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Torus actions, Morse homology, and the Hilbert scheme of
points on affine space

Burt Totaro

Abstract. We formulate a conjecture on actions of the multiplicative group in motivic homotopy
theory. In short, if the multiplicative group Gm acts on a quasi-projective scheme U such that U
is attracted as t approaches 0 in Gm to a closed subset Y in U , then the inclusion from Y to U
should be an A1-homotopy equivalence. We prove several partial results. In particular, over the
complex numbers, the inclusion is a homotopy equivalence on complex points. The proofs use an
analog of Morse theory for singular varieties. Application: the Hilbert scheme of points on affine
n-space is homotopy equivalent to the subspace consisting of schemes supported at the origin.

Keywords. Torus action, Morse homology, Hilbert scheme of points, motivic homotopy theory.

2020 Mathematics Subject Classification. 14L30, 14C05, 14F42, 55R80

[Français]

Actions du tore, homologie de Morse et schéma de Hilbert des points de l’espace affine

Résumé. Nous formulons une conjecture sur les actions du groupe multiplicatif en théorie de
l’homotopie motivique. En bref, si le groupe multiplicatif Gm opère sur un schéma quasi-projectif
U , de sorte que lorsque t tend vers 0 dans Gm, U est contracté sur un sous-ensemble fermé Y ,
alors l’inclusion de Y dans U devrait être une A1-équivalence d’homotopie. Nous démontrons
plusieurs résultats partiels. En particulier, sur le corps des complexes, l’inclusion est une équivalence
d’homotopie sur les points complexes. Les preuves utilisent des analogues de la théorie de Morse
pour des variétés singulières. Application : le schéma de Hilbert des points de l’espace affine de
dimension n est homotopiquement équivalent au sous-espace dont les points sont les schémas
supportés à l’origine.
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1. Introduction

We formulate a conjecture on actions of the multiplicative group Gm in algebraic geometry. (Over the
complex numbers, this group may be called C∗.) In short, if Gm acts on a quasi-projective scheme U which
is attracted as t→ 0 in Gm to a closed subset Y in U , then the inclusion Y →U should be an A1-homotopy
equivalence (Conjecture 2.1). This is not obvious, in that the action of Gm on U usually does not extend to a
morphism A1 ×U →U ; compare Figure 1. We show that the inclusion Y →U over the complex numbers is
at least a homotopy equivalence in the classical topology (Theorem 2.2). This extends work of Hausel and
Rodriguez-Villegas on the case where U is smooth [HR15, Corollary 1.3.6]. We prove several other results in
the direction of the conjecture, including a homotopy equivalence on real points (Theorem 6.1) and, when U
is smooth, an A1-homotopy equivalence after a suitable suspension (Theorem 9.1). The proofs use the ideas
of Morse homology, translated into algebraic geometry (Proposition 3.1).

Y

U

Figure 1. Example of a T -action on U � P1 ×A1, t([x0,x1], y) = ([x0, tx1], ty), with Y = P1 × 0
shown as the horizontal line (T =Gm). The arrows point in the direction t→ 0. The fixed point set
Y T consists of two points.
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We apply these results to the Hilbert scheme of points on affine space. The Hilbert scheme of points on an
algebraic surface is smooth, and its Betti numbers were computed by Göttsche [Göt02]. The Hilbert scheme
of points on a higher-dimensional variety, even affine space An, is more mysterious. It has many irreducible
components [Iar72], and for n ≥ 16 its singularities satisfy Murphy’s law up to retraction [Jel20]. Nonetheless,
progress was recently made toward understanding the homotopy type (and even the A1-homotopy type) of
Hilbd(An) for n large compared to d. In particular, in the limit where n goes to infinity, Hilbd(A∞) has
the A1-homotopy type of the infinite Grassmannian Grd−1(A∞) ' BGL(d − 1) [HJNTY20]. There are also
corresponding stability theorems. In particular, over the complex numbers, the resulting homomorphism on
integral cohomology,

H ∗(BGL(d − 1,C),Z) = Z[c1, . . . , cd−1]→H ∗(Hilbd(A
n),Z),

is an isomorphism in degrees at most 2n− 2d +2 [HJNTY20].
This paper considers another homotopical property of the Hilbert scheme Hilbd(An) for finite n. Namely,

over the complex numbers, we show that Hilbd(An) (in the classical topology) has the homotopy type of
Hilbd(An,0), the (compact) subspace of schemes supported at the origin (Corollary 2.3). This result is
deduced from Theorem 2.2 on the topology of Gm-actions. For example, it follows that the weight filtration
on the rational cohomology H i(Hilbd(An),Q) is concentrated in weights ≤ i, since that holds for proper
schemes over C [Del75].

It remains open whether Hilbd(An,0) is A1-homotopy equivalent to Hilbd(An), over the complex
numbers or any other field. This would follow from our general Conjecture 2.1. We can say something about
the unstable A1-homotopy type of these spaces, namely that Hilbd(An,0) and Hilbd(An) are A1-connected
(Theorems 7.1 and 7.3).

As a tool, we extend one of Bachmann’s conservativity theorems, relating the motivic stable homotopy
category to the derived category of motives along with real realizations (Theorem 8.1).

Acknowledgments

Thanks to Tom Bachmann, David Hemminger, Marc Hoyois, Joachim Jelisiejew, Denis Nardin, Maria
Yakerson, and the referee for their suggestions.

