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Rationally connected rational double covers
of primitive Fano varieties

Aleksandr V. Pukhlikov

Abstract. We show that for a Zariski general hypersurface V of degree M +1 in P
M+1 for M > 5

there are no Galois rational covers Xd V of degree d > 2 with an abelian Galois group, where X
is a rationally connected variety. In particular, there are no rational maps Xd V of degree 2 with
X rationally connected. This fact is true for many other families of primitive Fano varieties as well
and motivates a conjecture on absolute rigidity of primitive Fano varieties.
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[Français]

Revêtements rationnels doubles rationnellement connexes des variétés de Fano primitives

Résumé. Nous montrons qu’une hypersurface V de degré M +1 de P
M+1 avec M > 5 n’admet

aucun revêtement rationnel galoisien Xd V de degré d > 2 et de groupe de Galois abélien avec
X rationnellement connexe. En particulier, V n’admet aucune application rationnelle Xd V de
degré 2 avec X rationnellement connexe. Ceci est également vérifié par beaucoup d’autres familles
de variétés de Fano primitives et motive une conjecture concernant la rigidité absolue des variétés
de Fano primitives.
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1. Statement of the main results

One of the most challenging problems in the modern birational geometry is the unirationality problem:
for a given rationally connected projective variety V , is there a rational dominant map P

M d V ? While
in the past 50 years a huge progress has been made in solving the rationality problem, the unirationality
still remains an unknown territory. There are lots of explicit examples and constructions of unirational
varieties but not a single result about non-unirationality (in the rationally connected category). During the
past century (starting with Fano himself and maybe even earlier) the non-unirationality was conjectured for
various classes of algebraic varieties, but the questions remained unanswered.

The aim of the present paper is to prove a theorem that implies, in particular, that there are no rational
maps of degree 2

P
M 2:1
d V

for a Zariski general hypersurface V ⊂ P
M+1 of degreeM+1 (which is a Fano variety of index 1, in particular,

a rationally connected variety). In fact, there are no rational maps of degree 2

X
2:1
d V

with X rationally connected for such hypersurfaces V . We now state the main theorem.
Let V be a projective factorial variety with at most terminal singularities, such that PicV =ZKV and the

anticanonical class (−KV ) is ample (that is, a primitive Fano variety). We work over the ground field C of
complex numbers.

Definition 1.1 (cf. [Puk05]). The Fano variety V , described above, is divisorially canonical if for every
effective divisor D ∼ −nKV , n > 1, the pair (V , 1nD) is canonical; that is to say, for every exceptional prime
divisor E over V the inequality

ordED 6 n · a(E),

where a(E) is the discrepancy of E with respect to V , holds.

Apart from the divisorial canonicity, we will need the following technical conditions.
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(?1) For every anticanonical divisor R ∈ | −KV |, every prime number p > 2 and any, possibly reducible,
closed subset Y ⊂ V of codimension > 2 there is a non-singular curve N ⊂ V such that

p 6 | (N ·KV ),

N ∩Y = ∅ and N meets R transversally at non-singular points.

(?2) For every, possibly reducible, closed subset Y ⊂ V of codimension > 2 there is a non-singular rational
curve N ⊂ V such that N ∩Y = ∅.

Definition 1.2. We say that a rational dominant map Xd Z of varieties of the same dimension is a rational
Galois cover, if the corresponding field extension C(Z) ⊂C(X) is a Galois extension. If the corresponding
Galois group is cyclic, we say that this rational map is a rational cyclic cover.

The main result of the present paper is the following claim.

Theorem 1.3. Assume that the Fano variety V , introduced above, is divisorially canonical and satisfies the

conditions (?1) and (?2). Then there are no rational Galois covers X
d:1
d V with an abelian Galois group of order

d > 2, where X is a rationally connected variety.

Since the divisorial canonicity implies birational superrigidity, as an immediate consequence of Theo-
rem 1.3, we get the following claim.

Corollary 1.4. In the assumptions of Theorem 1.3, if X
d:1
d V is a rational Galois cover with an abelian Galois

group, then d = 1 and the MMP for X has the unique outcome V .

Since every rational map of degree 2 is a Galois rational cover with the cyclic group C2 as the Galois
group, we obtain the following claim.

Corollary 1.5. In the assumptions of Theorem 1.3, there are no rational maps X
2:1
d V of degree 2 with X a

rationally connected variety.

Although a particular case of Theorem 1.3, the last corollary is especially important as it covers all
rational maps of degree 2 and therefore motivates the following conjecture.

