
Épijournal de Géométrie Algébrique
epiga.episciences.org

Volume 5 (2021), Article Nr. 1

Motives with modulus, I:
Modulus sheaves with transfers for non-proper modulus pairs
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Abstract. We develop a theory of modulus sheaves with transfers, which generalizes Voevodsky’s theory of
sheaves with transfers. This paper and its sequel are foundational for the theory of motives with modulus,
which is developed in [KMSY20].
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Résumé. Nous présentons une théorie de faisceaux modulaires avec transferts qui généralise la théorie des
faisceaux avec transferts de Voevodsky. Cet article et celui qui lui fait suite sont les fondements d’une théorie
de motifs avec modules, qui est développée dans [KMSY20].
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Introduction

The aim of this paper is to lay a foundation for a theory of motives with modulus, which will be completed
in [KMSY20], generalizing Voevodsky’s theory of motives. Voevodsky’s construction is based on A1-
invariance. It captures many important invariants such as Bloch’s higher Chow groups, but not their natural
generalisations like additive Chow groups [BE03, Par09] or higher Chow groups with modulus [BS19]. Our
basic motivation is to build a theory that captures such non A1-invariant phenomena, as an extension of
[KSY16].

Let Sm be the category of smooth separated schemes of finite type over a field k. Voevodsky’s con-
struction starts from an additive category Cor, whose objects are those of Sm and morphisms are finite
correspondences. We define PST as the category of additive presheaves of abelian groups on Cor (i.e.
functors Cor→Ab that commute with finite sums). Let NST ⊂ PST be the full subcategory of those objects
F ∈ PST whose restrictions FX to XNis is a sheaf for any X ∈ Sm, where XNis denotes the small Nisnevich
site of X, that is, the category of all étale schemes over X equipped with the Nisnevich topology. Objects of
NST are called (Nisnevich) sheaves with transfers. For F ∈NST, we write

H i
Nis(X,F) =H i(XNis,FX).

The following result of Voevodsky [Voe00, Theorem 3.1.4] plays a fundamental rôle in his theory of
motives.

Theorem 1 (Voevodsky). The following assertions hold.

(1) The inclusion NST → PST has an exact left adjoint aVNis such that for any F ∈ PST and X ∈ Sm,
(aVNisF)X is the Nisnevich sheafication of FX as a presheaf on XNis. In particular NST is a Grothendieck
abelian category.

(2) For X ∈ Sm, let Ztr(X) = Cor(−,X) ∈ PST be the associated representable additive presheaf. Then we
have Ztr(X) ∈NST and there is a canonical isomorphism for any i ≥ 0 and F ∈NST:

H i
Nis(X,F) ' ExtiNST(Ztr(X),F).

Our basic principle for generalizing Voevodsky’s theory of sheaves with transfers is that the category
Cor should be replaced by the larger category of modulus pairs, MCor: objects are pairs M = (M,M∞)
consisting of a separated k-scheme of finite type M and an effective (possibly empty) Cartier divisor M∞ on
it such that the complement M◦ := M \M∞ is smooth over k. The group MCor(M,N ) of morphisms is
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defined as the subgroup of Cor(M◦,N ◦) consisting of finite correspondences between Mo and N o whose
closures in M ×k N are proper1 over M and satisfy certain admissibility conditions with respect to M∞ and
N∞ (see Definition 1.1.1). Let MCor ⊂MCor be the full subcategory consisting of objects (M,M∞) with M
proper over k.

We then define MPST (resp. MPST) as the category of additive presheaves of abelian groups on MCor
(resp. MCor). We have a functor

ω : MCor→ Cor, (M,M∞) 7→M − |M∞|,

and two pairs of adjunctions

MPST
τ∗
←−
τ!−→

MPST, MPST
ω∗
←−
ω!−→

PST,

where τ∗ is induced by the inclusion τ : MCor→MCor and τ! is its left Kan extension, and ω∗ is induced
by ω and ω! is its left Kan extension (see Propositions 2.4.1 and 2.2.1).

The main aim of this paper is to develop a sheaf theory on MCor generalizing Voevodsky’s theory. For
M = (M,M∞) ∈MCor and F ∈MPST, let FM be the presheaf on MNis which associates F(U,M∞ ×M U )
to an étale map U →M .

Definition 1. We define MNST to be the full subcategory of MPST of objects F such that FM is a Nisnevich
sheaf on M for any M ∈MCor.

For F ∈MPST and M = (M,M∞), let (FM )Nis be the Nisnevich sheafication of the preshseaf FM on
MNis. Let Σfin be the subcategory of MCor which has the same objects as MCor and such that a morphism
f ∈MCor(M,N ) belongs to Σfin if and only if f o ∈ Cor(Mo,N o) is the graph of an isomorphism Mo ∼−→N o

in Sm that extends to a proper morphism f :M→N of k-schemes such that M∞ = f
∗
N∞. (See Theorems

4.5.5, 4.6.3 and Lemma 4.5.3.)

Theorem 2. The following assertions hold.

(1) The inclusion MNST→MPST has an exact left adjoint aNis such that

(aNisF)(M) = lim−−→
N∈Σfin↓M

(FN )Nis(N )

for every F ∈MPST and M ∈MCor. In particular MNST is a Grothendieck abelian category. (See §A.1
for the comma category Σfin ↓M .)

(2) For M ∈MCor, let Ztr(M) = MCor(−,M) ∈MPST be the associated representable presheaf. Then we
have Ztr(M) ∈MNST and there is a canonical isomorphism for any i ≥ 0 and F ∈MNST:

ExtiMNST(Ztr(M),F) ' lim−−→
N∈Σfin↓M

H i
Nis(N,FN ).

Remark 1. Theorem 2 (2) describes the extension groups in MNST in terms of classical cohomology. It also
implies that the formation

M 7→ lim−−→
N∈Σfin↓M

H i
Nis(N,FN )

is contravariantly functorial for morphisms in MCor, which does not follow immediately from the definition.

The preprint [KSY15] contained a mistake, pointed out by Joseph Ayoub: namely, Proposition 3.5.3 of
loc. cit. is false. Theorem 2 (1) shows that the only false thing in that proposition is that the functor bNis of
loc. cit. is not exact, but only left exact (see Proposition 4.5.4 of the present paper.) This weakens [KSY15,
Proposition 3.6.2] into Theorem 2 (2); see however Question 1 below. What we gain in the present correction

1Here we stress that we do not assume it is finite over M .
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is that the notion of sheaf, which was artificially developed in [KSY15] for MCor, corresponds now to a
genuine Grothendieck topology.

Another proposition incorrectly proven in [KSY15] was Proposition 3.7.3. In Part II of this work [KMSY21],
we correct this proof and recover the proposition in full, hence get a good sheaf theory also for proper
modulus pairs. This allows us to develop the categories of motives again in [KMSY20].

In the last part of this introduction, we raise the following question. Its affirmative answer would simplify
the right hand side of Theorem 2 (2) under two additional conditions (i) and (ii) below. (These conditions
turn out to be essential in [Sai20].)

Question 1. Assume that F ∈MNST satisfies the following conditions:

(i) F is �-invariant, namely, for any M = (M,M∞) ∈MCor the map F(M)→ F(M ⊗�) is an isomor-
phism, where

� = (P1,∞), M ⊗� = (M ×P1,M∞ ×P1 +M × (∞)).

(ii) F lies in the essential image of τ! : MPST→MPST.

Then, is the map

Hq(MNis,FM )→ lim−−→
N∈Σfin↓M

Hq(NNis,FN )

an isomorphism for M ∈MCorls? Here MCorls denotes the full subcategory of MCor consisting of the
objects M = (M,M∞) such that M ∈ Sm and |M∞| is a simple normal crossing divisor on M .

If ch(k) = 0, by resolution of marked ideals ([BM08, the case d = 1 of Theorem 1.3]), the above question
is reduced to the following.

Question 2. Let the assumptions be as in Question 1 and M = (M,M∞) ∈MCorls. Let Z ⊂M∞ be a regular
closed subscheme such that, for any point x of Z , there exists a system z1, . . . , zd of regular parameters of M
at x (with d = dimxM) satisfying the following conditions:

• Locally at x, Z = {z1 = · · · = zr = 0} for r = codimMZ .

• Locally at x, |M∞| = {
∏
j∈J zj = 0} for some J ⊂ {1, . . . , r}.

Consider π :N = BlZ(M)→M and N∞ =N ×MM∞. Then, is the map

Hq(MNis,FM )→Hq(NNis,FN ).

an isomorphism?
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Notation and conventions

In the whole paper we fix a base field k. Let Sm be the category of separated smooth schemes of finite type
over k, and let Sch be the category of separated schemes of finite type over k. We write Cor for Voevodsky’s
category of finite correspondences [Voe00].

1. Modulus pairs and admissible correspondences

1.1. Admissible correspondences

Definition 1.1.1.

(1) A modulus pair M consists of M ∈ Sch and an effective Cartier divisor M∞ ⊆M such that the open
subset Mo :=M − |M∞| is smooth over k. (The case |M∞| = ∅ is allowed.) We say that M is proper if
M is proper over k.

We write M = (M,M∞), since M is completely determined by the pair, although we regard Mo as
the main part of M . We call M the ambient space of M and Mo the interior of M .

(2) Let M1,M2 be modulus pairs. Let Z ∈ Cor(Mo
1 ,M

o
2 ) be an elementary correspondence (i.e. an

integral closed subscheme of Mo
1 ×M

o
2 which is finite and surjective over an irreducible component of

Mo
1 ). We write Z

N
for the normalization of the closure Z of Z in M1×M2 and pi : Z

N →M i for the
canonical morphisms for i = 1,2. We say Z is admissible for (M1,M2) if p∗1M

∞
1 ≥ p

∗
2M
∞
2 . An element

of Cor(Mo
1 ,M

o
2 ) is called admissible if all of its irreducible components are admissible. We write

Coradm(M1,M2) for the subgroup of Cor(Mo
1 ,M

o
2 ) consisting of all admissible correspondences.

Remarks 1.1.2.

(1) In [KSY16, Definition 2.1.1], we used a different notion of modulus pair, where M is supposed proper,
Mo smooth quasi-affine and M∞ is any closed subscheme of M . Definition 1.1.1 (1) is the right one for
the present work. Definition 1.1.1 (2) is the same as [KSY16, Definition 2.6.1], mutatis mutandis. An
analogous condition was considered much earlier in the context of the additive Chow groups (see, e.g.
[BE03, (6.4)], [Par09, Definition 2.2], [Rül07, Definition 3.1]).

(2) In the first version of this paper, we imposed the condition that M is locally integral; it is now
removed. The main reason for this change is that this condition is not stable under products or
extension of the base field. The next remark shows that this removal is reasonable (see also Remark
1.3.8).

(3) Let M be a modulus pair. Then Mo is dense in M, since the Cartier divisor M∞ is everywhere of
codimension 1. Moreover, M is reduced. (In particular, M has no embedded component.) Indeed,
take x ∈M and let f ∈ OM,x be a local equation for M∞. Then f is not a zero-divisor (since M∞ is
Cartier), and hence OM,x→OM,x[1/f ] is injective, but OM,x[1/f ] is reduced as Mo is smooth. In

particular, M is integral if Mo is.

(4) Let M be a modulus pair, and let f : M1 → M be a morphism such that f (T ) 1 |M∞| for any
irreducible component T of M1 and Mo

1 :=M1−|f ∗M∞| is smooth. Then M1 = (M1, f
∗M∞) defines

a modulus pair. We call it the minimal modulus structure induced by f . We shall use this construction
several times. Also, f defines a minimal morphism f :M1→M in the sense of Definition 1.3.4 below.

(5) If Z is an admissible elementary correspondence as in Definition 1.1.1 (2), then

|M∞1 ×M2| ∩Z ⊇ |M1 ×M∞2 | ∩Z

since Z
N → Z is surjective. On the other hand, the inequality (M∞1 ×M2)|Z ≥ (M1 ×M∞2 )|Z may

fail. As an example, let C be the affine cusp curve Speck[x,y]/(x2 − y3). Its normalization is A1,
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via the morphism t 7→ (t3, t2). Let M1 = (C, (x)) and M2 = (C, (y)). Then 1C defines an admissible
correspondence M1→M2, even though (x) ≥ (y) does not hold on C.

The following lemma will play a key rôle:

Lemma 1.1.3. Let X ∈ Sch and let X be an open dense subscheme of X. Assume that X ∈ Sm and that X −X is
the support of a Cartier divisor. Then for any modulus pair N we have⋃

M

Coradm(M,N ) = Cor(X,N o),

where M ranges over all modulus pairs such that M = X and Mo = X. (Note that by definition we have
Coradm(M,N ) ⊂ Cor(X,N o).)

Proof. This is proven in [KSY16, Lemma 2.6.2]. In loc. cit. X and N o are assumed to be quasi-affine, and X
and N proper and normal (see Remark 1.1.2). But these assumptions are not used in the proof. (Nor is the
assumption on Cartier divisors, but the latter is essential for the proof of Proposition 1.2.4 below.) �

1.2. Composition

To discuss composability of admissible correspondences, we need the following lemma of Krishna and Park
[KP12, Lemma 2.2].

Lemma 1.2.1. Let f : X→ Y be a surjective morphism of normal integral schemes, and let D,D ′ be two Cartier
divisors on Y . If f ∗D ′ ≤ f ∗D, then D ′ ≤D .

We also need the following “containment lemma” from [KP12, Proposition 2.4], [BS19, Lemma 2.1], [Miy19,
Lemma 2.4]. We provide a proof for self-containedness.

Lemma 1.2.2. Let M = (M,M∞) be a modulus pair. Let V ′ ⊂ V ⊂M◦ = M − |M∞| be two integral closed

subschemes. Let V and V ′ be their closures in M and V
N → V , V ′

N → V ′ the normalizations. If M∞|
V
N is

effective, so is M∞|
V ′

N .

Proof. Set Z := V
N ×V V ′ and consider the following commutative diagram:

ZNγ //

f

''

hfin. surj.
��

Zγ //

fin. surj.
��

Z //

��
�

V
N

�� ��
V ′

N // V ′
incl.

// V
incl.

// M.

Here, Zγ ⊂ Z is an irreducible component of Z such that the composite map

Zγ ↪→ Z→ V ′

is finite surjective. To see that such a Zγ exists, it suffices to note that V
N → V is finite surjective, hence so

is its base change Z→ V ′ (recall that for any scheme S of finite type over k, the normalization SN → S is
a finite surjective morphism). Then ZNγ is also irreducible. Since ZNγ → V ′ is dominant, the vertical map
h on the left exists by the universal property of normalization, and is finite surjective. Note that we can
pullback the Cartier divisor M∞ to any scheme except for Z in the diagram, since none of their irreducible
components maps into the support |M∞| ⊂M . Since the pullback of an effective Cartier divisor is effective,
the assumption that M∞|

V
N is effective implies that

f ∗(M∞|
V
N ) =M∞|ZNγ = h∗(M∞|

V ′
N )

is effective. By Lemma 1.2.1, M∞|
V ′

N is effective since h is surjective. This finishes the proof. �
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Definition 1.2.3. Let M1,M2,M3 be three modulus pairs, and let us consider α ∈ Coradm(M1,M2) and
β ∈ Coradm(M2,M3). We say that α and β are composable if their composition βα in Cor(Mo

1 ,M
o
3 ) is

admissible.

Proposition 1.2.4. With the above notations, assume α and β are integral and let ᾱ and β̄ be their closures in
M1 ×M2 and M2 ×M3 respectively. Then α and β are composable provided the projection ᾱ ×M2

β̄→M1 ×M3
is proper. This happens in the following cases:

(i) ᾱ→M1 is proper.
(ii) β̄→M3 is proper.
(iii) M2 is proper over k.

