundle € = (E, @) of rank n, the diagram

~E

o Tin —
Jacl? (Shy) ——— Jacy" (Sum)
Pm, % l = = | Pum,x
: T
Mm Ml/lml

commutes.
Finally, we study the relation of 75, and the holomorphic 2-forms A}, and A}, .

Lemma 3.4. One has that
T A () = AL ().

Proof. Recall that g, is obtained from the Gauge invariant metric (2.1). Observe that the isomorphism
E,,, = E, ®E,, induces the isomorphism of vector bundles

(35) Q,, = (O} (B, ®E,) ®0}' (B, OE,)),

and note that the infinitesimal deformations of the Higgs bundles contained in the image of ¢ are of
the form 1y ®a,, € Q?(’l(End(IEnm)) and lp® @, € Q}('O(End(lEnm)). Then, one can easily check that

T;i’*gnm = rk(g)gm

Since 754 commutes with all the complex structures I'!, I'? and I'3, we have
T Ao () = T @ () + 1T @i (1)
= 05" Gum (T2 () + 105 G (T2 ()
= (5 &am) (5 T2 () + 1 (05 um) (- T ()
= ngu(,T2()) + ingu(-T>(-))
= nw,(-,-) + inwd,(-,-)

= nA}n('l')'
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4. Nahm transform of high rank

In [Jar04], the Nahm transform is constructed for any a family of self-dual connections over a spin four-
manifold with non-negative scalar curvature. The construction produces a vector bundle with connection
over the parametrizing space of the family once we consider, at each point of the parametrizing space, the
cokernel of the associated Dirac operator. It is also possible to define naturally a connection on this bundle.
The Nahm transform for Higgs bundles is defined in [F]J08] considering, for each stable Higgs bundle, the
family obtained by twisting with the universal family of rank 1 Higgs bundles. Hence, for each stable Higgs
bundle, we obtain a Hermitian connection over M; of type (1,1) with respect to the complex structures T},
Flz and Fls.

Here, we generalize the previous construction to moduli spaces of stable Higgs bundles of arbitrary rank.
The main difference with the rank 1 case relies in the fact that there is no universal bundle over X x M5! for
n > 1, not even Zariski locally. Therefore, as we did in Section 2.5, we shall work with the gerbe g, in the
étale topology of M,;, and make use of the definition of 8, -twisted bundles.

Fix a Higgs bundle £ = (E, ) of rank n and degree 0, supported on the Hermitian C® vector bundle
[E,,. For every rank m Higgs bundle F = (F, ¢) with deg(F) = 0, supported on the Hermitian C* vector
bundle [E,,, we can consider the Higgs bundle EQF = (EQF,p®1p+1p®¢) on E,Q®E,, =~ . If €
and F are semistable, it is well known that £ ® F is semistable, although, for m > 1, such correspondence
is no longer valid when we replace semistability with stability.

We recall that a crucial step in the construction of the Dirac-Higgs bundle is Hausel’s vanishing statement
[Hau98, Corollary 5.1.4] which ensures that ker Z¢ = 0 whenever £ is stable and different from the trivial
Higgs bundle of degree 0 (where by trivial Higgs bundle we mean the pair (O, 0) given by the trivial line
bundle and zero Higgs field). Note that IH(Ox, 0) = H?(Ox, 0) = C. Since we intend to study the Dirac
operator over the locus of Higgs bundles obtained as a tensor product, we need to study first whether or not
one can generalize Hausel’s vanishing statement to this locus. This justifies the following definition.

If £ be a semistable Higgs bundle of degree 0, let gr(&) = ®;F; be the associated graded object, where
(G1,...,G)) are the stable factors of its Jordan-Holder filtration; we say that & is without trivial factors if
none of these factors G; is the trivial Higgs bundle (Ox, 0). Clearly, every nontrivial stable Higgs bundle is
without trivial factors.

Lemma 4.1. Let £ be a semistable Higgs bundle of degree 0. If £ is without trivial factors, then
H%(&)=H*(E) =0 and  kerZ} =H'(gr(€)) ~ G—DjIHl(Qj),
where G; are the stable factors of the Jordan-Holder filtration of €. In addition, £ is without trivial factors if and
only ifker Z¢ = 0.
Proof Let € is a semistable Higgs bundle of degree 0 and let
0=&céc--cé=¢

be its Jordan-Holder filtration, and let G; = £;/€;_; be its factors. We prove the first claim by induction on
the length [ of the Jordan-Holder filtration.

If | =1, then & is stable and the claim is just the corollary due to Hausel mentioned above. For the
induction step, assume that the claim holds when the I = k — 1 and consider the short exact sequence of
Higgs bundles

04>51_1 —)51 =g*>g14’0.