Conjecture 1.6 (on absolute rigidity). If V is a divisorially canonical Fano variety, then every rational dominant
map Xd V , where X is a rationally connected variety of dimension dim V , is a birational map.

2. Divisorially canonical varieties

Given that the main assumption for the variety V in Theorem 1.3 is divisorial canonicity, the natural
question to ask now is how typical this property is in the class of Fano varieties? Let the symbol P stand
for the complex projective space P

M+1, where M > 5. Set F = P(H0(P,O
P
(M + 1))) to be the space of

hypersurfaces of degree M +1 in P. If a hypersurface V ∈ F is factorial, then PicV =ZH , where H is the
class of a hyperplane section. In [Puk05] it was shown that a Zariski general non-singular hypersurface V
is divisorially canonical. Since it is not hard to check that the properties (?1) and (?2) are satisfied for a
non-singular hypersurface V (this is done below in Section 3), we obtain the following claim.

Corollary 2.1. For a Zariski general hypersurface V ⊂ P of degree M +1, where M > 5, there are no non-trivial

rational Galois covers X
d:1
d V with an abelian Galois group of order d > 2, where X is a rationally connected

variety; in particular, there are no rational maps Xd V of degree 2 with X rationally connected

Note that in [Puk15] it was shown that for M > 9 there exists a Zariski open subset Freg ⊂ F , such that
every hypersurface V ∈ Freg has at most quadratic singularities of rank > 8, so is a factorial variety with
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terminal singularities, and satisfies the property of divisorial canonicity. Moreover, for the complement
F \Freg the inequality

codim((F \Freg) ⊂ F ) >
(M − 6)(M − 5)

2
− 5

holds. The property (?1) is easy to show for hypersurfaces V ∈ Freg, see Section 3.
Apart from Fano hypersurfaces of index 1, the divisorial canonicity was also shown for Zariski general

varieties in the following families:

• double spaces of index 1 and dimension > 3, see [Puk05],

• a majority of the families of Fano complete intersections of index 1 in the projective space [Puk06,
EP16, Puk18],

• finite, not necessarily cyclic, covers of index 1 of the projective spaces [Puk19].

This list is probably not complete: computing or estimating the (log) canonical thresholds has become a
popular topic, see [CPW14, CS08, LZ19, Zhu18] and other works in this direction.

3. Proof of Theorem 1.3

Let us assume the converse and fix a non-trivial rational Galois cover σ : Xd V with an abelian Galois
group, where V is a divisorially canonical variety, satisfying (?1) and (?2), and X is rationally connected.
Considering the field extension C(V ) ⊂C(X), we can find an intermediate field which is a normal extension
of C(V ) with a cyclic group of a prime order p > 2 as its Galois group. Since the image of a rationally
connected variety is rationally connected, we may assume that the Galois group of the original extension
C(V ) ⊂ C(X) is a cyclic group of a prime order p > 2. Further, we may assume that σ : X → V is a
morphism and X is a non-singular projective variety, dim X = dim V .

We say that a family L of irreducible projective curves on a quasi-projective variety is free, if they sweep
out a dense subset of that variety and for every subvariety Y of codimension > 2 the subset

{L ∈ L|L∩Y , ∅}

is a proper closed subfamily of the family L (that is to say, a curve L ∈ L of general position does not
intersect Y ). Let us fix a free family CX of non-singular rational curves on X.

This free family of rational curves is a crucial object in our proof. For the existence and basic properties
of free families of rational curves, our reference is Kollár’s book, [Kol96, Sections II.3 and IV.3]. The facts
used below are well known and standard; here we explain briefly the easiest way to understand the basic
geometry of such families. By Theorem 3.9 in [Kol96, Section IV.3] we have a family CX of non-singular
rational curves CX on X such that the vector bundle TX |CX is ample, that is, it is of the form

⊕O
P

1(αi)

with all αi > 1. (This implies, in particular, that (KX ·CX) < 0, although that inequality holds under much
weaker assumptions for the family of curves.) Therefore, the infinitesimal deformations of the curve CX given
by the sections of the vector bundle TX |CX are unobstructed, see Points 3.3 – 3.5.4 in [Kol96, Section II.3],
and if for a particular subvariety Y ⊂ X of codimension > 2 and a particular curve CX ∈ CX the intersection
CX ∩Y , ∅, then a general deformation of CX in the family CX does not meet Y : we can deform the curve
away from Y , see Proposition 3.7 in [Kol96, Section II.3].

