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Opers of higher types, Quot-schemes and
Frobenius instability loci
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Abstract. In this paper we continue our study of the Frobenius instability locus in the coarse
moduli space of semi-stable vector bundles of rank r and degree 0 over a smooth projective curve
defined over an algebraically closed field of characteristic p > 0. In a previous paper we identified
the “maximal" Frobenius instability strata with opers (more precisely as opers of type 1 in the
terminology of the present paper) and related them to certain Quot-schemes of Frobenius direct
images of line bundles. The main aim of this paper is to describe for any integer q ≥ 1 a conjectural
generalization of this correspondence between opers of type q and Quot-schemes of Frobenius
direct images of vector bundles of rank q. We also give a conjectural formula for the dimension of
the Frobenius instability locus.
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Opers de type supérieur, schémas Quot et lieux d’instabilité de Frobenius

Résumé. Nous continuons l’étude du lieu d’instabilité de Frobenius dans l’espace de modules
grossier des fibrés semi-stables de rang r et degré 0 sur une courbe projective lisse définie sur
un corps algébriquement clos de caractéristique p > 0. Dans un article précédent, nous avons
identifié les strates « maximales » d’instabilité de Frobenius avec certains opers (de type 1, avec la
terminologie du présent article) et avons montré leur lien avec certains schémas Quot d’images
directes sous Frobenius de fibrés en droites. Le principal objectif de cet article est de décrire,
pour tout q ≥ 1, une généralisation conjecturale de cette correspondance entre opers de type q et
schémas Quot d’images directes sous Frobenius de fibrés de rang q. Nous donnons également une
formule conjecturale pour la dimension du lieu d’instabilité de Frobenius.
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1. Introduction

Let p be a prime number. Let k be an algebraically closed field of characteristic p. Let X/k be a
connected, smooth projective curve over k. We will write F : X→ X for the absolute Frobenius morphism
of X. A foundational classical problem in the theory of vector bundles on smooth, projective curves is the
following:

Problem 1.1. Describe the Frobenius instability locus, i.e. the locus of all stable (and also semi-stable) vector
bundles V over X such that F∗(V ) is not semi-stable.

This goal has been partially achieved by us in [JP15] where, for p� 0 we provided an explicit construction
of all stable bundles V such that F∗(V ) is not semi-stable. By a well-known theorem of [Sha76], one may
equip the moduli space of semi-stable vector bundles of fixed degree and rank by a stratification defined
using Harder-Narasimhan polygons of F∗(V ). The main problem addressed in the present paper is the finer
problem:

Problem 1.2. Describe all Frobenius instability strata.

One of the important results of [JP15] asserts that there is an explicit polygon, called the oper polygon
(which is always attained in every genus and rank) with the property that the Harder-Narasimhan polygon of
every vector bundle F∗(V ), with V stable, lies on or strictly below the oper polygon.

So to clarify the second problem, one can for example ask: do all possible Harder-Narasimhan polygons
occur? This seems substantially more difficult and complete results are presently available only for p = 2
(see [JX00]). We have obtained a number of results in small rank, genus, and characteristic, which we
will report in a companion paper under preparation. Recently [Li19] has also studied the genus-2, rank-3,
characteristic-3 case in detail (our small genus, rank, characteristic results include his results, but by methods
quite different from his).

The description which we provided in our answer to Problem 1.1 is that all Frobenius-destabilized stable
bundles arise from suitable quotients of bundles of the form F∗(Q) with Q a stable vector bundle. In all
the small genus, small rank, small characteristic situations, the vector bundle Q is of rank 1. If rk(Q) = 1,
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the Quot-schemes Quotr,0(F∗(Q)) parameterizing subsheaves of given rank r and degree 0 of F∗(Q) are
substantially better behaved than for general rank : in fact, one of the main results of [JP15] says that if
rk(Q) = 1 then the dimension of Quotr,0(F∗(Q)) is 0 if its expected dimension is 0, and its k-rational points
correspond to opers (of type 1). As shown in section 6, this fails if rk(Q) > 1. The existence of these
higher-dimensional components of Quotr,0(F∗(Q)) stems from certain line subbundles L ↪→Q of sufficiently
high degree, which induce natural embeddings Quotr,0(F∗(L)) ↪→Quotr,0(F∗(Q)).

In the present paper we lay the ground work for addressing the second problem and its finer special
cases. The key tool we introduce here is the notion of opers of type q and rank `q (see [JP15, Definition 3.1.1],
recalled in Section 4). This notion generalizes the notion of an oper (V ,∇,V•) studied by [BD00] and
consisting of a vector bundle V equipped with an integrable connection ∇ and a full flag V• satisfying some
transversality conditions. An oper of type q should be thought of as the bundle analog of the parabolic
induction (and its adjoint the Jacquet Functor) in the theory of automorphic forms — the parabolic in the
present case is of type given by the `-tuple (q, . . . ,q), which corresponds to a partial flag whose associated
quotients are all of rank q. Given an oper of type q and rank `q we naturally obtain a rank-q bundle Q as
first quotient of the oper filtration.

In the case rk(Q) > 1 we conjecture (Conjecture 7.6) a similar statement assuming that one restricts
attention to “non-degenerate" subsheaves of F∗(Q), i.e. excluding in particular the above-mentioned sub-Quot-
schemes Quotr,0(F∗(L)). More precisely, we conjecture that, if the expected dimension of Quot`q,0(F∗(Q)) is
0, then dormant opers of type q = rk(Q) form a non-empty open subset of dimension 0 of the Quot-scheme
Quot`q,0(F∗(Q)), which has, as mentioned above, components of dimension > 0. Here dormant means that
the p-curvature of the connection ∇ is zero. We check that this conjecture holds when Q is a semi-stable
direct sum of q line bundles (Theorem 3.5).

Finally, somewhat independently of the previous considerations, we give a conjecture for the dimension of
the Frobenius instability locus J (r) in the coarse moduli space of semi-stable rank r and degree 0 vector
bundles. This conjecture says that

dimJ (r) ≥ (r2 − r +1)(g − 1)− (r − 1).

The conjecture holds for r = 2. We also conjecture that a general vector bundle in J (r) has “minimal"
Harder-Narasimhan filtration (Conjecture 8.3).

Acknowledgements. We would like to thank the referee for useful comments and suggestions.

