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Refined Verlinde formulas for Hilbert schemes of points and
moduli spaces of sheaves on K3 surfaces

Lothar Göttsche

Abstract. We compute generating functions for elliptic genera with values in line bundles on
Hilbert schemes of points on surfaces. As an application we also compute generating functions for
elliptic genera with values in determinant line bundles on moduli spaces of sheaves on K3 surfaces.
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Formules de Verlinde raffinées pour les schémas de Hilbert de points et espaces de modules
sur les surfaces K3

Résumé. Nous calculons les fonctions génératrices pour les genres elliptiques à valeur dans les
fibrés en droites sur les schémas de Hilbert des points sur les surfaces. En guise d’application, nous
calculons également les fonctions génératrices pour les genres elliptiques à valeurs dans les fibrés
en droites sur les espaces de modules de faisceaux sur les surfaces K3.
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1. Introduction

The celebrated Verlinde formula (see [Ver88, NR93, BL94, Fal94]) is a formula for the generating function
for dimensions of spaces of sections of line bundles on moduli spaces of vector bundles on algebraic curves.

Now let S be a smooth projective surface over C and S[n] the Hilbert scheme of n points on S . For
every vector bundle V on S there is a corresponding tautological bundle V [n] of rank rk(V [n]) = nrk(V ),
whose fibre over Z ∈ S[n] is H0(Z,V |Z ). The map V 7→ V [n] extends to a homomorphism from the
Grothendieck group K0(S) of vector bundles on S to K0(S[n]). For L ∈ S[n] denote µ(L) := det((L−OS )[n])
and E := det(O[n]

S ). Then it is well known that Pic(S[n]) = µ(Pic(S))⊕ZE. The analogue of the Verlinde
formula for Hilbert schemes of points is a formula for the generating function for holomorphic Euler
characteristics χ(S[n],µ(L) ⊗ Er ). In [EGL01] such a formula was proven in the cases r = −1,0,1 or
K2
S = KSL = 0. On the other hand the celebrated Dijkgraaf-Moore-Verlinde-Verlinde formula [DMVV97],

shown in [BL00, BL03, BL05], relates the generating function of the elliptic genera Ell(S[n]) of Hilbert
schemes of points to Siegel modular forms.

In this short note we interpolate between these two results, by proving a formula for Ell(S[n],µ(L)⊗Er ),
the elliptic genus with values in the line bundle µ(L)⊗Er . To state these results we introduce the following
power series.

φ−2,1(q,y) := (y1/2 − y−1/2)2
∏
n>0

(1− qny)2(1− qn/y)2

(1− qn)4
,

℘(q,y) :=
1
12

+
1

(y1/2 − y−1/2)2
+
∑
n>0

∑
d|n
d(yd − 2+ y−d)qn,

φ0,1(q,y) := 12℘(x,y)φ−2,1(x,y),

h(q,y) := − 1
12

+
∑
n>0

∑
d|n

n
d
(yd + y−d)xn.

℘(q,y) is the Weierstrass ℘-function. It is standard that

Ell(S) = −(℘+ h)φ−2,1K
2
S +φ0,1χ(OS ).
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We also introduce the following Borcherds type lifts. For f :=
∑
m,n cm,nq

myn ∈Q[[y,q]], we put

L(f ,p) :=
∏

l>0,m≥0,n∈Z
(1− plqmyn)clm,n ,

L(a,b)(f ,p) :=
∏

l>0,m≥0,n∈Z
(1− plqmyn)l

anbclm,n , a,b ∈Z.

Then the DMVV formula says∑
n≥0

Ell(S[n])pn =
1

L(Ell(S),p)
=
L((℘+ h)φ−2,1,p)K

2
S

L(φ0,1,p)χ(OS )
.

The first theorem deals with the case r = 0.

Theorem 1.1. Let S be an algebraic surface, L ∈ Pic(S). Then

∑
n≥0

Ell(S[n],µ(L))pn =

(
L(2,0)(−φ−2,1,p)

) L2
2
(
L(1,1)(−φ−2,1,p)

) LKS
2

L(Ell(S),p)
.

Specializing to L = OS , we recover the DMVV formula. Specializing to q = 0 yields an infinite product
formula for the χy-genera with values in a µ(L), which in turn recovers for L = OS the formula for the
χ−y-genera of Hilbert schemes from [GS93]. We write

∆̃(p,y) :=
∏
n>0

(1− pn)20(1− pny)2(1− pn/y)2, η(p) =
∏
n>0

(1− pn).