For the same reason, for every prime divisor ∆ ⊂ X, such that σ∗ : TpX→ Tσ (p)V is not an isomorphism
for a point of general position p ∈ ∆ (this is true, in particular, if codim(σ (∆) ⊂ V ) > 2), a general curve
CX ∈ CX meets ∆ transversally at points of general position. (There are finitely many such divisors, so the
assumption that a general CX meets every ∆ at points of general position is justified by the family CX being
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free; the transversality follows from the ampleness of the restriction of the tangent bundle TX onto CX , see
the references above.)

The same deformation arguments (see the proof of Proposition 3.7 in [Kol96, Section II.3] and Theorems
1.7 and 1.8 in [Kol96, Section II.1] give us that for a general curve CX ∈ CX the morphism

σ |CX : CX → σ (CX)

is birational (again, this comes from the ampleness of TX restricted onto a general CX , see Proposition 3.5
and Corollary 3.5.3 in [Kol96, Section II.3]: when we deform the curve CX , any two distinct points p , q
on this curve vary independently, so that if for a particular curve CX the morphism σ |CX is not birational,
choosing two points p , q such that σ (p) = σ (q), we can see that a general deformation of this curve satisfies
the required property.)

Since in the subsequent arguments we need only the general curve CX ∈ CX , we will remove from CX
proper closed subsets when we need it, without special comments and keeping the same notation CX . Let
CV = σ∗CX be the image of that family on V . The family CV is, generally speaking, not free: if the σ -image
of a prime divisor ∆ ⊂ X is of codimension > 2, then the general curve CV ∈ CV meets σ (∆).

Proposition 3.1. There is a birational morphism ϕ : V +→ V , where V + is a non-singular projective variety,
such that the strict transform C+V of the family CV on V

+ is a free family of curves.

Proof. It is given in Section 4. (Here of course the strict transform of a family of irreducible curves is the
family of irreducible curves, a general curve in which is the strict transform of a general curve in the original
family. The parameterizing space of the new family is, generally speaking, a Zariski open subset of the
parameterizing space of the original family.) �

Proposition 3.2. There is a non-singular quasi-projective variety UX , a birational map ϕX : UX d X and a
Zariski open subset U ⊂ V +, such that:

(i) the rational map

σ∗ = ϕ
−1 ◦ σ ◦ϕX : UX d V +

extends to a morphism σU : UX → V +, the image of which is U ,

(ii) the inequality

codim((V + \U ) ⊂ V +) > 2

holds,

(iii) the map σU : UX →U is a cyclic cover of order p, branched over a non-singular hypersurface W ⊂U .

The proof is given in Section 5.

To make the statement of Proposition 3.2 more visual, we arrange the maps into the following commutative
diagram:

UX
ϕX
d X

σU ↓ ↓ σ

U ⊂ V + ϕ
→ V .

Assuming Propositions 3.1 and 3.2, let us complete the proof of Theorem 1.3. By the inequality (ii) of
Proposition 3.2 a general curve C ∈ C+V does not meet the closed set V + \U and for that reason is contained
entirely in U . Therefore, for some open subfamily C ⊂ C+V all curves C ∈ C are entirely contained in U , so
that C is a family of irreducible projective rational curves sweeping out U . By the construction of the family
C for a general curve C ∈ C its preimage

σ−1U (C) = C1 ∪C2 ∪ · · · ∪Cp
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is a union of p distinct rational curves on the quasi-projective variety UX . Indeed, since for a general curve
CX ∈ CX the morphism σ |CX is birational, and by construction of the family C, we may assume that C1
belongs to a family of irreducible rational curves sweeping out UX and the morphism C1→ C is birational.
Then the other curves Ci , i , 1, are the images of C1 under the action of elements of the cyclic Galois group;
in particular, they also belong to families of irreducible rational curves sweeping out UX , so that

(Ci ·KU ) < 0,

i = 1, . . . ,p, where KU is the canonical class of the variety UX . Write

K+
V = −ϕ∗H +

∑
i∈I
aiEi

for the canonical class of the variety V +, where Ei ⊂ V + are all the prime ϕ-exceptional divisors and ai > 0
are their discrepancies with respect to V and H = −KV is the ample anticanonical generator of PicV . (The
notation K+

V looks better than the standard symbol KV + .) Denoting the restrictions of the divisorial classes
onto U by the same symbols and omitting the symbol ϕ∗, we get

