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The equivalence of several conjectures on independence of ¢
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Abstract. We consider several conjectures on the independence of ¢ of the étale cohomology of
(singular, open) varieties over Fp. The main result is that independence of ¢ of the Betti numbers
hi(X,Qy) for arbitrary varieties is equivalent to independence of ¢ of homological equivalence
~hom,¢ for cycles on smooth projective varieties. We give several other equivalent statements.
As a surprising consequence, we prove that independence of ¢ of Betti numbers for smooth
quasi-projective varieties implies the same result for arbitrary separated finite type k-schemes.
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L’équivalence de plusieurs conjectures sur I'indépendance de ¢

Résumé. Nous considérons plusieurs conjectures sur 'indépendance de ¢ pour la cohomologie
étale des variétés (singuliéres, ouvertes) sur Fp. Le résultat principal est que I'indépendance de
¢ des nombres de Betti /1. (X,Qy) pour les variétés arbitraires est équivalente a 'indépendance
de ¢ de I’équivalence homologique ~pop, ¢ pour les cycles sur les variétés projectives lisses. Nous
donnons plusieurs autres énoncés équivalents. Comme conséquence surprenante, nous prouvons
que 'indépendance de ¢ des nombres de Betti pour les variétés quasi-projectives lisses implique le
méme résultat pour les k-schémas séparés de type fini.
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Introduction

Let k be a field, and let X be a k-variety. For every prime number ¢ invertible in k, there is an associated
étale cohomology group HZ (X}, Q) defined using the geometry of £-power degree covers of X. The main
question we want to consider is the following.

Question 1. Given a variety X over a field k, is the dimension hi(X;,Qg) of H: (X3, Q) independent of the
prime £?

If k = C and X is smooth, this easily follows from the functorial comparison isomorphisms [SGA4yy,

exp. X1, th. 4.4(iii)]

Hg (X, Qe) = Hg;,,, (X(C), Q) ®q Qs
The result for arbitrary X over C can be deduced from this using hypercoverings, cf. [Del74b, 6.2.8]. The
Lefschetz principle proves the result for any field k of characteristic 0, since étale cohomology is insensitive
to extensions of algebraically closed fields [SGA4yy, exp. XVI, cor. L.6].

On the other hand, if k is finite and X is smooth and proper, then the Weil conjectures [Del74a], [Del80]
imply that hét(X,;,Qg) can be read off from the zeta function of X, and thus does not depend on €. The
question for arbitrary k-varieties X is a well-known open problem [Kat94, p. 28, (2a))], [11106, 3.5(c)].

The homological standard conjecture [Gro69, §4, Remarks (3)] is known to imply the result in the following

two cases:
(i) X is proper;
(ii) X is the complement of a simple normal crossings divisor D in a smooth projective variety X.

Indeed, (ii) is explained in [Kat94, p. 28-29], and (i) is an application of de Jong’s alterations [dJo96]. Even
assuming the homological standard conjecture, the result for an arbitrary variety X does not seem to appear
in the literature (although it may have been known to experts). One cannot simply combine the arguments of
(i) and (ii); see Remark 6.7.

We improve these conditional results in three ways:

e we replace the homological standard conjecture by a weaker assumption;
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e we prove independence of ¢ of hi(X}, Q) for every separated finite type k-scheme X;

e we prove a converse as well.

Theorem 1. Let k be an algebraically closed field. If k = F,,, then the following are equivalent:

(1) For every smooth projective k-scheme X, the kernel of the cycle class map cl: CHg(X) — H*(X, Q) is
independent of €;

(2) For all smooth projective k-schemes X and Y, any a € CHG(X xY), and any i, the rank of
a,: H(X,Qp) — H*(Y, Qg)l is independent of €;
(3a) For every separated finite type k-scheme X and any i, the dimension of H!(X,Qy) is independent of {;

(3b) For every smooth quasi-projective k-scheme X and any i, the dimension of H:(X,Qy) is independent of €.

Moreover, if these hold when k = Fp for some prime p (vesp. for every prime p), then they hold over any algebraically
closed field of characteristic p (resp. any algebraically closed field).

This result is given in Theorem 4.6 and Remark 4.8 below. This gives many new angles to the independence
of ¢ question. The implication (3b) = (34) is particularly surprising; the proof goes through (1) and (2).

We also have an extension to crystalline cohomology. In fact, we work with an arbitrary Weil cohomology
theory (see Definition 1.1) satisfying some additional axioms (see Axiom 3.6), at the expense of restricting to
k = F,. (Developing ‘Weil cohomology theories with specialisation’ would take us too far afield.)

However, our methods do not say anything about independence of £ of the dimensions 1'(X, Q) of the
(usual) cohomology groups H'(X,Qy), except in the proper (resp. smooth) case where it coincides with
(resp. is dual to) compactly supported cohomology.

The idea of (1) = (2) is that the rank of a linear map f: V — W is the largest r € Z5 such that
A" f # 0. Although the functors H*(—, Q,): Mot — gVec do not preserve wedge products (see Remark
1.10), algebraicity of the Kiinneth projectors [KM74] decomposes a cycle & € CHp (X X Y) as @eyen ® Xoda-
Then A" Qeven (resp. S"pqq) acts on cohomology as A’ @eyen« (resp. A’ @oad.), so the rank of the map
a,: H*(X,Qp) = H*(Y,Qy) is determined by the vanishing or nonvanishing of cl( A" @eyen) and cl(S”@yqq)
for various 7.

To prove (2) = (3a), we use a variant of the classical hypercovering argument [SGA4y;, exp. VP], [Del74b,
§5,6]: if X, — X is a proper hypercovering, then there is a hypercohomology spectral sequence

i) EV% = H(X,, Q) = HP*(X,Qy).

If each X, is smooth projective, then (1) degenerates on the E; page for weight reasons, so h(X,Qy) is
determined by the ranks of the maps on the E; page.

However, a proper hypercovering by smooth projective schemes can only exist if X is proper. In general,
again using de Jong’s alterations [dJo96], one can construct a proper hypercovering X, — X where each X;
is the complement of a simple normal crossings divisor Z; in a smooth projective k-scheme X;. There is
a different spectral sequence [Kat94, p. 28-29] computing the compactly supported cohomology of X; in
terms of X; and the components of Z;; its dual then computes the cohomology of X;. However, if we then
compute (1), the purity argument no longer applies.

Instead, we choose a compactification X — X first, with closed complement V, and we produce a
morphism of simplicial schemes v,: V, — X,, where V, (resp. X,) is a hypercovering of V (resp. X). Then
the simplicial mapping cone of v, computes the compactly supported cohomology of X, by comparing the
long exact sequence for the mapping cone with that for the triple (X, X, V). This allows us to apply the
purity theorem as in the argument above for X proper, which finishes the proof of (2) = (3a).

Finally, for the implication (3b) = (1) we prove that any cycle @ € CH4(X) can be written as a difference
[Z,]-[Z,] with the Z; irreducible; see Corollary 7.5. Letting U be the complement of Z; U Z,, we relate

IWe do not write Hi(Y, Q) because a, does not always take Hito Hi; see Definition 1.7.
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the vanishing of cl(a) to the dimension of H2%*!(U,Qy). There are only two possible cases depending
on whether cl(Z;) and cl(Z,) are linearly independent or linearly dependent; in the latter case the linear
relation is determined by intersection numbers.

Outline of the paper

In Section 1 we give a brief review of Weil cohomology theories (Definition 1.1) and pure motives (Definition
1.5). Section 2 contains a review of simplicial schemes and mapping cones, which play a role” in (2) = (3a).
In Section 3 we state the additional axioms on our Weil cohomology theory for the arguments to work; see
Axiom 3.6.

The main theorem will be stated in Section 4 (see Theorem 4.6). We then proceed to prove the implications
of Theorem 4.6 as outlined in the introduction above, in the following cyclic order:

(1)=(2) = (3a) = (3b) = (1).

The implication (3a) = (3b) is trivial; each of the others will take up one section (Section 5, Section 6, and
Section 7 respectively).

Notation and conventions

If k is a field, then a k-variety will mean a finite type, separated, geometrically integral k-scheme. A pair
(X, H) is called a projective k-scheme if X is a projective k-scheme and H a very ample divisor on X.

In the main theorems, the base field k will be assumed algebraically closed, because standard references
on Weil cohomology theories have this running assumption, and establishing the general framework would
take us too far astray.

The category of smooth projective k-varieties will be denoted by SmPrVary, and the category of smooth
projective k-schemes will be denoted by SmPrj. The latter can be obtained from the former as the category
of formal finite coproducts (if k is algebraically closed), cf. Example 3.5. The category of Chow motives is
denoted by Moty; its definition will be recalled in Definition 1.5. Morphisms in this category are typically
denoted by a: X Y.

If K is a field, then Veck denotes the category of K-vector spaces, gVecy the category of Z-graded
K-vector spaces, and gAlgy the category of Z-graded (unital, associative) K-algebras. The objects of gAlg
we encounter will always be graded-commutative and vanish in negative degrees.