If £ is without trivial factors, then G; is a nontrivial stable Higgs bundle, and & _; is also without trivial
factors, so that, by the induction hypothesis

H(&_1) =H*(&_1) =H(G;) = H*(G;) = 0.
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The associated long exact sequence in hypercohomology then yields
l
H"(£) =H*(£) =0 and H'(£) =H' (&) ®@H'(G) = DH'(G)).
j=1

In particular, we also conclude that if £ is without trivial factors, then ker Z¢ = 0
For the converse statement, assume that one of the factors of the Jordan-Holder filtration, say gj with
je{l,...,1}, is trivial. Considering the exact sequence

08 1 —&—G —0,

we obtain a surjective map H? (&) > IHZ(g]) C, thus ker.@g], # 0. The monomorphism &; < & then
provides an injective map ker Zg, — ker Zg, proving that ker Zg # 0 as well. O

Lemma 4.1 shows that the rank of ker Z7 does not jump if we remain inside the locus of Higgs bundle
without trivial factors, but it will as long as we leave this locus. Below we find conditions under which £ ® F
is without trivial factors.

Lemma 4.2. Let £ = (E,p) and F = (F, ) be semistable Higgs bundles of degree 0 and rank n and m,
respectively.

(1) if n > m and & is stable, then £EQ F is without trivial factors;

(2) if n <m and F is stable, then £EQ F is without trivial factors;

3) ifn=m, E and F are stable and F % E*, then EQF is without trivial factors.

In particular, if n # m and both £ and F are stable, then £ ® F is without trivial factors.

Proof. The (semi)stability of £ implies the (semi)stability of £* = (E*, —¢"). If £ ® F has a trivial factor,
then there exists ¢ : Ox — EQF such that (p @1+ 1p®¢)(¢) = 0. Equivalently, there exists a nontrivial
morphism ¢ : E* — F such that (p ® 1g,) o (—¢') = ¢ 0. As a consequence, the image Im1) is a
¢-invariant sub-sheaf of F and its saturation Im ¢ a ¢-invariant sub-bundle of F. Also, the kernel ker ) is
a (—¢')-invariant bundle of E. As deg(Imt) > deg(Im ), note that deg(Im 1) = deg(ker)) = 0 and
Imi = Im due to the semistability of £* and F and the fact that both have trivial degree. Hence Im 1) is
a vector sub-bundle of F. If n # m, either Im ) or ker are proper sub-bundles, contradicting the stability

of F or £%, respectively. Finally, suppose that n = m, both £ and F are stable and F is not isomorphic to
the dual £*. Then £ ® F is without trivial factor, as otherwise the last condition will be violated. O

Denote by M, the open subset of MS! given by those Higgs bundles  such that £ ® F is without trivial
factors. In virtue of Lemma 4.2, we require that & is stable when rk(€) > m, and under these conditions

e when rk(&) # m, one has
ME, = MS;
e while for rk(€) = m, we have
M€
Given an integer m and a semistable £ = (E, @) (€ stable if rk(E) = m), we define, for each F = (F, )

in M&,, the following Dirac-type operators where we make use of the isomorphism (3.5),

D = Dy : QY (E, QE,) ®Q%(E,QE,) — Q

Q0
and its adjoint

i =Dl Q,, — QY (B, QF,)@Qy (E,QE,,).
After Lemma 4.2 and (2.13), one has that

dimker@é’* =dimkerZ; g » = 2nm(g—1)
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is fixed. As we did in the definition of the g, -twisted Dirac-Higgs bundle in Section 2.5, take an étale
covering {Z,,; — an}iel which is fine enough for the gerbe g, and recall the f3,,-twisted universal Higgs
bundle (U,,, ®,,) = {(Up,;,Pumi) = X X Zyitier on X x MSE. For all i € I, consider the families of

Dirac—type operators

¢, , ,
9((U* CI)m,i) - 9EC@(Um,i!q)m,i) : Qnm X thi - Q;(I (IEn ®1Em) (—BQ,%(I (IEn ®1Em) X Zmri’

m,is

defined point-wise as we did in (2.14), and set

ol Ex
E, ;:=kerZ
m,1 € 9( Um,irq)m,i ) ’

which is a holomorphic rank 2nm(g — 1) bundle over each étale open subset Z,,; — MS,. We consider the
étale bundle

E, = {Em,i - Zm,i}.

zeI'

Next, we construct a connection on E,,. Recall that there is a natural metric on (), and consider

the induced projection pr, ,:Q xZ,; — Em,i defined by it. Observe that one naturally has a trivial
connection d, ;: QX Zy; — Q. %X Z,;®K,,; on the trivial bundle Q,  x Z,, ;, and consider the

embedding j,, ; : Em,i —Q xZ,,; Define
@fn (=PI, ;0 Qm’i O i
giving the connection on ﬁm
651 = {V5,: Epi— Eni®Kz, }icr
We define the rank m Nahm transform of the Higgs bundle £ as the pair
(4.) g, = (ﬁmﬁfn).