(3.1) KU = σ ∗U

(
K+
V +

(
1− 1

p

)
W

)
,

where W ⊂ U is a non-singular hypersurface, over which the cyclic cover σU is branched. Collecting
separately the components of the hypersurface W , which are divisorial on V and ϕ-exceptional, write

W =Wdiv +Wexc,

where Wdiv = nH −
∑
i∈I biEi with bi ∈Z+ and Wexc =

∑
i∈I ciEi with ci ∈ {0,1}. Obviously, the inequalities

(C ·K+
V ) < 0, (C ·Wdiv) > 0 and (C ·Wexc) > 0 hold. At the same time,

(3.2) (Ci ·KU ) = (C ·K+
V ) +

(
1− 1

p

)
(C ·W ) < 0.

Assume first that n > 2. Adding to the left hand side of (3.2) the non-positive expression [
(
1− 1

p

)
n−1](C ·K+

V ),
we obtain the inequality

(3.3) n(C ·K+
V ) + (C ·W ) =

C ·∑
i∈I

(nai − bi + ci)Ei

 < 0,

so that for some i ∈ I we have

bi > nai + ci > n · ai
and the pair (V , 1nϕ∗Wdiv) with ϕ∗Wdiv ∼ nH is not canonical, which contradicts the divisorial canonicity
of the variety V . Therefore, n = 1 or 0.

The case n = 1 is impossible: in that case ϕ∗Wdiv = ϕ(Wdiv) ⊂ V is an anticanonical divisor on the
variety V and we apply the assumption (?1) for the prime divisor R = ϕ(Wdiv): we take a non-singular curve
N (of arbitrary genus) such that p 6 |(N ·KV ), which does not meet the set

(3.4) ϕ(V + \U )∪ϕ

⋃
i∈I
Ei


and meets the divisor R transversally at points of general position. Its strict transform N+ is contained
entirely in U , and moreover,

σ−1U (N+)→N+

is a cyclic cover of a non-singular curve, branched over a set of (N ·R) points, the number of which is not
divisible by p, which is impossible.
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The case n = 0 is also impossible. Here we apply the assumption (?2), taking on the variety V a
non-singular rational curve N , which does not meet the set (3.4). Then the strict transform N+ ⊂ V + is
contained entirely in U , so that

σ−1U (N+)→N+

is a non-ramified p-cyclic cover of a non-singular rational curve, which is impossible. �

Proof of Corollary 2.1. Given that Zariski general hypersurfaces V ∈ F were shown in [Puk05] to be divisorially
canonical, it remains to check that (?1) and (?2) hold for a general hypersurface V . In fact, they are satisfied
for any non-singular hypersurface V ⊂ P of degree (M +1): (?2) is true because V is a non-singular Fano
variety, and for (?1) we have the following simple argument. If p 6 |degV , then a section of V by a general
2-plane in P does the job. Let us assume that p |degV .

A general line L ⊂ V meets the hyperplane section R transversally at one point. However, it might happen
that L∩ Y , ∅. In any case, since the lines on V sweep out a divisor, we may assume that L 1 Y ,so that
L∩Y is a finite set of points.

Now take a general plane P ⊂ P containing L, and let N ⊂ P be the residual curve of the intersection
P ∩V = L+N . Making sure that P is not contained in the hyperplanes in P that are tangent to V at the
points in L∩Y and taking into account that the image of Y with respect to the projection from the line L is
a proper closed subset of PM−1, we may assume that N ∩Y = ∅. As

degN = degV − 1

and p |degV , the curve N is what we need. �

Remark 3.3. The property (?1) is easy to show for singular hypersurfaces V ∈ Freg, considered in [Puk15].
Recall [Puk15, Section 3, Subsection 3.2] that the conditions defining the open set Freg, include the following
bound for the singularities of V : the hypersurface may have at most quadratic singularities of rank > 8, so
that, in particular,

codim(SingV ⊂ V ) > 7.

Therefore, a general 2-plane in P does not meet the closed set SingV . Furthermore, the regularity
conditions at every singular point o ∈ SingV ensure that there are finitely many lines through the point o on
V . Therefore, a general line L ⊂ V does not meet the singular locus of V and the proof of (?1), given above
for a non-singular hypersurface V , works for any V ∈ Freg word for word.

4. Resolution of a family of curves

In order to prove Proposition 3.1, let us construct a sequence of birational morphisms

(4.1) V0
ϕ1←− V1

ϕ2←− ·· ·
ϕM−1←− VM−1

of non-singular projective varieties, such that V0 = V , C0 = CV and for every closed subset Y ⊂ Vi of
dimension 6 i − 1 a general curve Ci ∈ Ci of the strict transform of the family CV on Vi does not meet the
subset Y .