We write Ab(%) for the category of abelian group objects in a category ¢ with finite products. All
topoi® will be Grothendieck topoi, i.e. the topos of sheaves (of sets) on a small category with a Grothendieck
topology (or pretopology). We write Topos for the (strict) 2-category of topoi, whose objects are topoi, whose
1-morphisms are (geometric) morphisms of topoi, and whose 2-morphisms are natural transformations
between the inverse image functors (equivalently, between the direct image functors).

We write Shv for the (strict) 2-category whose objects are pairs (X,.#) of a topos X with an abelian
object .# in X, whose 1-morphisms (X,.#) — (Y,¥) are pairs (f,¢) of a 1-morphism f: X —> Y and a
morphism ¢: f*4 — .F of abelian objects, and whose 2-morphisms (f, ) — (g, ¢) are given by natural
transformations #: f* = g* such that po#y = id z op. We think of it as a “fibred 2-category” Shv — Topos,
whose fibre above the topos X is Ab(X)°P (with only identity 2-morphisms). In a similar way, we define a
category Comp of pairs (X, K) of a topos X with a complex K of abelian objects on X.

2Weizhe Zheng provided an easier argument without mapping cones; see Remark 6.8. We kept the original argument as it
proves more, and the techniques might be useful elsewhere.

3We work with topoi instead of sites because they have better formal properties, but all arguments could also be carried out
using Grothendieck (pre)topologies. We ignore set-theoretic issues; they can for instance be dealt with using universes.
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1. Pure motives and Weil cohomology theories

This is a review of the theory of pure motives, cf. e.g. Kleiman [Kle72], Jannsen [Jan92], or Scholl’s
excellent survey [Sch94]. We also give a brief review of Weil cohomology theories; see [Kle94, §3] for more
details. Following standard references, we will assume that k is algebraically closed. Our setup is slightly
more general than [Kle94, §3], in that we allow smooth projective k-schemes with multiple components.

Definition 1.1. Let k be an algebraically closed field, and let K be a field of characteristic 0. A Weil
cohomology theory is a functor H : SmPer — gAlg satisfying the following axioms.
(W1) Each H'(X) is finite-dimensional and vanishes for i < 0 and i > 2dim X;

(W2) There is a trace map try: H>4mX(X) — K that is an isomorphism if X is irreducible, and takes

1 to 1 if X = Speck. If all components of X have the same dimension d, then the natural pairing
H(X)x H*-{(X) - K is perfect;

(W3) The projections induce an isomorphism H*(X)®g H*(Y) — H*(X x Y);

(W4) There are cycle class maps cl: CHé)(X ) — H?(X). It is a ring homomorphism functorial for pullback
and pushforward, where pushforward for H is defined using (W2);

(W5) The weak Lefschetz theorem holds;
(W6) The hard Lefschetz theorem holds;

W7) H preserves products, i.e. H(X) =[[; H(X;) if X =][; X;. Moreover, this isomorphism identifies try

—

Example 1.2. For every prime ¢ invertible in k, the {-adic étale cohomology gives a Weil cohomology theory
[SGA4yy;, Del74a, Del80].

Example 1.3. For a perfect field k of positive characteristic p with Witt ring W (k) with field of fractions
1is(X/K) is a Weil cohomology theory [Ber74|, [KM74, Corollary 1(2)], [Gro85],
[GM87]. See also [I1194] for an expository account and additional references.

K, crystalline cohomology Hcl

Let ~ be an adequate equivalence relation (cf. [Sam60]) finer than homological equivalence for every Weil
cohomology theory, e.g. ~ is rational, algebraic, or smash-nilpotent equivalence. For a variety X and i € Z,,
we will write CH! (X) for algebraic cycles of codimension i modulo ~, and CHE(X) for CH (X)® Q.

We will omit further mention of ~ unless it plays a role in the arguments.

Definition 1.4. Let X and Y be smooth projective k-schemes, and assume that X has connected components

X1,..., X, of dimensions dy,...,d,, respectively. Then the group of correspondences of degree r (modulo ~)
from X to Y is

m
Corr’(X,Y) := @CH%H(Xi xY).
i=1
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An element a € Corr"(X,Y) is a correspondence from X to Y, and is denoted a: X + Y. There is a natural
composition of correspondences:

Corr’(X,Y) x Corr*(Y,Z) — Corr"™(X, Z)
(a,B) = Boa.

If the degree r in the superscript is omitted, it will be assumed 0.

Definition 1.5. The category of Chow motives (modulo ~) is the category whose objects are triples (X, p, m),
where X is a smooth projective k-scheme, p € Corr(X,X) a projector (i.e. p? = p), and m € Z an integer.
Morphisms (X, p,m) + (Y, q,n) from (X, p,m) to (Y, q,n) are given by

Hom((X,p, m), (Y, q,n)) =gCorr"™™(X,Y)p
={a eCort"™(X,Y) | ap = a = qa}.

We denote the category of Chow motives by Moty. The motive (Speck,id,—1) is called the Lefschetz motive,
and is denoted by L. We write L” for (Speck,id,—n), which can also be defined as L®" using the tensor
product of Remark 1.9.

Remark 1.6. There is a functor SmPrZp — Mot associating to every smooth projective k-scheme X the
motive (X,id, 0), and to every map f: X — Y the (class of the) graph Iy € Corr(Y, X).

Definition 1.7. If H is a Weil cohomology theory with coefficient field K, then Poincaré duality gives an
isomorphism

(L1) H*(X) — H*(X)"
Vi (w = jv — w).
Together with the Kiinneth formula this gives isomorphisms
H'(XxY)=H(X)®H"(Y)=H*(X)" @ H*(Y) = Hom(H"(X), H*(Y)).
If « € Corr’(X,Y), then under these isomorphisms cl() induces a pushforward
(1.2) a,: H(X) - H*?7(Y).

In particular, a projector p € Corr(X, X) induces a projector on H*, and we extend H to a functor
Mot — gVecy by setting

H*(X,p,m) := pH"(X)[2m],

where for a graded vector space V = @i Vi, we set Vi[m]=Vi+m,
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Given a morphism a: (X, p,m) + (Y, q,n), we define Ha to be the graded map given by the pushforward
a,: pH*?"(X) — gH™?"(Y) as in (1.2).

Some Weil cohomology theories have further structure (e.g. a Hodge structure or a Galois action), and
these structures are typically preserved by pushforward along cycles (if everything is given the correct “Tate
twist’). We will consider this additional structure understood, and we will not use separate notation for the
corresponding enriched functor.

Example 1.8. The cohomology H'(L) of the Lefschetz motive is 0 if i # 2 and one-dimensional if i = 2. It’s
often thought of as the compactly supported cohomology of A! (or the reduced cohomology of P'), and is
equipped with the corresponding Galois action or Hodge structure.

Remark 1.9. The category Mot; has a tensor product given by

(X,pm)®(Y,q,n)=(XxY,p®q,m+n).
Thus, we also get symmetric and alternating products S” and A" by considering the projectors % Y 50 and
% Y o (=1)%0 respectively on X".

Remark 1.10. If H is a Weil cohomology theory with coefficient field K, then the functor H: Mot; — gVecy
is a tensor functor if we equip gVecy with the tensor product as in super vector spaces: on objects, it is
given by the usual graded tensor product, but the swap is given by

Tyw: VOW->WeV
Vi @wj (—1)i7w]-®vi,

for homogeneous elements v; € Vi w; € WI. To see that this makes H into a tensor functor, note that the
Kiinneth isomorphism is given by the map

H*(X)®H*(Y) > H*(X x Y)
a®p > xa — myp,

which under swapping X and Y picks up a factor (—l)deg“degﬁ,

Remark 1.11. In particular, if H*(X) = H®V" @® H°4d then
H*(er) — SI’(H*(X)) — @ SiHeven ® /\]Hodd’
i+j=r
and conversely
H*(/\rx) — /\r(H*(X)) — @ /\iHeven ®S]H0dd.
i+j=r
Indeed, because of the sign in 7y 1y, the symmetriser and antisymmetriser get swapped in odd degree.

Remark 1.12. The category Mot has binary biproducts; for example
(X,pm)@(Y,q,n) = (XLLY,p@q,n)

One can construct (X, p,m)®(Y,q,n) when m # n as well, by replacing X by X xP"™" or Y by Y xP"™",
using that LY = (pt,id, —d) is a summand of (P4, id, 0) for d > 0 (see e.g. [Sch94, 1.13]), and using the tensor
product of Remark 1.9 to reduce to the case m = n.

However, the category Moty is not in general abelian, and in fact for our choices of ~ this is either false
or open; see for example [Sch94, Corollary 3.5] for the case where ~ is rational equivalence and k is not
isomorphic to Fp.

Lemma 113. Let X and Y be smooth projective schemes over a field k, and let a € Corr(X,Y). Then the map
a,: H(X) — H*(Y) is 0 if and only if cl(a) =0e€ H*(X x Y).
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Proof. This is clear from the definition of a,, cf. Definition 1.7. g

Lemma 1.14. Let X be an n-dimensional smooth projective k-scheme, and let a € Corr(X,X). Then
2n

Z(—l)itr(a*

i=0

Hi(X)): a-[Ax],

where Ax C X x X is the diagonal. In particular, it is a rational number that does not depend on H.
Proof. The first statement is well-known, and the second follows. 0

Corollary 115. Let X be a smooth projective k-variety such that Kin(X) holds (see Definition 4.7). Let
a € Corr(X, X). Then the characteristic polynomial of a« on H'(X) is in Q[t], and is independent of the Weil
cohomology theory H.