Proof. Note that α ×Mo
2
β is a closed subscheme of (Mo

1 ×M
o
2 )×Mo

2
(Mo

2 ×M
o
3 ) = Mo

1 ×M
o
2 ×M

o
3 ; we have

|βα| = |p13∗(α ×Mo
2
β)| where p13 :Mo

1 ×M
o
2 ×M

o
3 →Mo

1 ×M
o
3 is the projection. Let γ be a component of

α ×Mo
2
β. We have a commutative diagram

γ �
� //
� _

��

α ×Mo
2
β �
� //

� _

��

Mo
1 ×M

o
2 ×M

o
3

p13 //
� _

��

Mo
1 ×M

o
3� _

��

δ? _oo
� _

��
γ̄ �
� // ᾱ ×M2

β̄ �
� // M1 ×M2 ×M3

p13 // M1 ×M3 δ̄? _oo

where pij : M1 ×M2 ×M3 → M i ×Mj denotes the projection, δ = p13(γ), and ¯ denotes closure. The

hypothesis implies that γ̄ → δ̄ is proper surjective. The same holds for πNγδ appearing in the second of the
two other commutative diagrams:

ᾱ ᾱN
ϕα //oo M1 ×M2

γ̄

πγα

OO

πγβ
��

γ̄N
ϕγ //oo M1 ×M2 ×M3

p̄23

��

p̄12

OO

β̄ β̄N
ϕβ //oo M2 ×M3

γ̄N
ϕγ //

πNγδ
��

M1 ×M2 ×M3

p̄13

��

δ̄N
ϕδ // M1 ×M3

where N means normalisation. (Note that πγα and πγβ need not extend to the normalisations, as they need
not be dominant.) We have the admissibility conditions for α and β:

ϕ∗α(M1 ×M∞2 ) ≤ ϕ∗α(M∞1 ×M2)(1.2.1)

ϕ∗β(M2 ×M∞3 ) ≤ ϕ∗β(M∞2 ×M3).(1.2.2)

Applying2 Lemma 1.2.2, we get inequalities

ϕ∗γ (M1 ×M2 ×M∞3 ) ≤ ϕ∗γ (M1 ×M∞2 ×M3) ≤ ϕ∗γ (M∞1 ×M2 ×M3),

which implies by the right half of the above diagram

(1.2.3) (πNγδ)∗ϕ∗δ(M1 ×M∞3 ) ≤ (πNγδ)∗ϕ∗δ(M∞1 ×M3)

hence ϕ∗δ(M1 ×M∞3 ) ≤ ϕ∗δ(M∞1 ×M3) by Lemma 1.2.1.
Finally, one trivially checks that (i) or (ii) implies that the projection α ×M2

β→M1 ×M3 is proper, and
that (iii) implies both of (i) and (ii). �

2To apply this lemma, factor πγα and πγβ into dominant morphisms followed by closed immersions.
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Example 1.2.5. Let M1 = M3 = P1, M2 = A1, M
o
i = A1, M∞1 = ∞, M∞2 = 0, M∞3 = 2 · ∞, and α = β =

graph of the identity on A1. Then α and β are admissible but β ◦α is not admissible because ∞≥ 2 ·∞
does not hold. (Note that neither of α = α or β = β is proper over P1.)

Definition 1.2.6. Let M,N be two modulus pairs. A correspondence α ∈ Cor(Mo,N o) is left proper
(relatively to M,N ) if the closures of all components of α are proper over M ; this is automatic if N is proper.

Proposition 1.2.7. Let M1,M2,M3 be three modulus pairs and let α ∈ Cor(Mo
1 ,M

o
2 ), β ∈ Cor(Mo

2 ,M
o
3 ) be left

proper. Then βα is left proper.

Proof. We may assume α and β are irreducible. The assumption on β means β→M2 is proper, hence so is
its base change α ×M2

β→ α. The assumption on α means α→M1 is proper, hence so is α ×M2
β→M1

as a composition of proper morphisms. This implies the left properness of βα, since βα is the image of
α ×M2

β in M1 ×M3. �

1.3. Categories of modulus pairs

Definition 1.3.1. By Propositions 1.2.4 and 1.2.7, modulus pairs and left proper admissible correspondences
define an additive category that we denote by MCor. We write MCor for the full subcategory of MCor
whose objects are proper modulus pairs (see Definition 1.1.1 (1)).

In the context of modulus pairs, the category Sm and the graph functor Sm→ Cor are replaced by the
following:

Definition 1.3.2. We write MSm for the category with the same objects as MCor, and a morphism
of MSm(M1,M2) is given by a (scheme-theoretic) k-morphism f : Mo

1 → Mo
2 whose graph belongs to

MCor(M1,M2). We write MSm for the full subcategory of MSm whose objects are proper modulus pairs.

We will need some variants of these categories.

Definition 1.3.3.

(1) We write MCorfin for the subcategory of MCor with the same objects and the following condition on
morphisms: α ∈MCor(M,N ) belongs to MCorfin(M,N ) if and only if, for any component Z of α,
the projection Z→M is finite, where Z is the closure of Z in M ×N . The same argument as in the
proof of Proposition 1.2.7 shows that MCorfin is indeed a subcategory of MCor. We write MCorfin

for the full subcategory of MCor whose objects are proper modulus pairs.

(2) We write MSmfin for the subcategory of MSm with the same objects and such that a morphism
f :M→N belongs to MSmfin if and only if f o :Mo→N o extends to a k-morphism f :M→N .
Such extension f is unique because Mo is dense in the reduced scheme M and N is separated
([Har77, Chapter II, Exercise 4.2]). This yields a forgetful functor MSmfin→ Sch, which sends M to
M .
We write MSmfin for the full subcategory of MSm whose objects are proper modulus pairs.

(3) We write

c : MSm→MCor,

c : MSm→MCor,(1.3.1)

cfin : MSmfin→MCorfin

for the functors which are the identity on objects and which carry a morphism f to the graph of f o.

Let f :M→N be a morphism in MSmfin. Since f (Mo) ⊆N o, none of the images of the generic points
of the irreducible components of M is contained in |N∞|, hence the pullback of the Cartier divisor f

∗
N∞ is

well-defined. For ease of notation, we simply write it f ∗N∞.
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Definition 1.3.4. A morphism f :M→N in MSmfin is minimal if we have f ∗N∞ =M∞.

Remark 1.3.5. We remark the following.

(1) Assume that M is normal. Then Zariski’s connectedness theorem implies that for any N

MSm(M,N )∩MCorfin(M,N ) = MSmfin(M,N ).

(Indeed, given an elementary correspondence belonging to the left hand side, its closure in M ×N is
birational and finite over an irreducible component of M , but such a morphism is an isomorphism if
M is normal by [EGA3, corollaire 4.4.9]). If f o :Mo→N o extends to a morphism between ambient
spaces f :M→N , then the graph of f o is admissible if and only if we have M∞ ≥ f ∗N∞.

(2) For M ∈MSmfin, set MN := (M
N
,M∞|

M
N ) where p :M

N →M is the normalization and M∞|
M

N

is the pull-back of M∞ to M
N

. Then p :MN →M is an isomorphism in MCorfin and MSm (but
not in MSmfin in general).

(3) Let M = (M,M∞) and N = (N,N∞) be two modulus pairs and let Z ⊂M ×N be an integral closed
subscheme which is finite and surjective over an irreducible component of M , such that Z 1M ×N∞

and that M∞|
Z
N ≥N∞|

Z
N , where Z

N
is the normalization of Z . Then Z = Z ∩ (Mo ×N ) belongs to

Cor(Mo,N o) and its closure in M ×N is Z : this follows from Remark 1.1.2 (4).

(4) For any morphism f : M → N in MSm, there exists a morphism M ′ → M in MSmfin which is
invertible in MSm such that the induced morphism M ′→N is in MSmfin. More generally, we have
the following lemma.

Lemma 1.3.6 (The graph trick). Let f :M→N be a morphism in MSm. Then there exists a minimal morphism
p : M1 → M in MSmfin such that it is invertible in MSm and the composite f ◦ p : M1 → M → N is a
morphism in MSmfin. Moreover, if f o : Mo→ N o extends to a morphism U → N for an open subset U ⊂M,
then we can choose M1 such that M1→M is an isomorphism over U (note that we can always take U =Mo).

Proof. Let Γ be the graph of the morphism U →N , and let Γ be its closure in M ×N . Then we have natural
projections p1 : Γ →M and p2 : Γ → N . Since we have Γ � U , Lemma 1.3.7 below implies that p1 is an
isomorphism over U and we have p−1

1 (U ) = Γ . Defining M1 := (Γ ,p∗1M
∞), the morphism p1 induces a

morphism p1 :M1→M in MSmfin such that f ◦ p1 :M1→M→ N comes from MSmfin defined by p2.
Also note that Γ →M is proper since f is, which implies that p1 : M1→M is an isomorphism in MSm.
This finishes the proof. �

Lemma 1.3.7 (No extra fibre lemma). Let f : X→ Y be a separated morphism of schemes, and let U ⊂ X be an
open dense subset. Assume that the image f (U ) of U is open in Y , and the induced morphism U → f (U ) is proper
(e.g., an isomorphism). Then, we have f −1(f (U )) =U .

Proof. Consider the commutative diagram

U

proper $$

j
// f −1(f (U )) //

�sep.
��

X

f sep.

��
f (U ) // Y

where all the horizontal arrows are open immersions, the square is cartesian and the two vertical morphisms
are separated. The triangle diagram on the left implies that j is proper ([Har77, Chapter II, Corollary 4.8]),
hence it is a closed (and open) immersion. Since U is dense in X, it is dense in f −1(f (U )) as well, hence
the conclusion. �
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Remark 1.3.8. Let M ∈MCorfin. Assume that Mo =Mo
1
∐
Mo

2 ; let M i be the closure of Mo
i in M and M∞i

be the pull-back of M∞ to M i . Then Mi = (M i ,M
∞
i ) are modulus pairs, the inclusions Mo

i ↪→Mo yield
morphisms Mi →M in MSmfin, and the induced morphism in MCorfin

M1 ⊕M2→M

is an isomorphism in MCorfin. The proof is easy and left to the reader.
This remark may help in reducing some reasonings to the case where Mo is irreducible.

1.4. The functors (−)(n)

Definition 1.4.1. Let n ≥ 1 and M = (M,M∞) ∈MCor. We write

M(n) = (M,nM∞).

This defines an endofunctor of MCor. These come with natural transformations

(1.4.1) M(n)→M(m) if m ≤ n.

Lemma 1.4.2. The functor (−)(n) is fully faithful.

Proof. This follows from the definition and the fact that if A is an integral domain with quotient field K ,
then a ∈ K is integral over A if and only if so is an. �

1.5. Changes of categories

We now have a basic diagram of additive categories and functors

(1.5.1) MCor τ //

ω

##

MCor

ω{{
Cor

λ
;;

with
τ(M) =M; ω(M) =Mo; ω(M) =Mo; λ(X) = (X,∅).

All these functors are faithful, and τ is fully faithful; they “restrict” to analogous functors τs,ωs,ωs,λs
between MSm, MSm and Sm. Note that ω ◦ (−)(n) =ω for any n. Moreover:

Lemma 1.5.1. We have ωτ = ω. Moreover, λ is left adjoint to ω, and the restriction of λ to Corprop (finite
correspondences on smooth proper schemes over k) is “right adjoint” to ω. (i.e., Cor(ω(M),X) = MCor(M,λ(X))
for M ∈MCor and X ∈ Corprop .) The same statements are valid for τs,ωs,ωs,λs when restricted to MSm,
MSm and Sm.

Proof. The first identity is obvious. For the adjointness, let X ∈ Cor, M ∈ MCor and α ∈ Cor(X,Mo)
be an integral finite correspondence. Then α is closed in X ×M, since it is finite over X and M is
separated; it is evidently finite (hence proper) over X. It also satisfies q∗M∞ = 0 where q is the composition
αN → α→Mo→M, because M∞|Mo = 0. Therefore α ∈MCor(λ(X),M).

For the second statement, assume X proper and let β ∈ Cor(Mo,X) be an integral finite correspondence.
Then β is trivially admissible, and its closure in M ×X is proper over M, so β ∈MCor(M,λ(X)). The last
claim is immediate. �

The following theorem is an important refinement of Lemma 1.5.1. The proof starts from §1.7 and is
completed in §1.8.

Theorem 1.5.2. The functors ω, τ , ωs and τs have pro-left adjoints ω!, τ !, ω!
s and τ !

s (see §A.2).

General definitions and results on pro-objects and pro-adjoints are gathered in §§A.1 and A.2. We shall
freely use results from there.
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1.6. The closure of a finite correspondence

We shall need the following result for the proof of Theorem 1.5.2.

Lemma 1.6.1. Let X be a Noetherian scheme, (πi : Zi → X)1≤i≤n a finite set of proper surjective morphisms
with Zi integral, and let U ⊆ X be a normal open subset. Suppose that πi : π−1

i (U )→ U is finite for every i.
Then there exists a proper birational morphism X ′→ X which is an isomorphism over U , such that the closure of
π−1
i (U ) in Zi ×X X ′ is finite over X ′ for every i.

Proof. By induction, we reduce to n = 1; then this follows from [RG71, Corollary 5.7.10] applied with
(S,X,U ) ≡ (X,Z1,U ) and n = 0 (note that a morphism is finite if and only if it is quasi-finite and proper,
and that an admissible blow-up of an algebraic space is a scheme if the algebraic space happens to be a
scheme). �

Theorem 1.6.2. Let X,Y ∈ Sch. Let U be a normal dense open subscheme of X, and let α be a finite
correspondence from U to Y . Suppose that the closure Z of Z in X ×Y is proper over X for any component Z of α.
Then there is a proper birational morphism X ′→ X which is an isomorphism over U , such that α extends to a
finite correspondence from X ′ to Y .

Proof. Apply Lemma 1.6.1, noting that Z = Z ×X U by [KSY16, Lemma 2.6.3]. �

The following lemma also relies on [RG71]: it will be used several times in the sequel.

Lemma 1.6.3. Let f : U → X be an étale morphism of quasi-compact and quasi-separated integral schemes.
Let g : V → U be a proper birational morphism, T ⊂ U a closed subset such that g is an isomorphism over
U − T and S the closure of f (T ) in X. Then there exists a closed subscheme Z ⊂ X supported in S such that
U ×X BlZ(X)→U factors through V .

Proof. The following argument is taken from the proof of [SV00, Proposition 5.9]. Noting V is étale over
X − S , we apply the platification theorem [RG71, Corollary 5.7.11] to V → X and conclude that there exists
a closed subscheme Z supported in S such that the proper transform V ′ of V under X ′ = BlZ(X)→ X is
flat over X ′ . By the construction the induced morphism ϕ : V ′ → U ×X X ′ is proper birational. On the
other hand ϕ is flat since it becomes flat when composed with the étale morphism U ×X X ′→ X ′ ([Har77,
Chapter II, Proposition 8.11 and Chapter III, Exercise 10.3]). Hence it is an isomorphism. This proves the
lemma since V ′→U factors V →U . �

1.7. Proof of Theorem 1.5.2: case of ω and ωs

We need a definition:

Definition 1.7.1. Let Σ be the class of all morphisms M1 → M2 in MCor given by the graph of an
isomorphism Mo

1
∼−→Mo

2 in Sm.

In view of Proposition A.6.2, the existence of the pro-left adjoint of ω is a consequence of the following
more precise result:

Proposition 1.7.2.

a) The class Σ enjoys a calculus of right fractions.

b) The functor ω induces equivalences of categories

Σ−1MCor
∼−→ Cor .

The same statement holds for ωs : MSm→ Sm.