2. Main results, and a conjecture on Gm-actions in motivic homotopy
theory

In this section, we formulate a general conjecture about actions of the multiplicative group T =Gm in
motivic homotopy theory. (For motivic homotopy theory as defined by Morel and Voevodsky, a reference is
[MV99] and an introduction is [AE17].) Roughly, if T acts on a quasi-projective scheme U which is attracted
as t→ 0 in T to a closed subset Y in U , then the inclusion Y →U should be an A1-homotopy equivalence
(Conjecture 2.1). We show that (over the complex numbers) the inclusion Y → U is at least a homotopy
equivalence in the classical topology (Theorem 2.2, proved in Section 5).

Let Hilbd(An) be the quasi-projective scheme of zero-dimensional degree-d closed subschemes of affine
space An over a field k. When k is the complex numbers, we deduce from Theorem 2.2 that Hilbd(An) has
the homotopy type of Hilbd(An,0), the (compact) subspace of schemes supported at the origin (Corollary
2.3).

Here is our general conjecture on actions of the multiplicative group. Let X be a projective scheme over a
field k with an action of T =Gm. Suppose that there is a T -equivariant ample line bundle on X. Let Y be a
T -invariant closed subset of X such that every point x in X with limt→∞(tx) ∈ Y is in Y . Suppose that the
fixed point set Y T is open in XT . Let U be the subset of points x in X such that limt→0(tx) is in Y . We
show in Lemma 4.1 that Y is contained in U and U is open in X.
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Conjecture 2.1. The inclusion Y → U is an A1-homotopy equivalence (that is, an isomorphism in the
A1-homotopy category H(k)).

The assumption that X has a T -equivariant ample line bundle is automatic if X is normal [Sum75,
Theorem 1.6].

Over the complex numbers, the proof of Theorem 2.2 shows that Y is an attracting set for the T -action on
X, in the terminology of topological dynamics, and U is the basin of attraction for Y [Mil85, section 1]. To
say that Y is an attracting set means that there is a neighborhood N1 of Y (in the classical topology) for
which the images t(N1) converge to Y , meaning that for every neighborhood N2 of Y , there is an r > 0 such
that t(N1) ⊂N2 for all t ∈ C∗ with |t| < r .

The conjecture would be useful for motivic homotopy theory, since Gm-actions occur everywhere. When
U is smooth, both Y and U are unions of affine bundles over the connected components of Y T , by
Białynicki-Birula [Bia73]. But even then, we only know how to prove that Y → U is an A1-homotopy
equivalence after a suitable suspension (Theorem 9.1). Regardless of whether U is smooth, the conjecture
would be clear if the T -action on U extended to a morphism

A1 ×U →U,

since 0×U would map into Y ; but in general there is no such morphism. Even the T -action on Y need not
extend to a morphism A1 ×Y → Y : consider the case where Y is P1 with the standard action of T , where
limt→0 tx = 0 if x ,∞ but limt→0 t(∞) =∞.

Another way to describe the same situation is Drinfeld’s analog of the Białynicki-Birula decomposition
for singular varieties, although we will not use that explicitly in what follows. Namely, Drinfeld defines
an algebraic space Y +, the “attractor” of Y , as the space of T -equivariant morphisms A1 → Y ; roughly
speaking, a point of Y + is a point x of Y together with a limit point limt→0 tx. Drinfeld shows that Y +→ Y
is bijective for Y proper over k, although usually not an isomorphism [Dri13, Proposition 1.4.11]. For example,
if Y = P1 with the standard T -action, then the space Y + is the disjoint union of A1 and the point at infinity.
In a sense, the difficulty for Conjecture 2.1 is that the action of T on U does not extend to an action of
the multiplicative monoid A1. The action of T on U+ does extend to an action of A1; but that does not
obviously help, because the morphism U+→U is usually not a homotopy equivalence.

As evidence for Conjecture 2.1 in the singular case, we prove the following weaker statement in section
5. Theorem 2.2 was proved in the case where U is smooth by Hausel and Rodriguez-Villegas [HR15,
Corollary 1.3.6].

Theorem 2.2. Under the assumptions of Conjecture 2.1 with base field C, the inclusion Y → U is a homotopy
equivalence (in the classical topology).

Corollary 2.3. Over the complex numbers, the inclusion from Hilbd(An,0) to Hilbd(An) (in the classical
topology) is a homotopy equivalence.

Proof of Corollary 2.3. Let X = Hilbd(P
n) and Y = Hilbd(An,0). The idea is to use the action of the

multiplicative group T (that is, C∗) on Hilbd(P
n), coming from the action of T on Pn by

t([x0, . . . ,xn]) = [x0, tx1, . . . , txn].