Corollary 1.2.

∑
n≥0

χ−y(S
[n],µ(L))pn =

∏
n>0

 (1− pn)2

(1− pny)(1− p
n

y )


n2
2 L

2 ∏
n>0

 1− p
n

y

1− pny


n
2LKS

η(p)K
2
S

∆̃(p,y)
χ(OS )

2

.

For general line bundles on Hilbert schemes of points we can partially determine the generating function.

Theorem 1.3. For every r ∈Z there are universal power series Ar ,Br ∈Q[y±1][[z,q]] such that for every smooth
projective surface S and every L ∈ Pic(S) we have∑

n≥0
Ell(S[n],µ(L)⊗Er )pn =

L(2,0)(−φ−2,1, z)
1
2 (L

2+r2χ(OS ))A
LKS
r B

K2
S
r(

L(2φ0,1, z)
(
1− r2z ∂∂z logL

(2,0)(φ−2,1, z)
)) χ(OS )

2

,

with the change of variables p = zL(2,0)(−φ−2,1, z)r
2
.

Specialising to q = 0 again yields a formula for the χ−y-genus with values in µ(L)⊗Er .

Corollary 1.4. For every smooth projective surface S and every L ∈ Pic(S) we have

∑
n≥0

χ−y(S
[n],µ(L)⊗Er )pn =

∏
n>0

(
(1− zn)2

(1− zny)(1− zn/y)

) n2
2 (L2+r2χ(OS ))

×
Ar(y,z,0)LKSBr(y,z,0)K

2
S(

∆̃(z,y)
(
1+ r2

∑
n≥1(yd − 2+ y−d)n

3

d3 z
n
)) χ(OS )

2

.

with the change of variables p = z
∏
n>0

(
(1−zn)2

(1−zny)(1−zn/y)

)n2r2
.
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Finally we show an analogue of Theorem 1.3 for moduli spaces of sheaves on K3 surfaces S . Fix s ∈Z>0.
Let H be an ample line bundle on S and MH

S (s, c1, c2) the moduli space of H-semistable sheaves on S of
rank s with Chern classes c1, c2. We assume that MH

S (s, c1, c2) consists only of stable sheaves. For any
choice of s, c1, c2, we denote

vd = vd(s, c1, c2) := 2sc2 − (s − 1)c21 − 2(s
2 − 1).

Let r ∈Z. Let L ∈ Pic(S)⊗Q with c1(L)− rs c1 ∈H
2(S,Z). If s divides (c1(L)− rs c1)c1 + r(

c21
2 − c2), we define

a determinant line bundle µ(L)⊗Er ∈ P ic(MH
S (s, c1, c2)). This is the generalization of the line bundle with

the same name on S[n] =MH
S (1,0,n). We obtain the following result.

Theorem 1.5. Let S be a K3 surface, s ∈Z>0. Under the assumptions above we have

Ell(MH
S (s, c1, c2),µ(L)⊗Er ) = Coeffpvd /2

 L(2,0)(−φ−2,1, z)
L2
2 + r2

s2

L(2φ0,1, z)
(
1− r2s2 z

∂
∂z logL

(2,0)(φ−2,1, z)
) ,

with the change of variables p = zL(2,0)(−φ−2,1, z)
r2

s2 , and

χ−y(M
H
S (s, c1,n),µ(L)⊗Er ) = Coeffpvd /2


∏
n>0

(
(1−zn)2

(1−zny)(1−zn/y)

)n2( L22 + r2

s2
)

(
∆̃(z,y)

(
1+ r2

s2
∑
n≥1

∑
d|n(yd/2 − y−d/2)2 n

3

d3 z
n
))

 ,

with the change of variables p = z
∏
n>0

(
(1−zn)2

(1−zny)(1−zn/y)

) n2r2
s2
.

In the special case of K3 surfaces Theorem 1.5 in particular confirms the conjectures of [GKW] about
refinements of Verlinde formulas for moduli spaces of rank 2 sheaves on surfaces in the case of K3 surfaces.
The specialization L = OX reproduces in the case of K3 surfaces the formulas of [GK] on the elliptic genus
of moduli spaces of sheaves on surfaces.