Proof. a) We check the axioms of Definition A.5.1:



12 B. Kahn, H. Miyazaki, S. Saito, and T. Yamazaki12 B. Kahn, H. Miyazaki, S. Saito, and T. Yamazaki

(1) Identities, stability under composition: obvious.

(2) Given a diagram in MCor

M ′2y
M1

α−−−−−→ M2

with Mo
2 �M

′
2

o, Lemma 1.1.3 provides a M ′′1 ∈MCor such that M ′′1
o =Mo

1 and α ∈MCor(M ′′1 ,M
′
2).

We may choose M ′′1 such that M ′′1 = M1. Then M ′1 = (M1,M
′
1
∞) with any M ′1

∞ such that M ′1
∞ ≥

M∞1 , M ′1
∞ ≥M ′′1

∞ allows us to complete the square in MCor.

(3) Given a diagram

M1
f
⇒
g
M2

s−→M ′2

with M1,M2,M
′
2 as in (2) and such that sf = sg , the underlying correspondences to f and g are

equal since the one underlying s is 1Mo
2
. Hence f = g .

The above proof of (2) also shows that we have

lim−−→
M ′∈Σ↓M

MCor(M ′ ,N ) = Cor(M,N ).

for any M,N ∈MCor.
Point b) now follows from a) and Corollary A.5.5, noting that ω is essentially surjective. Indeed, any

smooth k-scheme X admits a compactification X̄ by Nagata’s theorem; blowing up X̄ −X, we then make it a
Cartier divisor. The case of ωs is exactly parallel. �

Let ω! : Cor→ pro–MCor be the pro-left adjoint of ω. By Proposition A.6.2, we have for X ∈ Cor:

ω!X = “lim←−−”
M∈Σ↓X

M.

and the same formula for the pro-left adjoint ω!
s of ωs. Let us spell out the indexing set MSm(X) of these

pro-objects, and refine them:

Definition 1.7.3.

(1) For X ∈ Sm, we define a subcategory MSm(X) of MSm as follows. The objects are those M ∈MSm
such that Mo = X. Given M1,M2 ∈MSm(X), we define MSm(X)(M1,M2) to be {1X} if 1X belongs
to MSm and ∅ otherwise.

(2) Let X ∈ Sm and fix a compactification X such that X−X is the support of a Cartier divisor (for short,
a Cartier compactification). Define MSm(X!X) to be the full subcategory of MSm(X) consisting of
objects M ∈MSm(X) such that M = X.

Lemma 1.7.4. a) For any X ∈ Sm and any Cartier compactification X, MSm(X) is a cofiltered ordered set, and
MSm(X!X) is cofinal in MSm(X).
b) Let X ∈ Cor, and let M ∈MSm(X). Then {M(n)}n≥1 defines a cofinal subcategory of MSm(X).

Proof. a) “Ordered” is obvious and “cofiltered” follows from Propositions 1.7.2 and A.5.2 a); the cofinality
follows again from Lemma 1.1.3.

b) Let M = (X,X∞). By a) it suffices to show that (M(n))n≥1 defines a cofinal subcategory of MSm(X!X).
If (X,Y ) ∈MSm(X!X), Y and X∞ both have support X −X, so there exists n > 0 such that nX∞ ≥ Y . �
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1.8. Proof of Theorem 1.5.2: case of τ

We need a definition:

Definition 1.8.1. Take M = (M,M∞) ∈MSm. Let Comp(M) be the category whose objects are pairs (N,j)
consisting of a modulus pair N = (N,N∞) ∈MSm equipped with a dense open immersion j :M ↪→N such
that N∞ =M∞N +C for some effective Cartier divisors M∞N ,C on N satisfying N \ |C| = j(M) and j induces
a minimal morphism M→N in the sense of Def. 1.3.4. Note that for N ∈ Comp(M) we have j(Mo) =N o

and N is equipped with jN ∈MSmfin(M,N ) ⊂MSm(M,N ) which is the graph of j |Mo : Mo � N o. For
N1,N2 ∈ Comp(M) we define

Comp(M)(N1,N2) = {γ ∈MSm(N1,N2) | γ ◦ jN1
= jN2

}.

Note that any γ as above induces an isomorphism N o
1
∼−→N o

2 in Sm.

Lemma 1.8.2. The category Comp(M) is a cofiltered ordered set.

Proof. That it is ordered is obvious as Comp(M)(N1,N2) has at most 1 element for any (N1,N2). For
“cofiltered”, we first show that Comp(M) is nonempty. For this, choose a compactification j0 :M ↪→ N0,
with N0 ∈ Sch proper. Let N1 = Bl(N 0−M)red

(N0); then j0 lifts to j1 : M ↪→ N1 by the universality of the

blowup [Har77, Chapter II, Proposition 7.14], and N1 −M is the support of an effective Cartier divisor C1.
Consider now the scheme-theoretic closure N∞1 of M∞ in N1, and define N = BlN∞1 (N1), M∞N = pull-back

of N∞1 , C = pull-back of C1, N∞ = M∞N +C and N = (N,N∞): then j1 lifts to j : M ↪→ N (by the same
reason as j0), which defines an object of Comp(M).

Let N1 and N2 be two objects in Comp(M). Let Γ be the graph of the rational map N1 d N2 given
by 1Mo . Then we have morphisms of schemes p : Γ → N1 and q : Γ → N2, and there exists a natural
open immersion M → Γ . Note that (Γ ,p∗N∞1 ) and (Γ ,q∗N∞2 ) are objects of Comp(M). Since (Γ ,p∗N∞1 )
dominates N1 and (Γ ,q∗N∞2 ) dominates N2, we are reduced to the case that N1 and N2 have the same
ambient space N . Let C be the effective Cartier divisor on N such that |C| = N −M, which exists since
N1 ∈ Comp(M). Then for a sufficiently large n we have N∞1 +nC ≥N∞2 since N∞1 ∩M =N∞2 ∩M =M∞.
Therefore N3 = (N,N∞1 +nC) dominates both N1 and N2. This finishes the proof. �

For M ∈MCor and L ∈MCor we have a natural map

Φ : lim−−→
N∈Comp(M)

MCor(N,L)→MCor(M,τL),

which maps a representative αN ∈MCor(N,L) to αN ◦ jN . We also have a natural map for M,L′ ∈MCor

Ψ : MCor(L′ ,M)→ lim←−−
N∈Comp(M)

MCor(L′ , τN ),

which maps β to {jN ◦ β}N .
The following is an analogue to Lemma 1.1.3:

Lemma 1.8.3. The maps Φ and Ψ are isomorphisms. In other words, the formula

τ !M = “lim←−−”N
N∈Comp(M)

,

defines a pro-left adjoint to τ , which is fully faithful.

Proof. We start with Φ . Injectivity is obvious since both sides are subgroups of Cor(Mo,Lo). We prove
surjectivity. Choose a dense open immersion j1 :M ↪→N1 with N1 proper such that N1 −M is the support
of an effective Cartier divisor C1. Let M∞1 be the scheme-theoretic closure of M∞ in N1. (This may
not be Cartier.) Let π : N2 → N1 be the blowup with center in M∞1 and put M∞2 = M∞1 ×N 1

N2 and
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C2 = C1 ×N 1
N2. Note that M∞2 and C2 are effective Cartier divisors on N2. By the universal property of

the blowup [Har77, Chapter II, Proposition 7.14], j1 extends to an open immersion j2 : M → N2 so that
j1 = πj2. Then N2 −Mo is the support of the Cartier divisor N∞2 :=M∞2 +C2 so that

((N2,N
∞
2 ), j2) ∈ Comp(M).

Now the claim for Φ follows from the following:

Claim 1.8.4. For any α ∈MCor(M,L), there exists an integer n > 0 such that α ∈MCor((N2,M
∞
2 +nC2),L).

Indeed we may assume α is an integral closed subscheme of Mo ×Lo. We have a commutative diagram

αN
j1 //

ϕα
��

αN1

ϕα1
��

αN2
πoo

ϕα2
��

M ×L
j1 // N1 ×L N2 ×L

πoo

where αN (resp. αN1 , resp. αN2 ) is the normalization of the closure of α ⊂Mo×L0 in M×L (resp. N1×L, resp.
N2 ×L), and j1 and π are induced by j1 :M→N1 and π :N2→N1 respectively. Now the admissibility of
α ∈MCor(M,L) implies

ϕ∗α(M ×L∞) ≤ ϕ∗α(M∞ ×L).

Since αN1 − j1(αN ) is supported on ϕ−1
α1

(C1 ×L), this yields an inclusion of closed subschemes

ϕ∗α1
(N1 ×L∞) ⊆ ϕ∗α1

((M∞1 +nC1)×L)

for a sufficiently large n > 0. Applying π∗ to this inclusion, we get an inequality of Cartier divisors

ϕ∗α2
(N2 ×L∞) ≤ ϕ∗α2

((M∞2 +nC2)×L)

which proves the claim.
Next we prove that Ψ is an isomorphism. Injectivity is obvious since both sides are subgroups of

Cor(Lo,Mo). We prove surjectivity. Take

γ ∈ lim←−−
N∈Comp(M)

MCor(L,N ).

Then γ ∈ Cor(Lo,Mo) is such that any component δ ⊂ Lo ×Mo of γ satisfies the following condition: take

any (N,j) ∈ Comp(M) and write N∞ =M∞N +C as in Definition 1.8.1. Let δ
N

be the normalization of the

closure of δ in L×N with the natural map ϕδ : δ
N → L×N . Then we have

ϕ∗δ(L× (M∞N +nC)) ≤ ϕ∗δ(L∞ ×N )

for any integer n > 0. Clearly this implies that |δ| does not intersect with L× |C| so that δ ⊂ L×M . Since δ is
proper over L by assumption, this implies δ ∈MCor(L,M) which proves the surjectivity of Ψ as desired. �

We come back to the proof of Theorem 1.5.2. It remains to consider τs. The natural maps

ϕ : lim−−→
N∈Comp(M)

MSm(N,L)→MSm(M,τL),

ψ : MSm(L′ ,M)→ lim←−−
N∈Comp(M)

MSm(L′ , τN )

are also bijective for any M,L′ ∈MCor and L ∈MCor. The proof is identical to Lemma 1.8.3. In particular,
the inclusion functor τs : MSm→MSm admits a pro-left adjoint given by

τ !
sM = “lim←−−”N

N∈Comp(M)

,
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which commutes with the inclusions MSm ↪→MCor and MSm ↪→MCor. This completes the proof of
Theorem 1.5.2. �

1.9. More on MSmfin and MCorfin

Definition 1.9.1. A morphism f :M→N in MSmfin is in Σfin if it is minimal (Definition 1.3.4), f :M→N
is a proper morphism and f o is an isomorphism in Sm. We write Σfin for the class of morphisms in Σfin

that belong to MSm.

In particular, we have Σfin ⊂ Σ (see Definition 1.7.1) and Σfin ↓ M = Σfin ↓ M for M ∈ MSm. Let us
consider the inclusion functors

bs : MSmfin→MSm, b : MCorfin→MCor .(1.9.1)

The following commutative diagram of categories will become fundamental (cf. (2.7.1)):

(1.9.2) MCor τ // MCor MCorfinb
oo

MSm
τs //

c

OO

MSm

c

OO

MSmfin .
bsoo

cfin

OO

Proposition 1.9.2.

a) The class Σfin enjoys a calculus of right fractions within MSmfin and MCorfin.

b) The functors bs and b are localisations having left pro-adjoints b!
s and b!. They induce equivalences of

categories
(Σfin)−1MSmfin �MSm and (Σfin)−1MCorfin �MCor .

c) A morphism in MCorfin (resp. MSmfin) is invertible in MCor (resp. MSm) if and only if it belongs to
Σfin. A morphism f in MCor (resp. MSm) is an isomorphism if and only if it can be written as s = s1s

−1
2

for some s1, s2 ∈ Σfin.

All statements hold for Σfin (without an underline) as well.

Proof. a) Same as the proof of Proposition 1.7.2 a), except for (2): consider a diagram in MCorfin

M ′2

f

y
M1

α−−−−−→ M2

with f ∈ Σfin (in particular f o is an isomorphism). By the properness of f , the finite correspondence
αo :Mo

1 →M ′2
o satisfies the hypothesis of Theorem 1.6.2. Applying this theorem, we find a proper birational

morphism f ′ :M
′
1→M1 which is an isomorphism over Mo

1 and such that αo defines a finite correspondence

α′ :M
′
1→M

′
2. If we define M ′1

∞ = f ′∗M∞1 , then f ′ ∈ Σfin and α′ ∈MCorfin(M ′1,M
′
2).

If α ∈MSmfin(M1,M2), then α′ is not in MSmfin(M ′1,M
′
2) in general (unless M ′1 is normal, see Remark

1.3.5 (1)). However, write M ′′1 for the closure of the graph of the rational map α′ :M ′1 dM ′2, and π for the

projection M ′′1 →M ′1: by hypothesis, π is finite birational. Define a modulus pair M ′′1 = (M ′′1 ,M
′′
1
∞) by

putting M ′′1
∞ := π∗M ′1

∞. Then π defines a minimal morphism M ′′1 →M ′1 in MSmfin, hence the morphism
α′′ :M ′′1 →M ′2 determined by α′ is in MSmfin.

For b), all assertions are obvious except for the equivalences, for which it suffices as in Corollary A.5.5 to
show that for any M,N ∈MCor, the obvious maps

lim−−→
M ′∈Σfin↓M

MCorfin(M ′ ,N )→MCor(M,N )
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and the corresponding map for bs are isomorphisms. These maps are clearly injective, and its surjectivity
follows again from Theorem 1.6.2. It then follows from Proposition A.6.2 they have pro-left adjoints.

The first statement of c) is clear, and the second follows from b).
The same proof works for Σfin. �

Corollary 1.9.3. For any M ∈MCor, the category Σfin ↓M is cofiltered.

Proof. This follows from Propositions 1.9.2 and A.5.2. �

Corollary 1.9.4. Let C be a category and let F : MCorfin→C, G : MSm→C be two functors whose restrictions
to the common subcategory MSmfin are equal. Then (F,G) extends (uniquely) to a functor H : MCor→C.

Proof. The hypothesis implies that F inverts the morphisms in Σfin; the conclusion now follows from
Proposition 1.9.2 b). �

Corollary 1.9.5. Any modulus pair in MSm is isomorphic to a modulus pair M in which M is normal. Under
resolution of singularities, we may even choose M smooth and the support of M∞ to be a divisor with normal
crossings.

Proof. Let M0 ∈ MSm. Consider a proper morphism π : M → M0 which is an isomorphism over Mo
0 .

Define M∞ := π∗M∞0 . Then the induced morphism π :M→M0 of MSmfin is in Σfin, hence invertible in
MSm. The corollary readily follows. �

We also have the following important lemma:

Lemma 1.9.6. Let M,L,N ∈MSm. Let f : L→N be a minimal morphism in MSmfin such that f : L→N is
faithfully flat. Then the diagram

MCor(N,M)
f ∗
//

� _

��

MCor(L,M)
� _

��
Cor(N o,Mo)

(f o)∗
// Cor(Lo,Mo)

is cartesian. The same holds when MCor is replaced by MCorfin.

Proof. As the second statement is proven in a completely parallel way, we only prove the first one. Take
α ∈ Cor(N o,Mo) such that (f o)∗(α) ∈MCor(L,M). We need to show α ∈MCor(N,M).

We first reduce to the case where α is integral. To do this, it suffices to show that for two distinct integral
finite correspondences V ,V ′ ∈ Cor(N o,Mo), (f o)∗(V ) and (f o)∗(V ′) have no common component. For this,
we may assume Mo and N o integral. By the injectivity of Cor(N o,Mo)→ Cor(k(N o),Mo), this can be
reduced to the case where N o and Lo are fields, and then the claim is obvious.