2. Preliminaries on Quot-schemes

In what follows, the following notations and assumptions will be in force. Let X be a smooth, projective
curve of genus g ≥ 2 over an algebraically closed field k of characteristic p > 0. Let F : X → X be the
absolute Frobenius morphism of X. For a vector bundle V , we shall write V ∗ for its dual H om(V ,OX).

Suppose θ is a theta-characteristic for X. Let G2 be the unique non-split extension of θ−1 by θ: this
bundle depends on the choice of the theta-characteristic θ but our notation suppresses this dependence. For
r < p let Gr = Symr−1(G2) which will be called the Gunning bundle of rank r . This is an indecomposable
bundle of degree zero and trivial determinant.

We recall two formulas from [JRXY06]. Let Q be a vector bundle of rank q and slope µ(Q) on X. Then

(2.1) deg(F∗(Q)) = qµ(Q) + q(p − 1)(g − 1),

and equivalently

(2.2) µ(F∗(Q)) =
µ(Q)
p

+
(p − 1)(g − 1)

p
.
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The first is a consequence of the Riemann-Roch formula χ(V ) = deg(V ) + rk(V )(1 − g) for a vector
bundle V of rank rk(V ) and degree deg(V ) on X and the fact that χ(V ) = χ(F∗(V )) for the finite map F.
The second is equivalent to the first.

Let Q be a stable bundle on X of rank q and slope µ(Q) = µ < 0. Let r ≥ 1 be an integer. For a
coherent sheaf V and a surjection V → G to a coherent sheaf, we will say that G has codegree d if the
kernel ker(V → G) has degree d. Similarly we will say that G has corank r if ker(V → G) has rank r .
Let Quotr,0(F∗(Q)) be the Quot-scheme of quotients of F∗(Q) of codegree 0 and corank r . If V → G is a
quotient with kernel E we will habitually write [E] for the corresponding point of the relevant Quot-scheme
corresponding to this quotient.

Let [E] ∈Quotr,0(F∗(Q)) be a point of the Quot-scheme. Then we define the integer

(2.3) e(E) = exp.dim[E](Quotr,0(F∗(Q))) = χ(H om(E,F∗(Q)/E)).

The integer e(E) is called the expected dimension of Quotr,0(F∗(Q)) at the point [E] (see [HL10, Chapter 2]).

Proposition 2.4. Let r ≥ 1 be an integer. Let Q be a vector bundle on X of rank q ≤ r − 1 and slope µ(Q) = µ.
Let [E] ∈Quotr,0(F∗(Q)) be a point of the Quot-scheme. Then the following assertions hold.

(1) The expected dimension of Quotr,0(F∗(Q)) at [E] is

e(E) = r deg(Q) + (r2 − qr)(g − 1).

(2) We have e(E) = 0 if and only if

deg(Q) = (r − q)(1− g).

(3) In particular, if r = `q for some integer ` ≥ 2, then e(E) = 0 if and only if

deg(Q) = q(` − 1)(1− g).

(4) Moreover if µ = −1q (equivalently deg(Q) = −1) then

e(E) = (r2 − qr)(g − 1)− r.

(5) If deg(Q) = (r − q)(1− g) + d with d ≥ 0, then

e(E) = rd.

Proof. It is enough to prove the first assertion as the rest are immediate consequences of the first. Let
[E] ∈Quotr,0(F∗(Q)) be a point corresponding to a quotient F∗(Q)→ G. Then by definition the expected
dimension is given by e(E) = χ(H om(E,G)). By the Riemann-Roch formula we have

χ(H om(E,G)) = deg(E∗ ⊗G) + rk(E)rk(G)(1− g)

which gives

e(E) = r deg(G) + r(pq − r)(1− g).
As E has degree zero, so deg(G) = deg(F∗(Q)) = qµ+q(p−1)(g −1). Substituting this in the above equation
and simplifying the result gives the asserted formula. �

Proposition 2.5. Let Q be a semistable bundle of rank q and deg(Q) = (r − q)(1− g) + d with q < r < pq and
d ≥ 0. Then

(1) The Quot-scheme Quotr,0(F∗(Q)) is non-empty.
(2) Any irreducible component of Quotr,0(F∗(Q)) has dimension ≥ rd.
(3) If p >max(2r(r −1)(g −1), 2rdq ) then for any [E] ∈Quotr,0(F∗(Q)), the quotient F∗(Q)/E is torsion-free,

i.e., E ↪→ F∗(Q) is a subbundle.
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Proof. The assertion (1) is [JP15, Proposition 2.3.2]. The assertion (2) is [JP15, Proposition 2.3.4]. So it remains
to prove (3). Let E′ denote the saturation of E in F∗(Q). Then µ(E′) ≥ 0. Assume on the contrary that
E′ , E, i.e., µ(E′) > 0. Then we invoke [JP15, Proposition 4.2.1] with n = r and δ = 1

2r , and we note that

µ(Q) = (r−q)(1−g)
q + d

q and that we have the following inequality

µ(Q)
p

+ δ =
(r − q)(1− g)

pq
+
d
pq

+
1
2r
<

1
2r

+
1
2r

=
1
r
.

Then [JP15, Proposition 4.2.1] implies that

0 < µ(E′) <
µ(Q)
p

+ δ <
1
r
,

which leads to a contradiction, since rk(E′) = rk(E) = r . �

3. A finiteness theorem

We start with a lemma.

Lemma 3.1. Let Q be a line bundle of degree −(r − 1)(g − 1) with r ≥ 2. If r ′ < r then

Quotr
′ ,0(F∗(Q)) = ∅.

Proof. Suppose the assertion is not true. Then we have Quotr
′ ,0(F∗(Q)) , ∅. Consider a subsheaf E ∈

Quotr
′ ,0(F∗(Q)). We will use the notation of [JP15, Lemma 3.4.2]. Let W = F∗(E) and equip it with the

filtration induced by the natural filtration V• on the bundle V = F∗(F∗(Q)). We shall denote the latter by
0 =Wm+1 ⊂Wm ⊆ · · · ⊆W1 ⊆W0 =W . Let ri = rk(Wi/Wi+1). Then 1 = r0 ≥ r1 ≥ · · · ≥ rm ≥ 1. So ri = 1
for all i ≥ 0. Now we have the following inequalities

0 = deg(W ) =
m∑
i=0

deg(Wi/Wi+1) ≤
m∑
i=0

deg(Vi/Vi+1),(3.2)

0 ≤
m∑
i=0

(deg(Q) + i(2g − 2)),(3.3)

0 ≤ (m+1)deg(Q) +
m(m+1)

2
(2g − 2).(3.4)

As rk(E) = r ′ so m = r ′ − 1 and hence the last inequality can be written as

0 ≤ r ′(r − 1)(1− g) + r ′(r ′ − 1)(g − 1) = r ′(g − 1)(r ′ − 1− r +1) = r ′(r ′ − r)(g − 1) < 0.