Acknowledgements. I thank Don Zagier for helping me with the proof of Lemma 4.3. This work grew out
of collaboration with Martijn Kool. I thank him for many useful discussions.

2. Background material

2.1. Hilbert schemes of points

Let S be a smooth projective surface. We denote S[n] the Hilbert scheme of n points on S . It is a smooth
projective variety of dimension 2n. Let S(n) be the n-th symmetric power of S . The Hilbert-Chow morphism
π : S[n] → S(n),Z 7→ supp(Z), sending a zero dimensional scheme to its support with multiplicities is a
crepant resolution of S(n), i.e. it is birational and π∗KS(n) = KS [n] . Let Zn(S) ⊂ S × S[n] be the universal
subscheme, with projections p : Zn(S) → S[n], q : Zn(S) → S . For a vector bundle V of rank r on S
the corresponding tautological vector bundle is V [n] := p∗q∗V , a vector bundle of rank rn on S[n]. This
extends to a homomorphism [n] : K0(S)→ K0(S[n]) between the Grothendieck groups of vector bundles.

We put E := det(O[n]
S ), and for a line bundle L on S we put µ(L) := det((L−OS )[n]). Let η : Sn→ S(n) be

the natural projection. Let Ln := η∗(⊗ni=1pr
∗
i L)

Sn be the Sn-equivariant pushforward, where pri : Sn→ S
is the i-th projection. Then it is well-known that µ(L) = η∗(Ln), and from the definitions it follows that
det(V [n]) = µ(det(V ))⊗Erk(V ).
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2.2. Elliptic genus.

For a compact complex manifold M, the χ−y-genus is

χ−y(M) :=
∑
p

(−y)pχ(M,Ωp
M ).

Usually we consider the normalized version χ−y(M) := (−y)−
dim(M)

2 χ−y(M). For V ∈ K0(M) the χ−y-genus
with values in V is

χ−y(M,V ) := y−
dim(M)

2

∑
p

(−y)pχ(M,Ωp
M ⊗V ).

For a rank r vector bundle V on M put

ΛtV :=
r∑
n=0

[ΛnV ] tn, SymtV :=
∞∑
n=0

[SymnV ] tn.

Write y = e2πiz, q = e2πiτ . Then for W ∈ K0(M), the elliptic genus and the elliptic genus with values in W
are defined by

Ell(M) := Ell(M,z,τ) := χ−y(M,E(TM )),

Ell(M,W ) := Ell(M,W ,z,τ) := χ−y(M,E(TM )⊗W ),

with

E(V ) :=
∞⊗
n=1

Λ−yqnV
∨ ⊗Λ−y−1qnV ⊗ Symqn(V ⊕V

∨).

Let

θ(z,τ) := −iq
1
8 (y

1
2 − y−

1
2 )

∏
n>0

(1− qn)(1− qny)(1− qn/y)

be the classical Jacobi theta function, where we write y = e2πiz, q = e2πiτ . Let c(M) =
∏n
j=1(1 + xj ) be a

formal splitting of the total Chern class of M . Putting

ELL(M) := ELL(M,z,τ) =
∏
j

xj
θ(

xj
2πi − z,τ)
θ(

xj
2πi , τ)

∈H ∗(X,Q)[y±
1
2 ][[q]],

it follows from the definitions and the Riemann-Roch theorem that

Ell(M) =
∫
M
ELL(M), Ell(M,W ) =

∫
M
ELL(M)ch(W ).

2.3. Beauville-Bogomolov quadratic form

Let X be a compact holomorphic symplectic manifold of dimension dim(X) = 2m. We briefly review some
properties of the Beauville-Bogomolov quadratic form qX :H2(X)→Q on X from [Huy99, Sections 1.9–1.11].
Note that the odd Chern classes of X vanish.

Theorem 2.1. For any β ∈H4k(X,Q) in the sub-algebra generated by the Chern classes of X, there is a constant
c(β) ∈Q, such that for all α ∈H2(X,Q)∫

X
βαdim(X)−2k = c(β)qX(α)

m−k .

The quantity c(β) is invariant under deformation of X.
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Corollary 2.2. There exists a polynomial hX = hX(z) with coefficients in Q[y±1][[q]] such that∫
X
ELL(X)exp(α) = hX(qX(α)), for all α ∈H2(X,Z).

The polynomial h is invariant under deformation of X.