Now assume α is integral and put β := (f o)∗(α). We have a commutative diagram

β
N

ϕβ
))

//

f N

��

β

a′

((//

��

L×M //

��

L

f
��

αN

ϕα

66
// α

a

66// N ×M // N.

Here α (resp. β) is the closure of α (resp. β) in N ×M (resp. L×M) and αN (resp. β
N

) is the normalization
of α (resp. β). By hypothesis a′ is proper and f is faithfully flat. This implies that a is proper [SGA1,
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exposé VIII, corollaire 4.8]. We also have

(f N )∗(ϕ∗α(N∞ ×M)) = ϕ∗β(f
∗
(N∞)×M))

= ϕ∗β(L∞ ×M) ≥ ϕ∗β(L×M∞) = (f N )∗(ϕ∗α(N ×M∞))

(the second equality by the minimality of f ). Note that f N is surjective since f is. Hence Lemma 1.2.1 shows
that ϕ∗α(N∞ ×M) ≥ ϕ∗α(N ×M∞), and we are done. �

1.10. Fiber products and squarable morphisms

We need the following elementary lemma.

Lemma 1.10.1. Let X be a scheme. For two effective Cartier divisors D and E on X, the following conditions are
equivalent:

(1) D ×X E is an effective Cartier divisor on X.

(2) There exist effective Cartier divisors D ′ ,E′ and F on X such that D =D ′+F, E = E′+F and |D ′ |∩|E′ | = ∅.
Moreover, the divisors D ′ ,E′ and F satisfying the conditions in (2) are uniquely determined by D and E.

Proof. We may suppose X = SpecA is affine and D,E are defined by non-zero-divisors d,e ∈ A, respectively.
Suppose (1). This means that (d,e) = (f ) for some non-zero-divisor f ∈ A, because D×X E = SpecA/(d,e).

Thus there are d′ , e′ ∈ A such that d = d′f and e = e′f . Since (f ) = (d′ , e′)(f ) and f is a non-zero-divisor,
we have (d′ , e′) = A. Now (2) holds by taking D ′ ,E′ ,F to be the Cartier divisors defined by (d′), (e′) and (f ).

(2) immediately implies F = D ×X E, whence (1). This formula also implies the uniqueness of F, hence
D ′ =D −F and E′ = E −F are unique as well. �

Definition 1.10.2. Let D and E be effective Cartier divisors on a scheme X. If the conditions of Lemma
1.10.1 hold, we say that D and E have a universal supremum, and write

sup(D,E) :=D ′ +E′ +F(=D +E −F).

Remark 1.10.3. Let D and E be effective Cartier divisors on X having a universal supremum. The following
are obvious from the definition.

(1) We have |sup(D,E)| = |D | ∪ |E|.
(2) If f : Y → X is a morphism such that f (T ) 1 |D | ∪ |E| for any irreducible component T of Y , then

f ∗D and f ∗E have a universal supremum which is equal to f ∗ sup(D,E) (hence the name “universal”).

(3) If moreover Y is normal, then f ∗ sup(D,E) agrees with the supremum of f ∗D and f ∗E computed as
a Weil divisor on Y .

Let ui : Ui → M be morphisms in MSmfin for i = 1,2 with projections pi : W 0 := U1 ×M U2 → U i .
Denote by W 1 the union of irreducible components T of W 0 such that pi(T ) 1 |U∞i | for each i = 1,2.
Observe that W 1 is the closure of U := Uo

1 ×Mo Uo
2 in W 0. Indeed, let Z be the closure of U in W 0.

Then any irreducible component T of Z meets U , which implies that T ⊂W 1. Conversely, any irreducible
component T of W 1 meets U , hence T ∩U is dense in T and thus T ⊂ Z .

We write qi :W 1→ U i for the composition of the inclusion W 1→W 0 and pi . By definition, we have
effective Cartier divisors q∗i (U

∞
i ) on W 1 and q1 × q2 restricts to an isomorphism

(1.10.1) W 1 \ |q∗1(U∞1 ) + q∗2(U∞2 )| 'Uo
1 ×Mo Uo

2 .

Proposition 1.10.4. Suppose that Uo
1 ×Mo Uo

2 is smooth over k.

(1) If q∗1U
∞
1 and q∗2U

∞
2 have a universal supremum, then

W1 := (W 1,sup(q∗1U
∞
1 ,q

∗
2U
∞
2 )) ∈MSmfin
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represents the fiber product of U1 and U2 over M in MSmfin as well as in MSm. If further U1,U2,M ∈
MSmfin, then it holds in MSmfin as well as in MSm.

(2) If u1 is minimal and U2 is normal, then q∗1U
∞
1 and q∗2U

∞
2 have a universal supremum, namely q∗2U

∞
2 ,

and the morphism W1 → U2 is a minimal morphism in MSmfin. If moreover u1 is flat3, we have
W 1 =W 0.

(3) In general, there is a proper birational morphism π : W 2→W 1 which restricts to an isomorphism over
W 1 \ |q∗1(U∞1 ) + q∗2(U∞2 )|, and such that r∗1U

∞
1 and r∗2U

∞
2 have a universal supremum, where ri := qiπ

for i = 1,2. For such W 2,

W2 := (W 2,sup(r∗1U
∞
1 , r

∗
2U
∞
2 )) ∈MSm

represents the fiber product of U1 and U2 over M in MSm. If further U1,U2,M ∈MSm, then it holds in
MSm.

Proof. (1) Let fi :N →Ui be morphisms in MSmfin for i = 1,2 such that u1f1 = u2f2. Then the morphisms
f i : N → U i for i = 1,2 induce a unique morphism h : N →W 0 with f i = pih for i = 1,2. Since fi are
morphisms in MSmfin, for any irreducible component T of N we have f i(T ) 1 |U∞i |, and hence h factors

though g :N →W 1 so that we have f i = qig . It remains to prove ν∗N∞ ≥ ν∗g∗W∞1 , where ν :N
N →N is

the normalization. As we have ν∗g∗W∞1 = ν∗g∗ sup(q∗1U
∞
1 ,q

∗
2U
∞
2 ) = sup(ν∗f

∗
1U
∞
1 ,ν

∗f
∗
1U
∞
2 ) by definition

and Remark 1.10.3, this follows from the admissibility of fi , that is, ν∗f
∗
iU
∞
i ≤ ν

∗N∞. We have shown that
W1 represents the fiber product in MSmfin. Propositions 1.9.2 and A.5.6 show that the same holds in MSm
as well. (This also follows from (3) below.) The last statement is an immediate consequence of the first.

(2) Let pW : W
N
1 →W 1 and pU1

: U
N
1 → U1 be the normalizations. By the minimality of u1, we have

q∗1U
∞
1 = q∗1u

∗
1M
∞ = q∗2u

∗
2M
∞ ≤ q∗2U

∞
2 , where the last inequality holds by the admissibility of u2 and

the normality of U2. Then q∗1U
∞
1 and q∗2U

∞
2 have a universal supremum since q∗1U

∞
1 ⊂ q

∗
2U
∞
2 implies

Condition (1) of Lemma 1.10.1, which also implies that W∞1 = sup(q∗1U
∞
1 ,q

∗
2U
∞
2 ) = q∗2U

∞
2 . This shows the

minimality of W1→U2.
Suppose now u1 flat, and let T be an irreducible component of W 0. Then p2 : W 0 → U2 is also

flat, hence T dominates an irreducible component E of U2 [Har77, Chapter III, Proposition 9.5] and we
cannot have p2(T ) ⊂ |U∞2 | since U∞2 is everywhere of codimension 1 in U2. Suppose that p1(T ) ⊂ |U∞1 |.
By the minimality of u1, this implies u2p2(T ) = u1p1(T ) ⊂ |M∞|, hence u2(E) ⊂ |M∞|, contradicting the
admissibility of u2.

(3) If π is the blow-up of W 1 with center q∗1(U∞1 ) ×W 1
q∗2(U∞1 ), then r∗1U

∞
1 ×W 2

r∗2U
∞
2 is precisely the

exceptional divisor by definition, which is therefore an effective Cartier divisor, showing the first assertion.
Note that W o

2 �U
o
1 ×Mo Uo

2 by (1.10.1).
Now let fi : N → Ui be morphisms in MSm for i = 1,2 such that u1f1 = u2f2. Then the morphisms

f o
i :N o→Uo

i for i = 1,2 induce a unique morphism ho :N o→W o
2 with f o

i = piho for i = 1,2. It suffices
to prove that ho defines a [unique] morphism in MSm. By the graph trick (Lemma 1.3.6), we may assume
that f o

i and ho extend to morphisms f i : N → U i and h : N →W 2. Moreover we may assume that N is

normal by Remark 1.3.5 (2). It remains to prove N∞ ≥ h∗W∞2 . As we have h
∗
W∞2 = sup(f

∗
1U
∞
1 , f

∗
1U
∞
2 ) by

the assumption and Remark 1.10.3, this follows from the admissibility of fi , that is, f
∗
iU
∞
i ≤N

∞. �

Remark 1.10.5. If W represents a fiber product U1 ×M U2 (either in MSm or in MSmfin), then we have
W o =Uo

1 ×Mo Uo
2 . Indeed, the functors MSm→ Sm and MSmfin→ Sm given by M 7→Mo have the left

adjoint X 7→ (X,∅) (Lemma 1.5.1), hence commute with limits.

Examples 1.10.6. Let B = k[x1,x2], A2 = SpecB, Di = Spec(B/xiB) and P = D1 ∩ D2. Let now M =
(D1 ∪ D2, P ) and Ui = (Di , P ) for i = 1,2. Then W 0 is a point but W 1 = ∅, and W1 = (∅,∅) indeed

3By the local criterion of flatness [Har77, Chapter III, Lemma 10.3.A], this is equivalent to the flatness of U∞1 →M∞.
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represents the fiber product U1 ×M U2. In particular, fiber products do not commute with the forgetful
functor M 7→M from MSmfin to Sch of Definition 1.3.3 (2). Another counterexample: let M = (A2,D1),
U1 = BlP (A2), u1 : U1 →M be the minimal induced modulus structure, U2 = (D2, P ) and U2 →M be
given by the inclusion. Then W 1 (W 0 is the proper transform of u1. See however Corollary 1.10.7 (1).

Recall [SGA3, exposé IV, définition 1.4.0] that a morphism f :M→N in a category C is squarable if, for
any g :N ′→N , the fibred product N ′ ×N M is representable in C. We have:

Corollary 1.10.7. The following assertions hold.

(1) If f : U →M is a minimal morphism in MSmfin (see Definition 1.3.4) such that f o is smooth, then f
is squarable in MSmfin. If f ∈MSmfin, it is squarable in this category. If moreover f is flat, then the
pull-back by f of morphisms from normal modulus pairs commutes with the forgetful functor M 7→M from
MSmfin to Sch of Definition 1.3.3 (2).

(2) If f :U →M is a morphism in MSm such that f o is smooth, then f is squarable in MSm. If f ∈MSm,
it is squarable in this category.

Proof. (1) follows from Proposition 1.10.4 (1) and (2); (2) follows from Proposition 1.10.4 (3). �

Corollary 1.10.8. Finite products exist in MSm and MSm.

Proof. This is the special case M = (Speck,∅) in Corollary 1.10.7 (2). �

2. Presheaf theory

2.1. Modulus presheaves with transfers

Definition 2.1.1. By a presheaf we mean a contravariant functor to the category of abelian groups.

(1) The category of presheaves on MSm (resp. MSm, MSmfin) is denoted by MPS (resp. MPS, MPSfin).

(2) The category of additive presheaves on MCor (resp. MCor, MCorfin) is denoted by MPST (resp.
MPST, MPSTfin.)

All these categories are abelian Grothendieck, with projective sets of generators: this is classical for those
of (1) and follows from Theorem A.10.2 for those of (2). (See also proof of Proposition 2.6.1 below.)

Notation 2.1.2. We write

Ztr :MCor→MPST, MCor→MPST,

Z
fin
tr :MCorfin→MPSTfin,

Ztr :Cor→ PST

for the associated representable presheaves (i.e. Ztr(M) ∈MPST is given by Ztr(M)(N ) = MCor(N,M),
etc.) We shall use the common notation Ztr but they will be distinguished by the context.

We now briefly describe the main properties of the functors induced by those of the previous section.

2.2. MPST and PST

We say (f1, f2, . . . , fn) is a string of adjoint functors if fi is a left adjoint of fi+1 for each i = 1, . . . ,n− 1.

Proposition 2.2.1. The functor ω : MCor→ Cor of §1.5 yields a string of three adjoint functors (ω!,ω
∗,ω∗):

MPST

ω!−→
ω∗
←−
ω∗−→

PST,
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where ω∗ is fully faithful and ω!,ω∗ are localisations; ω! has a pro-left adjoint ω!, hence is exact.
Similarly, ωs : MSm→ Sm yields a string of three adjoint functors (ωs!,ω∗s,ωs∗); ω

∗
s is fully faithful and

ωs!,ωs∗ are localisations; ωs! has a pro-left adjoint ω!
s, hence is exact.

Proof. This follows from Theorems 1.7.2 and A.6.5. �

Let X ∈ Sm and let M ∈ MSm(X). Lemma 1.7.4 and Proposition A.4.1 show that the inclusions
{M(n) | n > 0} ⊂MSm(M!X) ⊂MSm(X) induce isomorphisms (see Definition 1.7.3)

(2.2.1) ω!(F)(X) ' lim−−→
N∈MSm(X)

F(N ) ' lim−−→
N∈MSm(M!X)

F(N ) ' lim−−→
n>0

F(M(n)).

2.3. MPST and PST

Proposition 2.3.1. The adjoint functors (λ,ω) of Lemma 1.5.1 induce a string (λ! =ω!,λ∗ =ω!,λ∗ =ω∗,ω∗) of
four adjoint functors:

MPST

ω!

←−
ω!−→
ω∗
←−
ω∗−→

PST,

where ω!,ω∗ are localisations while ω! and ω∗ are fully faithful. Moreover, if X ∈ Cor is proper, we have a
canonical isomorphism ω∗Ztr(X) 'Ztr(X,∅).

Proof. The only non obvious statement is the last claim, which follows from Lemma 1.5.1. �

2.4. MPST and MPST

Proposition 2.4.1. The functor τ : MCor→MCor of (1.5.1) yields a string of three adjoint functors (τ!, τ
∗, τ∗):

MPST

τ!−→
τ∗
←−
τ∗−→

MPST,

where τ!, τ∗ are fully faithful and τ∗ is a localisation; τ! has a pro-left adjoint τ !, hence is exact. There are natural
isomorphisms

ω! 'ω!τ!, ω∗ 'ω∗τ∗, ω! ' τ !ω!.

The same holds for the functor τs from Theorem 1.5.2. Namely, we have a string of three adjoint functors (τs!, τ∗s , τs∗)
and they satisfy

ωs! 'ωs!τs!, ωs∗ 'ωs∗τs∗, ω!
s ' τ !

sω
!
s.

Proof. This follows from Theorem 1.5.2 and Proposition A.4.1. �

Lemma 2.4.2.

(1) For G ∈MPST,G′ ∈MPS and M ∈MSm, we have

lim−−→
N∈Comp(M)

G(N ) ' τ!G(M), lim−−→
N∈Comp(M)

G′(N ) ' τs!G′(M).

(2) The unit maps Id→ τ∗τ! and Id→ τ∗sτs! are isomorphisms.

(3) There is an natural isomorphism τ!ω
∗ 'ω∗.
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Proof. (1) This follows from Lemma 1.8.3, Theorem 1.5.2 and Proposition A.4.1.
(2) This follows from (1) since Comp(M) = {M} for M ∈MSm.
(3) For F ∈ PST and M ∈MCor, we compute

τ!ω
∗F(M) = lim−−→

N∈Comp(M)

ω∗F(N ) = lim−−→
N∈Comp(M)

F(N o) = F(Mo) = ω∗F(M).