Thus we have arrived at a contradiction. �

We will now prove a finiteness theorem for the Quot-scheme Quot`q,0(F∗(Q)) when Q is a decomposable
bundle. Assume that q ≥ 2, ` ≥ 2 and that p > r(r − 1)(r − 2)(g − 1) for r = `q. Let L1, . . . ,Lq be q distinct
line bundles of degree −(` − 1)(g − 1). We denote by Q the decomposable bundle

Q = ⊕qi=1Li and Qj = ⊕i,jLi ⊂Q.

Then for any j = 1, . . . , q we have an inclusion

Quot`q,0(F∗(Qj)) ↪→Quot`q,0(F∗(Q)).
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By Proposition 2.5(2) we have

dimQuot`q,0(F∗(Qj)) ≥ q`(` − 1)(g − 1) > 0.

We denote by Ω(Q) the residual component of these q Quot-schemes in Quot`q,0(F∗(Q)), i.e., we have a
union

Quot`q,0(F∗(Q)) =
q⋃
j=1

Quot`q,0(F∗(Qj))∪Ω(Q).

Theorem 3.5. We consider the morphism

Φ :
q∏
i=1

Quot`,0(F∗(Li)) −→Quot`q,0(F∗(Q))

defined by
(Si ⊂ F∗(Li))

q
i=1 7−→ (⊕qi=1Si ⊂ F∗(Q)).

Then Φ induces a bijection at the level of k-rational points
q∏
i=1

Quot`,0(F∗(Li))(k) 'Ω(Q)(k).

In particular Ω(Q)(k) , ∅ and
dimΩ(Q) = 0.

Proof. Let [E] ∈ Quot`q,0(F∗(Q)). We will denote by Ei = πi(E) the image of E under the projection
πi : F∗(Q)→ F∗(Li). First we note the equivalence [E] ∈ Quot`q,0(F∗(Qi)) if and only if Ei = πi(E) = 0.
Therefore, for any [E] ∈

(
Quot`q,0(F∗(Q)) \

⋃q
i=1Quot`q,0(F∗(Qi))

)
we have Ei , 0 for i = 1, . . . , q. Moreover,

by [JP15, Proposition 4.5.1 and Theorem 4.1.1] the vector bundles E and Ei are semi-stable and their degrees
are zero. We now consider the kernel

Ki = ker(E→⊕j,iEj ).

Then clearly Ki ⊂ F∗(Li). Note that Ki = E∩F∗(Li) and so Ki∩Kj = 0 for i , j . Moreover, by our assumption
on E, we have Ki , 0 for all i = 1, . . . , q. As the bundles E and Ei are semi-stable of degree zero, the
bundles Ki are also semi-stable of degree zero. We now apply Lemma 3.1 to the line bundle Li of degree
−(`−1)(g −1) and use the fact that Quotrk(Ki),0(F∗(Li)) , ∅— since this Quot-scheme contains [Ki] — and
we obtain that rk(Ki) ≥ `. Thus we have a homomorphism

⊕qi=1Ki → E

which is injective and so both bundles have the same rank and degree. So this map is an isomorphism.
Moreover, we observe that Ki = Ei for any i = 1, . . . , q. Thus we have shown that Φ induces a bijection at the
level of k-rational points between

∏q
i=1Quot`,0(F∗(Li))(k) and Ω(Q)(k).

Since by [JP15, Theorem 6.2.1] each Quot`,0(F∗(Li))(k) is a finite set, so Ω(Q)(k) is also a finite set. Since
k is algebraically closed, we deduce that

dimΩ(Q) = 0.

�

Remark 3.6. If the line bundles Li are not distinct, one still can show finiteness of Ω(Q) defined as the
residual component of the Quot-schemes Quot`q,0(F∗(Q̃)) for any subbundle Q̃ ⊂Q of degree 0 and rank
q − 1.
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Remark 3.7. We will define in Section 7 an open subscheme Ω(Q) ⊂Quot`q,0(F∗(Q)) for any semi-stable
vector bundle Q, generalizing the above Ω(Q).

4. Opers of type q

We now recall the definition of our main object (see [JP15, Definition 3.1.1]).

Definition 4.1. An oper of type q on a smooth projective curve X is a triple (V ,∇,V•), where
(1) V is a vector bundle of rank r = `q on X,
(2) ∇ : V → V ⊗Ω1

X is an integrable connection on V ,
(3) V• is a filtration of length ` on V

0 = V` ⊂ V`−1 ⊂ · · · ⊂ V1 ⊂ V0 = V

such that
(a) V0/V1 =Q is a vector bundle of rank q, and
(b) ∇ induces OX-linear isomorphisms for 1 ≤ i ≤ ` − 1

gri(V )→ gri−1(V )⊗Ω1
X ,

where we define gri(V ) := Vi/Vi+1 for all 0 ≤ i ≤ ` − 1.

Note that our terminology suppresses the dependence on Q, but occasionally we may need to emphasize
the dependence on Q and in such contexts will refer to such a triple as an oper of type Q.

From the definition it is immediate that one has, for all 0 ≤ i ≤ ` − 1, isomorphisms of bundles

(4.2) gri(V ) 'Q⊗ (Ω1
X)
⊗i ,

and

(4.3) det(Vi) = det(Q)`−i ⊗ (Ω1
X)
q((`−1)+(`−2)+···+i) = det(Q)`−i ⊗ (Ω1

X)
q(`−i)(`+i−1)

2

Note that we have the following equivalence

deg(Q) = −q(` − 1)(g − 1) ⇐⇒ deg(V ) = 0.