For i = 0 the last claim holds in a trivial way. We will explain in detail the first two steps of this
construction: the morphisms ϕ1 and ϕ2. The general step ϕj : Vj → Vj−1 is very similar to ϕ2 and will be
easy to understand when ϕ2 is clear.

Step 1. Let us consider the family C0 = CV of curves, sweeping out the variety V0. It is clear that the set
of points Ξ0 ⊂ V0, which are contained in all curves of the family C0, is finite. We blow up this finite set of
points:

ϕ1,1 : V0,1→ V0,0 = V0,
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and look at the strict transform C0,1 of the family C0 on V0,1. If there are no points that lie on all curves in
C0,1, we stop. Otherwise, there is a finite set Ξ0,1 ⊂ V0,1 of such points (obviously, Ξ0,1 is contained in the
exceptional divisor of ϕ1,1) and we blow it up. Repeating, if necessary, we get a finite sequence of blow ups
of finite sets of points,

V0 = V0,0
ϕ1,1←− V0,1

ϕ1,2←− ·· ·
ϕ1,e(1)
←− V0,e(1),

such that for every point p ∈ V0,e(1) the curves C0,e(1) ∈ C0,e(1) (the last symbol means the strict transform of
the family C0 on V0,e(1)), containing the point p, form a proper closed subset of the family C0,e(1). (That our
procedure can not be infinite and must terminate, follows from considering some formal parameterizations
of all branches of a general curve C0 ∈ C0 at the points of the set Ξ0.) Set V1 = V0,e(1) and

ϕ1 = ϕ1,1 ◦ · · · ◦ϕ1,e(1) : V1→ V0.

Step 2. For the next step of our construction, consider the set of curves Ξ1 ⊂ V1, which intersect all
curves of the family C1. This is a finite set of curves. Indeed, embedding the quasi-projective variety,
parameterizing the curves of the family C1, in some projective space, and intersecting with the appropriate
number of general hyperplanes, we obtain a sufficiently mobile family of curves in that quasi-projective
variety, which gives us a family of surfaces S1 on V1, such every surface S1 ∈ S1 contains all curves of the
set Ξ1. Now it is clear that the set Ξ1 is finite.

If D1 is a general divisor of a very ample system on V1, then, intersecting the surfaces S1 ∈ S1 with D1,
we obtain a family of curves on D1, each of which contains the points of the set Ξ1 ∩D1. Now, arguing
as at the previous step, for the family of curves (S1 ∩D1,S1 ∈ S1), we see that there is a finite sequence of
birational morphisms

V1 = V1,0
ϕ2,1←− V1,1

ϕ2,2←− ·· ·
ϕ2,e(2)
←− V1,e(2),

where ϕ2,1 is a composition of two birational maps:

• a desingularization of the (reducible) 1-dimensional subset Ξ1, that is, a composition of finitely many
blow ups of points, transforming Ξ1 into a disjoint union of non-singular curves, and

• the blow up of the non-singular strict transform of Ξ1,

and, similarly, ϕ2,i first resolves the singularities of the 1-dimensional set Ξ1,i−1 ⊂ V1,i−1, which is the union
of all irreducible curves on V1,i−1, intersecting all curves of the family C1,i−1 (the strict transform of the
family C1 on V1,i−1), and then blows up the non-singular strict transform of the reducible curve Ξ1,i−1. Note
that by construction the image of every curve in Ξ1,i−1 on V1 is one of the curves of the set Ξ1 (otherwise, all
curves of the family C1 would have passed through some point, which is not true). Our procedure terminates
for the same reason as at Step 1 (looking at the family of curves (S1 ∩D1,S1 ∈ S1) that was used above).
Finally, on V1,e(2) there are no curves meeting all curves of the family C1,e(2). We set V2 = V1,e(2), C2 = C1,e(2)
and

ϕ2 = ϕ2,1 ◦ · · · ◦ϕ2,e(2) : V2→ V1.

Carrying on in the same spirit, we construct the whole sequence (4.1). Let us consider briefly the general
step of our construction.