Proof. One easily checks that the coefficients of the characteristic polynomial
Py(t)=det(t-T—A)=t"+c, 1" +... + 1t + ¢
of an endomorphism A on an n-dimensional vector space V are given by
cj=(-1)"Ttr(\"7A).
Hence, if p; € Corr(X, X) denotes the i-th Kiinneth projector, then applying Lemma 1.14 to A" (pioa)
gives the result. O

2. Simplicial topoi and mapping cones

We will use the following (possibly non-standard) terminology:

Definition 2.1. Let D be a small category, and let € be a category. Then a D-object in ¢ is a functor
D°P — €. If D is the category A, of finite (totally) ordered sets with monotone maps (resp. the subcategory
A of nonempty objects), then a D-object is an augmented simplicial object (vesp. simplicial object) of € .

If X, is an (augmented) simplicial object, then X,, denotes the value of X, on the set [n] = {0,...,n}.
Giving an augmented simplicial object (X,,),>_1 is equivalent to giving a simplicial object X, = (X},),>0
together with a map X, — X_; to the constant simplicial object with value X_;.

Remark 2.2. If € is a 2-category (e.g. Topos or Shv; see Notation), then the correct definition of a D-object
is a pseudofunctor X, : D°P — ¥ . By the ‘Grothendieck construction’, this should correspond to some sort of
fibred object. For example, a D-topos corresponds to a functor F: X — D that is a fibration and cofibration,
such that each fibre X; is a topos, and for any morphism ¢: i — j in D the pair (f,, f*) = (¢*, ¢.) is a
morphism of topoi f: X; — X;. This is the definition of D-topos in [SGA4y, exp. Vbis def. 1.21].

By [SGA4yy, exp. VP, déf. 1.2.8 and prop. 1.2.12], this gives rise to a total topos I'(X). Abelian objects in
I'(X) correspond to enrichments of the pseudofunctor X,: D°? — Topos through D°? — Shv, and similarly
for complexes.

Remark 2.3. Let f: D’ — D be a functor, and let X — D a D-topos. Then the pullback D’ xp X — D’ is
a D’-topos, and f*: T(X) — I(D’ xp X) has left and right adjoints f; and f* [SGA4y;, exp. VP, prop. 1.2.9];
in particular, (f,, f*): (D’ xp X) — I'(X) is a morphism of topoi.

For an inclusion e4: d — D of an object d € D, we write (—)|x, instead of €. In this case [SGA4y,
exp. VP8, cor. 1.2.11 and prop. 1.3.7] show that eq is given on abelian objects by

eax(F)d)= (P alF)
a:d—d’
Note that e, is exact, since «, is exact (since (f,, f*) = (@", @.) is a morphism of topoi), direct sums are
exact [SGA4y, exp. II, prop. 6.7], and exactness in Ab(I'(X)) is determined pointwise.
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Remark 2.4. If D = A, then following the notation of simplicial topological spaces we will write Ab(X,)
(resp. Ch(X,)) for Ab(T'(X)) (resp. Ch(I'(X))) and write H?(X,,K) for H ([(X),K). For a bounded below
complex* K on X,, there is a spectral sequence

EYT = HY(X,, Klx, ) = HP*(X,,K),

whose E; page is the alternating face complex on the cosimplicial abelian groups HY(X,,K|x ); see for
example [SGA4y;, exp. VP, cor. 2.3.7 and 2.3.9]. For computation, it’s useful to have a refined version of this
statement:

Lemma 2.5. Let X, be a simplicial topos, and let K be a bounded below complex on X, with H"(Xn,Kjlxn) =0
foralljeZ,neN, andi> 0. Then the complex

Tot(l“(X*, K* X))

computes RT (X,, K).

Proof- Let Set x A be the constant simplicial topos, so I'(Set x A) = [A, Set]. Since Set is terminal in Topos

[SGA4;, exp. IV, §4.3], the constant simplicial topos is the terminal simplicial topos, so we get a functor
0: X, > SetxA.
Again since Set is terminal, the terminal morphism I': T'(X) — Set factors as

1(x) 2% [A,Set] — Set.
On the level of derived categories of abelian objects, we get
D*(x)) 2% p+([A,Ab]) s D*(Ab).
By [SGA4y;, exp. VP, prop. 1.3.7 and cor. 1.3.12] we have

(R’T(Q)*Kj )n =R'0,,(K/|, )=H' (Xn, (k7

X,,)):O

forall n €N, all j € Z, and all i > 0. Thus, all K/ are acyclic for RT(6),, so
RI(0).K =T(6).K.

The result follows since Re, is computed by the totalisation of the alternating face complex [SGA4y,
exp. VP, cor. 2.3.6]. O

Definition 2.6. Let ¢ be a category with finite coproducts and a terminal object *, and let f,: Y, — X,
be a morphism of simplicial objects in ¢'. Then the mapping cone C,(f) of f, is the simplicial object in €
constructed as the pushout of the diagram
Y, . .Y f
\/ &U I\Z \>{.
* Y, x A[1] Xo,
where Y, x A[1] is the simplicial object of € defined in [Stacks, Tag 017C]. The mapping cone satisfies
(20) Cu(f)=+L1Y,LI...L1Y, Ll X,,.

~—_— ——
n

Note that a complex K on X, is bounded below iff the complexes on the components X; are bounded below uniformly in i.
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A slightly different construction is given in [Del74b, 6.3.1], but the two are homotopy equivalent as simplicial
objects in €. Similarly, the mapping cylinder cyl,(f) is the pushout of

v, L x,
Y, x A[1].
It satisfies
(2.2) eyl (f) =Y, Ll...11Y, L1 X,
—_—
n+1

and the inclusion X, — cyl,(f) and projection cyl,(f) £> Xo x A[1] — X, are homotopy inverses as
simplicial object in €.

Example 2.7. Let f,: Y, — X, be a morphism of simplicial topoi, let K and L be abelian objects (resp. com-
plexes) on X, and Y, respectively, and let ¢: f;K — L be a morphism. Then we may view (f,,$) as a
morphism (Y,,L) — (X,,K) of simplicial objects in Shv (resp. Comp). Thus, there is an abelian object
(resp. complex) C,(¢) on C,(f) such that (C,(f), C4(¢)) is the mapping cone in Shv (resp. Comp).

Remark 2.8. The terminal object in Topos is Set [SGA4;, exp. IV, §4.3], whose abelian objects are just
abelian groups. Moreover, 2-coproducts in Topos are given by the product of categories [SGA4y, exp. 1V,
exercice 8.7(bc)]. The terminal object in Shv or Comp is the pair (Set,0). Thus, in the description of (2.1),
the complex C,(¢) on C,(f) equals 0 on * = Set, equals L|y, on each of the components Y,,, and equals
K|x, on the component X,,.

Lemma 2.9. Let X, and Y, be simplicial topoi, and let f,: Y, — X, be a morphism of simplicial topoi. Let K
and L be bounded below complexes on X, and Y, respectively, and let ¢: foK — L be a morphism. Then there is a
canonical distinguished triangle

RI(C.(f), Ca(¢h)) = RT(X,,K) = RT(Y,, L) = RT(C,(f), Ca())[1]
in D (Ab), functorial in the morphism (f,P): (Yo, L) — (X,,K) of simplicial objects in Comp.
In the setting of simplicial topological spaces, this is [Del74b, 6.3.3].

Proof. View (¢: fK — L) as a bounded below complex K on the («)-topos X = ([(Y) > I'(X)). Let K > I
be an injective resolution. This means that I = (¢: f;I — J) for bounded below complexes of injectives I
and J on X, and Y, respectively, together with a commutative square

K5 £

a I

L f} J.
Since ey, and ey are exact by Remark 2.3, we conclude that I = exI and J = ¢} I are still injective [Stacks,
Tag 015Z]. Since ey and ey, are exact, i: K — I and j: L — ] are still resolutions. Similarly, K|y — I|x and

Lly, — ]y, are injective resolutions for any n € N. Finally, functoriality of the mapping cone and mapping
cylinder gives resolutions

Co(9) = Co(®)
cyl, (¢) — cyl, (),


https://stacks.math.columbia.edu/tag/015Z
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where all terms C, (1) and cyl, (1) are injective (but we do not know whether C, (1) and cyl, (1)) themselves
are injective).

From the descriptions of (2.1), (2.2), and Remark 2.8, we see that the maps Y, LN cyl, (f) = Co(f) induce
a termwise split exact sequence

2.3) 0 — Tot (r(c*, c:(¢))) N Tot(F( eyl., cyr;(zp))) — Tot(T(Y.,J)) 0.