We are done. �

Remark 2.4.3. By Lemma 1.8.3 we have the formulas

τ !
Ztr(M) = “lim←−−”

N∈Comp(M)

Ztr(N ), τ∗Ztr(M) = lim←−−
N∈Comp(M)

Ztr(N ),

where the latter inverse limit is computed in MPST.

Question 2.4.4. Is τ ! exact?

2.5. MPSTfin and MPST

Proposition 2.5.1. Let bs : MSmfin→MSm and b : MCorfin→MCor be the inclusion functors from (1.9.1).
Then bs and b yield strings of three adjoint functors (bs!,b

∗
s,bs∗) and (b!,b

∗,b∗):

MPSfin

bs!−→
b∗s←−
bs∗−→

MPS, MPSTfin

b!−→
b∗
←−
b∗−→

MPST,

where bs!,bs∗, b!,b∗ are localisations; b∗s, b
∗ are exact and fully faithful; bs!, b! have pro-left adjoints, hence

are exact. The counit maps bs!b
∗
s→ Id and b!b

∗→ Id are isomorphisms. For Fs ∈MPSfin, F ∈MPSTfin and
M ∈Ob(MSm) = Ob(MCor), we have (see Def. 1.9.1)

(2.5.1) bs!Fs(M) = lim−−→
N∈Σfin↓M

Fs(N ), b!F(M) = lim−−→
N∈Σfin↓M

F(N ).

Proof. This follows from the usual yoga applied with Proposition 1.9.2 and Lemma A.3.1. �

2.6. With and without transfers

Proposition 2.6.1. Let c : MSm→MCor be the functor from (1.3.1). Then c yields a string of three adjoint
functors (c!, c

∗, c∗):

MPS

c!−→
c∗
←−
c∗−→

MPST,

where c∗ is exact and faithful (but not full). We have

(2.6.1) c!Z
p(M) = Ztr(M)

for any M ∈MSm, where Zp(M) is 4 the presheaf N 7→Z[MSm(N,M)].
The same statements hold for c : MSm→MCor and cfin;MSmfin→MCorfin from (1.3.1). Precisely, they

yield strings of three adjoint functors (c!, c
∗, c∗) and (cfin

! , cfin∗, cfin
∗ ); c∗ and cfin∗ are exact and faithful. (The

analogue of (2.6.1) also holds for c and cfin, but we will not need it.)

Proof. To define c!, c
∗ and c∗, we use the free additive category ZMSm on MSm [Mac98, Chapter VIII,

Section 3, Exercises 5 & 6]: it comes with a canonical functor γ : MSm→ZMSm and is 2-universal for
contravariant functors to additive categories. In particular:

• The functor c induces an additive functor c̃ : ZMSm→MCor.

4We put a superscript p to distinguish it from its associated sheaf Z(M), to be introduced in (4.4.1).
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• By the 2-universality, the functor γ induces an equivalence γ∗ : Mod–ZMSm � MPS, where
Mod–ZMSm denotes the category of additive contravariant functors ZMSm→Ab

• For M,N ∈MSm, we have a canonical isomorphism

ZMSm(γ(N ),γ(M)) 'Z[MSm(N,M)].

As usual, c̃ induces a string of three adjoint functors (c̃!, c̃
∗, c̃∗) (see §A.4). We then define c! as c̃! ◦ (γ∗)−1, etc.

Everything follows from this except the faithfulness of c∗, which is a consequence of the essential surjectivity
of c. The cases of cfin and c are dealt with similarly. �

Lemma 2.6.2. (1) We have

(2.6.2) cfin∗b∗ = b∗sc
∗, b!c

fin
! = c!bs!, c∗b! = bs!c

fin∗.

(2) We have

(2.6.3) c∗τ∗ = τ∗s c
∗, c∗τ! = τs!c

∗, cfin∗τfin
! = τfin

s! c
fin∗.

Proof. The first two equalities of (1) follows from the equality b cfin = c bs (see (1.9.2)). Similarly, the first
equality of (2) follows from τc = cτs. By (2.5.1), we have

c∗b!F(M) � lim−−→
N∈Σfin↓M

F(N ) � bs!c
fin∗F(M)

for any F ∈MPSTfin and M ∈MSm. (Note that all morphisms of Σfin ↓M are in MSmfin, and that both
of b! and bs! can be computed by using the same Σfin ↓M .) This proves the last formula of (1). Lemma 2.4.2
(1) shows that

c∗τ!F(M) � lim−−→
N∈Comp(M)

F(N ) � τs!c
∗F(M)

for any F ∈MPST and M ∈MSm. The last one of (2) is similar. �

2.7. A patching lemma

By the previous lemma, we obtain a commutative diagram of categories (cf. (1.9.2)):

(2.7.1)

MPST
τ! //

c∗

��

MPST
b∗
//

c∗

��

MPSTfin

cfin∗

��

MPS
τs! // MPS

b∗s // MPSfin .

All vertical arrows are faithful and horizontal ones fully faithful.

Lemma 2.7.1. Both squares of (2.7.1) are “2-Cartesian”. More precisely, the following assertions hold.

(1) Let MPS×MPSfin MPSTfin be the category of pairs (Fs,Ft) consisting of Fs ∈MPS and Ft ∈MPSTfin

such that their restriction to the common subcategory MSmfin are equal. The functor

MPST→MPS×MPSfin MPSTfin,

defined by F 7→ (c∗F,b∗F) is an equivalence of categories.

(2) Let MPS×MPSMPST be the category of triples (Fs,Ft ,ϕ) consisting of Fs ∈MPS, Ft ∈MPST and an
isomorphism ϕ : τs!Fs � c∗Ft in MPS. The functor

MPST→MPS×MPSMPST,

defined by F 7→ (c∗F,τ!F,θF), where θF : τs!c∗F � c∗τ!F is from (2.6.3), is an equivalence of categories.
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Proof. (1) is the content of Corollary 1.9.4. We show (2). Given (Fs,Ft ,ϕ), we shall construct F ∈MPST as
follows. Set F(M) := Fs(cM) for any M ∈MCor. Since M is proper, we have an isomorphism

F(M) = Fs(cM) = τs!Fs(τscM)
ϕM−→ c∗Ft(cτM) = Ft(τM),

which we denote by ϕ̃M . For γ ∈MCor(M,N ), we define F(γ) := ϕ̃−1
M Ft(γ)ϕ̃N . It is straightforward to see

that (Fs,Ft ,ϕ) 7→ F gives a quasi-inverse. �

2.8. The functors n! and n∗

As in §A.4, the functor (−)(n) of Definition 1.4.1 induces a string of adjoint endofunctors (n!,n
∗,n∗) of MPST,

where n∗ is given by n∗(F)(M) = F(M(n)). We shall not use n∗ in the sequel.

Lemma 2.8.1. The functor n! is fully faithful.

Proof. This follows formally from the same properties of (−)(n). �

Proposition 2.8.2. For any F ∈MPST, there is a natural isomorphism

ω∗ω!F '∞∗F,

where ∞∗F(M) := lim−−→n
F(M(n)) (for the natural transformations (1.4.1)).

Proof. Let M ∈MCor and X =ωM . Then

ω∗ω!F(M) = lim−−→
M ′∈MSm(X)

F(M ′),

and the claim follows from Lemma 1.7.4. �

Proposition 2.8.3. For all n ≥ 1, the natural transformation ω!→ω!n
∗ stemming from (1.4.1) is an isomorphism.

Proof. Let F ∈MPST. For X ∈ Cor, we have

ω!n
∗F(X) = lim−−→

M∈MSm(X)

n∗F(M) = lim−−→
M∈MSm(X)

F(M(n)) = lim−−→
M∈MSm(X)

F(M),

where the last isomorphism follows from Lemma 1.7.4. �

3. Sheaves on MSmfin and MCorfin

3.1. Nisnevich topology on MSmfin

Definition 3.1.1. We call a morphism p :U →M in MSmfin a Nisnevich cover if

(i) p :U →M is a Nisnevich cover of M in the usual sense;
(ii) p is minimal (that is, U∞ = p∗(M∞)).

Since the morphisms appearing in the Nisnevich covers are squarable by Corollary 1.10.7 (1), we obtain a
Grothendieck topology on MSmfin. The category MSmfin endowed with this topology will be called the big
Nisnevich site of MSmfin and denoted by MSmfin

Nis.

Definition 3.1.2. Let us fix M ∈MSmfin. Let MNis be the category of minimal morphisms f :N →M in
MSmfin such that f is étale, endowed with the topology induced by MSmfin

Nis.

The following lemma is obvious from the definitions:
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Lemma 3.1.3. Let M ∈ MSmfin. Let (M)Nis be the (usual) small Nisnevich site on M . Then we have an
isomorphism of sites

MNis→ (M)Nis, N 7→N,

whose inverse is given by (p : X → M) 7→ (X,p∗(M∞)). (This isomorphism of sites depends on the choice of
M∞.) �

Lemma 3.1.4. Let α :M→N be a morphism in MCorfin and let p :U →N be a Nisnevich over in MSmfin.
Then there is a commutative diagram

V
α′−−−−−→ U

p′
y yp
M −−−−−→

α
N,

where α′ : V →U is a morphism in MCorfin and p′ : V →M is a Nisnevich cover in MSmfin.

Proof. We may assume α is integral. Let α be the closure of α in M ×N . Since α is finite over M, we may
find a Nisnevich cover p′ : V →M such that p̃ in the diagram (all squares being cartesian)

V ×M ×(α ×U ) −−−−−→ α ×N U −−−−−→ U

p̃

y y yp
V ×M ×α −−−−−→ α −−−−−→ Ny y

V −−−−−→
p′

M

has a splitting s. Put V := (V ,p′∗(M∞)) ∈MSm. The image of s gives us a desired correspondence α′ . �

Remark 3.1.5. One can also define the Zariski and étale topologies on MSmfin. Most results of this section
(notably Theorems 3.4.1, 3.5.3, and Corollary 3.5.6) remain true for the étale topology, but not for the Zariski
topology (e.g. Lemma 3.1.4 already fails for it).

However, from the next section onward we will make essential use of cd-structures. As the étale topology
cannot be defined by a cd-structure, we decide to stick to the Nisnevich topology from the beginning.

3.2. A cd-structure on MSmfin

Let Sq be the product category of [0] = {0→ 1} with itself, depicted as

00 //

��

01

��
10 // 11.

For any category C, denote by CSq for the category of functors from Sq to C. A functor f : C → C′ induces a
functor f Sq : CSq→C′Sq.

We refer to §A.7 for the notion of cd-structure, and its properties.

Definition 3.2.1.

(1) A Cartesian square

(3.2.1)

W
v−−−−−→ V

q
y p

y
U

u−−−−−→ X,
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in Sch is called an elementary Nisnevich square if p is étale, p−1(X \ U )red → (X \ U )red is an
isomorphism and u is an open embedding,. In this situation, we say U tV → X is an elementary
Nisnevich cover. Recall that an additive presheaf is a Nisnevich sheaf if and only if it transforms any
elementary Nisnevich square into a cartesian square [Voe10a, Corollary 2.17], [Voe10b, Theorem 2.2].

(2) A diagram (3.2.1) in MSmfin is called an MVfin-square if all morphisms are minimal and it becomes
an elementary Nisnevich square (in Sch) after applying the forgetful functor of Definition 1.3.3 (2).

Lemma 3.2.2. A MVfin-square (3.2.1) is cartesian in MSmfin.

Proof. The last part of Proposition 1.10.4 (2) shows that no irreducible component of X has its image inside
|U∞| or |V∞| (i.e. W 1 in loc. cit. agrees with W ), and then Proposition 1.10.4 (1) shows that X is the fiber
product since q∗U∞ = v∗V∞ =W∞ by minimality. �

Proposition 3.2.3. The following assertions hold.

(1) The topology on MSmfin
Nis (cf. Def. 3.1.1) coincides with the topology associated with the cd-structure PMVfin

consisting of MVfin-squares.

(2) The cd-structure PMVfin is strongly complete and strongly regular in the sense of Definition A.7.4, hence
complete and regular in the sense of [Voe10a] (cf. Definition A.7.1).

Proof. (1) follows from Lemma 3.1.3 and [Voe10b, Remark after Proposition 2.17]. The first assertion of
(2) follows from (the proof of) [Voe10b, Theorem 2.2]. The second assertion of (2) follows from [Voe10a,
Lemma 2.5, Lemma 2.11] �

3.3. Sheaves on MSmfin

Definition 3.3.1. We define MNSfin to be the full subcategory of MPSfin consisting of Nisnevich sheaves.

Theorem 3.3.2. Let F ∈MNSfin. Then H i
Nis(X,F) = 0 for any X ∈MSmfin and i > dimX (where dimX is

defined as dimX := dimXo = dimX).

Proof. This is clear from Lemma 3.1.3 and the known properties of the Nisnevich site. �

Definition 3.3.3. An additive functor F between additive categories is strongly additive if it commutes with
infinite direct sums.

This property is not used in the present paper, but it will be essential in [KMSY21] when we deal with
unbounded derived categories.

Lemma 3.3.4. The category MNSfin is closed under infinite direct sums and the inclusion functor denoted by
ifin
sNis : MNSfin→MPSfin is strongly additive.

Proof. Indeed, the sheaf condition is tested on finite diagrams, hence the presheaf given by a direct sum
of sheaves is a sheaf (small filtered colimits commute with finite limits, [Mac98, Chapter IX, Section 2,
Theorem 1]). �

Proposition 3.3.5. For any M ∈MSm we have

cfin∗
Z

fin
tr (M), cfin∗b∗Ztr(M) ∈MNSfin,

where Zfin
tr ,Ztr are the representable presheaves (notation 2.1.2) and the functors b∗ and cfin∗ are from Propositions

2.5.1, 2.6.1.
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Proof. We show the stronger statement that Ztr(M) restricts to an étale sheaf on N ét for any N ∈MCorfin.
Let p :U →N be an étale cover and let U := (U,p∗N∞). We have a commutative diagram

0 // MCorfin(N,M) //
� _

��

MCorfin(U,M) //
� _

��

MCorfin(U ×N U,M)
� _

��
0 // MCor(N,M) //

� _

��

MCor(U,M) //
� _

��

MCor(U ×N U,M)
� _

��
0 // Cor(N o,Mo) // Cor(Uo,Mo) // Cor(Uo ×N o Uo,Mo).

The bottom row is exact by [MVW06, Lemma 6.2]. The exactness of the top and middle row now follows
from Lemma 1.9.6. �

3.4. Čech complex

Let p :U →M be a Nisnevich cover in MSmfin. We write U ×M U for the modulus pair corresponding to
U ×M U under the isomorphism of sites from Lemma 3.1.3. Note that it is a fibre product in MSmfin and in
MSm, thanks to Proposition 1.10.4. Iterating this construction, we obtain the Čech complex

(3.4.1) · · · → cfin∗
Z

fin
tr (U ×M U )→ cfin∗

Z
fin
tr (U )→ cfin∗

Z
fin
tr (M)→ 0

in MNSfin.

Theorem 3.4.1. The complex (3.4.1) is exact in MNSfin.

Remark 3.4.2. This result will be refined several times, see Corollary 3.5.6 and Theorem 4.5.7. Its proof is
adapted from [Voe00, Proposition 3.1.3].

Before starting the proof of Theorem 3.4.1, it is convenient to generalize the notion of relative cycles to
the modulus setting.