Step j. By the previous arguments, if an irreducible subvariety intersects all curves of the family Cj−1 on
Vj−1, it has dimension > j − 1. If there are no irreducible subvarieties of dimension j − 1, intersecting all
curves in Cj−1, then there is nothing to do: we set Vj = Vj−1 and ϕj is the identity morphism. Otherwise,
let Ξj−1 ⊂ Vj−1 be the union of all irreducible subvarieties of dimension j − 1 meeting all curves in Cj−1.
Embedding the quasi-projective variety, parameterizing the curves of the family Cj−1 in a projective space
and intersecting it with the appropriate number of general hyperplanes, we obtain a sufficiently mobile
family of subvarieties of dimension j − 1 in that quasi-projective variety, which gives us a family Sj−1 of
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irreducible subvarieties of dimension j on Vj−1, such that every subvariety Sj−1 ∈ Sj−1 contains Ξj−1; in
particular, Ξj−1 is a Zariski closed subset, and hence it contains finitely many irreducible components. If

D1, . . . , Dj−1

is a general tuple of divisors in a very ample linear system on Vj−1, then, intersecting the subvarieties
Sj−1 ∈ Sj−1 with D1∩ · · ·∩Dj−1, we obtain a family of curves on D1∩ · · ·∩Dj−1, each of which contains the
points of the set Ξj−1 ∩D1 ∩ · · · ∩Dj−1. Now, arguing as at Step 2, we see that there is a finite sequence of
birational morphisms

Vj−1 = Vj−1,0
ϕj,1
←− Vj−1,1

ϕj,2
←− ·· ·

ϕj,e(j)
←− Vj−1,e(j),

where ϕj,1 is a composition of two birational maps:

• a desingularization of the (reducible) (j −1)-dimensional closed subset Ξj−1, that is, a composition of
finitely many blow ups of subvarieties of dimension 6 j − 2, transforming Ξj−1 into a disjoint union
of non-singular subvarieties of dimension j − 1, and
• the blow up of the non-singular strict transform of Ξj−1.

Similarly, ϕj,i first resolves the singularities of the closed set Ξj−1,i−1 ⊂ Vj−1,i−1, which is the union of all
irreducible subvarieties on Vj−1,i−1, intersecting all curves of the family Cj−1,i−1 (the strict transform of
the family Cj−1 on Vj−1,i−1), and then blows up the non-singular strict transform of the closed set Ξj−1,i−1.
Again, as at Step 2, the image of every component of the closed set Ξj−1,i−1 on Vj−1 is one of the components
of the set Ξj−1 — otherwise, every curve in Cj−1 would have met some irreducible subvariety of dimension
6 j − 2, which is not true by the previous steps of our construction. Our procedure terminates for the same
reason as at Steps 1 and 2 (using the family of curves

(Sj−1 ∩D1 ∩ · · · ∩Dj−1,Sj−1 ∈ Sj−1)

on D1 ∩ · · · ∩Dj−1). Finally, on Vj−1,e(j) there are no subvarieties of dimension ≤ j − 1, meeting all curves of
the family Cj−1,e(j). We set Vj = Vj−1,e(j), Cj = Cj−1,e(j) and

ϕj = ϕj,1 ◦ · · · ◦ϕj,e(j) : Vj → Vj−1.

Having constructed the sequence (4.1), set V + = VM−1 and

ϕ = ϕ0 ◦ϕ1 ◦ · · · ◦ϕM−1 : V +→ V .

Obviously, V + has the property, described in the statement of the proposition. �

5. Construction of the cyclic cover

Let us show Proposition 3.2. The field extension C(V ) ⊂C(X) is generated by some element ξ ∈C(X),
satisfying the equation

ξp − q = 0

for some rational function q ∈ C(V ) = C(V +). For some effective divisor R on V + and sections a0, a1 ∈
OV +(R) we can write q = a0/a1. Consider the hypersurface

{G = 0} ⊂ V + ×P1
(x0:x1)

,

where

G = a1x
p
1 − a0x

p
0 ∈H

0(V + ×P1,pr∗V OV +(R)⊗pr∗
P
O
P

1(p)),

the symbols prV and pr
P
mean the projections of V + ×P1 onto the first and second factor, respectively.

This hypersurface is, generally speaking, reducible, but has a unique irreducible component X0, such that
prV (X0) = V +.
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If for some prime divisor T ⊂ V + the hypersurface {G = 0} contains pr−1V (T ), then a0, a1|T ≡ 0, so that,
replacing R by R−mT , where

m =min{ordT (a0),ordT (a1)},
and a0, a1 ∈ OV +(R) by

a0
smT
,
a1
smT
∈ OV +(R−mT ),

where sT ∈ OV +(T ) is the section, corresponding to the divisor T , we remove the component pr−1V (T ).
Therefore, we may assume from the beginning that the sections a0, a1 ∈ OV +(R) do not vanish simultaneously
on any prime divisor T ⊂ V + and {G = 0} = X0 ⊂ V + ×P1 is an irreducible hypersurface, by construction
birational to the original variety X.