The homotopy equivalence (cyl,,cyl, (1)) ~ (X,,I) induces a chain homotopy equivalence

Tot (I‘( cyl,, Cyli(l,b))) ~ Tot (I‘(X,u I*))

[Stacks, Tags 019M and 019S]. By Lemma 2.5, the termwise split short exact sequence (2.3) gives the desired
distinguished triangle. The obtained sequence does not depend on the choice of I since any two injective
resolutions are (non-canonically) homotopy equivalent [Stacks, Tag 05TG]. For functoriality, let

(o) S5 (k)

l l

(Yo, L) L (x,,K)

be a commutative diagram of simplicial objects in Comp where K, K’, L, and L’ are bounded below. We

may view this as a bounded below complex K on the (1*:1* )—topos

I(Y') — I(X')

Lo

I(Y) — I(X).

Proceeding as above gives a natural morphism from the sequence (2.3) for f, to the same sequence for f,;
(which again does not depend on any choices). O

3. All-or-nothing motives and additional axioms

As in Section 1 we will assume k is an algebraically closed field. We want to apply the previous section in
the case where X, is a simplicial scheme, viewed as a simplicial topos with the pro-étale topology [BS15]
(resp. the crystalline topology [Ber74]), and K and L are the constant sheaves Q, (resp. the structure sheaf
Ox/w(k))- The recipe of Definition 2.6 and Remark 2.8 tells us to consider the sheaf on C,(f) given by 0 on
the components * of C,(f) and by Qg (resp. O_,wx)) on all other components.

Thus, we need to equip the mapping cone of a morphism of simplicial schemes with a mild motivic
structure, interpreting the sheaf 0 on * as a variant of the zero motive. This motivates the following ad hoc
notion.

Definition 3.1. An all-or-nothing motive (X,p) is a smooth projective k-scheme together with a locally
constant function p: X — {0,1}. The set of morphisms f: (X,p) — (Y, q) of all-or-nothing motives (X, p),
(Y,g) whose underlying schemes X and Y are connected is given by

Mor(Y,X), p=g=1,
Mor ((X,p), (Y, q)) =4 {0}, p=0,

@, else,

with composition given by f o 0 = 0. (The contravariance is consistent with Remark 1.6.)


https://stacks.math.columbia.edu/tag/019M
https://stacks.math.columbia.edu/tag/019S
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In general, if X = [ [ X; and Y =][Y; with the X; and Y; irreducible, we set

Mor ((X. p) ]_[]_[Mor( Xply (¥ aly,)

The category of all-or-nothing motives is denoted Mot}".

Remark 3.2. If X; are the components of X, then we think of (X, p) as the pure motive (X, p, 0) by identifying
p with the projector in Corr(X, X) given by 0 € CH"(X; x X;) if p|x, = 0 and by Ax. € CH*(X; x X;) if
t2°" — Moty of the functor SmPr,” — Mot;. If
H is a Weil cohomology theory, then the extension H: Mot; — gVecy of Definition 1.7 gives functors
H: Mot;*" — gVecy as well.

Note that the all-or-nothing motives (X, 0) for X irreducible are all isomorphic: the maps 0: (X,0) — (Y, 0)

and vice versa are mutual inverses. This gives an alternative construction for Mot;onz

plx, = 1. This gives a factorisation SmPrip — Mo

Definition 3.3. Let € be a category. Define the category ¢ LI {+} whose objects are ob% LI {+}, and
morphisms are given by
Mory(X,Y), X,Y €ob®,
MOI'%J]_[{*}(X, Y) = {0}, Y = *,
@, else,

where 0o f = 0 whenever this makes sense. If F: 4 — & is a functor to a category Z with a terminal object
*, then there is a unique extension of F to a functor F: € L1 {*} - & with F(%) =

Definition 3.4. Let € be a category. Define the category Coprod(%’) of formal finite coproducts in €
whose objects are diagrams X : I — % from a finite discrete category I, and morphisms from X: I — % to

Mor(X,Y) = HUMor ,,]

iel jeJ

Y: ] — € are given by

If F: € — 2 is a functor to a category Z with finite coproducts, then there is a unique extension (up to
isomorphism) of F to a functor F: Coprod(¢’) — ¥ taking X: I — ¢ to the coproduct [ [; F(X;).

If X: I — ¢ is an object of Coprod(%), then X is the coproduct of the one-object diagrams X, so we
may write X = [ [; X;. An initial object of Coprod(%) is given by the empty diagram X: @ — &, and if * is
a terminal object of €, then it is also terminal in Coprod(%).

Example 3.5. We have an equivalence SmPr = Coprod(SmPrVary), and Mot;*" can be defined as
(Coprod(SmPrVary LI {#}))°P. In particular, any functor F: SmPrVar; — Z to a category Z with finite
coproducts and a terminal object * extends uniquely to a functor F: (Mot}°")°P — & such that F(X,0) = *
for X irreducible and F(X,p) = [ [; F(X;, plx,) if the X; are the components of X. This gives an alternative
method to extend a Weil cohomology H to a functor H: Mot;*" — gVecy, cf. Remark 3.2.

Now we are ready to state the additional axioms on our Weil cohomology theory.

Axiom 3.6. Consider the following axioms on a Weil cohomology theory H.

(Al) The functor H: SmPrZp — gAlg, extends to a compactly supported cohomology functor
H.: ¢°P — gVecy where ¢’ C Schep gk is the subcategory of proper morphisms. For a closed
immersion Z <> X in € with complementary open U, the pullback maps H!(X) — H!(Z) fit into a
long exact sequence
functorial for proper morphisms f: Y — X by pulling back Z and U. If X is proper, we write H'(X)
for H/(X).
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(A2) For any X € %, we have H!(X) = 0 for i > 2dim X. If X is smooth projective of dimension 7 and

Z C X is a reduced closed subscheme whose irreducible components Zy,...,Z, have dimension d,
then H?¥(Z) = K" and H?¥(X) — H?¥(Z) = K" is Poincaré dual to the map

Kt’ N HZ(H—d)(x)

.
(AL, Ay) > Z)\i (Z;).
i=1

(A3) For a cosimplicial all-or-nothing motive (X,, 77,), there is a graded K-vector space H*(X,, 7t,) that is
computed by a spectral sequence

EYT = HY(X,, m,) = HPH(X,, 7,)

that is functorial in (X,, 7, ), where Ei’q is the alternating face complex on the cosimplicial K-vector
space H1(X,, 7,). If all 77, are equal to the constant function 1, then we write H*(X,) for H*(X,, 1t,).

(A4) (Cohomological descent for proper hypercoverings) If X, — X is a proper hypercovering of a proper
k-scheme X such that all X, are smooth projective k-schemes, then the pullback map

H(X) — H'(X,)

is an isomorphism.

(AD) If f,: (X,,a4) = (Y, Be) is @ morphism of cosimplicial all-or-nothing motives, then there is a long
exact sequence

N Hi(C,(f)) N Hi(X.,ﬁ.) f—> Hi(Y,, Ae) — ...

that is functorial in the morphism f,, where C,(f) is the mapping cone of cosimplicial all-or-nothing
motives, cf. Definition 2.6.

(A6) If i: Z < X is a closed immersion of proper k-schemes with complement U, if X, — X and
Z, — Z are proper hypercoverings such that all X,, and Z,, are smooth projective k-schemes, and if
iy: Zo — X4 is a morphism of simplicial schemes fitting in a commutative diagram

X,

X <

N<— N

c 1

\
7

BU,

then the isomorphisms H*(X) = H*(X,) and H*(Z) > H*(Z,) of (A4) and the long exact sequences
of (Al) and (Ab) give a commutative diagram

3.0) | t i? )

.. —— H{(U) —— H(X) —— H!(Z) —— ...

.. — H'(C,(i)) — H'(X,) — H'(Z.)
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functorial for commutative diagrams

vV, — X,
/‘| /‘l
W, ——— Y,
(3.2) 1
l Ve vl X+ X\V
e N A
W < > Y ¢ > Y\ W

where the bottom squares (but not necessarily the top square) are pullbacks and all vertical maps are
proper hypercoverings by smooth projective k-schemes.

Example 3.7. If £ is a prime invertible in k, then ¢-adic étale cohomology is a Weil cohomology theory by

Example 1.2. It satisfies additional axiom (Al) by [SGA4yy, exp. XVII, 5.1.16]. The vanishing statement in (A2)

is given by [SGA4yyy, exp. XVII, cor. 5.2.8.1]. For the computation of H??(Z) we may therefore pass to an

open and assume Z is smooth, where the result follows from Poincaré duality [SGA4yy, exp. XVIII, th. 3.2.5].

The final statement of (A2) follows from the definition of the cycle class map [SGA4V2, chap. 4, déf. 2.3.2].
By a (pseudofunctor version of) the universal property of Example 3.5, the pseudofunctor

(-, Q¢): SmPrVar — Shv
X (Xpro—ét; Q)

extends uniquely to a pseudofunctor F: (Mot;*")°? — Shv that maps = to the pair (Set,0) and preserves
finite coproducts (see Remark 2.8). This corresponds to a fibred and cofibred category E — Mot;*" whose
fibre (X, p)pro-¢t over a connected all-or-nothing motive (X,p) is Xpro¢ if p =1 and Set if p = 0, along
with a sheaf .# on I'(E) whose restriction to (X,p) is Qg if p=1 and 0 if p = 0.