(We identify An with the open subset x0 , 0 in Pn.) Here X has a GL(n+1)-equivariant ample line bundle
by construction. (Namely, Grothendieck constructed the Hilbert scheme as a closed subscheme of the
Grassmannian of subspaces of the vector space of homogeneous polynomials of sufficiently high degree,
sending a closed subscheme S ⊂ Pn to the linear subspace of polynomials that vanish on S [Kol95, Section I.1].
The standard ample line bundle O(1) on the Grassmannian is GL(n+1)-equivariant.) In particular, X has a
T -equivariant ample line bundle.
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The open subset U ⊂ X of 0-dimensional schemes that converge as t ∈ T approaches 0 to a subscheme
supported at [1,0, . . . ,0] is exactly Hilbd(An). The action of T on U need not extend to a morphism
A1 ×U →U (or even A1 ×Y → Y ). Nonetheless, the desired homotopy equivalence follows from Theorem
2.2. �

Remark 2.4. The action of T on Y = Hilbd(An,0) does not extend to a morphism A1 × Y → Y in any
case where Y , Y T . For example, for Y = Hilb3(A2,0), the point Sa := {x = ay2, y3 = 0} in Y has
limt→0 t(Sa) = Z := {x2 = 0,xy = 0, y2 = 0} for any a , 0 ∈ C, whereas the point S0 := {x = 0, y3 = 0} in Y
is fixed by T and hence has limt→0 t(S0) = S0.

3. Gm-actions and broken trajectories

We show here that for an action of the multiplicative group T =Gm on a projective scheme, every limit
of T -orbits is a broken trajectory, meaning a chain of T -orbits that connect a finite sequence of T -fixed
points. This is analogous to fundamental results in Morse homology. Namely, given a smooth function on a
closed Riemannian manifold satisfying some mild conditions, every limit of gradient flow lines is a broken
trajectory, meaning a chain of gradient flow lines that connect a finite sequence of critical points [BH10,
Theorem 4.9, Definition 4.10]. For a T -action on a smooth complex projective variety, one can in fact deduce
the results here from those in Morse homology, applied to a Hamiltonian function for the T -action. Instead,
we give a direct proof over any field. It turns out that smoothness is irrelevant.

Proposition 3.1. Let X be a projective scheme over a field k with an action of T =Gm. Suppose that there is a
T -equivariant ample line bundle on X. Then every limit of T -orbit closures in X (in the Chow variety of effective
1-cycles on X) is a broken trajectory, that is, a chain of T -orbits (with some positive multiplicities) connecting some
T -fixed points.

In more detail: let C be a smooth curve over k with a morphism f : C→ X, not mapping into XT . Composing
fT : T × C → T × X with the action of T gives a morphism T × C → X, which extends to a morphism
P1 × (C −Z)→ X for some 0-dimensional closed subset Z in C. This gives a morphism e from C −Z to the Chow
variety of 1-cycles on X, which extends to all of C by properness of Chow varieties. Then for each k-point c in C
(possibly in Z), e(c) is a broken trajectory over k, meaning the sum of T -orbits (with some positive multiplicities) of
points y1, . . . , yn in X(k) that connect T -fixed points x0, . . . ,xn in X(k). More precisely, limt→0 t(yi) = xi−1 and
limt→∞ t(yi) = xi for each 1 ≤ i ≤ n.

If the image of f : C → X is contained in XT , then the morphism e to the Chow variety of 1-cycles is
constant (equal to zero as a 1-cycle). The proposition would still be true in that case if suitably interpreted:
namely, any limit of T -fixed points in X is a T -fixed point.

Proof. There is a T -equivariant embedding of X into the projective space P (V ) for some representation V
of T . Given that, we can assume that X = P (V ); this greatly simplifies the situation. Then T acts on X = Pr

by t([z0, . . . , zr ]) = [ta0z0, . . . , tarzr ] for some integers ai . We can assume that a0 ≤ · · · ≤ ar .
Composing f : C→ X with the action of T on X gives a morphism T ×C→ X, which can be viewed as

a rational map G : P1 ×Cd X over k. Since X is proper over k, G becomes a morphism W → X, where W
is a surface obtained by blowing up P1 ×C finitely many times at closed points. In particular, G restricts to
a morphism P1 × (C −Z)→ X for some 0-dimensional closed subset Z of X.

Because C is normal and all fibers of W → C have dimension 1, the fibers of W → C form a well-defined
family of effective 1-cycles on W , and hence they give a morphism from C to the Chow variety of 1-cycles on
W [Kol95, Theorem I.3.17]. Pushing cycles forward makes the Chow variety covariantly functorial under
arbitrary morphisms [Kol95, Theorem I.6.8]. Therefore, the morphism W → X gives a morphism e from C
to the Chow variety of 1-cycles on X.
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ai

ordu(zi)

Figure 2. Newton polygon of the pairs (ai ,ordu(zi))

For each k-point c in C (possibly in Z), e(c) is an effective 1-cycle in X whose support S is the image
under G of the inverse image of c in W . Let us describe this image using power series. The completed local
ring of C at c is isomorphic to the power series ring k[[u]]. So the curve f : C→ X = Pr near c is given by
some power series [z0(u), . . . , zr(u)] with zi(u) ∈ k[[u]], not all zero. Every point in the inverse image of c
in W is contained in some curve in W that meets the open set T × (C −Z) in W . After completion, this
curve determines a finite extension F of the field k((u)), along with an F-point of T × (C −Z) over the given
k((u))-point of C. Therefore, the support S of the limit 1-cycle e(c), viewed as a subset of X(k), is the set of
all k-points in X that can be written as

p = lim
u→0

[g(u)a0z0(u), . . . , g(u)
arzr(u)]

for some g in the algebraic closure k((u)), g , 0.
This limit point depends mainly on the rational number b := ordu(g). The situation is described by the

Newton polygon of the pairs (ai ,ordu(zi)) in Z × (Z∪∞), as in Figure 2. (Here ordu(zi) =∞ if zi(u) is
identically zero.)