Definition 3.4.3. Let S = (S,D), Z = (Z,Z∞) be two pairs formed of a scheme and an effective Cartier
divisor, and let f : Z→ S be a morphism. (We don’t put any regularity requirement on S − |D | or Z − |Z∞|.)
We write L(Z/S) for the free abelian group with basis the closed integral subschemes T ⊂ Z such that T is
finite and surjective over an irreducible component of S and D |T N ≥ Z∞|T N , where T N → T is normalization
and (−)|T N denotes pull-back of Cartier divisors.

Example 3.4.4. If S is a modulus pair and M = (M,M∞) is another modulus pair, then we have a canonical
isomorphism MCorfin(S,M) ' L(S ×M/S), where S ×M is the modulus pair (S ×M,S ×M∞): this follows
from Remark 1.3.5 (3).

Define a category D(S) as follows: objects are pairs (Z,f ) as in Definition 3.4.3. A morphism in D(S),
(Z,f )→ (Z ′ , f ′), is a minimal morphism ϕ : Z→ Z ′ such that f = f ′ ◦ϕ. Composition is obvious.

Lemma 3.4.5. The push-forward of cycles makes (Z,f ) 7→ L(Z/S) a covariant functor on D(S).

Proof. Let ϕ : (Z,f )→ (Z ′ , f ′) be a morphism in D(S), and let T ∈ L(Z/S). Then ϕ(T ) is still finite and
surjective over a component of S [MVW06, Lemma 1.4]. Moreover, it still verifies the modulus condition:
this follows from the minimality of ϕ and from Lemma 1.2.1. We set as usual ϕ∗T = [k(T ) : k(ϕ(T ))]ϕ(T ):
this defines ϕ∗ : L(Z/S)→ L(Z ′/S), and the functoriality (ψ ◦ϕ)∗ = ψ∗ ◦ϕ∗ is obvious. �

Proof of Theorem 3.4.1. In view of Lemma 3.1.3, it suffices to show the exactness of (3.4.1) evaluated at S

(3.4.2) · · · →MCorfin(S,U ×M U )→MCorfin(S,U )→MCorfin(S,M)→ 0
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for the henselisation S = (S,D) of any modulus pair N = (N,N∞) at any point of N . As in [Voe00], the
strategy is to write (3.4.2) as a filtered colimit of contractible chain complexes.

Write E(S,M) for the collection of integral closed subsets of So ×Mo which belong to MCorfin(S,M)
(this is the canonical basis of MCorfin(S,M)). Let C(M) be the set of closed subschemes of S ×M that are
quasi-finite over S and not contained in S ×M∞, viewed as an (ordered, cofiltered) category. To Z ∈ C(M)
we associate the subset E(Z) ⊂ E(S,M) of those F such that F ⊂ Z .

Provide Z ∈ C(M) with the minimal modulus structure induced by the projection Z →M (in a sense
slightly generalized from Remark 1.1.2 (4), as in Definition 3.4.3: the open subset Z −Z∞ is not necessarily
smooth). This yields a functor

C(M)→D(S)

where D(S) is the category defined above. In particular, we have a subgroup L(Z/S) ⊂MCorfin(S,M): it is
the free abelian group on E(Z).

Let u : M ′ → M be an étale morphism in MSmfin, as in Definition 3.1.2. For Z ∈ C(M), define
u∗Z = Z ×MM

′
. Then u∗Z ∈ C(M ′), and there is a commutative diagram

L(u∗Z/S) −−−−−→ L(Z/S)y y
MCorfin(S,M ′)

u∗−−−−−→ MCorfin(S,M),

where the bottom horizontal map is composition by the graph of u. This yields subcomplexes

(3.4.3) · · · → L(Z ×M (U ×M U ))→ L(Z ×M U )→ L(Z)→ 0

of (3.4.2), for Z ∈ C(M).
Let Cf (M) ⊂ C(M) be the subset of those Z which are finite over S . It is a filtered subcategory, and we

have

E(S,M ′) =
⋃

Z∈Cf (M)

E(u∗Z).

Indeed, for Z ′ ∈ C(M ′), let Z = (IdS ×u)(Z ′) and let Zf =
⋃
F∈E(Z)F. Then E(Z ′) ⊂ E(u∗Zf ) since

(IdS ×u)(F) is finite over S for F ∈ E(Z ′).
This proves that (3.4.2) is obtained as the filtered inductive limit of the complexes (3.4.3) when Z ranges

over Cf (M). It suffices to show the exactness of (3.4.3) for such a Z .

Since Z is finite over the henselian local scheme S , Z is a disjoint union of henselian local schemes. Thus
the Nisnevich cover Z ×M U → Z admits a section s0 : Z→ Z ×M U . Define for k ≥ 1

sk := s0 ×M Id
U
k : Z ×M U

k→ Z ×M U ×M U
k

= Z ×M U
k+1

where U
k

:=U ×M · · · ×M U . Then the maps

L(Z ×M U
k
)→ L(Z ×M U

k+1
)

induced by sk via Lemma 3.4.5 give us a homotopy from the identity to zero. �

3.5. Sheafification preserves finite transfers

Let afin
sNis : MPSfin→MNSfin be the sheafification functor, that is, the left adjoint of the inclusion functor

ifin
sNis : MNSfin ↪→MPSfin. It exists for general reasons and is exact [SGA4, exposé II, théorème 3.4].

Definition 3.5.1. Let MNSTfin be the full subcategory of MPSTfin consisting of all objects F ∈MPSTfin

such that cfin∗F ∈MNSfin (see Proposition 2.6.1 for cfin∗).
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Lemma 3.5.2. The category MNSTfin is closed under infinite direct sums in MPSTfin, and the inclusion functor
ifin
Nis : MNSTfin→MPSTfin is strongly additive (Definition 3.3.3 ). The objects Zfin

tr (M) and b∗Ztr(M) belong
to MNSTfin for any M ∈MCor.

Proof. This follows from Lemma 3.3.4, because cfin∗ is strongly additive as a left adjoint. The last claim
follows from Proposition 3.3.5. �

We write cfinNis : MNST→MNS for the functor induced by cfin∗. By definition, we have

(3.5.1) cfin∗ifin
Nis = ifin

sNisc
finNis.

Theorem 3.5.3. The following assertions hold.

(1) Let F ∈MPSTfin. There exists a unique object FNis ∈MPSTfin such that cfin∗(FNis) = afin
sNis(c

fin∗(F))
and such that the canonical morphism u : cfin∗(F)→ afin

sNis(c
fin∗(F)) = cfin∗(FNis) extends to a morphism

in MPSTfin.

(2) The functor ifin
Nis has an exact left adjoint afin

Nis : MPSTfin→MNSTfin satisfying

(3.5.2) cfinNisafin
Nis = afin

sNisc
fin∗.

In particular the category MNSTfin is Grothendieck (§A.10).

(3) The functor cfinNis has a left adjoint cfin
Nis = afin

Nisc
fin
! ifin

sNis. Moreover, cfinNis is exact, strongly additive
(Definition 3.3.3 ), and faithful.

Proof. This can be shown by a rather trivial modification of [Voe00, Theorem 3.1.4], but for the sake of
completeness we include a proof. To ease the notation, put F′ := afin

sNisc
fin∗F ∈MPSfin. First we construct a

homomorphism

ΦM : F′(M)→MPSfin(cfin∗
Z

fin
tr (M),F′)

for any M ∈ MSm. Take f ∈ F′(M). There exists a Nisnevich cover p : U → M in MSmfin and
g ∈ cfin∗F(U ) = F(U ) such that f |U = u(g) in F′(U ). There also exists a Nisnevich cover W → U ×M U
such that g |W = 0 in F(W ). We have afin

sNisc
fin∗

Z
fin
tr (M) = cfin∗

Z
fin
tr (M) because cfin∗

Z
fin
tr (M) ∈MPSfin

Nis by
Proposition 3.3.5. Thus we get a commutative diagram in which the horizontal maps are induced by afin

sNisc
fin∗

0

��

MPSfin(cfin∗
Z

fin
tr (M),F′)

s
��

MPSfin(cfin∗
Z

fin
tr (U ),F′)

��

MPSTfin(Zfin
tr (U ),F)s′oo

��

s′′

uu

MPSfin(cfin∗
Z

fin
tr (U ×M U ),F′)
� _

l
��

MPSTfin(Zfin
tr (U ×M U ),F)oo

��

MPSfin(cfin∗
Z

fin
tr (W ),F′) MPSTfin(Zfin

tr (W ),F).oo

Since F′ is a sheaf, Theorem 3.4.1 implies that the left vertical column is exact except at the last spot, and
that the map l is injective. Since g ∈ F(U ) = MPSTfin(Zfin

tr (U ),F) satisfies s′′(g) = g |W = 0, there exists a
unique h ∈MPSfin(c∗Zfin

tr (M),F′) such that s(h) = s′(g). One checks that h does not depend on the choices
of p :U →M, g ∈ F(U ) and W →U ×M U by taking a refinement of covers. We define ΦM(f ) := h.
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Now we define G. On objects we put G(M) = F′(M) for M ∈MSm. For α ∈MCorfin(M,N ), we define
α∗ : F′(N )→ F′(M) as the composition of

F′(N )
ΦN−→MPSfin(cfin∗

Z
fin
tr (N ),F′) −→MPSfin(cfin∗

Z
fin
tr (M),F′) −→ F′(M),

where the middle map is induced by cfin∗(α) : cfin∗
Z

fin
tr (M)→ cfin∗

Z
fin
tr (N ), and the last map is given by

f 7→ fM(IdM ). One checks that, with this definition, G becomes an object of MPSTfin.
To prove uniqueness, take G,G′ ∈MPSTfin which enjoy the stated properties. For any M ∈MSm we have

G(M) = G′(M) = F′(M). We also have G(cfin∗(q)) = G′(cfin∗(q)) = F′(q) for any morphism q in MSmfin.
Let α : M → N be a morphism in MCorfin and let f ∈ F′(N ). Take a Nisnevich cover p : U → N of
MSmfin and g ∈ cfin∗F(U ) = F(U ) such that f |U = u(g) in F′(U ). Apply Lemma 3.1.4 to get a morphism
α′ : V →U in MCorfin and a Nisnevich cover p′ : V →M of MSmfin such that αp′ = pα′ . Then we have

G(p′)G(α)(f ) = G(α′)G(p)(f ) = G(α′)(u(g)) = u(F(α′)(g))

= G′(α′)(u(g)) = G′(α′)G′(p)(f ) = G′(p′)G′(α)(f ) = G(p′)G′(α)(f ).

Since p′ : V →M is a Nisnevich cover and G is separated, this implies G(α)(f ) = G′(α)(f ). This completes
the proof or (1).

(2) is a consequence of (1) and the fact that MPSTfin is Grothendieck as a category of modules (see
Theorem A.10.1 d)). Then (3) follows from Lemma A.8.1. �

Remark 3.5.4. A different argument may be given by mimicking the proof of [Ayo15, Corollary 2.2.26].

Definition 3.5.5. An additive functor ϕ : C → C′ between abelian categories is faithfully exact if a complex
F′→ F→ F′′ is exact if and only if ϕF′→ ϕF→ ϕF′′ is.

This happens if ϕ is exact and either faithful or conservative. By Theorems 3.5.3 and 3.4.1, we get:

Corollary 3.5.6. The functor cfinNis is faithfully exact. In particular, if p : U →M is a Nisnevich cover in
MSmfin, then the Čech complex

(3.5.3) · · · →Z
fin
tr (U ×M U )→Z

fin
tr (U )→Z

fin
tr (M)→ 0

is exact in MNSTfin.

3.6. Cohomology in MNSTfin

Notation 3.6.1. Let M ∈MSmfin and let F ∈MNSfin (resp. F ∈MNSTfin). We write FM for the sheaf on
(M)Nis induced from F (resp. cfinσF) via the isomorphism of sites from Lemma 3.1.3. (Note that FM depends
not only on M, but also on M∞.) We thus have canonical isomorphisms

H i
Nis(M,F) 'H i

Nis(M,FM ),(3.6.1)

H i
Nis(M,c

finNisF) 'H i
Nis(M,FM ),(3.6.2)

where the right hand sides denote the cohomology of the (usual) small site (M)Nis.

Definition 3.6.2.

(1) Let S be a scheme. We say a sheaf F on SNis is flasque if F(V )→ F(U ) is surjective for any open
dense immersion U → V . Flasque sheaves are flabby in the sense of Definition A.9.4 (see [Rio02,
lemme 1.40]).

(2) We say F ∈ MNSfin is flasque if FM is flasque for any M ∈ MSmfin (see Notation 3.6.1). Again,
flasque sheaves are flabby by (3.6.1).

Lemma 3.6.3. Let I ∈MNSTfin be an injective object. Then cfinNis(I) ∈MNSfin is flasque, and hence flabby.
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Proof. Let j :U ↪→M be a minimal open immersion of modulus pairs in MSmfin. The morphism of sheaves
Z

fin
tr (j) is a monomorphism, hence j∗ : I(M)→ I(U ) is surjective. Alternatively, one can apply Lemma A.9.5

with (3.5.3) to show that cfinσ (I) is flabby. (This proof also works for the étale topology.) �

4. Sheaves on MSm and MCor

4.1. A cd-structure on MSm

Let PMV be the collection of commutative squares in MSm which are isomorphic in MSmSq to b
Sq
s (Q) for

some MVfin-square Q in Definition 3.2.1. Then PMV defines a cd-structure on MSm (see §3.2).

Definition 4.1.1. The squares which belong to PMV are called MV-squares.

Theorem 4.1.2. The cd-structure PMV is strongly complete and strongly regular, in particular complete and regular
(see Definitions A.7.1 and A.7.4).

Proof. This follows from Propositions 3.2.3 and A.7.6. �

4.2. Sheaves on MSm

Definition 4.2.1. Consider the Grothendieck topology on MSm generated by the squares in PMV. The
resulting site will be denoted by MSmNis. We write MNS for the full subcategory of sheaves in MPS. We
denote by isNis : MNS→MPS the inclusion functor.

By the general properties of Grothendieck topologies [SGA4, exposé2], we have:

Theorem 4.2.2. The inclusion functor isNis : MNS→MPS has an exact left adjoint asNis. The category MNS
is Grothendieck (§A.10 ). �

Lemma 4.2.3. The following conditions are equivalent for F ∈MPS.

(i) F ∈MNS.
(ii) b∗sF ∈MNSfin; in other words, (b∗sF)M is a Nisnevich sheaf for any M ∈MSm (see (1.9.2) for bs and

Notation 3.6.1 for (−)M ).
(iii) F transforms any MVfin-square

(4.2.1) Q0 :

W0
//

��

V0

��
U0

// M

into an exact sequence

0 → F(M)→ F(U0)×F(V0)→ F(W0).

Proof. In view of Theorem 4.1.2 and [Voe10a, Corollary 2.17], we have (i) ⇐⇒ (iii). On the other hand, (ii)
⇐⇒ (iii) by adjunction and Proposition 3.2.3. �

Corollary 4.2.4. The category MNS is closed under infinite direct sums in MPS and isNis is strongly additive
(Definition 3.3.3 ).

Proof. This follows from Lemmas 3.3.4, 4.2.3 ((i) ⇐⇒ (ii)) and A.8.1 (2) because b∗s is strongly additive as a
left adjoint. �
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4.3. The adjunction (bs,Nis,b
Nis
s )

Definition 4.3.1. A map in MSmNis is called a strict Nisnevich cover if it is the image of a cover of MSmfin
Nis

by bs : MSmfin→MSm.

By definition, a strict Nisnevich cover is evidently a cover in MSmNis. Up to isomorphism, any cover of
MSmNis can be refined to such a cover. More precisely, we have the following lemma.

Lemma 4.3.2. Any cover U →M in MSmNis admits a refinement of the form V →N →M , where V →N is
a strict Nisnevich cover and N →M is a morphism in Σfin (see Definition 1.9.1 ).