In the next proposition we will show that opers of type q exist over an algebraically closed field of any
characteristic. We first recall that G` denotes the Gunning bundle of rank ` associated to the theta-
characteristic θ. We equip G` with any connection ∇G` and with its natural filtration G•. Then it is
well-known that the triple (G`,∇G` ,G•) is an oper (of type 1) under the assumption p > (` − 1)(g − 1), if
char(k) = p > 0.

Proposition 4.4. Let k be any algebraically closed field. If char(k) = p > 0, we assume that p > q(` − 1)(g − 1).
Let S be a stable vector bundle on X with deg(S) = 0 and rk(S) = q. Then the triple

(V = G` ⊗ S,∇,V• = G• ⊗ S)

is an oper of type q for any connection ∇ on G` ⊗ S .

Proof. The proof is elementary. Let us note that the space of connections on G` ⊗ S is non-empty, since
by stability the degree-0 vector bundle S admits a connection ∇S , so ∇G` ⊗∇S is a connection on G` ⊗ S .
Note that, again by stability of S, the filtration V• coincides with the Harder-Narasimhan filtration of
V . The assumption on p implies that no proper subbundle of the filtration G• ⊗ S admits a connection.
These observations easily show that any connection ∇ on V is an oper connection. Finally we note that
V0/V1 = S ⊗θ−(`−1). �
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We say that an oper (V ,∇,V•) of type q is nilpotent (resp. dormant) if the oper connection ∇ is nilpotent
of exponent at most rk(V ) (resp. has p-curvature zero). Before proceeding further let us recall the following
result of [JP15, Theorem 3.1.6] which shows that dormant opers of type q exist.

Theorem 4.5. Let Q be any vector bundle of rank q. Then the triple

(F∗(F∗(Q)),∇can,F∗(F∗(Q))•)

forms a dormant oper of type q. Here ∇can denotes the canonical connection on the vector bundle F∗(F∗(Q)).

The relationship between opers of type 1 and the Quot-scheme Quotr,0(F∗(Q)) when Q is a line bundle
was studied in [JP15]. The main result [JP15, Theorem 6.2.1 and Theorem 5.4.1] is the following

Theorem 4.6. Assume p > r(r − 1)(r − 2)(g − 1). Let Q be a line bundle of degree deg(Q) = −(r − 1)(g − 1).
Then the set of dormant opers (V ,∇,V•) with V0/V1 ' Q is a non-empty, finite set, in bijection with the set of
k-rational points Quotr,0(F∗(Q))(k).

We now give an alternative characterization of the underlying bundle V of an oper (V ,∇,V•) of type q.

Theorem 4.7. Let X/k be a smooth, projective curve over an algebraically closed field k. Let S be a vector bundle
on X. Let θ be a line bundle on X. Suppose that the following hypotheses are satisfied:

(1) One has θ2 'Ω1
X i.e. θ is a theta-characteristic on X.

(2) deg(S) = 0.
(3) an isomorphism E nd(S) = OX ⊕E nd0(S) of OX -modules.
(4) S is stable.
(5) E nd0(S)∗ ' E nd0(S).

Then for every integer ` ≥ 2 there exists a vector bundle V on X satisfying the following

(1) deg(V ) = 0
(2) V is equipped with a filtration V = V0 ⊃ V1 ⊃ V2 ⊃ · · · ⊃ V` = 0,
(3) gri(V ) ' S ⊗θ2i−(`−1) =: Si
(4) for all i = 0,1, . . . , ` − 1 the extension

0→ gri+1(V )→ Vi/Vi+2→ gri(V )→ 0

is the unique non-split extension of this type.

Up to an isomorphism, there is only one vector bundle V with these properties.

Remark 4.8. If rk(Q) is not divisible by p then one has an isomorphism E nd(S) = OX ⊕E nd0(S). Further
one then also has E nd0(S)∗ ' E nd0(S). Hence in particular the hypotheses of the theorem can easily be
satisfied for any stable bundle S of degree zero and of rank coprime to the characteristic of the ground field.
In particular these hypotheses are easily satisfied in characteristic zero.

We begin with the following lemma.

Lemma 4.9. Let θi = θ2i−(`−1). Then for all i ≥ 1,

θ∗i−1 ⊗θi 'Ω1
X .

Proof. From the definition

θ∗i−1 ⊗θi = θ
−(2(i−1)−(`−1))+(2i−(`−1)) ' θ2i−2(i−1) ' θ2 'Ω1

X .

Hence the claim. �

Lemma 4.10. For i = 0, . . . , ` − 1 one has

Ext1(Si−1,Si) 'H1(X,Ω1
X).



Opers of higher types, Quot-schemes and Frobenius instability loci 9Opers of higher types, Quot-schemes and Frobenius instability loci 9

Proof. One has

Ext1(Si−1,Si) = H1(X,H om(Si−1,Si))(4.11)

= H1(X,S∗i−1 ⊗ Si)(4.12)

= H1(X,S∗ ⊗ S ⊗θ∗i−1 ⊗θi)(4.13)

= H1(X,S∗ ⊗ S ⊗Ω1
X) [by Lemma 4.9].(4.14)

Hence

Ext1(Si−1,Si) ' H1(X,S∗ ⊗ S ⊗Ω1
X)(4.15)

= H1(X, (OX ⊕E nd0(S))⊗Ω1
X)(4.16)

= H1(X,Ω1
X)⊕H

1(X,E nd0(S)⊗Ω1
X).(4.17)

By Serre duality
H1(X,E nd0(S)⊗Ω1

X) 'H
0(X,E nd0(S)),

and as S is stable of degree zero (by hypothesis) so H0(X,E nd0(S)) = 0. This proves the claim. �

Lemma 4.18. For i = 2, . . . , ` − 1 one has

Ext1(Si−2,Si) = 0.

Proof. One has

Ext1(Si−2,Si) ' H1(X,H om(Si−2,Si))(4.19)

= H1(X,S∗ ⊗ S ⊗θ∗i−2 ⊗θi)(4.20)

= H1(X,θ∗i−2 ⊗θi ⊕E nd0(S)⊗θ∗i−2 ⊗θi).(4.21)

Now
θ∗i−2 ⊗θi ' θ

−(2(i−2)−(`−1))+(2i−(`−1)) ' θ−2i+4+2i 'Ω1
X
⊗2
.