Given a cosimplicial all-or-nothing motive (X,,7,): A — Mot}*", the fibre product E Xpotzon A — A is a
simplicial topos [SGA4y;, exp. Vbis, 1.2.5], which we will denote by (X,, 704 )pro-ét-

The sheaf .# on I'(E) pulls back to I'((X,, 704 )pro-¢t), and the spectral sequence of Remark 2.4 then reads

Ef'q = Hq((Xp, np)pro—ét’ ﬁ) = HPHI((X.) T(.),y)-

For any all-or-nothing motive (X, 7t), we have H((X, 1) pro-¢t,-# ) = H(X, ), where the right hand side is
defined by Remark 3.2. This gives the required spectral sequence of (A3). Moreover, (A5) holds by Lemma
2.9, since all (pseudo)functors involved preserve terminal objects and finite coproducts, hence preserve the
construction of the mapping cone. Cohomological descent (A4) follows from [SGA4yy, exp. VP, prop. 4.3.2,
th. 3.3.3, and prop. 2.5.7].

Finally, in the situation of (A6), the functoriality statement in Lemma 2.9 immediately reduces us to the
case of the trivial hypercoverings X, — X and Z, — Z given by the constant simplicial schemes X,, = X
and Z, = Z. (This does not preserve the hypothesis that each X, and Z,, is smooth projective, but étale
cohomology is defined and has all the desired properties also for simplicial objects in Schyep 1)

In fact, since i, is exact, the same goes for I'(i),: Ab(Z,) — Ab(X,), so we may replace the morphism
(Ze,Qre) = (X4,Qpe) by (X,,1,Qp6) — (X,,Qp,6) using the functoriality assertion of Lemma 2.9. An

injective resolution

Lo

Ia(- ﬁ : ]a(-
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on Xpro¢ gives a constant (degreewise injective) resolution on (X, )pro-¢t

Qe BN .Que

(3.3) l l
e
This gives a commutative diagram with exact rows

0 — 71Qy — Q¢ —  Qr —0

l l !

(3.4) 0 — Tot(C(a,)) — Tot(cyl*(a,)) — Tot(i.Qqe) —> 0

! ! !

0 —> Tot(C*(8.)) —> Tot(cyl'(Ba)) — Tot(Jz) —> 0

of complexes on Xy, ¢, whose vertical maps are quasi-isomorphisms, where C* and cyl” denote the dual
constructions to Definition 2.6, applied to the rows of (3.3) viewed as morphisms of cosimplicial objects
in Ch(Xpro¢t). The terms in the bottom row of (3.4) are injective, so the long exact sequence of (Al) is
computed by

0 — Tot (r(x, C*(ﬁ.))) — Tot (r(x, cyl*(ﬁ,))) — Tot(r(x,]:)) — 0.

This agrees with the sequence (2.3) for the constant resolution (3.3), giving the commutative diagram (3.1).
This construction is functorial for commutative diagrams (3.2) since pullback along Y — X preserves the
short exact sequence 0 — j;Q, — Q; — i,Q, — 0 and by the functoriality statement in Lemma 2.9.

Example 3.8. If k is a perfect field of positive characteristic p with Witt ring W (k) with field of fractions
K, then crystalline cohomology Héris(X/ K) is a Weil cohomology theory by Example 1.3. Axiom (Al) is
provided by rigid cohomology with compact support [Ber86, 3.1(iii)], and (A4) is [Isu03, Theorem 4.5.1]. The
proofs of axioms (A2) (using Poincaré duality for rigid cohomology of smooth varieties [Ber97]), (A3), (A5),

and (A6) (using Le Stum’s site theoretic definition of rigid cohomology [LeSll]) are analogous to Example 3.7.

Remark 3.9. The above axioms are exactly what we need, but possibly not the most natural choice. It’s
likely that our axioms (or an alternative set of sufficient axioms) can be deduced from Cisinski-Déglise’s
axioms for a mixed Weil cohomology theory [CD12]. Somewhat surprisingly, cohomological descent for proper
hypercoverings (A4) is indeed always satisfied [CD19, Corollary 17.2.6].

4. Independence of Weil cohomology theory

As in Section 1, we assume that k is an algebraically closed field, and we fix an adequate equivalence
relation ~ that is finer than homological equivalence for any Weil cohomology theory. From now on, we will
fix Weil cohomology theories H and H (see Definition 1.1) with coefficient fields K and K respectively. We
will always assume that H and H satisfy the additional properties (Al-6) of Axiom 3.6.

Definition 4.1. Let X and Y be separated k-schemes of finite type. Consider the following statements on
independence of Weil cohomology theory:

Dim (X):  for each i, the dimensions of H(X) and H’(X) agree.
Rk (X,Y): for any proper morphism f: Y — X and any i, the ranks of f* on H! and H! agree.
If X and Y are smooth projective, we further consider:

Cl(X): the kernels of the cycle class maps cl: CH*Q(X) — H*(X) and cl: CH*Q(X) — H*(X) agree.
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Rk'(X,Y): for any a € Corr’(X,Y) and any i, the ranks of &, on H' and H' agree.
Rk(X,Y): RKk%(X,Y) holds.
Rk*(X,Y): RKk’(X,Y) holds for all r € Z.

Kiin(X): for each i, there exists a cycle p € Corr(X, X) inducing the i® Kiinneth projector on both H*
and H".

The reliance of these properties on the chosen Weil cohomology theories H and H will be implicit, and we
will make no further mention of it.

Remark 4.2. For Chow motives M = (X,p,m), N = (Y,q,n) one can also define similar statements
Dim(M) and Rk(M,N). But these are already implied by Rk(X,X) and Rk*(X,Y) respectively: the
dimension of H(M) is the rank of p,: H (X) — H'(X), and the rank of a,: H'(M) — H'(N) is the rank
of (qap),: H**"(X) — H*2"(Y).

Remark 4.3. For Kiin(X), note that such a cycle p need not be a projector in Corr(X, X). We only know
that the cycle class map sends it to a projector in both End(H*(X)) and End(H*(X)).

Remark 4.4. If k = Fp and X is smooth proper, then we know Dim(X) (for any Weil cohomology theories
H, H), because the dimension can be read off from the zeta function. On the other hand, Rk (X, Y) is still
unknown even when X and Y are smooth and projective.

We also know Kiin(X) for X smooth projective over Fp, by [KM74]. Hence by Corollary 1.15, the
characteristic polynomial of a € Corr(X, X) is independent of the Weil cohomology theory. In particular, if
@ = p is a projector, this implies that dim H'(X, p,0) is independent of H.

Remark 4.5. If chark = 0, then for all known cohomology theories H and H, the statements Cl(X) and
Rk*(X,Y) for X and Y smooth projective, as well as Dim(X) and Rk (X, Y) for X and Y separated and of

finite type over k are known. On the other hand, Kiin(X) is still open, even for (smooth projective) varieties
over C.

Theorem 4.6. Let k = Fp. Then the following are equivalent:

(1) For all smooth projective k -schemes X, we have C1(X).
(2a) For all smooth projective k-schemes X and Y, we have Rk*(X,Y);
(2b) For all smooth projective k-schemes X and Y, we have Rk(X,Y);
(2c
3a

For all smooth projective k-schemes X, we have Rk(X, X);
For all separated finite type k-schemes X and Y, we have Dim (X) and Rk (X, Y);

O =

(
(3b) For all smooth, quasi-projective k-schemes X, we have Dim(X).

The outline of the rest of the article is as follows. In each of the following sections, we will prove one of
the implications, often in a more refined version. We will prove the implications in the following cyclic order:

(1) (2a) (2b) (34) — (3b) —= (1).
(2¢)
Implications (2a) = (2b) = (2¢) and (3a) = (3b) are trivial. For (2c) = (2b), recall that
Corr(X,Y) = Hompe, ((X,id, 0),(Y,id, 0)),

so Rk(XL1Y,X1L1Y) implies Rk(X,Y) since X L1Y is the biproduct in Mot (see Remark 1.12), the functors
H: Mot — gVecy and H: Mot — gVec preserve biproducts, and the rank of a block matrix (2 8) is
the rank of A.
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The implications (1) & (2a), (2b) = (34a), and (3b) = (1) will be the contents of the following three
sections (Section 5, Section 6, Section 7) respectively.

Remark 4.7. The proof of (1) = (2a) relies on Kiin(X), which currently is known only when k = l_:p.
Implication (2b) = (3a) uses the Weil conjectures and a hypercovering argument, so also does not generalise
to other fields (but see Remark 4.8). The implication (30) = (1) holds over an arbitrary algebraically closed
field.

Remark 4.8. Suppose H and H are given by étale cohomology. If S is an irreducible scheme, 5 and 7] are a
geometric point and a geometric generic point, € is a prime invertible on S, and X — S is a smooth proper
morphism of schemes, then the smooth and proper base change theorems give isomorphisms
(41) sp: H'(X5,Q¢) = H(X,;,Qp);
see for example [SGA4yy, exp. XVI, cor. 2.2]. Using a standard spreading out argument, this shows that
statements (1) and (2abc) for Fp for one prime p (resp. every prime p) imply the same result for any
algebraically closed field k of characteristic p (resp. any algebraically closed field k).