3. The case r = 0.

In this section we will prove Theorem 1.1. We start by reviewing some of the ideas and definitions
of [BL05]. For a Kawamata log-terminal pair (Z,D) of a projective variety and a divisor D in Z with
an action of a finite group G, Borisov and Libgober define in [BL05, Definition 3.6] the orbifold elliptic
class Ellorb(Z,D,G) = Ellorb(Z,D,G,z,τ). In fact they first define it in [BL05, Definition 3.2] in case X is
nonsingular and the pair (X,E) is also G-normal (see [BL05, Definition 3.1] for the definitions) by an explicit
formula. In the general case, they define in [BL05, Definition 3.6] Ellorb(Z,D,G) := ρ∗Ellorb(X,E,G) for
ρ : (X,E)→ (Z,D) a G-normal equivariant resolution. We will write Ellorb(Z,G), Ellorb(Z,D), Ellorb(Z) in
case D = 0 and/or G is the trivial group.

If X is a nonsingular projective variety, with an action of a finite group their formula specializes to

Ellorb(X,G) :=
1
|G|

∑
gh=hg

∑
Z

[Z]
( ∏
λ(g)=λ(h)=0

∏
j

xλ,j

)∏
λ,j

θ(
xλ,j
2πi +λ(g)− τλ(h)− z)
θ(

xλ,j
2πi +λ(g)− τλ(h))

e2πiλ(h)z.(3.1)

Here Z runs over the irreducible components of the common fixpoint set of g and h, and [Z] is the class
of Z in the Chow group of X. The restriction of TX to Z splits into linearized bundles according to the
[0,1)-valued characters λ of 〈g,h〉. We denote by xλ,j the elements of a formal splitting of the total Chern
class of the bundle with character λ. If G acts effectively on (Z,D) and (Z/G,D/G) is the quotient pair in the
sense of [BL05, Definition 2.7], they show in [BL05, Theorem. 5.3] that ψ∗Ellorb(Z,D) = Ellorb(Z/G,D/G)
for the quotient morphism ψ : Z → Z/G. This is in particular true for the pairs (Z,0), (Z/G,0), if Z is
nonsingular and G is acting freely in codimension 1.

Now consider the action of Sn on Sn, and recall the quotient morphism η : Sn→ S(n) and the Hilbert
Chow morphism π : S[n]→ S(n). As S[n] is nonsingular we have ELL(S[n]) = Ellorb(S[n]). As π is a crepant
resolution, [BL05, Theorem 3.5] implies that π∗ELL(S[n]) = Ellorb(S(n)). Thus we find by the above

(3.2) π∗ELL(S
[n]) = Ellorb(S

(n)) = η∗Ellorb(S
n,Sn).

Now let L be a line bundle on S , then we have

Ell(S[n],µ(L)) =
∫
S [n]

ELL(S[n])ch(µ(L))

=
∫
S(n)
π∗

(
ELL(S[n])

)
ch(Ln)

=
∫
Sn
Ellorb(S

n,Sn)ch
( n∑
i=1

pr∗i L
)
.

In the second line we have used π∗(Ln) = µ(L) and the projection formula, and in the third line we have
used (3.2), η∗(Ln) = ⊗ni=1pr

∗
i L and again the projection formula.
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Let x1,x2 be the Chern roots of TS . Then

Ell(S,L) =
∫
S
(1 +L+

L2

2
)

2∏
j=1

xi
θ(

xj
2πi − z,τ)
θ(

xj
2πi , τ)

= Ell(S)− KSL
2

Coeffx1
(
x
θ( x

2πi − z,τ)
θ( x

2πi , τ)

)2
+
L2

2
Coeffx2

(
x
θ( x

2πi − z,τ)
θ( x

2πi , τ)

)2
= Ell(S) +

KSL
2
y
∂
∂y
φ−2,1 +

L2

2
φ−2,1.

(3.3)

Now we prove Theorem 1.1 by adapting the proof of [BL05, Theorem 6.1]. Note that in the notations of
[BL05] we have D = 0, which leads to many simplifications.