It can be shown that the rank m Nahm transform is a f8,,,-twisted bundle with connection by providing an
analogous result to Proposition 2.1 obtained by adapting the work of Hausel [Hau98|.

Proposition 4.3. Consider the obvious projections Ty : X x M5t — X and my : X x MSE — MSL. Then, lAEm isa
B -twisted bundle over ML, isomorphic to

~ n;l(<(P®1U+1n;(kE®cDm
(4.2) E, =R'ny, [ nkE®U, 5E®U,, @k Ky

Proof. This follows immediately from the proof of Proposition 2.1. O

Remark 4.4. The Nahm transform defined by Frejlich and the second named author in [F]J08] is precisely
the case m = 1 of the construction above. Note that, in this case, the gerbe f is trivial, so E; can be defined
globally as a vector bundle over M;.

Remark 4.5. Observe that, after Propositions 2.1 and 4.3, the rank m Nahm transform of the trivial Higgs
bundle O := (O, 0) coincides with (D,,,V,,), the rank m B,,-twisted Dirac-Higgs bundle and connection,

@m = (Dmivm> :

Recall the morphism ¢ defined in (3.1). By definition of M¢,, one has that every Higgs bundle in its
image 75,(M%) < M,,,, is without trivial factors although not necessarily stable. Over the open subset
(&)1 (ML) of ME, it is possible to give an alternative description of the rank 7 Nahm transform, compare
with [Blalb, Definition 3.0.2].
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Proposition 4.6. Consider the rank m Nahm transform of a stable Higgs bundle £ of rank n. One has that

. e
(+5) Bl ety ot =T D
and

4.4 v, ~ 5"V

( . ) m (Tfy)_l(M?fm) =Ty, nm-

Proof. By the universal property of (U,,,, @), one has that the restriction to X x (t5)~1(Ms!,) of the
gerbe B,,,, is isomorphic to (the pull-back of) B, hence 75 ® (U,,, @,,) is isomorphic to the restriction of
(U @i )- The proof follows from this fact and Propositions 2.1 and 4.3. O

We can then construct a new class of f,,-twisted (BBB)-branes.

Proposition-Definition 4.7. Given a semistable Higgs bundle £ (€ stable if rk(E) = m), its rank m Nahm
transform £ m 85 a Puy- -twisted hyperholomorphic vector bundle over MS, with a hyperholomorphic connection. In
other words, Em is a space filling, p,,-twisted (BBB)-brane over M&, and we refer to it as the Nahm brane on M,
associated to &.

Proof. We have seen in Remark 3.1 that ¢ is a hyperholomorphic morphism. Since the Dirac-Higgs
connection is hyperholomorphic [Blal5, Theorem 2.6.3], thanks to Proposition 4.6, one has that the higher
rank Nahm transform is hyperholomorphic as well. O

Remark 4.8. One can also construct a f,,-twisted (BBB)-brane on M,,,,, by considering the push-forward
under £ of the Dirac-Higgs bundle and connection (D,,,V,,) on MSt.

Remark 4.9. Note that the fibre of E,, over the point of the moduli space F € M3} can be identified with
the first hypercohomology space H! (£ ® F), classifying the extensions of £* by F (within the category of
Higgs bundles).

5. Mirror branes

5.1. A Fourier-Mukai transform for bundles twisted by gerbes

The goal of this section is to describe the mirror partners of the Nahm (BBB)-branes we have constructed
in previous sections. We shall do that by Fourier-Mukai transforming the Dirac-Higgs bundle and the
bundles we obtain from the high rank Nahm transform. Before that, we first need to adapt the Fourier-Mukai
transform to the setting of vector bundles twisted with a gerbe, a task that we address in this subsection.
This requires the introduction of some notation.