Namely, let I be the set of numbers i ∈ {0, . . . , r} such that bai +ordu(zi) reaches its minimum value. (That
is, let l be the unique line of slope −b that meets the Newton polygon but not the region above it; then I
corresponds to the points (ai ,ordu(zi)) that lie on l.) Then we compute that the limit point p defined above
has all coordinates zero except the ith coordinate for elements i ∈ I . Replacing g by another function with
the same value of b (that is, multiplying g by a unit h(u)) just replaces p by h(0)(p), another point in the
same T -orbit as p.

For all but finitely many rational numbers b, the limit point p above belongs to a set {x0,x1, . . . ,xn} of
T -fixed points, these being indexed by the vertices of the Newton polygon. (For these values of b, all nonzero
coordinates i in the set I above have the same weight ai , which means that p is a T -fixed point.) For the
remaining n values of b, corresponding to the non-vertical edges of the Newton polygon, the limit point
can be anywhere in the T -orbit of a certain point yi in X with limt→0 t(yi) = xi−1 and limt→∞ t(yi) = xi .
Here the points y1, . . . , yn (and hence the points x0,x1, . . . ,xn) can be taken to be k-points of X, by choosing
the function g ∈ k((u)) with a given value of ordu(g) ∈Q to lie in a totally ramified extension of k((u)), for
example in k((u1/e)) for a positive integer e. �

4. Openness

We now prove that the subset U attracted in Y in Conjecture 2.1 is open in X.

Lemma 4.1. As in Conjecture 2.1, let X be a projective scheme over a field k with an action of T =Gm. Suppose
that there is a T -equivariant ample line bundle on X. Let Y be a T -invariant closed subset of X such that every
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point x in X with limt→∞(tx) ∈ Y is in Y . Suppose that the fixed point set Y T is open in XT . Let U be the
subset of points x in X such that limt→0(tx) is in Y . Then Y is contained in U , and U is open in X.

Proof. Because Y is a T -invariant closed subset of X, Y is contained in U .
Clearly U is a constructible subset of X; in Drinfeld’s notation from section 2 above, U is the image in

X of some connected components of X+, those whose limit as t→ 0 is in Y T . (By assumption, Y T is a
union of some connected components of XT .) It suffices to prove that U is open in X after replacing k by its
algebraic closure. If U is not open in X, then there is a morphism f from a smooth curve C to X with a
k-point c ∈ C such that f (c) ∈U and f (d) <U for all d , c in C. Thus limt→0 t(f (d)) ∈ XT −Y T for d , c,
whereas limt→0 t(f (c)) ∈ Y T .

By Proposition 3.1, the limit of the T -orbit closures of the points f (d) as d approaches c is a broken
trajectory containing f (c). By what we have said about f (d), this broken trajectory ends (in the t → 0
direction) at a point in XT − Y T . But this broken trajectory also contains f (c) and hence the point
limt→0 t(f (c)). Therefore, there is a broken trajectory from limt→0 t(f (c)) ∈ Y T down (in the t → 0
direction) to a point in XT − Y T . This contradicts our assumption on Y , namely that Y is a T -invariant
closed subset such that every point x in X with limt→∞(tx) ∈ Y is in Y . We have shown that U is open in
X. �

5. Proof of Theorem 2.2

Proof. To recall the assumptions: we have a projective scheme X over C with an action of T = C∗, and there
is a T -equivariant ample line bundle on X. We have a T -invariant closed subscheme Y of X such that every
point x in X with limt→∞(tx) ∈ Y is in Y , and the fixed point set Y T is open in XT . Let U be the subset
of points x in X such that limt→0(tx) is in Y ; then U is Zariski open in X, and Y is contained in U , by
Lemma 4.1. We want to show that the inclusion Y →U is a homotopy equivalence in the classical topology.

Lemma 5.1. Let q1,q2, . . . be a sequence of complex points in X that converge to a T -fixed point w. Let t1, t2, . . .
be a sequence in C∗ that converges to zero in C. Then any limit point of the sequence ti(qi) in X lies in a broken
trajectory “below w”. That is, such a limit point belongs to the union of the T -orbits of some points y1, . . . , yn in X
and some T -fixed points x0, . . . ,xn = w such that limt→0 t(yi) = xi−1 and limt→∞ t(yi) = xi for each 1 ≤ i ≤ n.

Proof. We largely follow the proof of Proposition 3.1. Choose a T -equivariant embedding of X into P (V ) for
some representation V of T . We can write the action of T on Pr = P (V ) by t([z0, . . . , zr ]) = [ta0z0, . . . , tarzr ]
with a0 ≤ · · · ≤ ar . After passing to a subsequence, we can assume that the points q1,q2, . . . all have the same
lowest weight aj of a nonzero coefficient. On the locally closed subset K in X of points with this lowest

weight, the T -action T ×K → K extends to a morphism f : A1 ×K → K , by inspection. Here K denotes the
closure of K in X.

By assumption, the points (ti ,qi) in A1 ×K converge to the point (0,w) in A1 ×K . The rational map
f : A1 ×K d K becomes a morphism after some blow-up M → A1 ×K that is an isomorphism over the
complement of 0× (K −K). So any limit point of the sequence ti(qi) in X is equal to f (m) for some point m
in M over (0,w) ∈ A1 ×K . In particular, we can choose a smooth algebraic curve with a morphism to M
that goes through m and meets the open set T ×K .