Proof. By Definition 4.2.1 and Proposition 1.9.2, there is a refinement of U →M of the form

Un
fn→Un−1

fn−1→ ·· ·
f1→U0 =M,

where for each i we have either (i) fi ∈ Σfin, (ii) fi = g−1 for some g ∈ Σfin, or (iii) fi is a strict Nisnevich
cover. We proceed by induction on n, the case n = 0 being trivial. Suppose n > 0. By induction, we have a
refinement of Un→U1 of the form V ′→N ′→U1 where V ′→N ′ is a strict Nisnevich cover and N ′→U1
is in Σfin.

If f1 ∈ Σfin, then we can take V = V ′ and N = N ′ , as the composition N ′ → U1→ U0 belongs to Σfin.
Next, suppose f1 = g−1 with g ∈ Σfin. Then we can take V = V ′ ×U1

U0 and N = N ′ ×U1
U0, where U0 is

regarded as a U1-scheme by g . Finally, suppose f1 is a strict Nisnevich cover. By Lemma 1.6.3, we may
find a morphism N →U0 in Σfin such that N ′′ :=N ×U0

U1→U1 factors through N ′ . Then we can take
V = V ′ ×N ′ N ′′ . This completes the proof. �

We define bNis
s : MNS→MNSfin to be the restriction of b∗s, cf. Lemma 4.2.3 (ii). By definition, we have

(4.3.1) b∗sisNis = ifin
sNisb

Nis
s .

Proposition 4.3.3. The following assertions hold.

(1) We have bs!(MNSfin) ⊂MNS. In particular, bs! restricts to bsNis : MNSfin→MNS so that we have

(4.3.2) bs!i
fin
sNis = isNisbsNis.

(2) The functor bsNis is an exact left adjoint of bNis
s . The functor bNis

s is fully faithful and preserves injectives.
The counit map bsNisb

Nis
s → Id is an isomorphism and bsNisR

qbNis
s = 0 for q > 0.

Proof. Let F ∈MNSfin and take M ∈MSm. We shall show that (b∗sbs!F)M is a Nisnevich sheaf on M . For a
given MVfin-square in MSmfin

W //

��

V

��
U // M

its pullback via (N →M) ∈ Σfin ↓M (which exists by Corollary 1.10.7 (1))

W ×M N //

��

V ×M N

��
U ×M N // N

is also an MVfin-square. By Proposition 3.2.3 (2) and by [Voe10a, Corollary 2.17], the sequence

0→ F(N )→ F(U ×M N )⊕F(V ×M N )→ F(W ×M N )
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is exact. By Lemma 1.6.3, the pullback of Σfin ↓M via U →M is cofinal in Σfin ↓ U , and similarly for
V →M and W →M . Hence, by taking its colimit over N ∈ Σfin ↓M , the above exact sequences and (2.5.1)
imply the desired exact sequence

0→ bs!F(M)→ bs!F(U )⊕ bs!F(V )→ bs!F(W ).

In view of Lemma 4.2.3, this finishes the proof of (1).
(2) The adjunction (bsNis,b

Nis
s ) follows from the adjunction (bs!,b

∗
s) (see Proposition 2.5.1), by the full

faithfullness of isNis and ifin
sNis, and by the formulas (4.3.1) and (4.3.2). The full faithfulness of bNis

s follows
from that of b∗s (see Proposition 2.5.1), isNis and ifin

sNis. Then the counit map bsNisb
Nis
s → Id is an isomorphism

by Lemma A.3.1.
We prove the exactness of bsNis as follows. Since it is right exact as a left adjoint, it suffices to show its

left exactness.
Assume given an exact sequence in MNSfin:

0→ F→ G→H → 0.

Applying the left exact functor ifin
sNis : MNSfin→MPSfin and the exact functor bs! : MPSfin→MPS and

using (4.3.2), we get an exact sequence

0→ isNisbsNisF→ isNisbsNisG→ isNisbsNisH.

For every Q ∈MNS, this gives rise to an exact sequence

0→HomMPS(isNisQ,isNisbsNisF)→HomMPS(isNisQ,isNisbsNisG)

→HomMPS(isNisQ,isNisbsNisH).

Since isNis is fully faithful, this gives an exact sequence

0→HomMNS(Q,bsNisF)→HomMNS(Q,bsNisG)→HomMNS(Q,bsNisH),

which shows the exactness of
0→ bsNisF→ bsNisG→ bsNisH,

as desired. Therefore, bsNis is exact.
Then bNis

s preserves injectives since it has an exact left adjoint bsNis. Moreover, applying Rq (q > 0) to the
counit isomorphism bsNisb

Nis
s → Id, we have

bsNisR
qbNis
s ' Rq(bsNisb

Nis
s ) ' RqId ' 0,

by Example A.9.2 and the exactness of bsNis. This concludes the proof. �

Corollary 4.3.4. We have a natural isomorphism asNis ' bsNisa
fin
sNisb

∗
s.

Proof. By the uniqueness of left adjoints, it suffices to check that the right hand side is also left adjoint to
isNis. We first apply double adjunction by (bsNis,b

Nis
s ) (Proposition 4.3.3 (2)) and (afin

sNis, i
fin
sNis), then use (4.3.1)

and the full faithfulness of b∗s (Proposition 2.5.1). �

4.4. Cohomology in MNS

Notation 4.4.1. (1) Let M ∈ MSm and F ∈ MNS. Using Notation 3.6.1, we define FM := (bNis
s F)M

which is a sheaf on (M)Nis.

(2) For M ∈MSm, let Zp(M) ∈MPS be the associated representable additive presheaf (see (2.6.1)) and
let

(4.4.1) Z(M) = asNisZ
p(M) ∈MNS

be the associated sheaf.
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Proposition 4.4.2. For M ∈MSm, F ∈MNS and i ≥ 0, we have a natural isomorphism

(4.4.2) ExtiMNS(Z(M),F) ' lim−−→
N∈Σfin↓M

H i
Nis(N,FN ) := lim−−→

N∈Σfin↓M

H i
Nis(N, (b

Nis
s F)N ).

Moreover, we have

(4.4.3) lim−−→
N∈Σfin↓M

H i
Nis(N, (R

qbNis
s F)N ) = 0 for all q > 0.

Proof. Define functors Γ ↓M : MNSfin→Ab and ΓM : MNS→Ab by

Γ
↓
M(G) = lim−−→

N∈Σfin↓M

G(N ), ΓM(F) = F(M).

We have Γ
↓
M = ΓMbsNis. By Theorem A.9.1 and Lemma 4.4.3 below, we get (RpΓM )bsNis = RpΓ ↓M for any

p ≥ 0 since bsNis is exact. Thus, by Lemma 4.4.4 below we obtain

ExtpMNS(Z(M),bsNisG) � lim−−→
N∈Σfin↓M

H
p
Nis(N,GN )

for any G ∈MNSfin and p ≥ 0. Setting G = RqbNis
s F, we get (4.4.2) for q = 0 (resp. (4.4.3) for q > 0) thanks

to Proposition 4.3.3 (2). �

Lemma 4.4.3. For an injective I ∈MNSfin, bsNisI ∈MNS is flabby (see Definition A.9.4 ).

Proof. Write F = bNisI . By Lemma A.9.3, it suffices to show the vanishing of the canonical map
Ȟq(U/M,F)→ Ȟq(M,F) for any cover U → M in MSmNis and any q > 0. By Lemma 4.3.2, we may
assume U →M is a strict Nisnevich cover (as any morphism in Σfin is an isomorphism in MSm). Denote
by Un

M ∈MSm the n-fold fiber product of U over M in MSm (which exists by Corollary 1.10.7 (1)). Then
Ȟq(U/M,F) is computed as the cohomology of the complex whose term in degree q is given by

lim−−→
Lq∈Σfin↓U q+1

M

I(Lq).

By Lemma 1.6.3, for any integer n > 0 and given Lq ∈ Σfin ↓Uq+1
M for 0 ≤ q ≤ n, there exists L ∈ Σfin ↓M in

such that L×M U
q+1
M →U

q+1
M factor through Lq for all q = 0, . . . ,n. This implies that for 0 ≤ q ≤ n− 1 the

canonical map Ȟq(U/M,bsNisI)→ Ȟq(M,bsNisI) factors through

lim−−→
L∈Σfin↓M

Ȟq(U ×M L/L, I),

where Ȟq(U ×M L/L, I) is the Čech cohomology of I with respect to the cover U ×M L→ L in MSmfin, but
it vanishes since I is injective in MNSfin. This proves the desired vanishing and completes the proof of
Lemma 4.4.3. �

Lemma 4.4.4. For any G ∈MNSfin and p ≥ 0, we have

RpΓ ↓M(G) � lim−−→
N∈Σfin↓M

H
p
Nis(N,GN ).

Proof. Take an injective resolution G→ I• in MNSfin. Then we have

RpΓ ↓M(G) =Hp(Γ ↓MI
•) =Hp( lim−−→

N∈Σfin↓M

I•) � lim−−→
N∈Σfin↓M

Hp(I•(N )) � lim−−→
N∈Σfin↓M

H
p
Nis(N,GN ),

where we used Corollary 1.9.3 for the last-but-one isomorphism, and (3.6.1) for the last one. �
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4.5. Sheaves on MCor

Lemma 4.5.1. For F ∈MPST, one has c∗F ∈MNS if and only if b∗F ∈MNSTfin.

Proof. This follows from (2.6.2) and Definitions 3.5.1 and 4.2.1. �

Definition 4.5.2. We define MNST to be the full subcategory of MPST consisting of those F enjoying the
conditions of Lemma 4.5.1. We denote by iNis : MNST→MPST the inclusion functor.

Lemma 4.5.3. The category MNST is closed under infinite direct sums in MPST, and iNis is strongly additive
(Definition 3.3.3 ). It contains Ztr(M) for any M ∈MCor.

Proof. This follows from Lemma 3.5.2, because b∗ is strongly additive as a left adjoint. The last statement
follows from Lemma 3.5.2. �

By Definition 4.5.2 and Lemma 4.5.1, the functors b∗ and c∗ restrict to bNis : MNST→MNSTfin and
cNis : MNST→MNS. It holds that

b∗iNis = ifin
Nisb

Nis, c∗iNis = isNisc
Nis,(4.5.1)

bNis
s cNis = cfinNisbNis, bsNisc

finNis = cNisbNis,

where for the last two formulas we used (2.6.2).

Proposition 4.5.4. The following assertions hold.

(1) We have b!(MNSTfin) ⊂MNST.

(2) Let bNis : MNSTfin→MNST be the restriction of b! so that we have

(4.5.2) b!i
fin
Nis = iNisbNis.

Then, the functor bNis is an exact left adjoint of bNis, which is fully faithful.

(3) The functor bNis preserves injectives.

Proof. (1) It suffices to show that c∗b!(MNSTfin) ⊂ MNS. By (2.6.2), we have c∗b! = bs!c
fin∗. Moreover,

cfin∗MNSTfin ⊂ MNSfin by Definition 3.5.1 and bs!MNSfin ⊂ MNS by Proposition 4.3.3 (1). In (2), the
adjointness and the full faithfulness are seen by using Proposition 2.5.1, (4.5.1) and (4.5.2). This proves that
bNis is right exact, and it is also exact by (4.5.2) and Proposition 2.5.1 (see also the proof of the exactness of
bsNis in Proposition 4.3.3 (2)). (3) is a consequence of (2). �

Theorem 4.5.5. The inclusion functor iNis : MNST→MPST has the exact left adjoint aNis = bNisa
fin
Nisb

∗. In
particular, MNST is Grothendieck.

Proof. The formula defining aNis yields a left adjoint to iNis by the full faithfulness of b∗ (Proposition 2.5.1)
and the adjunctions (afin

Nis, i
fin
Nis) and (bNis,b

Nis) (use (4.5.1)). Its exactness follows from the exactness of the
three functors. �

Proposition 4.5.6. We have

(4.5.3) bNisa
fin
Nis = aNisb!, asNisc

∗ = cNisaNis.

Moreover, cNis is faithful, exact, strongly additive (Definition 3.3.3 ) and has a left adjoint cNis = aNisc!isNis such
that cNisasNis = aNisc!.

Proof. The first equality follows from the first formula of (4.5.1) by adjunction. For the second, we use
Theorems 4.2.2 and 4.5.5, together with (2.6.2), (3.5.2) and (4.5.1). The last statement follows from Lemma
A.8.1 (3). �
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Theorem 4.5.7. If p :U →M is a cover in MSmNis, then the Čech complex

(4.5.4) · · · →Ztr(U ×M U )→Ztr(U )→Ztr(M)→ 0

is exact in MNST. (Note that the fiber products exist in MSm by Corollary 1.10.7 (1).) Moreover, the sequence

0→Ztr(W )→Ztr(U )⊕Ztr(V )→Ztr(X)→ 0

is exact in MNST for any MVfin-square (3.2.1) in MSmfin.

Proof. By Lemma 4.3.2, we may assume M→U is a strict Nisnevich cover. Then, by (3.5.3) the complex

· · · →Z
fin
tr (U ×M U )→Z

fin
tr (U )→Z

fin
tr (M)→ 0

is exact in MNSTfin. Applying the exact functor bNis, we get (4.5.4). The second statement follows from the
first and a small computation (cf. [MVW06, Proposition 6.14]). �

4.6. Cohomology in MNST

Lemma 4.6.1. Let I ∈MNST be an injective object. Then cNis(I) ∈MNS is flabby.

Proof. This follows from Lemma A.9.5 and Theorem 4.5.7. �

Notation 4.6.2. Let M ∈MCor and F ∈MNST. Using Notation 3.6.1, we define FM := (bNisF)M , which is
a sheaf on (M)Nis.

Theorem 4.6.3. Let F ∈MNST, and let M ∈MCor. Then there are canonical isomorphisms for any i ≥ 0:

ExtiMNST(Ztr(M),F) ' ExtiMNS(Z(M), cNisF) ' lim−−→
N∈Σfin↓M

H i
Nis(N,FN ).

(See (4.4.1) for Z(M).) Moreover, we have

lim−−→
N∈Σfin↓M

H i
Nis(N, (R

q(bNis
s )cNisF)N ) = 0 for all q > 0.

Proof. Applying the last identity of Proposition 4.5.6 to Z
p(M), we get

cNisZ(M) = aNisc!Z
p(M) = aNisZtr(M) = Ztr(M)

where the second equality follows from (2.6.1), and the third one holds by Lemma 4.5.3. This yields an
isomorphism

MNS(Z(M), cNisF) 'MNST(Ztr(M),F)

which is the case i = 0 of the first isomorphism in the proposition. The general case i ≥ 0 then follows from
Theorem A.9.1, Lemma 4.6.1 and the exactness of cNis (Proposition 4.5.6), and the second isomorphism
follows from Proposition 4.4.2 and (4.5.1). The last assertion follows from (4.4.3). �

A. Categorical toolbox, I

This appendix gathers known and less-known results that we use constantly.
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A.1. Pro-objects ([SGA4, exposé I, §8], [AM69, Appendix 2])

Recall that a pro-object of a category C is a functor F : A→C, where A is a small cofiltered category (dual
of [Mac98, Chapter IX, §1]). They are denoted by {Xα}α∈A or by “lim←−−”α∈AXα (Deligne’s notation), with
Xα = F(α). Pro-objects of C form a category pro–C, with morphisms given by the formula

pro–C({Xα}α∈A, {Yβ}β∈B) = lim←−−
β∈B

lim−−→
α∈A
C(Xα ,Yβ).

There is a canonical full embedding c : C ↪→ pro–C, sending an object to the corresponding constant
pro-object (A = {∗}).

For the next lemma, we recall a special case of comma categories from Mac Lane [Mac98, Chapter II,
§6]. If ψ : A → B is a functor and b ∈ B, we write b ↓ ψ for the category whose objects are pairs
(a,f ) ∈ A×B(b,ψ(a)); a morphism (a1, f1)→ (a2, f2) is a morphism g ∈ A(a1, a2) such that f2 = ψ(g)f1.