Let Y — V be a smooth V-variety equipped with a section 6 : V — Y. In that case (see [BLRY0,
8.2, Proposition 4]), there exists a relative Jacobian ]ac?/(Y) and let us consider YV to be a torsor for
]ac(‘)/(Y). Consider an étale covering {V; — V};c; of V and observe that {C; : Y xy V; — Y};c; and
{C 1YY xy V; = YV} are étale coverings of, respectively, Y and Y. Let f be a flat unitary gerbe on the
étale topology over Y giving the set of flat unitary line bundles {L;; — Y xy V;;}; i1 over the intersections
(Y xy Vi) xy (Y xy Vj) =Y x (V; xy V) =Y xy Vj;. These flat line bundles define naturally sections
gij: Vij — ]aCVij( ) which can be understood as V;;- automorphisms of Y. By abuse of notation, we still
denote them by

Y xy Vi — Y xy V)

In this context, if Z — V is another V-variety, we say that £ : Z — YV is a B-shifted morphism of

V -varieties if it is a collection of morphisms {f; : Z x V; - YV xy V;}c such that

(fi xv1v) . dijo(fi xv 1y,)
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for every i,j € I. When all the f; satisfy a certain property of morphisms of varieties, we say that the
B-shifted morphism f has this property. For instance, if Y is equipped with a symplectic form A, we say
that the image of £ : Z — YV is Lagrangian, if f;(Z xy V;) is a Lagrangian subvariety of Y x V; with
respect to pull-back of the symplectic form (C;")*A.

Also, we say that a B-shifted coherent sheaf G is a collection of coherent sheaves {G; € Coh (Y'Y xy V;)}ies
such that for every i,j € I one has

(].Yv Xy CZ‘V)*Gi = Ov'l']"*(].yv Xy C]V)*G]
as sheaves over Y xy V;;. If f : Z — Y is a B-shifted closed immersion of V-varieties, and G is a coherent
sheaf over Z, we define f-shifted push-forward £,.G as the collection {f; .z/G — Y xy V;}icr, where z;

denotes the étale morphism Z xy V; — Z. Observe that .G is naturally a -shifted coherent sheaf as for
every i,j € I, one has

(Tyv xv Ci)* fiuzi G = (fi xv 1) (12 xv G;)*2fG
= (fz Xy lvj)*Z;k]G
= Ov‘l']"* (f] Xy 1\/1)*Z;I}G
= Gij(fj xv 1v)x(12 xv §;)*Z7G
= Gij«(1yv xv pj) fj+2] G
thanks to the base-change theorems and the definition of f-shifted morphism.

Let us now adapt Kapustin-Witten’s definition of a (BAA)-brane to this context. Suppose YV is equipped
with hyperkihler structure and denote by A the holomorphic symplectic 2-form associated to the first Kihler
structure. We say that a f-shifted sheaf & = {G;},c; admits a p-shified (BAA)-brane structure if the support
of each of the G; is a Lagrangian sub-variety of Y x, V; with respect to (Y )*A.

We will now describe a certain f-shifted morphism that will be crucial for our purposes. Recall that we

denoted by B’ — B the locus of smooth spectral curves, and by &', the restriction of S and M to B'. Also, we
denote by M’ the restriction of M to B, and by

(U, @) := (U,D)|\y,

the restriction of the universal bundle to M’ M. Thanks to the spectral correspondence outlined
in Section 2.2, the existence of (U’,®’) — M’ implies that, locally in the étale topology, there exists a
Tty B-twisted universal line bundle

P> S xp ]acg, (8",
satisfying U’ = (1j,c % p),P’, where p is the projection (2.2). We can provide a specific, fine enough covering
for it.

Proposition 5.1. There exists an étale covering {V; — B'};c of B’ such that
N /

(51) {ZZ =M X Bt ‘/Z —M }iEI

is an étale covering of M! which is fine enough for P'.

Proof- Recall that two spectral curves intersect on a divisor of length 212(¢g—1). Let us pick a smooth spectral
curve S; and set B’ to be the open subset of B’ given by those curves S, that intersect S; in 2n(g — 1)
different points, i.e. those curves giving a reduced intersection divisor S; 1 Sp,. Chose a collection I of
spectral curves in such a way that the union of all B} covers B'. One can easily see that for every smooth
spectral curve S; there exist another one S; such that S; n'S; is a reduced divisor; this guarantees the
existence of a covering with the desired properties.