Thus, by considering the completion of this curve at the point that maps to m, we have power series
g(u) , 0 ∈ C[[u]] and z(u) ∈ X(C((u))) such that g(0) = 0, limu→0 z(u) = w, and limu→0(g(u))(z(u)) is
the given limit point in X. The proof of Proposition 3.1 showed that the limit of the closures of T -orbits
of z(u) as u approaches 0 is a broken trajectory in X, which clearly contains w as one of the T -fixed
points x0, . . . ,xn, say w = xj . Moreover, since g(0) = 0 (so that b := ordu(g) > 0), the explicit calculation of
limu→0(g(u))(z(u)) in Pr shows that this limit point is “below w”, that is, in the union of x0, . . . ,xj = w and
the T -orbits that connect them. �
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We continue the proof of Theorem 2.2. By the triangulation of real semialgebraic sets, there is a
triangulation of X with Y as a subcomplex [Hir75, Section 1]. Therefore, Y has arbitrarily small simplicial
regular neighborhoods N in X, and for these the inclusion Y → N is a homotopy equivalence [RS72,
Chapter 3]. Let N be a (compact) regular neighborhood of Y contained in U .

Consider the submonoid (0,1] of T = C∗. It would be convenient to have (0,1] ·N ⊂ N , but it is not
obvious that we can arrange that. Instead, we argue as follows. I claim that each point w ∈ Y T has a
neighborhood N1 in U such that t(N1) ⊂N for all t ∈ (0,1]. If not, then there would be a sequence qi in U
converging to w such that for each positive integer j , (0,1] · qj is not contained in N . So there is a sequence
ti ∈ (0,1] such that ti(qi) is not in N . The sequence ti must converge to zero; otherwise, a subsequence of
ti(qi) would converge to the T -fixed point w in Y (and hence infinitely many of those points would be in N ).

After passing to subsequences, we can assume that ti(qi) converges to a point v in X − int(N ), hence
not in Y . By Lemma 5.1, v belongs to the union of some finite chain of T -orbits going “down” from w,
meaning the T -orbits of some points y1, . . . , yn in X and some T -fixed points x0, . . . ,xn = w such that
limt→0 t(yi) = xi−1 and limt→∞ t(yi) = xi . By our assumption that all points x in X with limt→∞ tx ∈ Y are
in Y , it follows that v is in Y , a contradiction. Thus we have proved the claim that each point w ∈ Y T has a
neighborhood N1 in U such that t(N1) ⊂N for all t ∈ (0,1].

More generally, for each point x ∈U (not just in Y T ), there is a real number a ∈ (0,1] and a neighborhood
N1 of x in U such that t(N1) ⊂N for all t ∈ (0, a]. That follows from the previous statement applied to the
point y = limt→0 t(x) ∈ Y T .

Therefore, for every compact subset K of U , there is a real number a ∈ (0,1] such that t(K) ⊂ N for
all t ∈ (0, a]. Equivalently, K ⊂ a−1(N ). In particular, there is a real number c > 1 such that the compact
neighborhood N of Y is contained in the interior of c(N ). It also follows that U is the union of the subsets
cj(N ) over all j ≥ 0.

Since the inclusion Y →N is a homotopy equivalence, so is the inclusion Y → cj(N ) for each integer j .
Therefore, each of the inclusions cj(N )→ cj+1(N ) is also a homotopy equivalence. Since cj(N ) is a closed
subset contained in the interior of cj+1(N ), the union of these subsets (namely, U ) has the colimit topology.
Since this is a filtered colimit, the colimit U is equivalent to the homotopy colimit, and so the inclusion
N →U is a homotopy equivalence. Since the inclusion Y →N is also a homotopy equivalence, we conclude
that Y →U is a homotopy equivalence. �

6. The real case

Theorem 6.1. Under the assumptions of Conjecture 2.1 with base field R, the inclusion Y (R) → U (R) is a
homotopy equivalence.

Proof. This is similar to the complex case (Theorem 2.2). In particular, Lemma 5.1 holds by the same proof
over R in place of C, using that Proposition 3.1 expresses any limit of T -orbits of R-points as the union
of a finite chain of T -orbits of R-points. Given that, the proof of Theorem 2.2 applies verbatim (using
a regular neighborhood of Y (R) inside U (R)) to show that the inclusion Y (R)→ U (R) is a homotopy
equivalence. �

7. A1-connectedness of the Hilbert scheme

Hartshorne showed that the Hilbert scheme of projective space over a field k (of subschemes with a given
Hilbert polynomial) is connected [Har66]. In particular, Hilbd(P

n) is connected for every n ≥ 1 and d ≥ 0.
The argument was sharpened by Reeves and Pardue [Ree95, Par96]. Reeves and Pardue showed that for an
infinite field k, any two k-points of Hilbd(P

n) can be connected by a chain of affine lines over k. By Morel’s
results (Lemma 7.2 below), it follows that Hilbd(P

n
k ) is A1-connected for k infinite.
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We now show that Hilbd(An) and Hilbd(An,0) are A1-connected over an infinite field k. This seems to
be harder for Hilbd(An,0), because (for d > 1) this space contains no smooth subschemes of An. When
n ≥ d, the A1-connectedness of these Hilbert schemes can be proved using the ideas of [HJNTY20], but here
we want the results for all n and d.