Now let us consider the singularities of the variety X0. Assume that for some prime divisor T ⊂ V + there
is a subvariety TX ⊂ SingX0, such that

prV (TX) = T .

Let T be the set of all prime divisors on V + with that property. By what was said above, we may assume
that say, a1|T . 0, which implies that

ordT a0 > 2.

Removing the set of common zeros of the sections a0, a1 ∈ OV +(R), the pairwise intersections of the divisors
T ∈ T (if ]T > 2) and the sets of singular points SingT for all T ∈ T , we obtain a Zariski open set U ⊂ V +,
such that

• codim((V + \U ) ⊂ V +) > 2,

• the morphism X0 ∩pr−1V (U )→U is a finite morphism of degree p and

• for every divisor T ∈ T the quasi-projective varieties T ∩U and TX ∩pr−1V (U ) are non-singular, and
moreover, the projection prV gives an isomorphism of these varieties, which we for simplicity of
notations write down again as T and TX .

Now distinct varieties in T are disjoint.
Furthermore, we may assume that for every T ∈ T the section ai , i = 0,1, which does not vanish identically

on T , is everywhere non-zero on T ∩U , so that if say a1|T . 0, then the hypersurface X0 ∩pr−1V (U ) over a
neighborhood of the divisor T ∩U is contained in the open subset

{x0 , 0} =U ×A1
z ,

with z = x1/x0 and given by the equation
a1z

p − a0 = 0,

so that the corresponding subvariety TX ⊂ SingX0 over T ∩U is given in T ×A1
z by the equation z = 0.

Thus we have constructed a locally trivial P1-bundle X1 over a non-singular quasi-projective variety U
(of course, X1 =U ×P1) and a hypersurface X1 = X0 ∩pr−1V (U ) ⊂ X1 which is a cyclic cover of the prime
order p over U . The projection X1→U will be denoted by the symbol π1. The cyclic cover X1→U has
all properties required in Proposition 3.2 except for X1 being non-singular. The rest of our proof of the
proposition is removing the singularities of X1. This has to be done carefully, preserving the cyclic cover.

We desingularize the covering variety in two steps. The first step is constructing a sequence of locally
trivial P1-bundles over U :

X1
β1←−X2

β2←− ·· ·
βk−1←−Xk ,

where βi is an elementary birational transformation over U ,

Xi+1
βi−→ Xi

πi+1 ↓ ↓ πi
U = U,
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defined in the following way. Assume that the strict transform Xi ⊂ Xi of the hypersurface X1 is singular
along a subvariety π−1i (T )∩Xi = Ti for some T ∈ T . With respect to a certain trivialization of the P1-bundle
Xi/U over an open subset, intersecting the divisor T , the hypersurface Xi is given by the equation

ai,1x
p
1 − ai,0x

p
0 = 0,

where, say, ai,1|T . 0 and ordT ai,0 > 2. Assume, furthermore, that in fact the inequality

ordT ai,0 > p

holds. Then the birational transformation βi : Xi+1→Xi is the composition of the blow up of the subvariety
Ti (by construction, this non-singular subvariety is a section of the P1-bundle π−1i (T )→ T ) and subsequent
contraction of the strict transform of the hypersurface π−1i (T ). Elementary computations with local
parameters, using the explicit presentation described above, show that locally in a neighborhood of the
generic point of the divisor T the hypersurface Xi+1 is given by the equation

ai+1,1x
p
1 − ai+1,0x

p
0 = 0,

where ai+1,1|T . 0 and ordT ai+1,0 = ordT ai,0−p. Therefore, after finitely many elementary transformations
of the ambient P1-bundle we obtain a locally trivial P1-bundle

πk : Xk→U,

such that if the strict transform Xk ⊂ Xk of the hypersurface X1 is singular along a subvariety π
−1
k (T )∩Xk = T̃

for a T ∈ T , then over the general point of T the hypersurface Xk ⊂ Xk is given by the equation

aT ,1x
p
1 − aT ,0x

p
0 = 0,

where, say where, say, aT ,1 does not vanish on T , and

ordT aT ,0 = lT ∈ {2, . . . ,p − 1}.