Let (g,h) be a commuting pair in Sn. We sum up the description of the action of g,h and their
fixpoint sets in the proof of [BL05, Theorem 6.1]. We have a decomposition {1, . . . ,n} = J1 ∪ . . .∪ Jm into
the orbits of the subgroup generated by g,h. Thus the action of (g,h) on Sn restricts to an action on
each of the corresponding products SJl . Furthermore we can write |Jl | = albl for positive integers al ,bl ,
and up to reordering of the elements of Jl the action of (h,g) on SJl can be described as follows. Write
(yi,j )i∈Z/alZ, j∈Z/blZ the components of elements of y ∈ SJl . Then the action of g,h on SJl is given by
h(yi,j ) = yi,j+1, g(yi,j ) = yi+1,j for 0 ≤ i < al − 1, g(yal−1,j ) = y0,j+s, for some s ∈ {0, . . . , bl − 1}, and s
determines the action of (g,h) on Jl uniquely. The fixpoint set (SJl )g,h is S embedded via the diagonal map
jl : S→ SJl .

Changing their notation slightly, we denote for (a,b, s) := (al ,bl , sl) by

Fa,b,s := j
∗
l

( ∏
λ(g)=λ(h)=0

∏
j

xλ,j

)∏
λ,j

θ(
xλ,j
2πi +λ(g)− τλ(h)− z)
θ(

xλ,j
2πi +λ(g)− τλ(h))

e2πiλ(h)z


the pullback of the contribution of the restriction of the pair (f ,g) to Ellorb(SJl ,SJl ) in (3.1) multiplied by
a!b!. Then it is shown in [BL05, Lemma 6.4] that

Fa,b,s =
∏
j=1,2

xjθ(
axj
2πi − az,

aτ−s
b )

θ(
axj
2πi ,

aτ−s
b )

.

Note that the left hand side is

1
a2

∏
j=1,2

axjθ(
axj
2πi − az,

aτ−s
b )

θ(
axj
2πi ,

aτ−s
b )

=
2∑
k=0

ak−2ELL(S,az,
aτ − s
b

)k ,

where ( )k denotes the part in degree k. As j∗l η
∗(Ln) = Lab, we obtain∫

S
Fa,b,s ch(j

∗
l η
∗(Ln)) =

∫
S

( 2∑
k=0

ak−2ELL(S,az,
aτ − s
b

)k(ab)
2−k ch2−k(L)

)
= Ell(S,Lb, az,

aτ − s
b

).

By definition it is clear that the contribution of (g,h) to
∫
Sn
Ellorb(Sn,Sn)η∗Ln is

1
n!

m∏
l=1

∫
S
Fal ,bl ,sl j

∗
l η
∗(Ln).

Thus arguing as after [BL05, Lemma 6.6], writing

Ell(S[n]) =
∑
l,n

cl,ny
lqn, φ−2,1 =

∑
l,n

dl,ny
lqn,
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and using (3.3) in the third line, we obtain∑
n≥0

Ell(S[n],µ(L))pn =
∑
n≥0

pn
(∫

Sn
Ellorb(S

n,Sn)η
∗Ln

)

= exp

∑
a,b>0

b−1∑
s=0

pab

ab
Ell(X,Lb, az,

aτ − s
b

)


= exp

∑
a,b>0

∑
m,l

b−1∑
s=0

(
cm,l +

(
bl
LKS
2

+ b2
L2

2

)
dm,l

)pab
ab
yalq

am
b e2πi

ms
b


= exp

∑
a,b>0

∑
m,l

(
cmb,l +

(
bl
LKS
2

+ b2
L2

2

)
dmb,l

)pab
a
yalqam


=
∞∏
b=1

∏
m,l

(1− pbylqm)−cmb,l−lbdmb,l
KSL
2 −b

2dmb,l
L2
2 .

This proves Theorem 1.1. �

To deduce Corollary 1.2 from Theorem 1.1, we note that χ−y(S[n],µ(L)) = Ell(S[n],µ(L))
∣∣∣
q=0

, and by

definition L(f ,p)
∣∣∣
q=0

= L(f |q=0,p). Thus we have

L(−φ−2,1,p)
∣∣∣
q=0

= L(−y +2− y−1,p) =
∏
n>0

(1− pn)2

(1− ypn)(1− y−1pn)
,

L(2,0)(−φ−2,1,p)
∣∣∣
q=0

=
∏
n>0

(
(1− pn)2

(1− ypn)(1− y−1pn)

)n2
,

L(1,1)(−φ−2,1,p)
∣∣∣
q=0

= L(1,0)(y−1 − y,p) =
∏
n>0

(
1− y−1pn

1− ypn

)n
,

L((℘+ h)φ−2,1,p)
∣∣∣
q=0

= L(1,p) = η(p) and L(φ0,1,p)
∣∣∣
q=0

= L(y +10+ y−1) = ∆(y,p)1/2.