Inside Tot(Kx) x B}, we consider the intersection

Vi i= (Si x B) 0 Sltot(ky) < B!-
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Observe that, by construction, this provides an étale morphism V; — B’ with image B’. This gives the étale
covering {V; — B'};c;. Denote

(5.2) S :=8"xpV,
and observe that S; — V; has naturally a section since V; embeds into S|p;. It then follows that ]ac‘?,_ (S))

exists and it is equipped with a universal line bundle P/ — S; x . ]ac(‘s,l_ (S)). O

Recalling the Poincaré bundle P — ]acg, (8") xp ]acg, (8")V, we observe that the 7t} S-twisted universal
line bundle P’ defines naturally a 77y, f-shifted closed immersion
i: & —  Jack(S")
s Pl|{S}XIach(5’),

given by i = {1; : S/ —Jac}, (S!)} is determined by P.
For each open étale subset of Proposition 5.1, we can consider a diagram analogous to (2.8)

]ac‘é/i(S{) Xy, ]ac‘é/i (S)Y

(5.3) / \

Zi~ Iac&(é’{) Z;~ ]ac{}i(S{)V

and a Poincaré bundle
P; — ]ac‘é/i(S{) Xy, ]ac"ﬁ/l_(S{)V.

Proceeding as in (2.9) and (2.10), we define the Fourier-Mukai transforms R% and Rgvi replacing P by P;.
Given a complex of S-twisted coherent sheaves F*, define its S-twisted Fourier-Mukai transform RSP (F*)
as {R%(P;) — Z;}ier and consider an analogous definition in the case of R¥ #. We say that a B-twisted
coherent sheaf F = {F; — Z;},c; is {-WIT if each of the F; is {-WIT with respect to R%. Similarly, a
B-shifted coherent sheaf & = {G; — Z;};c; is {-WIT if each of the G; is -WIT with respect to RY:. We
denote by Wit? (Iacg, (8')) the category of B-twisted £-WIT sheaves on ]acg, (8') and by wit‘g (]acg, (SHY)
the category of B-shifted £-WIT sheaves on Jac§, (S")".

In the following theorem we see that the f-twisted Fourier-Mukai transform relates both categories.

Theorem 5.2. The -twisted Fourier-Mukai transform RS F induces an equivalence of categories
RFP - With (Jac), (8')) = With_,(Jacd,(8")Y)
with inverse RF P

Proof- We first prove that the Fourier-Mukai transform of a {-WIT p-twisted coherent sheaf is a (d —€)-WIT
p-shifted coherent sheaf. We observe that the following diagram

1Zi ><V,-(llac‘/ xprCi)

Zij XVij Zz] Zi XVi Zi
1]aCV XB/Ci
Zij Z;

commutes, being 7¢;; the projection to the second factor. The diagram is also Cartesian as we naturally have
Zixy, Zij=Zj; X v Zjj. Using the commutativity of the previous diagram and base change theorems, one
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can show that

(1Iacv Xp/ Ci)*R%(Pi)

lle

(Ljacv X Ci)* Rty (P; @ A*F;)

Rt (12, xv, (Lacv xp C))* (P @ 7*F;)
R1tjj,» (Pij®7%;“j(1]acv X Ci)*Fi>

R (1aev x5 6)*Fy),

lle

lie

lle

where P is the Poincaré bundle over Z;; x v, Z;; = ]ac?,ij (S;5) x v, ]ac%j (Sij) and R%j the corresponding
Fourier-Mukai transform.
Let us recall that 5-twisted sheaves must satisfy that

(1]acv X g Ci)*Fi = LZ] X (1]acv X g C])*F]
Now we recall that one of the classical properties [Muk8l] of the Fourier-Mukai transform states that
R%] (L1] ® (1]acv Xt (:])*F]) = le]’*R\%] ((1]acv X Bt C])*F]) .
Then,
(ljacv xp Ci)*RF(Fi) = RFj ((jacv xp C)*F;)

> 6, +R%j ((1jacv xp C)*F;)
= G (ljacv xp Cj)*RF(F)),

so we see that the RF P (F) is indeed a B-twisted sheaf.
Finally, since all the R¥; are equivalence of categories of WIT sheaves with inverse R%;, the same holds
between f-twisted and f-shifted WIT sheaves. g

5.2. The Dirac-Higgs bundle under Fourier-Mukai

Recall that M’ = M3 denotes the locus of the moduli space given by those Higgs bundles whose spectral
curves are smooth. Let us consider the restriction to M’ of the B-twisted Dirac-Higgs bundle

D/ = D|M’
In the remaining of the section we provide a description of D’ in terms of a Fourier-Mukai transform. We

shall consider the intersection of our family of smooth spectral curves S’ with the zero section of the bundle
Kx — X, which is identified with X x {0},

(1]

0:= 8"~ ((X x {0}) x B).