Therefore
H1(X,θ∗i−2 ⊗θi) =H

1(X,Ω1
X
⊗2
) = 0,

and
H1(X,E nd0(S)⊗Ω1

X
⊗2
) 'H0(X,E nd0(S)⊗ (Ω1

X)
−1) = 0

as S is stable, hence there are no global homomorphisms S→ S ⊗ (Ω1
X)
−1 since µ(S ⊗ (Ω1

X)
−1) < µ(S). This

proves the lemma. �

Lemma 4.22. For all j ≥ 3 one has
H1(X,E nd(S)⊗θj ) = 0.

Proof. This is clear by stability of S and Serre duality. �

Lemma 4.23. For j0 > i0 +1 we have
Ext1(Si0−1,Sj0−1) = 0.

Proof. We have

Ext1(Si0−1,Sj0−1) 'H
1(E nd(S)⊗θ2(j0−i0))

and as j0 > i0 +1 so j0 − i0 > 1. Hence this space is of the form H1(E nd(S)⊗θm) with m ≥ 3. So we are
done by Lemma 4.22. �

Lemma 4.24. Suppose for some i0 ≥ 0 the bundle Vi0 has been constructed with asserted properties. Then one has

Ext1(Si0−1,Vj ) = 0 for j ≥ i0 +1.
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Proof. Clearly the claim is true for j = ` as V` = 0. We prove the claim by descending induction on j .
Suppose the lemma is true for some j0 with i0 +1 < j0 ≤ `. Then we claim that the assertion is also true for
j0 − 1. As j0 > i0 +1, one has the exact sequence

0→ Vj0 → Vj0−1→ Sj0−1→ 0.

Then applying Hom(Si0−1,−) one gets

→ Ext1(Si0−1,Vj0)→ Ext1(Si0−1,Vj0−1)→ Ext1(Si0−1,Sj0−1)→ 0.

By induction hypothesis the first term is zero and by Lemma 4.23 the last term is zero. Hence the middle
term is zero and the claim is proved. �

Now we are ready to prove Theorem 4.7.

Proof of Theorem 4.7. The construction of the bundle V whose existence is asserted in the theorem is
inductive. We let V` = 0 and V`−1 = S`−1. Now we define V`−2 as the unique non-split extension

0→ S`−1 = V`−1→ V`−2→ S`−2→ 0,

which is given by the isomorphism of Lemma 4.10:

Ext1(S`−2,S`−1) 'H1(X,Ω1
X).

Now, if `−3 ≥ 0 we define V`−3 using V`−2 as follows. Apply Hom(S`−3,−) to the exact sequence defining
V`−2. This gives

(4.25) 0→Hom(S`−3,S`−1)→Hom(S`−3,V`−2)→Hom(S`−3,S`−2)→

→ Ext1(S`−3,S`−1)→ Ext1(S`−3,V`−2)→ Ext1(S`−3,S`−2)→ 0.

By Lemma 4.18 we get Ext1(S`−3,S`−1) = 0, and by Lemma 4.10 we get

Ext1(S`−3,S`−2) =H
1(X,Ω1

X).

Therefore we get

Ext1(S`−3,V`−2) 'H1(X,Ω1
X).

So we define V`−3 as the unique non-split extension given by this isomorphism. Then we have by construction

0→ V`−2→ V`−3→ S`−3→ 0.

Now we repeat this process to obtain the general construction. Suppose that for some i0 ≥ 0, Vi0 has been
constructed with the asserted properties. Then one has an exact sequence

0→ Vi0+1→ Vi0 → Si0 → 0.

Then we claim that there is a unique non-split extension in Ext1(Si0−1,Vi0) which gives Vi0−1. We proceed
as follows: apply Hom(Si0−1,−) to the above short exact sequence to get

→ Ext1(Si0−1,Vi0+1)→ Ext1(Si0−1,Vi0)→ Ext1(Si0−1,Si0)→ 0.

By Lemma 4.10 one as Ext1(Si0−1,Si0) ' H
1(X,Ω1

X), and so to prove our claim it suffices to prove that
Ext1(Si0−1,Vi0+1) = 0. This follows from Lemma 4.24. Repeating this process eventually one gets V0 as the
unique non-split extension

0→ V1→ V0→Q0→ 0.

This completes the proof. �
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5. Properties of the Quot-scheme Quotr,0(F∗(Q)) when q = 1

The following proposition gives some properties on the Quot-scheme Quotr,0(F∗(Q)) when Q is a line
bundle. It generalizes the case r = 2, which was already shown in [JP15, Lemma 7.1.3] and in the proof of
[JP15, Theorem 7.1.2].

We also note that there is a gap in the proof of [JP15, Theorem 7.1.2] and therefore we shall give the proof
of the following theorem with all the details.

Let Q be a line bundle of degree deg(Q) = −(r − 1)(g − 1) + d with d ≥ 0 and let C be an irreducible
component of Quotr,0(F∗(Q)). We recall from Proposition 2.4(5) that the expected dimension of C is rd.

Definition 5.1. We will say that C contains a dormant oper if there exists an effective divisor D of degree d
and a point [E] ∈Quotr,0(F∗(Q(−D))) — hence [E] corresponds to a dormant oper — such that [E] ∈ C

under the natural inclusion
Quotr,0(F∗(Q(−D))) ⊂Quotr,0(F∗(Q)).

Remark 5.2. We note that the above definition of C containing a dormant oper is more restrictive than the
natural one: there exists a [E] ∈ C such that the triple (F∗E,∇can,F∗E•), where the filtration F∗E• is the
induced filtration from F∗(F∗(Q)), is an oper of type 1. Note that the latter definition was used in [JP15] for
r = 2. It can be checked that both definitions coincide for small d.

Theorem 5.3. With the above notation and assuming that p > r(r − 1)(r − 2)(g − 1) we have for any irreducible
component C containing a dormant oper

(1) dim(C ) = rd.
(2) For a general vector bundle [E] ∈ C the map fE obtained by adjunction

fE : F∗(E)→Q

is surjective.

Proof. (1) We prove the result by induction on d. For d = 0 this is exactly [JP15, Theorem 6.2.1]. Assume that
the statement holds for an integer d ≥ 0 and consider a line bundle Q with deg(Q) = −(r −1)(g −1)+(d+1).
Let C ⊂Quotr,0(F∗(Q)) be an irreducible component containing a dormant oper [E], i.e. by definition there
exists an effective divisor D of degree d +1 such that E ↪→ F∗(Q(−D)) ⊂ F∗(Q). From now on the proof goes
along the lines of [JP15, Lemma 7.1.3]. For the convenience of the reader we include it here.