�

4. The case of Hilbert schemes of points on K3 surfaces

Now we want to consider the case of Hilbert schemes of points on K3 surfaces. We obtain a formula for
all r .

Proposition 4.1. Let S be a K3 surface and L ∈ Pic(S). Then

Ell(S[n],µ(L)⊗Er ) = Coeffpn
[(
L(2,0)(−φ−2,1,p)

) L2
2 −r

2(n−1)
L(−2φ0,1,p)

]
.

Proof. The Hilbert scheme S[n] is a holomorphic symplectic manifold; let qS [n] be its Beauville-Bogolomov
quadratic form. By Corollary 2.2 there exists a polynomial hS [n](z) with coefficients in Q[y±1][[q]] such that

(4.1) Ell(S[n],M) = hS [n]
(
qS [n](c1(M))

)
, for all M ∈ Pic(S[n]).

It is shown in [Bea83, lem. 9.1] that for L ∈ Pic(S) we have

(4.2) qS [n](L+ rE) = L
2 − 2r2(n− 1).

Therefore Proposition 4.1 follows from Theorem 1.1. �



Refined Verlinde formulas 9Refined Verlinde formulas 9

Now we want to deduce Theorem 1.3 from Proposition 4.1. We know

Ell(S[n],µ(L)⊗Er ) =
∫
S [n]

ELL(S[n])ch(µ(L)⊗Er ),

where ELL is the genus associated to a power series, and µ(L)⊗ Er = det((L + (r − 1)OS ))[n]. Therefore
[EGL01, Theorem 4.2] applies and gives the following.

Corollary 4.2. For every r ∈ Z, there are universal power series Fr,1,Fr,2,Fr,3,Fr,4 ∈Q[y±1][[q,p]] such that
for every smooth projective surface S and every L ∈ Pic(S) we have∑

n≥0
Ell(S[n],µ(L)⊗Er )pn = FL

2/2
r,1 F

LKS /2
r,2 F

K2
S

r,3F
χ(OS )
r,4 .

Using Corollary 4.2, in order to prove Theorem 1.3, we only need show the formulas for Fr,1 and Fr,4,
which are determined by their values for S a K3 surface. So let again S be a K3 surface, and L ∈ Pic(S).
Then by Proposition 4.1 we get∑

n≥0
Ell(S[n],µ(L)⊗Er )pn =

∑
n≥0

pnCoeffpn
[(
L(2,0)(−φ−2,1)(p)

L2
2 −(n−1)r

2
L(−2φ0,1)(p)

)]
.

Thus Theorem 1.3 follows from the following lemma.

Lemma 4.3. Let g(p) = 1+
∑
i≥1 aip

i be a power series starting with 1, let f (p) be a power series. Fix w,k ∈Q.
Put

h(p) :=
∑
n≥0

pnCoeffpn
[
g(p)w−knf (p)

]
.

Then

h(p) =
g(z)wf (z)

1 + kz ddz log(g(z))
where p = zg(z)k .

Proof. Without loss of generality we can assume that w = 0 (otherwise replace f (p) by g(p)wf (p)), and
k = 1 (otherwise replace g(p) by g(p)k and note that z ddz log(g(z)

k) = kz ddz log(g(p))). We can describe
h(p) as follows: for a variable u write g(p)−uf (p) =

∑
n≥0hn(u)p

n, with hn(u) a polynomial in u, then
h(p) =

∑
n≥0hn(p

d
dp )p

n, i.e. move all factors of u to the left and then replace u by p d
dp . We make the

variable transformation p = ex, so that p p
dp = d

dx , and we write g(p) = ea(x), f (p) = φ(x). Then we obtain

h(p) =
∑
n≥0

(−1)n

n!
dn

dxn
(
a(x)nφ(x)

)
=

φ(η)
1 + a′(η)

∣∣∣∣
η=x−a(η)

=
f (z)

1 + z ddz logg(z)

∣∣∣∣
p=zg(z)

.

In the second line we have used the Lagrange inversion formula

∞∑
n=0

1
n!
dn

dxn
(
a(x)nf (x)

)
=

f (z)
1− a′(z)

∣∣∣∣
z=x+a(z)

.