Moreover, for étale cohomology the argument in (26) = (3a) can be refined to deduce (3a) over an
arbitrary algebraically closed field k from (2b) over Fp, again using spreading out and the specialisation
isomorphism (4.1). The argument for (3b) = (1) works over any algebraically closed field, so we see that the

case k = Fp is the essential one.

Remark 4.9. If X is smooth projective over k and ~ is rational equivalence, we get a ring isomorphism
(4.2) ch: Kq(X) — CHg(X).

Thus, Cl(X) is equivalent to the following statement:

Cl'(X): the kernels of the Chern character maps ch: Kq(X) — H*(X) and ch: Kq(X) — H*(X) agree.

To study the vanishing of chp(a) for @ € Kg(X), the splitting principle plus injectivity of pullbacks for
dominant maps [Kle68, Proposition 1.2.4] reduces us to the case where « is in the subring of Kq(X) generated
by classes of the form [.Z’] for .Z a line bundle on X. Under the isomorphism (4.2), this corresponds to the
subalgebra of CHg(X) generated by divisors (but note that ch([D]) = [O(£D)]).

Although CI(X) is known for divisors, it seems that this cannot be used to deduce the statement in
general.

5. Cycle classes and ranks

In this section, k is an arbitrary algebraically closed field. However, we will soon assume that Kiin holds,
which is currently only known for k = FP [KM74].

Theorem 5.1. Let X and Y be smooth projective k -schemes.
(1) Assume Rk*(Speck, X). Then C1(X) holds.

(2) Assume Kin(X), Kin(Y), and C1((X x Y)") for all n. Then RK*(X,Y) holds.

Proof: We have Corr’(Speck, X) = CHg(X), and a cycle @ € CHg(X) maps to zero under the cycle class
map cl: CHa(X) — H*(X) if and only if a,: H*(Speck) — H*(X) is zero (and similarly for H*); see
Lemma 1.13. Now (1) follows from the assumption that H*(Speck) is 1-dimensional, so the only possibilities
for the rank of a, are 0 and 1, corresponding to a, = 0 and a, # 0 respectively.

For (2), let i and r be given, and let p € Corr(X, X) (resp. g € Corr(Y,Y)) be an element acting on H*
and H* as the i (resp. i + 2r™) Kiinneth projector. For a € Corr’(X,Y), we get an induced element

goaopeCorr’(X,Y).
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Moreover, the map (qap),: H (X) — H'*?"(Y) agrees with the map induced by a (and the same holds for
H!(X) — H*?"(Y)). Denote this map by a; (on both H' and H’). First assume i is even, and consider the
induced maps

N(qap): NX+ NY

for various j. By Remark 1.11, we have a decomposition

H*(/\]X) — @ /\aHeven(X) ®SbHOdd(X).
a+b=j
The map H*(\/ X) — H*(A’ Y) induced by A/(gap)is A/ a; on A/ H'(X), and 0 on all other components
of H*(/\j X). In particular, it is nonzero if and only if j < rk(a;|y). Similarly, the map on H*(X) induced
by /\j(qap) is nonzero on H*(X) if and only if j < rk(a;|y). Thus, the rank of a; only depends on the
vanishing or nonvanishing of the cycles \/(qap) under the cycle class map, by Lemma 1.13. But we assumed
that the kernels of the cycle class maps are the same for H*((X x Y)/) and H*((X x Y)/). This proves the
claim if i is even. If i is odd, we use S/ instead of /\/ (see Remark 1.11). U

Corollary 5.2. Let k be an algebraically closed field such that Kin(X) holds for all smooth projective k -schemes
X (eg k= Fp [KM74)). Then the following are equivalent:

(1) CU(X) holds for all smooth projective k-schemes X;

(2) RK*(X,Y) holds for all smooth projective k-schemes X and Y. O

6. Ranks and dimensions

In this section, k will denote an arbitrary field. The main result of this section (Theorem 6.6) assumes that
k= Fp, because its proof relies on the Weil conjectures. The idea is to use alterations to produce smooth
hypercoverings that compute the cohomology of arbitrary separated finite type k-schemes.

Lemma 6.1. Let X and Y be separated finite type k-schemes, and f: Y — X a morphism. Then there exist proper
k-schemes X, Y along with dense open immersions X — X and Y — Y and a morphism f: Y — X such that the
diagram

Y — Y
1l I
X — X

commutes. If f is proper, then Y = f~1(X).

Proof. Let X — X be a Nagata compactification [Nag62]. Replacing X by the closure of X in X, we may
assume that X is dense in X. Let Y be a relative Nagata compactification of Y — X [Nag63]. Again, we may
assume that Y is dense in Y. Then Y is proper over X, hence proper over k since X is. This proves the first
statement. The second statement follows because the scheme theoretic image of the morphism of proper
X-schemes Y — f~1(X) is closed. Since Y is also dense in f~!(X) (in fact, in Y), this forces equality. [

Lemma 6.2. Let (_#,<) be a poset (viewed as category) such that for everyi € 7 there are only finitely many
j€ 7 with j<i. Let Dy: #°P — Schy be a diagram of separated finite type k-schemes. Then there exists a
diagram Dy: ¢ °P — Schy and a map Dy — Dy such that

(1) each D;(i) = Dy(i) is proper and surjective, and

(2) each Dy (i) is quasi-projective over k and regular.
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Proof. We will construct Dy — Dy as a functor D: (_# x[1])°P — Schy with the desired properties. For
ie Zand ] C Z,write J;={je]|j<i}and ] ={j€]|j<i}, and set

Crii= (e < (01) U T (1) € s x[1)
If D is defined on (/ x [1])°P and i € _# is arbitrary, we write

L(i):=lim D.

op
Cl,i

Since this is a finite limit, it exists in Schy and is separated and of finite type. We always have L, = D, and
we have L ;_(i) = D (i) and write L(i) := L ;_ (i) when these are defined.

By induction on the size of the finite poset _#_;, we construct D; (i) as a cone over the restriction of D to
C s..i = (F<ix[1])\ (i, 1), such that moreover the natural map D; (i) — L(i) is proper and surjective. If i
is minimal (i.e. #.; = @), take D;(i) - Dy(i) an alteration [dJo96, Theorem 4.1]. Since L(i) = Ly (i) = Dy(i),
the map D; (i) — L(i) is proper and surjective by construction.

Now take i € ¢ arbitrary, and assume D;(j) has been defined and D; (j) — L(j) is proper and surjective
for all j with | 7| <|_#;|; in particular for all j € ;. Then L(i) is defined, and we take D; (i) - L(i)
any alteration [dJo96]. The required functoriality D;(i) — D;(j) for j <i comes from the fact that L(i) is a
cone over the restriction of D to C 4_ ;.

If ] € _#.;is downward closed and j € | is a maximal element, then ]\ {j} is downward closed, and we
have

Ly(i) = Ly\j(i) L?;)Dl(]):
in particular Lj(i) — Lj\(;)(i) is proper and surjective. By induction on |J|, we conclude that L(i) — Dy(i)
and hence D; (i) — Dy(7) is proper and surjective. Finally, D; (i) is a regular, quasi-projective k-scheme by
construction. U

We note that the proof above uses nothing special about schemes, and it generalises without difficulty to
the categorical setting of [SGA4y;, exp. VP, 5.14].

Corollary 6.3. Let (_#,<) be a poset such that for every i € ¢ there are only finitely many j € 7 with
j<i. Let D: #°P — Schy be a diagram of separated finite type k-schemes. Then there exists a diagram
D,: #°P x AY — Schy such that the following hold.

(1) D_y =D;
(2) Foreachic ¢, the diagram D,(i) is a proper hypercovering of D(i);
(3) Foreachic Z and each n € Zy, the scheme D, (i) is quasi-projective over k and regular.
Proof Apply the procedure of [SGA4y, exp. VP, 514-517, 5.2.4] (see also [Del74b, 6.2.8]), replacing

k-schemes by ¢ -indexed diagrams of k-schemes, and resolution of singularities (or alterations) by Lemma
6.2. O

Lemma 6.4. Let 0 > A®* — B* — C® — 0 be a short exact sequence of chain complexes of finite dimensional
vector spaces. Then

rk(éi: Hi(C*) _>Hi+1(A°)) = rle () - rie (], ) — rk ().

Proof. All ranks in question only depend on the stupid truncations 0>;0<;,1 of the complexes. For djq, dé,
and d’c this is clear, and for 6' this follows because of the factorisation

Hi(05;C%) » HI(C*) 5 H(A%) & H*Y (04,1 A%),
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noting that precomposing by surjections and postcomposing by injections does not alter ranks. Now the
snake lemma gives a long exact sequence

0 — ker di& — kerdl — ker dé 2, coker di — cokerdh — coker dé - 0.