Note that for each b = (by,...,b,) € B’ one has that S, n X x {0} is the locus where b, = 0, being
b, e HO(K)?”). Recall that deg K%n =2n(g —1). Then Z° is a finite cover over B’ of degree 2n(g — 1),

2n(g—1):1 B

(5.4) 0

[1]



22 E. Franco and M. Jardim

Take an étale open subset V; — B’ and the family of curves S! — V; as defined in (5.2) and consider the
obvious projections occurring in the following commutative diagram,

]acV(S ) xv, St

TN(I/ X
]ac‘é/i (S (1jac ¥P) S!
(5.5) Ljac Iacf,l_(Slf) x X pi
]ac‘e}i(S{) Tix Vi x X

X

Let us denote by p; : S — X the composition of p; with the obvious projection r; onto the second factor.
Observe that the bundle p¥Ky — S has a tautological section that we denote by ;. We observe that A,
vanishes at

=0._ =0 :
J:&Z- =7 Xpr ‘/l

Using (2.15), we give a description of D’ which generalizes the fibrewise description given in [Hitl6, Section
7]. Recall the B-shifted closed embedding i: S” < M’ defined in Section 5.1.

Proposition 5.3. Consider the -shifted push-forward under i,
D =1, (p*Kx ® Oxo).
Then, Y is a B-shifted O-WIT sheaf on ]acg, (S)Y and
D'~ RGP (1Y),
Proof. We work locally over the étale open subset Z; = V; x g M. Starting from (2.15) and the isomorphism
(2.7), note that
~ Ry 4 (U{ 2, U;®n;;1<x) =~ Rl , (U{ 2, U{®n§KX) .

Next, recalling the relation between the universal bundle from Section 2.4 and the Poincaré bundle described
in Section 5.1, and making use of the projection formula and base change theorems for the various morphisms
in the diagram (5.5) we obtain

=R 7'(]ac*( 1]ac X Pi)« P 2, (1Iac X Di)x Pi/®7-(§(KX>

7 (Tjacx A;)
~ R Tl]ac*( 1]acxp < ] Pl®(1]acxpi)*n§(KX>>
( i Pl®~§p KX>

~ mln]ac* (R 7§ (Os —”»p, >)



Mirror symmetry for Nahm branes 23

where for the previous to last equality, we have used the (vertical) spectral sequence
0 —> R'ftjse,e (Ker(1p @ EA;) ) — R T (B @74 (O > B7Kx) )
— RO%jae <coker(1pi/ ® ﬁ;‘/\i)) — 0,
and the fact that A; is an embedding.

Recall that, by the definition of i = {1; : §! — Iac“s,i (S;)¥}, one has that the restriction of the Poincaré
bundle P* — ]ac“S/i (S7) xv. ]ac?,i (S;) to the image of the embedding 1y, X 1;, coincides with P/. Using
this, the projection formula, and base change theorems on the diagram (5.5), we have that

D} =R (P} @725 (5} Kx ®Oxy) )
>R ((1]aC x 1;)*PF Q7L (pFK @%g))
RO R ((Lae % 1)a(Ljac x )P @ 7L (B} Kx ®Os0) )
~R%, (pi*@RO(l]ac X 1) T (ﬁ;"KX®OE?>>
R'%, (Pr @Ry (1 Kx @0z )

~RO% (Roli,* (ﬁ?‘ Kx® OE?)) '

A~

Since 1; is a closed embedding, one has that R%; , (p¥Kx ® Ozo) coincides with 1; ,(p¥Kx ® Oz0). The
support of (pFKx ® Ozo) is EY, which is a finite 21(g — 1)-cover of V;, and so is 1;(£) which is the support
of 1; ,(p] Kx ® Ozo). Therefore, R%(zi,*(ﬁ?‘KX ®Og0)) is a complex supported in degree 0. O

After Proposition 5.3 and equation (2.11), it is possible to study the Fourier-Mukai transform of D’.
Corollary 5.4. The Dirac-Higgs bundle D' is a d-WIT B -twisted sheaf, whered =1+ n*(g — 1), and
RFF (D) = D.

with
supp (]5’) =1 (EO) .

5.3. Nahm branes under Fourier-Mukai

We finished Section 4 showing that the Nahm transform is a f3,,,-twisted (BBB)-brane on the moduli
space of stable Higgs bundles M5! (or on a dense open subset in the case 1 = m) which called Nahm brane
associated to £. Using the formalism that we presented in Section 2.3, it is then natural to ask how the Nahm
branes transform under mirror symmetry, which we address in this section.