Theorem 7.1. Let k be an infinite field, n ≥ 1, d ≥ 0. Then Hilbd(An) is A1-connected over k.

Proof. We use the following result of Morel’s:

Lemma 7.2. Let X be a separated scheme of finite type over a field k such that X has a k-point. Suppose that
for every separable finitely generated field extension F of k, any two F-points of X can be connected by a chain of
affine lines A1

F → XF . Then X is A1-connected.

Proof. For m ≥ 0, Morel showed that an A1-local pointed simplicial Nisnevich sheaf X over k is m-connected
if and only if the fiber X(F) is m-connected for every separable finitely generated field extension F of
k [Mor05, Lemma 6.1.3]. Also, for a simplicial sheaf X, π0(X) → πA1

0 (X) is a surjection of Nisnevich
sheaves [MV99, Section 2, Corollary 3.22]. In particular, for a separated scheme X of finite type over k,
X(F)→ πA1

0 (X)(F) is surjective for every separable finitely generated field extension F over k. This implies
the lemma. �

By Lemma 7.2, it suffices to show that for an infinite field k, any two k-points of U := Hilbd(An) can
be connected by a chain of affine lines A1

k → Uk . So let S be any k-point of U . That is, S is a closed
subscheme of An over k of dimension zero and degree d. We use a “Gröbner degeneration”, as follows. Let
c be a large positive integer, and consider the action of T :=Gm on An by

t(x1, . . . ,xn) = (tcx1, t
c2x2, . . . , t

cnxn).

Then S2 := limt→0 t(S) exists in U . It is a closed subscheme supported at the origin in An, and it is fixed by
this T -action. That is, the defining ideal I of S2 as a subscheme of Ank is homogeneous with respect to the
weights (c,c2, . . . , cn) on x1, . . . ,xn. Taking c big enough compared to d and n, it follows that I is generated
by monomials. By construction, we can connect S to S2 by an affine line over k.

Since S2 has dimension 0 and is defined by monomials, it is smoothable, using Hartshorne’s proof by
distraction; a specific reference is [CEVV09, Proposition 4.15]. We need the more precise information given
by the proof, as follows. Let I = (xM1 , . . . ,xMr ) be the minimal set of monomial generators for the ideal I .

We use multi-index notation, so xMi =
∏n
j=1 x

Mij

j . Consider the following flat family of ideals in k[x1, . . . ,xn]

parametrized by affine space Ad : for a point (a0, . . . , ad−1) in Ad , take the ideal Ja in k[x1, . . . ,xn] generated
by the elements

fi :=
n∏
j=1

(xj − a0)(xj − a1) · · · (xj − aMij−1).

The initial ideal of Ja (with respect to any monomial order compatible with the grading, say the graded
reverse lexicographic order) is I ; so we have a flat family. This defines a morphism Ad →Hilbd(An) over k,
with the origin mapping to the given monomial scheme S2. When a0, . . . , ad−1 are distinct elements of k, the
subscheme Za of An defined by Ja contains d distinct k-points: namely, for each of the d monomials xL not
in I , Za contains the k-point (aL1 , . . . , aLn). Since the scheme Za has degree d, it must be smooth over k,
equal to those d k-points in An.

Since k is infinite, it follows that we can connect S2 by an affine line in Hilbd(An) to a scheme S3 which
consists of d distinct k-points in An. If n ≥ 2, since the condition for two points to be equal in An has
codimension at least 2, it is easy to connect S3 by a chain of affine lines over k to a fixed arrangement S4
of d distinct k-points in An. Thus Hilbd(An) is A1-connected when n ≥ 2. It is also A1-connected when
n = 1, since Hilbd(A1) � Ad . �
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Theorem 7.3. Let k be an infinite field, n ≥ 1, d ≥ 0. Then Hilbd(An,0) is A1-connected over k.

Proof. By Lemma 7.2, it suffices to show that for every infinite field k, any two k-points of Y := Hilbd(An,0)
can be connected by a chain of affine lines over k. For lack of a direct proof, we will reduce this to Theorem
7.1.

Let X = Hilbd(P
n), U = Hilbd(An), and T =Gm. Consider the action of T on X coming from the action

of T by scaling on An. Then Y is a T -invariant closed subset of U , and limt→0 t(x) exists in Y for each
point x in U . Clearly we can connect any k-point x in Y to this limit point by an affine line in Y , and the
limit point is fixed by T . So it suffices to show that any two k-points p,q in Y T can be connected by a chain
of affine lines in Y .

We know by the proof of Theorem 7.1 that p and q can be connected by a chain of affine lines in U . So it
suffices to show that for any morphism f : A1→U over k, we can connect limt→0 t(f (0)) to limt→0 t(f (1))
by a chain of affine lines in Y .

Composing f with the action of T on U gives a morphism T ×A1→ U over k, which can be viewed
as a rational map P1 × P1 d X over k. Since X is proper over k, this map becomes a morphism after
blowing up the domain finitely many times at closed points. It follows that g(s) := limt→0 t(f (s)) defines
a morphism g : A1 −Z → Y for some 0-dimensional closed subset Z of A1. Since Y is proper over k, g
extends to a morphism g : A1→ Y . As a result, for any two k-points s1, s2 in A1 −Z, limt→0 t(f (s1)) and
limt→0 t(f (s2)) can be connected by an affine line in Y .