In the third line we put z := eη , thus p = ex = eη+a(η) = zg(z). �
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5. Moduli of sheaves on K3 surfaces

In this section we extend our results to moduli spaces of sheaves on K3 surfaces. First we briefly recall
determinant line bundles on moduli spaces of sheaves, for details see e.g. [GNY09, Section 1.1], [HL10,
Chapter 8].

For a Noetherian scheme Y denote by K(Y ) and K0(Y ) the Grothendieck groups of coherent sheaves and
locally free sheaves. If Y is nonsingular and projective, then K(Y ) = K0(Y ). We denote by [F ] the class
of a sheaf F in K(Y ). For a proper morphism f : Z→ Y the pushforward f! : K(Z)→ K(Y ) is defined by
f!([F ]) :=

∑
i(−1)i[Rif∗F ]. For any morphism f : Z → Y the pullback f ∗ : K0(Y )→ K0(Z) is defined by

f ∗[F ] = [f ∗F ] for F a locally free sheaf on Y .
Now let S be a smooth projective surface. On K(S) there is a quadratic form (u,v) 7→ χ(S,u ⊗ v) to

be denoted by χ(u ⊗ v). Classes u,v ∈ K(S) are called numerically equivalent if u − v is in the radical of
this quadratic form. Let K(S)num be the set of numerical equivalence classes. Let c ∈ K(S)num. For a flat
family E of coherent sheaves on S of class c ∈ K(S)num parametrized by a scheme T , let q : S × T → S,
p : S × T → T be the projections and define λE : K(S)→ Pic(S) by the composition

K(S)
q∗

−−→ K0(S × T )
⊗[E]
−−−−→ K0(S × T )

p!−→ K0(T )
det−1−−−−→ Pic(T ).

For c ∈ Knum(S) let Kc :=
{
v ∈ K(S)

∣∣∣ χ(v⊗c) = 0
}
. Let H ∈ Pic(S) be ample, denoteMH

S (c) the moduli space

of H-semistable sheaves of class c. Assume that H is general, i.e. if F ∈MH
S (c) is strictly H-semistable,

then it is strictly semistable for all H ′ in a neighbourhood of H . Then there exists a homomorphism
λ : Kc → Pic(MH

S (c)), such that if E is a flat family of coherent sheaves on S of class c parametrized by
T , then φ∗E(λ(v)) = λE(v), where φE : T →MH

S (c) is the classifying morphim associated to E . For a class
v ∈ K(S) denote

vd(v) := 2rk(v)c2(v)− (rk(v)− 1)c1(v)2 − (rk(v)2 − 1)

the expected dimension of MH
S (v). We obtain the following result.

Proposition 5.1. Let S be a K3 surface and c ∈ Knum(S), with r(c) > 0 or with r(c) = 0 and c1(c) nef and big.
Let H ample on S such that MH

S (c) only consists of stable sheaves. Assume furthermore vd(c) > 1. Then

Ell(MH
S (c),λ(v)) = Coeff

p
vd(c)
2

[(
L(2,0)(−φ−2,1,p)

) vd(v)
2 −1L(−2φ0,1,p)

]
,

χ−y(M
H
S (c),λ(v)) = Coeff

p
vd(c)
2

 1

∆̃(p,y)

∏
n>0

(
(1− pn)2

(1− pny)(1− pn/y)

)n2( vd(v)2 −1)
 .

Proof. We adapt the arguments in [GNY09, Section 1.5]. The Mukai lattice of S is H ∗(S,Z) with the
symmetric bilinear form

〈w,w′〉 =
∫
S
(c1c

′
1 − ra

′ − r ′a), w = (r, c1, a), w
′ = (r ′ , c′1, a

′).