This means that if p = 2, then the proof of Proposition 3.2 is completed: the variety Xk is a non-singular
cyclic cover of U .

Assume now that p > 3. Then along the subvariety π−1k (T )∩Xk the variety Xk has a cuspidal singularity
of the type

tp − slT = 0.

Taking the normalization of the variety Xk or applying the obvious sequence of blow ups, we obtain the
required variety UX that covers U cyclically, and complete the proof of Proposition 3.2 for a cyclic cover of
degree p > 3. This completes the proof of Theorem 1.3. �

6. Generalizations

First of all, given that the divisorial canonicity has been shown in [Puk06, EP16, Puk18] for many families
of Fano complete intersections of index 1 in the projective space, we obtain the following generalization of
Corollary 2.1.

Corollary 6.1. For a divisorially canonical non-singular Fano complete intersection V ⊂ P
M+k of codimension k

and index 1, there are no non-trivial rational Galois covers X
d:1
d V with an abelian Galois group of order d > 2,

where X is a rationally connected variety; in particular, there are no rational maps Xd V of degree 2 with X
rationally connected.

Proof. We need only to check that the properties (?1) and (?2) are satisfied for a non-singular complete
intersection V . The property (?2) is automatic and in order to show (?1), we argue as in the proof of
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Corollary 2.1: if p 6 |degV , then a section of V by a general linear (k +1)-subspace in P
M+k works as N ,

and if p |degV , we obtain N as the residual curve,

P ∩V = L+N,

where L ⊂ V is a general line and P a general linear (k +1)-subspace in P
M+k , containing L. �

Remark 6.2. It seems that the claim of Theorem 1.3 is true for rationally connected Galois rational covers
with an arbitrary Galois group, not necessarily an abelian one. We may assume that X is a non-singular
projective variety and the Galois group of the extension C(V ) ⊂ C(X) is a finite subgroup of the group
AutX. Now the ramification divisor of the finite cover UX →U is invariant with respect to the action of the
Galois group and for that reason is pulled back from U , so that the proof of Theorem 1.3 must work in the
non-abelian case, too.

Conjecture 6.3. The claim of Theorem 1.3 holds without the assumption that the Galois group is abelian.

Remark 6.4. The fact that there are no rationally connected rational double covers for a hypersurface
V ⊂ P of degree M + 1, where M > 5, was obtained from the property that every pair (V , 1nD), where
D ∼ nH , is canonical. However, for certain special hypersurfaces V this is not true: for instance, if V ∩ToV
is a cone with the vertex at the point o. On the other hand, it seems probable that the claim of Theorem 1.3
is true for any smooth hypersurface of index 1 for M > 5 — and, possibly, for four-dimensional quintics
and three-dimensional quartics, for which the technique of [Puk05] does not prove the property of divisorial
canonicity. Note also that it is hard to see any obstructions for the Conjecture 1.6 to be true at least for any
smooth hypersurface of index 1 and dimension > 4. At the same time, as Segre’s example shows, for certain
smooth three-dimensional quartics Conjecture 1.6 does not hold because they are unirational, see [IM71].

7. Historical remarks and acknowledgements

As far as I know, the first time when a conjecture on non-unirationality of certain rationally connected
three-folds (in that case, conic bundles) was explicitly stated, was in [Fan31] by Gino Fano himself. In [Kol98]
Kollár suggested an approach to proving the non-unirationality of primitive Fano hypersurfaces: if the
variety parameterizing rational curves of some arbitrary fixed degree passing through a general point o ∈ V
contains no rational curves, then there are no rational surfaces on V containing this point, which of course
implies non-unirationality. The suggested approach motivated a far reaching investigation of the space of
rational curves on hypersurfaces in [BS08, BK13]. For the various explicit results on unirationality (solving
the unirationality problem affirmatively) see, for instance, [HMP98, CM98, Con01, CMM09, CM06-08].
A topic that can be linked to the conjecture on absolute rigidity is endomorphisms, especially rational
endomorphisms of rationally connected varieties; there are quite a few papers on that subject, see, for
instance, [AKP08, HN11, ABR11, Zha12, Zha14].

The author is grateful to the colleagues in the Divisions of Algebraic Geometry and Algebra at Steklov
Institute of Mathematics for the interest to his work, and to the colleagues-algebraic geometers at the
University of Liverpool for the general support.

Finally, I would like to thank both referees for their work on my paper and a number of useful suggestions.
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