We decompose D = x+D ′ with x ∈ X and D ′ effective of degree d. Let C ′ be an irreducible component
of Quotr,0(F∗(Q(−x))) ∩ C containing [E]. By induction we have dim(C ′) = rd. Now we claim that
codimC C ′ ≤ r . To prove this, note that C ′ , ∅. Since C is an irreducible component of the Quot-scheme, it
is equipped with a universal quotient sheaf Q over X ×C .

0 −→ E −→ p∗X(F∗(Q)) −→Q −→ 0.

We denote by E the kernel ker(p∗X(F∗(Q)) −→Q). Since Q and p∗X(F∗(Q)) are C -flat, E is also C -flat and
∀c ∈ C the homomorphism E|X×{c}→ F∗(Q) is injective (see e.g. [HL10]). Hence, since F∗(Q) is locally free,
E|X×{c} is also locally free (since torsion free over a smooth curve) and by [HL10, Lemma 2.1.7] we conclude
that E is locally free over X ×C . Since p∗X(F∗(Q)) = (F × idC )∗(p∗X(Q)) we obtain by adjunction a non-zero
map (F × idC )∗(E)→ p∗X(Q), hence a non-zero global section σ of the rank-r vector bundle

V := H om((F × idC )
∗(E),p∗X(Q))

over X×C . It is clear that Quotr,0(F∗(Q(−x)))∩C is the zero-scheme of the section σ|{x}×C ∈H0(C ,V|{x}×C )
obtained after restriction. Hence codimC C ′ ≤ r and therefore dim(C ) ≤ rd + r . On the other hand, by
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the dimension estimates of the Quot-schemes in Proposition 2.5(2) we have dim(C ) ≥ rd + r . Therefore
dim(C ) = rd + r and we are done.

(2) First consider the case d = 0. Then by [JP15, Theorem 5.4.1 (1)] any [E] ∈Quotr,0(F∗(Q)) is an oper,
which implies that f ∗E : F∗(E)→Q is surjective.

We now assume that d > 0. With the previous notation we denote by Σ the zero-scheme of the global
section σ of the vector bundle V and by pX and pC projections onto X and C respectively. Thus one has a
diagram

(5.4) Σ // X ×C

pX||
pC ""

X C

We have the set-theoretical equalities

Σ|{x}×C = Quotr,0(F∗(Q(−x)))∩C

= {E ∈ C : fE : F∗(E)→Q not surjective at x} .

Since Σ is closed and pC is a proper map, so Σ′ = pC (Σ) is a closed subset of the irreducible component
C . So there are two possibilities:

(I) Either Σ′ , C , or
(II) Σ′ = C .

Now suppose we are in Case (I): in this case for a general [E] ∈ C , one has (X × {E})∩Σ = ∅, which is
equivalent to surjectivity of fE . So in Case (I) one has surjectivity of fE for general [E] as claimed.

So let us suppose we are in Case (II). In this case there is at least one irreducible component of Σ, which
we will again denote by Σ, which surjects onto C under pC . Hence

dim(Σ) ≥ dim(C ) ≥ rd.

Consider the restriction p̄X : Σ → X of pX : X × C → X to Σ. First we assume that p̄X is surjective.
Since X is smooth and Σ is irreducible, by [Har77, Chapter III, Proposition 9.7] p̄X is flat. Hence by
[Har77, Chapter III, Corollary 9.6] any irreducible component of the fiber p̄−1X (x) has dimension equal to
dim(Σ)− 1 ≥ rd − 1. By assumption C contains a dormant oper [E] and as Σ′ = C , there exists an x0 ∈ X
such that (x0, [E]) ∈ Σ. Since any irreducible component of p̄−1X (x0) has dimension ≥ rd − 1, we see that
the irreducible component of p̄−1X (x0) containing [E] has dimension at least rd − 1 and this irreducible
component is contained in Quotr,0(F∗(Q(−x0))). But this contradicts part (1) with d − 1 ≥ 0.

Finally, we need to consider the case when p̄X is not surjective. Since Σ is irreducible, p̄X(Σ) = {x0} for
some point x0 ∈ X. Hence Σ ⊂ p̄−1X (x0) = {x0} ×C , which implies that

Σ ⊂Quotr,0(F∗(Q(−x0)))∩C .

By assumption C contains a dormant oper [E], hence there exists an effective divisor D of degree d ≥ 1
such that [E] ∈Quotr,0(F∗(Q(−D))). Then clearly x0 ∈D and (x0, [E]) ∈ Σ. We then obtain a contradiction,
since dim(Σ) ≥ rd and by part (1) the irreducible component of Quotr,0(F∗(Q(−x0))) containing [E] has
dimension r(d − 1) < rd. �

Remark 5.5. The gap in the proof of [JP15, Theorem 7.1.2] is related to the fact that the intersection
Quot2,0(F∗(Q(−x)))∩C is not necessarily irreducible.
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6. The Quot-scheme Quotr,0(F∗(Q)) is bigger than expected when q ≥ 2

We assume that q = rk(Q) ≥ 2 and that

−(r − q)(g − 1) ≤ deg(Q) = −(r − q)(g − 1) + d ≤ −1,

or equivalently,

0 ≤ d ≤ (r − q)(g − 1)− 1.

Note that the last inequality implies that d < (r − 1)(g − 1) − 1. With this notation we have the following
result.

Proposition 6.1. Let [E] ∈Quotr,0(F∗(Q)). Then we have

dimQuotr,0(F∗(Q)) > exp.dim[E] Quotr,0(F∗(Q)) = rd.