Assume for simplicity that n # m and that £ is a stable Higgs bundle of rank 7 and 0 degree with
reduced spectral curve Sg. As n # m, the rank m Nahm transform E,of Eisa B -twisted (BBB)-brane

over M§, = MSt. Also, recall that the smooth locus of the Hitchin fibration is contained in the stable locus,
M/, = MS! and denote by

E:n = é\'m|M;,,
the restriction of the rank » Nahm transform. In this section we perform the Fourier-Mukai transform of
£,
Recall the family S;, — Bj, of smooth spectral curves of rank m. Having in mind that S¢ is reduced by
hypothesis, consider as well the constant family of reduced curves

Sg = Sg X B;ﬂ.
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Define also the family of curves inside Tot(Ky) parametrized by B/,
an =0 (Sg XXXB’,,, S,/ﬂ) s

where o denotes here the fibrewise sum in 75Ky — X x B}, where r,,, : B}, x X — X is the projection onto
the second factor. After Proposition 3.2, one has the following commutative diagram for families given by
the obvious projections

Pe Pm
/
X x Bj,

where p¢, is a nm-cover, pe = (pg x lp ) and q,, are n-covers, and p,, and gg are m-covers.
Noting that S¢  Tot(Ky), consider (—1) to be the (additive) inversion along the fibres of Ky and
consider the family of curves —Sg. Define one more family of curves over Bj,,

—~E ._ o
Sy = ‘Sm M —Sg.

Note that Z¢, equals X5, n (X x {0}) x B,. Since ¢, is a family of spectral curves of the form Sgg 7, by
(5.4) we have that Z is a 2nm(g — 1)-cover of B,

2nm(g—1):1

/
_—
B,

Given an étale open subset V,,, ; — By, we consider S, ;1= S, xp V;, Sg ;1= Se xp/ Vi, qu. =X8 xpV;
and Efn’i := E€ xp V. We consider as well the corresponding lifts of the morphisms appearing in (5.6).
Over S¢; — V,, ;, consider the constant family of rank 1 torsion free sheaves L¢; determined by L¢ and
&

m,i’
The morphism p,, ; : S;n’ ; — X obtained as the composition of p,, ; with the obvious projection r,, ; onto
£

m,i’

observe that (—1)*L¢ ; is supported on —Sg ;, hence one can restrict this sheaf to 2

the second factor. The bundle p} .Kx — S;nl- has a tautological section A,, ; which vanishes at =

We can now provide a result analogous to Proposition 5.3 for ﬁ’m = ﬁm|M;,,- We recall the f,,-shifted
closed embedding i,, : S;, — M, defined in Section 5.1.

Theorem 5.5. Let £ = (E, @) be a stable Higgs bundle with spectral data Le — S¢ such that S¢ is reduced.
Consider the f,,,-shifted push-forward under i,,,

J\E/'lm =Ty (ﬁ;;Kx(@ (_1)*£E|E§n) .

Then, E;ﬂ is a By, -shifted 0-WIT sheaf on ]acg, (S)Y and

B, = RF (E},).
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Proof- Recalling Proposition 4.3, we proceed as in the proof of Proposition 5.3 with the appropriate
modifications. We have

/\

~ mpl / m1®1+1®nx(f’
mz =R Tac, (U QT XE

@ T(XE X T(XKX>

D, ®1+1@nk @
—

= IRlT(]ac,* ((1]ac x pm,i)*Prln,i ®T(3k(E (1]ac X Pm,z‘)*P,;,i ®T(;<((E®KX)>

PO (1]ac></\m,i)®1+1®ﬁ*ﬁ:fz,i(p It Bt
>~ IRlT(]ac,* ((1121C X Duni)x < ml®n§p,";zE 2T P,;q,i® ?anz(E@)Kx)

~ ~ ~ 1®/\mi+ﬁ* (P®1 A~ ~
~ 1 2 m,i
=R n]ac,*< P, ®T (p* E =" . E®p, i Kx ] |

Using a (vertical) spectral sequence similar to the one that appears in Proposition 5.3, one can show

E,/nz ~ R? T‘Iac* <P”“® <ﬁmzKX®( )*ﬁg’i|Efn,i)>)

since 1 @A, ; + P, ;¢ @1 is again injective.
Next, using the description of the Poincaré bundle P, in terms of P,, given in Section 2.4, the projection
formula and base change theorems for the various morphisms of diagram (5.5), one obtains

B, = RG (R, (PKx @ (—1)*£5|5§l>> -
Finally, as in the last part of the proof of Proposition 5.3, due to the fact that Z¢ . is a finite 2nm(g—1)-cover

of B),, R %ﬁ'" ( Lii (pm Kx ®@(—1)*Le|ze >> is a complex supported in degree 0. O

Thanks to Theorem 5.5 and (2.11) we can describe the Fourier-Mukai transform restricted to the smooth
locus of the Hitchin fibration M/, € M,,,.