Let φ : K(S)→ H ∗(S,Z) be the homomorphism defined by φ(E) = ch(E)
√
td(S). Let w := φ(c), then φ

induces a injective homomorphism φ : Kc → w⊥. There is a homomorphism θw : w⊥ → H2(MH
S (c),Z),

such that θw(φ(v)) = c1(λ(v)) for all v ∈ Kc. We have assumed that rk(c) > 0 or that rk(c) = 0 and c1(c) is
nef and big, furthermore vd(c) > 1, and MH

S (c) consists only of stable sheaves. Under these assumptions we
know ([GNY09, Theorem 1.14], [Yos01a], [Yos01b]), that MH

S (c) is an irreducible symplectic manifold which
is deformation equivalent to S[vd(c)/2], θw : w⊥ → H2(MH

S (c),Z) is surjective, and for x in w⊥ we have
〈x,x〉 = qMH

S (c)(θw(x)).
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Let v ∈ Kc. By Corollary 2.2 we have

Ell(MH
S (c),λ(v)) =

∫
MH
S (c)

ELL(MH
S (c))exp(c1(λ(v))) = hMH

S (c)

(
qMH

S (c)(θw(c1(λ(v))))
)
.

As MH
S (c) is deformation equivalent to S[vd(c)/2], we have hMH

S (c) = hS [vd(c)/2] . We compute

qMH
S (c)

(
θw(c1(λ(v)))

)
= 〈φ(v),φ(v)〉 = vd(v)− 2.

Thus we get by Proposition 4.1 and (4.1),(4.2) that

Ell(MH
S (c),λ(v)) = hS [vd(c)/2](vd(v)− 2) = Coeff

p
vd(c)
2

[
L(2)(−φ−2,1,p)

vd(v)
2 −1L(−2φ0,1,p)

]
.

�

In order to express this formula in terms of generating functions we denote the line bundles λ(v) on
different moduli spaces MH

S (c) in a unified way, generalizing our notation on Hilbert schemes of points.

Notation 5.2. For fixed c ∈ K(S)num we write s = rk(c), c1 = c1(c), c2 = c2(c). Let us denote by det(c) and
det(v) ∈ Pic(S) the determinant line bundles. We assume that s > 0, and denote vd := vd(c). Let r ∈ Z.

Let L ∈ Pic(S)⊗det(c)r/s, and denote M := L⊗det(c)−r/s ∈ Pic(S). If s divides Mc1 + r(
c21
2 − c2), we define

µ(L)⊗Er ∈ Pic(MH
S (c)) ∈ Pic(MH

S (c)) by µ(L)⊗Er := λ(v) for v ∈ K(S) with

(5.1) rk(v) = r, c1(v) =M, c2(v) =
M2

2
+2r +

Mc1
s

+
r
s

(c21
2
− c2

)
.

Note that the condition on c2(v) is equivalent to χ(S,c⊗v) = 0 i.e. to v ∈ Kc, so that µ(L)⊗Er is well-defined.

Remark 5.3.

(1) When r = 0 this definition coincides with the definition of the Donaldson line bundle µ(L) (see e.g.
[GNY09], [GKW]).

(2) When s = 1 the definition specializes to that of µ(L)⊗ Er on S[n] under the identification S[n] =
MH
S (1, c1,n), for any first Chern class c1.

(3) If all sheaves in MH
S (c) are slope stable, then twisting by a line bundle A gives an isomorphism

φA :MH
S (c)→MH

S (c⊗A), and it is easy to see that φ∗A(µ(L)⊗E
r ) = µ(L)⊗Er .

Now we prove Theorem 1.5.

Proof of Theorem 1.5. Fix c with rk(c) = s > 0, c1(c) = c1, c2(c) = c2, fix r ∈ Z, let L ∈ Pic(S) ⊗ det(c)r/s,
denote byM := L⊗det(c)−r/s the corresponding element in Pic(S), and assume that s dividesMc1+r(

c21
2 −c2).

Let v ∈ Kc fullfill (5.1), so that µ(L)⊗Er = λ(v). Plugging the relations

c1(v) = c1(L)−
r
s
c1, c2(v) =

c1(v)2

2
+2r+

c1(v)c1
s

+
r
s

(c21
2
−c2

)
and c2 =

1
2s

(
vd(c)+(s−1)c21+2(s

2−1)
)

into the formula
vd(v) = 2rc2(v)− (r − 1)c1(v)2 − 2(r2 − 1)

gives by direct computation

vd(v) = L2 +2− r
2

s2
(vd(c)− 2).

Thus Proposition 5.1 gives

Ell(MH
S (c),µ(L)⊗Er ) = Coeffpvd(c)/2

[(
L(2,0)(−φ−2,1,p)

) L2
2 −

r2

s2
(vd(c)/2−1)

L(−2φ0,1,p)
]

Applying Lemma 4.3 gives Theorem 1.5. �
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