Proof. By [JP15, Theorem 2.3.1] there exists a line subbundle L ⊂Q such that

degL ≥ µ(Q)−
(
1− 1

q

)
(g − 1)−

(
1− 1

q

)
(6.2)

=
(
− r
q
+1

)
(g − 1) + d

q
−
(
1− 1

q

)
(g − 1)−

(
1− 1

q

)
(6.3)

= −1
q
(r − 1)(g − 1) + d

q
−
(
1− 1

q

)
.(6.4)

Note that the expression on the right-hand side is not necessarily an integer. We then introduce the quantity
δ = degL+ (r − 1)(g − 1). Then clearly

Quotr,0(F∗(L)) ⊂Quotr,0(F∗(Q))

and by Proposition 2.5 (2) dimQuotr,0(F∗(L)) ≥ rδ. Therefore in order to show the proposition it will be
enough to show the inequality δ > d. We have

δ = degL+ (r − 1)(g − 1),(6.5)

≥ (r − 1)(g − 1)
(
1− 1

q

)
+
d
q
−
(
1− 1

q

)
,(6.6)

=
(
1− 1

q

)
[(r − 1)(g − 1)− 1] + d

q
.(6.7)

Now we observe that the inequality (
1− 1

q

)
[(r − 1)(g − 1)− 1] + d

q
> d

is equivalent to

(r − 1)(g − 1)− 1 > d,

which holds by assumption on d. �

Remark 6.8. In particular if e(E) = 0 the Quot-scheme Quotr,0(F∗(Q)) has some positive-dimensional
components, as already observed in the previous section, see also Theorem 3.5.
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7. A characterization of dormant opers of type q

Lemma 7.1. Let Q be any vector bundle of rank q and deg(Q) = −q(`−1)(g−1). We denote by (V ,∇,V•) the oper
(F∗(F∗(Q)),∇can,F∗(F∗(Q))•) introduced in Theorem 4.5. Let [W ′] ∈Quotr,0(F∗(Q)) and let W = F∗(W ′) ⊂ V .
Then the triple (W,∇can,W•), where ∇can is the canonical connection on F∗(W ′) andW• the induced flag defined
by Wi =W ∩Vi , is an oper of type q if and only if

W` =W ∩V` = {0}.

Proof. Suppose that the triple (W,∇can,W•) is an oper of type q. By [JP15, Lemma 3.4.2(i)] we have an
inclusion W0/W1 ⊂Q and since both vector bundles have same degree and rank, they are isomorphic. It
also follows from [JP15, Lemma 3.4.2(ii)] that rk(W`) = 0, hence W` = {0}.

Conversely, assume that W` = {0}. Then consider the sequence ri = rk(Wi/Wi+1). So by [JP15,
Lemma 3.4.2(ii)] we have the inequalities

q ≥ r0 ≥ r1 ≥ · · · ≥ r` = 0.

As
∑`−1
i=0 ri = q` it follows that all ri = q. Thus rk(Wi/Wi+1) = ri = q for all i.

Now consider the increasing sequence of degrees deg(Vi/Vi+1) = deg(Q) + iq(2g − 2) for i = 0, . . . , ` − 1.
Since we have an injective map Wi/Wi+1 ↪→ Vi/Vi+1 and both the bundles are of the same rank, we obtain
deg(Wi/Wi+1) ≤ deg(Vi/Vi+1) and one has

0 =
`−1∑
i=0

deg(Wi/Wi+1) ≤
`−1∑
i=0

deg(Vi/Vi+1).

This gives

0 =
`−1∑
i=0

deg(Wi/Wi+1) ≤
`−1∑
i=0

(deg(Q) + iq(2g − 2)).

The last sum evaluates to

0 =
`−1∑
i=0

deg(Wi/Wi+1) ≤ q(g − 1)(`(` − 1)− `(` − 1)) = 0.

Thus one sees that deg(Wi/Wi+1) = deg(Vi/Vi+1). Therefore the above injective maps are isomorphisms:
Wi/Wi+1 ' Vi/Vi+1 for i = 0, . . . , ` − 1. This proves the assertion. �

One important consequence of this lemma is the following fundamental result.

Theorem 7.2. Let Q be a semi-stable vector bundle with deg(Q) = −q(` − 1)(g − 1) and rk(Q) = q for some
integer ` ≥ 2. We put r = `q and use the notation of Lemma 7.1.

(1) For every [W ′] ∈Quotr,0(F∗(Q)) satisfying

W` =W ∩V` = {0}

the triple (W = F∗(W ′),∇can,W•) is a dormant oper of type q.
(2) If p > r(r − 1)(g − 1) then conversely every dormant oper (W,∇,W•) of type q with W0/W1 'Q is of the

form (W = F∗(W ′),∇can,W•) for some W ′ ∈Quotr,0(F∗(Q)).

Proof. The first assertion is immediate from Lemma 7.1.

Now suppose (W,∇,W•) is a dormant oper of type q. Then by Cartier’s Theorem (see [Kat70])W = F∗(W ′)
for some vector bundle W ′ and as W = F∗(W ′)�W0/W1 = Q one gets by adjunction a non-zero map
W ′→ F∗(Q). Let us first show that W ′ is semi-stable (of degree zero). Suppose this is not the case. Then
there exists a subbundle W ′′ ↪→W ′ for which µ(W ′′) > 0. Then in fact one has µ(W ′′) ≥ 1

r−1 . But then
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F∗(W ′′) ↪→W such that µ(F∗(W ′′)) = pµ(W ′′) ≥ p
r−1 . On the other hand as W carries the structure of an

oper of type q, and one has µ(W`−1) = q(2(`−1)−(`−1))(g−1) = q(`−1)(g−1) and this is the destabilizing
subbundle of largest degree, so p

r−1 ≤ µ(F
∗(W ′′)) ≤ q(` − 1)(g − 1). Hence

p < (r − 1)q(` − 1)(g − 1) = (r − 1)(r − q)(g − 1).

On the other hand we have assumed that p > r(r − 1)(g − 1). Therefore we have arrived at a contradiction.
Thus the vector bundle W ′ is semi-stable.

Now if W ′ does not map injectively into F∗(Q), then the image is a subsheaf of some degree d ≥ 1 and
rank ≤ r − 1 and hence it has slope ≥ 1

r−1 . Again by [JP15, Proposition 4.2.1] one sees that F∗(Q) does not
have any subsheaves of suitably positive degree and of rank ≤ r − 1. So W ′ ↪→ F∗(Q). �

Proposition 7.3. Using the above notation, the set of points [W ′] ∈Quotr,0(F∗(Q)) satisfying W` = {0} is an
open subset.

Proof. The Quot-scheme Quotr,0(F∗(Q)) comes equipped with a universal quotient G defined over the
product X ×Quotr,0(F∗(Q)) which is flat over Quotr,0(F∗(Q)):

(7.4) 0→W ′→ p∗X(F∗(Q))→ G → 0.