There remains the case where 0 or 1 is in Z . It suffices to show that for any k-point s0 in Z (which will be
0 or 1 for us), the point z0 := limt→0 t(f (s0)) can be connected by a chain of affine lines in Y to g(s0).

By Proposition 3.1, the T -orbits of the points f (s) (for s ∈ A1 − Z) converge as s approaches s0 to a
“broken trajectory” containing f (s0). This means the union of T -orbits of points y1, . . . , yn in X(k) that
connect T -fixed points x0, . . . ,xn in X(k), in the sense that limt→0 t(yi) = xi−1 and limt→∞ t(yi) = xi .

Both the k-point z0 = limt→0 t(f (s0)) and the k-point g(s0) lie in this union of T -orbit closures in X, and
both are in the closed subset Y . We know that every point x in X with limt→∞(tx) ∈ Y is in Y . Therefore,
all the orbit closures that connect z0 to g(s0) are in Y . So these two points can be connected by affine lines
over k in Y , as we want. �

8. Conservativity for the motivic stable homotopy category

Extending one of Tom Bachmann’s results, we prove the following conservativity theorem, relating the
motivic stable homotopy category with the derived category of motives along with real realizations. Thanks
for Bachmann for his suggestions. This result will be used in the proof of Theorem 9.1.

Theorem 8.1. Let k be a finitely generated field of characteristic zero (that is, a finitely generated extension field
of Q). Let A be a compact object in SH(k) such that M(A) = 0 in DM(k) and for every embedding of k into R,
H∗(A(R),Z[1/2]) = 0. Then A = 0.

If k has no real embedding, Theorem 8.1 just says that M(A) = 0 in DM(k) implies A = 0 in SH(k).

Proof. Bachmann showed (in particular) that if A is a compact object in SH(k) such that M(A) = 0 in DM(k)
and for every σ in the space Sper(k) of orderings of k, Mσ [1/2](A) = 0 in D(Z[1/2]), then A = 0 [Bac18,
Theorem 33]. When σ comes from an embedding of k into R, Mσ [1/2](A) is the complex that computes
the singular homology of the corresponding real realization of A, H∗(A(R),Z[1/2]) [Bac18, Remark 1]. It
remains to show that we only need to consider orderings that come from real embeddings of k.

We use the following property of the space Sper(k) of orderings of k [FHV94, Lemma 1.6]. The topology
on Sper(k) is defined by taking the sets {σ : a >σ 0} for a ∈ k as a sub-basis for the topology. This makes
Sper(k) into a compact Hausdorff totally disconnected space.
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Lemma 8.2. Let k be a finitely generated field of characteristic zero. Then the set of archimedean orderings of k is
dense in the topological space Sper(k) of orderings of k, and every archimedean ordering comes from an embedding
of k into R.

Given that, we are done if we can show that the support in X := Sper(k) of a compact object in SH(k)
is open as well as closed. This is related to the general fact that for a tensor triangulated category K , the
support of an object of K in the Balmer spectrum Spc(K) is closed and its complement is quasi-compact
[Bal05, Proposition 2.14]. However, we will argue more directly.

We use that the functors Mσ come from a functor from SH(k) to the derived category of sheaves
D(X,Z[1/2]), which takes compact objects to compact objects. Indeed, by [Bac18, Lemma 21], the functor
from SH(k) to Witt motives DMW (k,Z[1/2]) is monoidal; so it takes rigid objects to rigid objects, and the
rigid objects coincide with the compact objects in these categories. (Some people say “strongly dualizable”
rather than “rigid”.) Furthermore, DMW (k,Z[1/2]) is equivalent to D(X,Z[1/2]) [Bac18, Lemma 26 and
proof of Theorem 30].

A compact object in D(X,Z[1/2]) is a perfect complex; that is, it is locally isomorphic to a bounded
complex of finitely generated projective Z[1/2]-modules. (Indeed, since X is compact, Hausdorff, and totally
disconnected, every open subset of X is a union of clopen subsets (or equivalently, quasi-compact open
subsets). It follows that every compact object in D(X,Z[1/2]) is a summand in D(X,Z[1/2]) of a bounded
complex of sheaves which are finite direct sums of sheaves of the form j!(Z[1/2]U ), with j : U ↪→ X the
inclusion of a quasi-compact open subset [Stacks, Lemma 094C]. Clearly such a summand is a perfect
complex of Z[1/2]-modules on X.)

Because sections of the sheaf Z[1/2] on X = Sper(k) are locally constant, the support of a perfect complex
on X is open as well as closed. �

9. Gm-actions on smooth varieties and motivic homotopy theory

We now consider Conjecture 2.1 in the special case where U is smooth. (One example where this applies is
the inclusion from Hilbd(A2,0) to Hilbd(A2).) For U smooth, we show that the inclusion Y →U becomes
an A1-homotopy equivalence after suspending by S3,1 = S2 ∧Gm. It follows that Y and U have many
invariants in common, such as motivic homology and cohomology, l-adic cohomology, and so on. On the
other hand, it remains open whether the Nisnevich sheaf πA1

0 is the same for Y and U , and likewise for πA1

1 .

At least for πA1

0 , one might hope to imitate the proof of Theorem 7.3.