Corollary 5.6. Let d,, = 1 + m?(g — 1). The B,,-twisted bundle E,, is a B -twisted d,,-WIT sheaf satisfying
R (8) ~ B

supp <E’m> =1 (—Ei) .

Theorem 5.7. The support 0fE§n is a B, -shifted 2nm(g —1)-section of the Hitchin fibration and it is Lagrangian
with respect to A},

where

We study now its support.

Proof. Recall the étale covering {V,,; — Bj,}ic of the locus of smooth spectral curves which is fine enough
iy Since i, is a fB,,-shifted
embedding and E¢, is a 2nm (g — 1)-cover of Bj,, we have that im(—ufn) is a f,,,-shifted 2nm(g—1)-section
of M/, — B/,. It remains to proof that it is Lagrangian with respect to A1 ;= Z*Al

for the gerbe /)’m This induces an étale covering {z; : M), xp' V,,,; > M/, }

Recalling Corollary 5.6, we now address the proof that i,,(—Z¢,) is Lagraglan with respect to A},. Recall
from Section 2.1, that A1 is defined as the exterior derivative dO of a certain 1-form 6. Then, we see

that 1, ;(—Z2

Hiq,i) is Lagrangian with respect to A . if and only if 0; := z;0 is a constant 1-form along

m,1
Zm,i(_E‘i,i) for all i € I. Since 1,,; is an embedding, it suffices to prove that 1”;1'i6i|75.fm is constant.

We recall the definition of 6. We recall that M/, = M5! so all the points are smooth and represented by
the stable Higgs bundle £ = (E, ¢), the tangent space is TeM), = IH!(C2), which comes naturally equipped
with the map ¢ : TH! (Cs)— H'(X,End(E)). By Serre duality, the Higgs field ¢ € H?(End(E) ® Kx) is an
element of the dual space of H'! (End(E)) and recall that we defined 6(v) = (¢, t(v)), for each v e H'(C}).
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We now study the description of O; over ]ac (8’ ;). By the spectral correspondence, given the
spectral data L — S, ;,, one has that E = (p;),L ‘and (p (py)«Ap where Ay : L — L® p; Ky is given
by tensoring by the restriction to S, of the tautological section A : Tot(Kx) — p*Kx. Note that p; Kx
is a sub-sheaf of the canonical bundle Ks , then A; gives naturally an element of H O(Sm,beSm,b)- The
isomorphism M/, . = Jac,/ O (5’ Y= ]ac (S’ ;), given by the push-forward under p; and autoduality,
provides as well the 1s0morph1sm between IH1 (C ) and EXtTot( )(L L) and between H'(X,End(E)) and
Ext1 (L L)~ H1 (Sm,p,Os,,,)- Then, we can express 0;(v) to be (A3, t'(v)) given by Serre duality, where

now v e Ty ]ac (S' ;) = Ext%ot( )(L L), the section A, € H(S,, , Ks, ,) is defined by the restriction of
the tautologlcal section A : Tot(KX) — p*Kx to S, < Tot(Kx), and

ExtTot( S(LL) = Exts (L,L) = H' (S, 0s,,)

is the projection to those deformations that preserve the support.
Note that, for every Ly, L; € Jac(S,,;), one has naturally that

Extgm (L1i,L1) = H (S, Os,,) = Extgw (Ly, Ly).

We observe that 0; is a 1-form which is constant along the fibres Jac®”(S,, ). On the other hand, the 1-form
1,;6i in Sr'n,i depends on the embedding d1,,; : T;S,,, — TO(S,Si)Iacé"'(Sm,b) ~ Hl(Sm,b,(’)Smb). Recall
that 1,,; sends the point s € S, ;, to the line bundle whose meromorphic sections have pole at s€ S, ;, and a
zero at s;. Since Serre duality (-,-): H° (Ks,,,) * H! (Os,,,) — C sends (A, &) to the sum of residues of the
meromorphic differential A, one has that

6 ’s = m1</\b’ >‘s = /\b( )

So, 13 .0; is the one form defined by the tautological section A : Tot(Kx) — p*K

Obviously, the tautological section A restricted to X x {0} < Tot(Ky), is the zero section. Recall that

=&

we have defined —Z2] ; as the intersection of S¢; and S i inside Tot(KX). But this is equivalent to the

intersection of Z w1th X x {0}. Therefore, A is constantly 0 along — i’ that is 7 ,0;|z¢ =0, and this
concludes the proof. ' U

We finish placing this statement in the context of mirror symmetry.

Corollary 5.8. The 3,,-shifted coherent sheaf Eﬁﬂ admits a B, -shifted (BAA)-brane structure.
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