Additivity of dimension in short exact sequences gives

(6.1) dim(kerd’,) — dim(ker dj) + dim(ker d’.) — rk(5') =

On the other hand, exactness of 0 - A®* — B®* — C* — 0 gives

(6.2) dimA’ —dimB' +dimC* = 0

Subtracting (6.1) from (6.2) gives the result. O

Corollary 6.5. Let f: A®* — B® be a morphism of chain complexes of finite dimensional vector spaces. Then
‘ i~1 i+1 4 pi ‘ i~1
tk(H(f)) = rk((fl e ) Al@B Al @Bl)—rk(d;)—rk(dg )
Proof. Apply Lemma 6.4 to the short exact sequence
0—-B*[-1] > C*(f) > A*—0,
noting that the boundary homomorphism of this sequence is H'(f). O

Theorem 6.6. Assume k = F,. If RK(X,Y) holds for all smooth projective k-schemes X and Y, then
(1) Dim(X) holds for every separated finite type k -scheme X ;
(2) Rko(X,Y) holds for all separated finite type k-schemes X and Y .
Proof- Let X and Y be separated k-schemes of finite type, and let f: Y — X be a proper morphism. Choose
a commutative diagram as in Lemma 6.1
Y o3 ¥V <> W
(6.3) fl \Lf ig
X X7V,

where X and Y are compatible compactifications of X and Y respectively such that X (resp. Y) is dense in
X (resp. Y) with complement V (resp. W), and g denotes f|yy. Applying Corollary 6.3 to the right hand
square of (6.3), we get a commutative diagram

W, — 7,
(64) | I
V. —= X,
of augmented simplicial schemes such that each W; is smooth projective for i > 0 and W, is a proper

hypercover of W_; = W, and similarly for V, X, and Y.
By Axiom 3.6 (Al), (A5), and (A6), we get a commutative square of long exact sequences

—> Hi(Y) —> H(Y) — H/(W) —
| -]

-
—s Hi(X) )~y iy~
(6.5) i { l
A A A

— HY(C,(v)) — H!(X,) — Hi(V,) ——
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whose vertical maps are isomorphisms. Thus H/(X) is computed by H'(C,(v)), which by (A3) is computed
by the hypercohomology spectral sequence

(6.6) Ey% = HY(Cp(v)) = HP™(C,(v)).

If Xp and V), are defined over some finite field k¢ for all p <i+ 1, then the computation of H'(C,(v)) only
involves maps between cohomology groups of smooth projective varieties defined over k;. Moreover, the
action of the |ko|-power geometric Frobenius (as an algebraic cycle) on H7(C,(v)) is pure of weight g [KM74,

Corollary 1(2)] (see also Corollary 1.15).
Since Ext;([x](M,N) =0 for all 7 and for all K[x]-modules M and N that are pure of different weights,
the spectral sequence (6.6) degenerates on the E, page and the filtration on E, canonically splits:

(67) Hi(X) = H'(C,(v) = P E5”,
p+q=i
pa .
where E;" is given by

Eg'q _ ker(dP: H‘I(Cp(v)) — HQ(CPH(v)))

im(dp—l L HI(Cyy (v) > H”i(Cp(v)))
A dimension count gives
dim 2" = dim (HY(C,(v))) - rk(dP) - rk(dP ™).

By assumption and by Remark 4.2, each of these numbers is independent of the Weil cohomology theory H.
Then the same holds for dim Eg,q and therefore also for dim HCi(X), which proves (1) for X.
By (A3), the natural map f,: C,(v) = C,(w) of cosimplicial all-or-nothing motives induces a morphism
of spectral sequences
fux: EPU(X,) — EPY(Y,).

On the E; pages, this gives commutative diagrams

= HIC,(v) 25 HA(Cpyy(v) — ...

By Corollary 6.5, we get

(6.8) rkEP(f, ) = rk( J‘;p o )- rk(d2) -tk (b ).

By assumption and by Remark 4.2, the right hand side is independent of the Weil cohomology theory H,
hence so is the left hand side. Then the same holds for the rank of f, ,: H(C,(v)) = H(C,(w)) since o
respects the canonical splitting of (6.7), which proves (2) by diagram (6.5). il

Remark 6.7. Instead of the diagrammatic argument given above, one would be tempted to use the strong
version of the alterations result [dJo96].

This gives a proper hypercover X, — X along with an embedding X, — X, such that each X,, is smooth
projective, and the complement of X,, C X,, is a simple normal crossings divisor D,,.

Assuming Rk(Y, Z) holds for smooth projective k-schemes Y and Z, a simplicial argument for D,, shows
that the dimension of HCi(Xn) (hence also Hi(Xn)) is independent of the Weil cohomology theory [Kat94,
p- 29]. This again uses the Weil conjectures to conclude degeneration of a spectral sequence.

Then the spectral sequence for the hypercovering X, — X computes H'(X) in terms of H'(X,,). However,
now the purity argument no longer applies, and we have no idea on what page the spectral sequence might
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degenerate. So even knowing Rk(Y,Z) for smooth quasi-projective k-schemes Y and Z does not imply
Dim,(X) (or its variant Dim(X) for cohomology H') through this method.

The above argument is a way around this problem. The author is not aware of a place in the literature
where this argument is carried out, but variants of it might have been known to experts.

Remark 6.8. To prove Theorem 6.6 (1) and (2) only in the case where X and Y are proper, one can carry
out the proof above without talking about (simplicial) mapping cones. Indeed, applying the proof above
to the morphism f,: Y, — X, (of simplicial schemes) instead of the morphism f,: C,(v) = C,(w) (of
cosimplicial all-or-nothing motives) shows that the dimensions of H(X) and H i(Y) as well as the rank of
f*: H(X) — H'(Y) do not depend on H.

Applying this to the closed immersion v: V — X as in (6.3), we see that

dim Hi (X) = dim(kerHi (v)) ; dim(cokeer—l(v))
= dim H'(X) -tk (H'(v)) + dim H' ™ (V') -tk (H™' (v)),

so finally dim H!(X) does not depend on H. This recovers Theorem 6.6 (1) without ever using simplicial
mapping cones. (The mapping cone of complexes is still implicitly used through Corollary 6.5.)

One can also obtain Theorem 6.6 (2) in this way (at least for étale or crystalline cohomology), by looking
at the different weight parts as in (6.7) and applying Corollary 6.5 in the case where the complexes themselves
are mapping cones.

This requires a different kind of axiom comparable to (A6), using the mapping cone of complexes instead.
However, mapping cones in the derived category are only unique up to non-unique isomorphism, and to get
a commutative diagram like (6.5) one needs to choose mapping cones functorially. We use the ones from
simplicial schemes, but there are other possibilities. For example, Cisinki-Déglise’s mixed Weil cohomologies
[CD12] work in the dg setting, which may well be enough to make this part of the argument work.

7. Dimensions and cycle class maps

In this section, the ground field k is allowed to be arbitrary again. We start with a Bertini irreducibility
theorem. We do some extra work in Lemma 7.2 to avoid extending the base field, using the Bertini
irreducibility theorem of Charles-Poonen [CP16] as well as the classical one [Jou83, Theorem 6.3(4)].

The main application of these Bertini theorems is Corollary 7.5, which we use to prove the implication
(3b) = (1) of Theorem 4.6. The idea is that if Z C X is an effective codimension m cycle on a smooth
projective variety (X,H), then for m general sections Hy,...,H,, € |H| containing Z, the intersection
H;N...NH,, contains only one new component Z’, which is smooth away from Z (in particular reduced).
Therefore,

[Z]=H™-[Z’] e CH"(X),
which realises [Z] as a difference of two irreducible cycles. We do something similar for an arbitrary (not

necessarily effective) cycle @ € CH™(X).
We suggest the reader skip ahead to Corollary 7.5 on a first reading.

Definition 7.1. Let X be a separated k-scheme of finite type. Consider the following condition on a closed
subscheme Z C X:

(Irr):  For every irreducible component X; of X, there exists a unique irreducible component Z; of Zj
contained in X;, and moreover Z; = X; N Zj.

If X is geometrically normal, then X; N X; = @ for i # j. In this case, the final statement of (Irr) is automatic:
we clearly have Z; C X; N Zg, and all other components Z; of Z; are disjoint from X; N Z;.
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Lemma 7.2. Let (X, H) be a projective k-scheme all of whose components have dimension n> 2, let Z C X be a
geometrically reduced closed subscheme of pure dimension € = 0,n, and let Y,...,Ys C X be integral subschemes of
dimension < n that are not contained in Z. Assume that X is smooth away from Z and at the generic points of Z.
Then for d > 0, there exists an element D € |dH| containing Z such that

e D is smooth away from Z;

e D is smooth at the generic points of Z;

o the divisor D\ Z of X \ Z satisfies (Irr);
® D does not contain any of the Y;.

Proof. Write X*"8 and Z'"8 for the singular (non-smooth) loci of X — Speck and Z — Speck respectively.
By assumption, X \ X*"8 contains U = X \ Z, as well as the generic points of Z. Since Z is geometrically
reduced, Z*I"8 has dense open complement. Thus, the open subset W = X \ (X*"8 U Z%1"8) is smooth of
dimension 7, contains U, and W N Z is smooth and dense. Let Y be the union of the zero-dimensional Y;,
and note that Y N Z = @.