Theorem 9.1. Under the assumptions of Conjecture 2.1 with base field k of characteristic zero, and assuming that
U is smooth over k, the inclusion Y →U becomes an A1-homotopy equivalence after suspending by S3,1 = S2∧Gm.

Proof. We can assume that U is connected, by arguing separately for each connected component of U . Next,
by equivariant resolution of singularities (using that k has characteristic zero), we can assume that X (as well
as U ) is smooth over k, while still having a T -action [Kol07, Proposition 3.9.1].

We first show that the inclusion Y → U induces an isomorphism in the derived category of motives
DM(k), M(Y )→M(U ). Namely, since X is smooth over k, we have the Białynicki-Birula decomposition, as
follows. The fixed point set XT is smooth over k. Write Z1, . . . ,Zm for the connected components of XT .
For each i, let Z+

i = {x ∈ X : limt→0 tx ∈ Zi} and Z−i = {x ∈ X : limt→∞ tx ∈ Zi} be the stable and unstable
manifolds of Zi . Then the action of T gives morphisms Z+

i → Zi and Z−i → Zi which are affine-space
bundles [Bia73].

Karpenko showed that this geometric decomposition gives a direct-sum decomposition of Chow motives
over k [Kar00, Theorem 6.5], [Bro05, Theorem 3.5]:

M(X) � ⊕mi=1M(Zi){ai},
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where ai := dim(Z+
i )−dim(Zi). (Here Z{1} denotes the Lefschetz motive, with M(P1) = Z{0} ⊕Z{1}.) This

implies another decomposition M(X) � ⊕mi=1M(Zi){bi}, where bi := dim(Z−i )− dim(Zi), by inverting the
T -action on X. Here

ai +dim(Zi) + bi = n,

by considering the action on T on the tangent space to X at a point of Zi .
The category of Chow motives is a full subcategory of the derived category of motives, DM(k): the thick

subcategory generated by smooth projective schemes over k tensored with Z{a} = Z(a)[2a] for integers a
[Voe00]. Every scheme X of finite type over k has a motive M(X) and a compactly supported motive Mc(X)
in DM(k). We can assume that Z1, . . . ,Zm are ordered in such a way that the closure of Z−i is contained in
Xi := ∪j≤iZ−j . Karpenko’s argument shows that the exact triangle

Mc(Xi−1)→Mc(Xi)→Mc(Z−i ) �M(Zi){bi}

in DM(k) is split [Kar00, Theorem 6.5, part (a)]. (Indeed, his splitting on Chow groups is defined by an
element of CHdim(Zi )+bi (Zi ×Xi), and that is precisely Hom(M(Zi){bi},Mc(Xi)) since Zi is smooth and
proper over k.) In particular, it follows that

M(Xj ) � ⊕
j
i=1M(Zi){bi}

for each 1 ≤ j ≤m, and its open complement X −Xj satisfies

Mc(X −Xj ) � ⊕mi=j+1M(Zi){bi}

(Here Xj need not be smooth, but it is proper over k, and so its motive M(Xj ) is the same as its compactly
supported motive Mc(Xj ).)

In the notation of Conjecture 2.1, we can assume that the closed subset Y of X is equal to Xr for some
r ≤m. So M(Y ) � ⊕ri=1M(Zi){bi}. Likewise, the open subset U is the union of the subsets Z+

i with i ≤ r .
By the splitting in DM(k) above, applied to the inverse action of T on X, we have

Mc(U ) � ⊕ri=1M(Zi){ai}.

Since U is smooth of dimension n over k, it follows that

M(U ) �Mc(U )∗{n}
� ⊕ri=1M(Zi)

∗{n− ai}
� ⊕ri=1M(Zi){n− ai −dim(Zi)}
� ⊕ri=1M(Zi){bi}.

Thus M(Y ) is isomorphic to M(U ) in DM(k). More precisely, the inclusion Y → U induces an
isomorphism M(Y )→M(U ). To see this, one checks from Karpenko’s construction of the splittings that for
i, j ∈ {1, . . . , r}, the composition M(Zi){bi} →M(Y )→M(U )→M(Zj ){bj} is the identity for i = j and zero
if i < j .

The schemes Y ,U,X with T -action are defined over some finitely generated subfield of k. So we can
assume that the field k is finitely generated over Q. Apply Theorem 8.1 to the cofiber A = Σ∞(U/Y ) in
SH(k). We showed above that the motive of A in DM(k) is zero. Also, for every real embedding of k, the
real realization of A is zero in the stable homotopy category, by Theorem 6.1. (It may be that k has no real
embedding.) Therefore, A = 0 in SH(k). That is, the inclusion Y →U induces an isomorphism in SH(k).

Again using that k has characteristic zero, Bachmann showed that the P1-suspension functor

Q = Σ∞
P1 : H(k)∗→ SH(k)

is conservative on A1-simply connected spaces which can be written as homotopy colimits of spaces X+∧Gm

with X ∈ Smk [Bac21, Theorem 1.3].
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The S2-suspension of every space in H(k)∗ is A1-simply connected. The map S2∧Gm∧Y+→ S2∧Gm∧U+
is therefore a pointed A1-homotopy equivalence. �

Theorem 9.1 can be slightly strengthened if in addition Y and U are A1-connected. In that case, their
S1-suspensions are A1-simply connected, and so P1∧Y+→ P1∧U+ is a pointed A1-homotopy equivalence,
using that P1 = S2,1 = S1 ∧Gm.
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