Since p∗X(F∗(Q)) is locally free, it is flat over Quotr,0(F∗(Q)) and therefore for any point y ∈Quotr,0(F∗(Q))
the homomorphism W ′ |X × {y} → F∗(Q) is injective. Thus W ′ |X × {y} is locally free for any y, which in turn
implies that W ′ is locally free. Hence, with the notation of Lemma 7.1 we obtain a homomorphism between
locally free sheaves over X ×Quotr,0(F∗(Q))

Φ : F∗(W ′)→ p∗X(V /V`).

By Lemma 7.1 the conditionW` = {0}, withW = F∗(W ′ |X×{y}), is equivalent to ΦX×{y} being an isomorphism.
But the set of points y ∈Quotr,0(F∗(Q)) where ΦX×{y} is not an isomorphism is clearly a closed subset. �

We shall denote this open subscheme

Ω(Q) ⊂Quotr,0(F∗(Q)).

We recall that by Theorem 7.2 the open subscheme Ω(Q) parameterizes dormant opers (W,∇,W•) of type
q with W0/W1 'Q.

Remark 7.5. We observe that the Quot-scheme Quotr,0(F∗(Q)) has expected dimension 0 if rk(Q) = q,
deg(Q) = −q(` − 1)(g − 1) and r = q`, but in the case q ≥ 2 we have shown in Proposition 6.1 that
Quotr,0(F∗(Q)) always contains a Quot-scheme Quotr,0(F∗(L)) for some line subbundle L ⊂Q, which has
dimension > 0. Clearly, the Quot-scheme Quotr,0(F∗(L)) is not contained in the open subscheme Ω(Q) and
does not correspond to dormant opers.

Conjecture 7.6. Let Q be a semi-stable vector bundle with deg(Q) = −q(` − 1)(g − 1) and rk(Q) = q for
some integer ` ≥ 2. Put r = q`. Then, for p > r(r − 1)(r − 2)(g − 1)

Ω(Q) is non-empty and of dimension 0.

We now list some evidence for this conjecture:

(1) If q = 1, the conjecture is true. This is shown in [JP15] — see Theorem 4.6. Note that in this case we
have equality Ω(Q) = Quotr,0(F∗(Q)).

(2) The conjecture is true for a decomposable bundle of the form Q = ⊕qi=1Li , where the Li are q distinct
line bundles of degree deg(Li) = −(` − 1)(g − 1). This is shown in Theorem 3.5. We note that in this
case points of Ω(Q) correspond to direct sums of q opers of type 1.
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8. Dimension of Frobenius instability loci

Throughout this section we assume that p > r(r − 1)(r − 2)(g − 1).

LetM(r) be the coarse moduli space of semi-stable vector bundles of rank r and degree 0 over X. Let
J (r) ⊂M(r) be the closed subscheme ofM(r) parameterizing semi-stable vector bundles E such that F∗(E)
is not semi-stable. The closed subscheme J (r) will be referred to as the Frobenius instability locus. The
purpose of this section is to make a conjecture on the dimension of J (r). Before stating the conjecture we
recall some facts on the structure of J (r).

LetM(q,−1) be the moduli space of semi-stable bundles of rank q and degree −1 over X. Note that as
we are in the coprime case any semi-stable bundle of rank q and degree −1 is also stable. Let U be the
universal bundle over X ×M(q,−1). Consider the relative Quot-scheme

π : Quotr,0((F × idM(q,−1))∗U ) −→M(q,−1)

with fiber π−1(Q) = Quotr,0(F∗(Q)) over a stable bundle Q ∈M(q,−1).

For q = 1, . . . , r − 1 we denote by Jq ⊂ J (r) the closure of the forgetful map

αq : Quotr,0((F × idM(q,−1))∗U ) −→M(r), [E ⊂ F∗(Q)]→ E.

Then by [JP15, Theorem 4.4.1] we have the inclusions

J s(r) ⊂
r−1⋃
q=1

Jq ⊂ J (r),

where J s(r) denotes the subset of stable vector bundles E such that F∗(E) is not semi-stable.

In order to compute the dimension of Jq we need to know the following dimensions

(1) dimQuotr,0(F∗(Q)) for general Q ∈M(q,−1).
(2) dimα−1q (E) for general E ∈ Jq.
Unfortunately we only know dimC for certain irreducible components C ⊂Quotr,0(F∗(Q)) when q = 1.

We therefore focus on the case q = 1. Let Q be a line bundle of degree −1 and let C be an irreducible
component of Quotr,0(F∗(Q)) containing a dormant oper. Then by Theorem 5.3 dimC = r((r−1)(g−1)−1)
and for a general vector bundle [E] ∈ C the map fE : F∗(E)→Q obtained by adjunction is surjective. Let us
denote the kernel of fE by S = kerfE . Note that deg(S) = 1 for general [E].

With this notation we make the following

Conjecture 8.1. For a general vector bundle E ∈ C the bundle S is semi-stable.

As a consequence of this conjecture we obtain that for a general E ∈ C the filtration 0 ⊂ S ⊂ F∗(E) is the
Harder-Narasimhan filtration of F∗(E). Therefore the quotient F∗(E)�Q = F∗(E)/S is uniquely determined
and dimHom(E,F∗(Q)) = 1. This means that the forgetful map α1 is generically injective on components
C containing dormant opers.

Hence if Conjecture 8.1 holds, then we have the following formula

dimJ (r) ≥ dimJ1 ≥ dimM(q,−1) +dimC = (r2 − r +1)(g − 1)− (r − 1).

Remark 8.2. Conjecture 8.1 holds trivially for r = 2 and the lower bound of the dimension of J (2) was
already worked out in [JP15, Theorem 7.1.2].
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Finally, we conjecture the following structure of Jq for any q = 1, . . . , r − 1.

Conjecture 8.3. The Harder-Narasimhan filtration of F∗(E) of a general bundle E ∈ Jq is minimal, i.e., of
the form

0 ⊂ S ⊂ F∗(E),
where deg(S) = 1 and rk(S) = r − q.

Remark 8.4. The above two conjectures hold in the case p = 2, r = 2 by [JRXY06] and for g = 2, r = 3,p = 3.
This is worked out in [Li19].
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