If k is infinite, choose d > 0 such that Z7,(dH) is globally generated, and let V be the image of
H%X,Z7(dH)) in H*(X,Ox(dH)), i.e. |V| is the linear system in |dH| of sections vanishing on Z. Since
Z7(dH) is globally generated, the base locus of |V| is exactly Z, so |V| defines a morphism

¢: U—P(V).
Note that ¢ is a composition of a locally closed immersion and a coordinate projection, hence unramified.
Thus [Jou83, Corollary 1.6.11(2,3)] shows that the locus of D € |V|=P(V)(k) such that DN U is smooth and
satisfies (Irr) is dense open.

Since the Y; are not contained in Z, the locus of D € |V| not containing Y; is dense open. Similarly, the
locus of s € H(X,Z,(dH)) whose restriction to IZ/Ié(dH) is nonzero is dense open. Thus we can find a
k-point of P(V) satisfying all desired properties, since a dense open subset of P(V') has a k-point if k is
infinite.

If k is finite, we apply [Wutl7, Theorem 2.1], where Wutz’s X,Y,Z,k,{,m are our W,Y,Z,{-1,{,n
respectively. This shows that the set

ZCDand YND =9,
Del|dH|| dim(DNW)gne <1,

DN (X\ Z) is smooth of dimension n — 1.
has positive density y > 0 as d — co. In particular, such D are smooth at the generic points of Z, since Z
has (pure) dimension ¢. Applying Bertini’s irreducibility theorem [CP16, Theorem 1.2] to X \ Z shows that
the set of D such that D \ Z satisfies (Irr) in X \ Z has density 1.

Finally, if Y; is positive-dimensional, then the ideal sheaf Izmzj c Oyj is nonzero because Y;  Z. The

map Iy — Izny, is surjective by the second and third isomorphisms theorems. Hence, for d > 0, the map

$a: HOX, Iy (d)) = HY(Y;, Ty (d))
is surjective. The dimension of the right hand side is (eventually) a polynomial of degree dim Y]- >0ind, so
codimker(¢,) — oo as d — co.

Hence, the functions that vanish on Y] have density 0 as d — oo. Therefore, the intersection of the three
sets has positive density p. O

Lemma 7.3. Let k be a perfect field, and let (X, H) be a smooth projective k-scheme all of whose components
have dimension n. Let Z1,...,Z, C X and Y1,...,Y; C X be pairwise distinct integral subschemes of codimension
m # 0,n. Then fordy,...,d,, > 0, there exist sections D1,...,D,, of |d1H|,...,|d,,H| intersecting properly such
that



24 R. van Dobben de Bruyn

o= Y z1+121
i=1 i=1

where Z C X is (geometrically) reduced, satisfies (Irr), does not contain any of the Z; and Y;, and Z \\J Z; is
smooth.

Proof. Let Z' =|J Z;. We apply Lemma 7.2 inductively on the codimension m of the Z; to find sections D;
of |d; H| containing Z’ such that (| D; is smooth away from Z’ and at the generic points of Z’ and does not
contain any of the Y;, and (\D; \ Z " satisfies (Irr). Thus the multiplicity of () D; at the generic points of Z’

is 1, so
m r
ﬂDi :Z[Zilﬂl
i=1

i=1
for an effective cycle a none of whose components is contained in Z’.
If Z is the closure of (\D; \ Z’, then restricting to X \ Z’, we find that @ = [Z], where all coefficients are
1 since (1 D; \ Z’ is smooth. Then Z is geometrically reduced by [Stacks, Tag 020]]. Finally, Z satisfies (Irr)
because (\D; \ Z’ does, and it does not contain any of the Y; since () D; \ Z” does not contain any Y; \ Z’
by the choice of the D;. i

Theorem 7.4. Let k be a perfect field, let (X,H) be a smooth projective k-scheme of equidimension n, let
a € CH™(X) be a pure dimensional cycle, and let eg € Z. If m = 0, n, then there exists a (geometrically) reduced
subscheme Z C X satisfying (Irr) and e > eq such that

a=[Z]-eH™ e CH™(X).

Proof. Write a =} ; n;[Z;] -} ;n/[Z!] - eH™, where Z;, Z C X are pairwise distinct integral subschemes of
codimension m, and n;,n; € Zy (to start with, we may take e = 0). We will apply Lemma 7.3 a few times.

First, by induction on z =} (1; — 1) + ¥ (n; — 1), we will reduce to the case where z = 0. Indeed, if z > 0,
then one of the n; or n} is > 2. Say ny > 2; the case n} > 2 is similar. Applying Lemma 7.3 to Z; with
{Y;}:={Z; | i >1}U{Z]}, we can write [Z;] = dH"™ —[Z’], where Z’ does not contain any of the Z; and Z,
and Z’ is generically smooth (in particular reduced). Adjoining the irreducible components of Z” to the Z;
and changing e to e — d, we have reduced z by one, because the new components coming from Z’ all have
coefficient 1. After finitely many steps, we get z =0, so all #; and n; are equal to 1.

Now applying Lemma 7.3 to the Z; while avoiding the Z/, we get a generically smooth subscheme Z’ C X
of codimension m and such that } ;[Z;] = dH™ —[Z’]. Adjoining the components of Z’ to the Z; and
replacing e by e — d, we can write

Finally, applying Lemma 7.3 to the Z/, for every dj,...,d,, > 0 we get a geometrically reduced subscheme
Z of codimension m satisfying (Irr) such that dH™ =) ,[Z]] + [Z], where d =[]d;. Thus,

1
a=[Z]-(e+d)H™.
Choosing the d; large enough so that e+ d > e gives the result. O

Corollary 7.5. Let k be a perfect field, let (X, H) be a smooth projective k-scheme of equidimension n, and let
a € CH"™(X). If m# 0,n, then there exist geometrically reduced subschemes Z1,Z, C X satisfying (Irr) such that

& =12,]-17,] € CH(X).
Proof. By Theorem 7.4, we may write & = [Z1]—eH™, where Z; satisfies (Irr) and e may be taken arbitrarily

large. Applying the usual Bertini irreducibility theorem [Jou83, Theorem 6.10(4)], [CP16, Corollary 1.4|
inductively, we find a subscheme Z, C X satisfying (Irr) with [Z,] = eH™. Indeed, over an infinite field we
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can do this for any e [Jou83, Theorem 6.10(4)], whereas over a finite field the positivity of the density [CP16,
Corollary 1.4] shows that there exists ey such that for all e > ¢y we can find a member satisfying (Irr). [

Theorem 7.6. Let k be an algebraically closed field. Let X be a smooth projective k-scheme, and assume that
Dim (U) holds for every open subscheme U C X. Then Cl1(X) holds.

Proof: Since CHq (U L1 V) = CHg(U) x CHg(V), and the same statement holds for the cohomology ring,
we may assume X is irreducible of dimension 7, hence (geometrically) integral. Let a € CH*Q(X ) be given.
Because the cycle class map is homogeneous, it suffices to treat the case where a € CHS(X) is of pure
dimension d = n—m. If m = 0 or m = n, then clearly the kernels of the cycle class maps to H"(X) and
H™(X) agree.

Now assume m # 0, 1. Then by Corollary 7.5, we may write a = [Z]—[Z,], where Z; and Z, are reduced
subschemes satisfying (Irr); since X is integral this just means that Z; and Z, are integral as well. If & = 0
there is nothing to prove, so we may assume [Z]# [Z,]. Let Z=2Z,UZ, C X, let U = X \ Z, and consider
the long exact cohomology sequence with compact support of (Al):

By (A2), we have dim H2¢(Z) = 2 and H/(Z) = 0 for i > 2d. Thus, we have an exact sequence

(7.0) - > HX(X) 5 2 (7) - HX4 (U) > H2(X) = 0.
By (A2) again, the map i*: H>*(X) — H?%(Z) = K &K is the dual of
K®K — H>™(X)

(A pu) — Acl(Zy) + ucl(Z,).

If h is an ample divisor class on X, then h®.Z.> 0. Therefore, cl(Z;) # 0, so the rank of i* is either 1 or 2.
Additivity of dimensions in (7.1) gives

rk(i*) = dim H?*(Z) — dim H>**1(U) + dim H>?*1 (X).

By assumption, dim H24*!(U) and dim H??*1(X) are independent of the Weil cohomology theory H, hence
so is the rank of i*.

We now claim that cly(a) = 0 if and only if rk(i*) = 1 and h% - Z; = h? - Z,. Indeed, if cl(a) = 0, then
(i*)" has a kernel, so i* cannot have rank 2. Moreover, cupping the relation cl(Z;) = cl(Z,) with h? gives
ht.z, =h%.Z,. Conversely, if rk(i*) = 1 and h“ - Z; = h? - Z,, then there is a unique [Ag : py] € P1(K)
such that

Apcly(Zy) = py cly(Z)).
Again, cupping with h? gives Ay Z; - h? = uyZ, - h?, forcing [Ag : uy] = [1: 1], so that cly(a) = 0.

Because the rank of i* and the intersection numbers h“ - Z; are independent of the Weil cohomology

theory H, this shows that the vanishing of cly(a) is also independent of H. O
Corollary 7.7. Let k be an algebraically closed field. If Dim (X) holds for every smooth quasi-projective k-scheme
X, then CI(X) holds for every smooth projective k -scheme X. O
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