The category ψ ↓ b is defined dually (objects: systems ψ(a)
f
−→ b, etc.) According to [Mac98, Chapter IX,

§3], ψ is final if, for any b ∈ B, the category ψ ↓ b is nonempty and connected; here we shall use the dual
property cofinal (same conditions for b ↓ ψ). As usual, we abbreviate IdA ↓ a and a ↓ IdA by A ↓ a and
a ↓ A.

Let F = (F : A→C) = {Xα}α∈A ∈ pro–C. For each α ∈ A, we have a “projection” morphism πα : F→ c(Xα)
in pro–C. This yields an isomorphism in pro–C

F
∼−→ lim←−−

α∈A
c(Xα)

(explaining Deligne’s notation) and a functor

θ : A→ F ↓ c, θ(α) = (Xα ,πα),

where we take A = C and B = pro–C in the above setting.

Lemma A.1.1. The functor θ is cofinal.

Proof. Let F
f
−→ c(Y ) (Y ∈ C) be an object of F ↓ c. An object of θ ↓ (F

f
−→ c(Y )) is a pair (α,ϕ), with α ∈ A

and ϕ : F(α)→ Y such that f = c(ϕ)πα . This category is nonempty because an object α ∈ A and the

morphism f yield the object f (α) : F(α)→ c(Y )(α) = Y , and we have (α,f (α)) ∈ θ ↓ (F
f
−→ c(Y )). Note also

that it is cofiltered, because A is. Since any cofiltered category is obviously connected, we are done. �

(Warning: the use of co in (co)final and (co)filtered is opposite in [Mac98] and in [KS06]. We use the
convention of [Mac98].)

A.2. Pro-adjoints [SGA4, exposé I, §8.11.5]

Let u : C →D be a functor: it induces a functor pro–u : pro–C → pro–D.
Recall standard terminology for the functoriality of limits (=inverse limits) and colimits (= direct limits):

Definition A.2.1. A functor u : C →D is left exact (resp. right exact, resp. exact) if it commutes with finite
limits (resp. finite colimits, resp. finite limits and colimits).

Proposition A.2.2 (dual of [SGA4, exposé I, proposition 8.11.4]). Consider the following conditions:

(i) The functor pro–u has a left adjoint.
(ii) There exists a functor v :D→ pro–C and an isomorphism

pro–C(v(d), c) ' D(d,u(c))

contravariant in d ∈ D and covariant in c ∈ C.
(iii) u is left exact.
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Then (i) ⇐⇒ (ii)⇒ (iii), and (iii)⇒ (i) if C is essentially small and closed under finite inverse limits. �

(The condition on finite inverse limits appears in [AM69, p. 158], but is skipped in [SGA4, exposé I,
proposition 8.11.4].)

Definition A.2.3. In Condition (ii) of Proposition A.2.2, we say that v is pro-left adjoint to u.

A.3. Localisation ([GZ67, Chapter I], see also [KS06, Chapter 7])

Let C be a category, and let Σ ⊂ Ar(C) be a class of morphisms: following Grothendieck and Maltsiniotis,
we call (C,Σ) a localiser. Consider the functors F : C → D such that F(s) is invertible for all s ∈ Σ. This
“2-universal problem” has a solution Q : C → C[Σ−1]. One may choose C[Σ−1] to have the same objects as C
and Q to be the identity on objects; then C[Σ−1] is unique (not just up to unique equivalence of categories).
If C is essentially small, then C[Σ−1] is small, but in general the sets C[Σ−1](X,Y ) may be “large”; one can
sometimes show that it is not the case (Corollary A.5.4). A functor of the form Q : C → C[Σ−1] will be called
a localisation. We have a basic result on adjoint functors [GZ67, Chapter I, Proposition 1.3]:

Lemma A.3.1. Let G : C � D : D be a pair of adjoint functors (G is left adjoint to D). Then the following
conditions are equivalent:

(i) D is fully faithful.
(ii) The counit GD⇒ IdD is a natural isomorphism.
(iii) G is a localisation.

The same holds if G is right adjoint to D (replacing the counit by the unit).

Definition A.3.2. Let (C,Σ) be a localiser, and let Q : C → C[Σ−1] be the corresponding localisation functor.
We write

sat(Σ) = {s ∈ Ar(C) |Q(s) is invertible}.
This is the saturation of Σ; we say that Σ is saturated if sat(Σ) = Σ.

Lemma A.3.3 ([GZ67, Chapter I, Lemma 1.2]). Let (C,Σ) be a localiser, D a category, F,G : C[Σ−1]→D two
functors and u : F ◦Q⇒ G ◦Q a natural transformation, where Q : C → C[Σ−1] is the localisation functor.
Then u induces a unique natural transformation ū : F⇒ G.

Proof. Define ūX = uX : F(X)→ G(X) for X ∈ObC[Σ−1] =ObC. We must show that ū commutes with the
morphisms of C[Σ−1]. This is obvious, since u commutes with the morphisms of C and the morphisms of
C[Σ−1] are expressed as fractions in the morphisms of C. �

A.4. Presheaves and pro-adjoints

Let C be a category. We write Ĉ for the category of presheaves of sets on C (i.e. functors Cop → Set); it
comes with the Yoneda embedding

y : C → Ĉ
which sends an object to the corresponding representable presheaf. If u : C →D is a functor, we have the
standard sequence of three adjoint functors

C
yC−−−−−→ Ĉ

u

y u!

yu∗xu∗y
D

yD−−−−−→ D̂
where u! extends u through the Yoneda embeddings [SGA4, exposé I, proposition 5.4]; u! and u∗ are
computed by the usual formulas for left and right Kan extensions (loc. cit., (5.1.1)). If u has a left adjoint v,
the sequence (u!,u

∗,u∗) extends to
(v!,v

∗ = u!,v∗ = u∗,u∗)
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(ibid., Remark 5.5.2).
Let A be an essentially small additive category. Instead of presheaves of sets on A, one usually uses the

category Mod–A of additive presheaves of abelian groups; the above results transfer to this context, mutatis
mutandis.

Proposition A.4.1.

a) The functor u! (resp. u∗, u
∗) commutes with all representable colimits (resp. limits, limits and colimits). If

u has a left adjoint, then u! also commutes with all limits. If u has a pro-left adjoint v (Definition A.2.3 ),
so does u! which is therefore exact. Moreover, u! is then given by the formula

(u!F)(Y ) = lim−−→(F ◦ v(Y )), F ∈ Ĉ,Y ∈ D.

b) If u is fully faithful, so is u!.

c) If u is a localisation or is full and essentially surjective, then u! is a localisation.

d) In the case of c), for C ∈ C the following conditions are equivalent:
(i) The representable functor yC(C) ∈ Ĉ induces a functor on D via u.
(ii) The unit map yC(C)→ u∗u!yC(C) ' u∗yD(u(C)) is an isomorphism.
(iii) For any C′ ∈ C, the map C(C′ ,C)→D(u(C′),u(C)) induced by u is bijective.

Proof. a) follows from general properties of adjoint functors, except for the case of a pro-left adjoint. Let u
admit a pro-left adjoint v, and let Y ∈ D: so there is an isomorphism of categories Y ↓ u ' v(Y ) ↓ c. Hence,
we get by Lemma A.1.1 a cofinal functor

A→ Y ↓ u,

where A is the indexing set of v(Y ). Thus, for F ∈ Ĉ, u!F(Y ) may be computed as

u!F(Y ) = lim−−→
α∈A

F(v(Y )(α)) = pro–C(yC(v(Y )), c(F)).

The first equality is the formula in the proposition. The second one shows that the pro-left adjoint v! of
u! is defined at yD(Y ) by yC(v(Y )); since any object of D̂ is a colimit of representable objects, this shows
that v! is defined everywhere.

For b), see [SGA4, exposé I, proposition 5.6]. In c), it is equivalent to show that u∗ is fully faithful by
Lemma A.3.1. Let F,G ∈ D̂, and let ϕ : u∗F→ u∗G be a morphism of functors. In both cases, u is essentially
surjective: given X ∈ D and an isomorphism α : X

∼−→ u(Y ), we get a morphism

ψX : F(X)
α∗−1

−−−−→ F(u(Y ))
ϕY−−→ G(u(Y ))

α∗−−→ G(X).

The fact that ψX is independent of (Y ,α) and is natural in X is an easy consequence of each hypothesis
(see Lemma A.3.3 in the first case).

In d), the equivalence (ii) ⇐⇒ (iii) is tautological and (iii)⇒ (i) is obvious. The implication (i)⇒ (iii) was
proven in [GZ67, Chapter I, §4.1.2] assuming that u is a localisation enjoying a calculus of left fractions; let
us prove (i)⇒ (ii) in general. Under (i), we have yC(C) ' u∗F for some F ∈ D̂ ; the unit map becomes

ηu∗F : u∗F→ u∗u!u
∗F.

On the other hand, the counit map εF : u!u
∗F → F is invertible by the full faithfulness of u∗. By the

adjunction identities, we have u∗(εF) ◦ ηu∗F = 1u∗F . Hence the conclusion. �

We shall usually write u! for the pro-left adjoint of u!, when it exists.
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A.5. Calculus of fractions

Definition A.5.1 (dual of [GZ67, Chapter I, Lemma 1.2]). A localiser (C,Σ) (or simply Σ) enjoys a calculus of
right fractions if:

(i) The identities of C are in Σ.
(ii) Σ is stable under composition.

(iii) (Ore condition.) For each diagram X ′
s−→ X

u←− Y where s ∈ Σ, there exists a commutative square

Y ′
u′−−−−−→ X ′

t

y s

y
Y

u−−−−−→ X

where t ∈ Σ.

(iv) (Cancellation.) If f ,g : X ⇒ Y are morphisms in C and s : Y → Y ′ is a morphism of Σ such that
sf = sg , there exists a morphism t : X ′→ X in Σ such that f t = gt.

Proposition A.5.2. Suppose that Σ enjoys a calculus of right fractions. For c ∈ C, let Σ ↓ c denote the full

subcategory of the comma category C ↓ c given by the objects c′
s−→ c with s ∈ Σ. Then

a) Σ ↓ c is cofiltered.

b) [GZ67, Chapter I, 2.3] For any d ∈ C, the obvious map

(A.5.1) lim−−→
c′∈Σ↓c

C(c′ ,d)→C[Σ−1](c,d)

is an isomorphism.

c) Any morphism in C[Σ−1] is of the form Q(f )Q(s)−1 for f ∈ Ar(C) and s ∈ Σ; if f1, f2 are two parallel
arrows in C, then Q(f1) =Q(f2) if and only if there exists s ∈ Σ such that f1s = f2s.

Proof. a) We need to check the two conditions (which are dual to those from [Mac98, p. 211]): (1) given two
objects d,d′ ∈ Σ ↓ c, there are arrows d ← e→ d′ in Σ ↓ c; (2) given two parallel arrows f ,g : e→ d in
Σ ↓ c, there is an arrow h : e′→ e in Σ ↓ c such that f h = gh. (1) (resp. (2)) follows from Axioms (iii) and (ii)
(resp. (iv) and (ii)) of Definition A.5.1.

b) The “obvious map” (A.5.1) sends a pair (c′
s−→ c,c′

f
−→ d) with s ∈ Σ and f ∈ C(c′ ,d) to Q(f )Q(s)−1. To

show it is an isomorphism, we follow the strategy of [GZ67, pp. 13/14]. We consider a category Σ−1C with
the same objects as C and for c,d ∈ C the Hom set Σ−1C(c,d) is given by the left hand side of (A.5.1). Using
Axioms (ii) and (iii), we define for three objects c,d,e ∈ C a composition

lim−−→
c′∈Σ↓c

C(c′ ,d)× lim−−→
d′∈Σ↓d

C(d′ , e)→ lim−−→
c′∈Σ↓c

C(c′ , e)

which is shown to be well-defined and associative thanks to Axiom (iv). Now (A.5.1) yields a functor
Σ−1C → C[Σ−1]. But there is also an obvious functor C → Σ−1C that is the identity on objects. (We use
Axiom (i) to define the maps for the Hom sets.) It is easily seen to have the universal property of C[Σ−1].
Hence (A.5.1) is an isomorphism for all (c,d).

c) The first statement has already been observed; the second one follows readily from (A.5.1). �

Notation A.5.3. We shall write Σ−1C instead of C[Σ−1] if Σ enjoys a calculus of fractions.

Corollary A.5.4. If Σ admits a calculus of right fractions and if for any c ∈ C, the category Σ ↓ c contains a
small cofinal subcategory, then the Hom sets of Σ−1C are small. �
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Corollary A.5.5. Let (C,Σ) be a localiser such that Σ enjoys a calculus of right fractions. Let F : C →D be a
functor. Suppose that F inverts the morphisms of Σ and that, for any c,d ∈ C, the obvious map

lim−−→
c′∈Σ↓c

C(c′ ,d)→D(F(c),F(d))

is an isomorphism. Then the functor Σ−1F : Σ−1C →D induced by F is fully faithful. �

Proposition A.5.6.

a) Let (C,Σ) be a localiser. Assume that Σ enjoys a calculus of right fractions. Then the localisation functor
Q : C → Σ−1C is left exact; if limits indexed by a finite category I exist in C, they also exist in Σ−1C.

b) Let C be an essentially small category closed under finite limits, and let G : C →D be a left exact functor.
Let Σ = {s ∈ Ar(C) | G(s) is invertible}. Then Σ enjoys a calculus of right fractions; the induced functor
Σ−1C →D is conservative and left exact.

Proof. After passing to the opposite categories, a) is [GZ67, Chapter I, Proposition 3.1 and Corollary 3.2] and
b) is [GZ67, Chapter I, Proposition 3.4]. �

A.6. Pro-Σ-objects

Definition A.6.1. Let (C,Σ) be a localiser. We write proΣ–C for the full subcategory of the category pro–C
of pro-objects of C consisting of filtered inverse systems whose transition morphisms belong to Σ. An object
of proΣ–C is called a pro-Σ-object.

Proposition A.6.2. Suppose that Σ has a calculus of right fractions and, for any c ∈ C, the category Σ ↓ c
contains a small cofinal subcategory. Then Q : C → Σ−1C has a pro-left adjoint Q!, which takes an object
Y ∈ Σ−1C to “lim←−−”X∈Σ↓YX (see §A.1 for the notation “lim←−−”). In particular, Q!(Σ−1C) ⊂ prosat(Σ)–C, where
sat(Σ) is the saturation of Σ (Definition A.3.2 ).

Proof. In view of Corollary A.5.4 and Proposition A.5.6, this follows from Proposition A.5.2 b). �

Remark A.6.3. Consider the localisation functor Q : C → Σ−1C: it has a left Kan extension

Q̂ : prosat(Σ)–C → Σ−1C

[Mac98, Chapter X] along the constant functor C → prosat(Σ)–C, given by the formula

Q̂(“ lim←−−”Cα) = lim←−−Q(Cα).

(The right hand side makes sense as an inverse limit of isomorphisms.) Then one checks easily that Q! is left
adjoint to Q̂.

Theorem A.6.4. Let (C,Σ) be a localiser verifying the conditions of Proposition A.6.2. Let Q : C → Σ−1C denote
the localisation functor, and consider the string of adjoint functors (Q!,Q

∗,Q∗) between Ĉ and ̂Σ−1C from §A.4.
Then:

(1) Q! has a pro-left adjoint, and is therefore exact.

(2) For F ∈ Ĉ and Y ∈ Σ−1C, we have

Q!F(Y ) = lim−−→
X∈Σ↓Y

F(X).

Proof. This follows from Propositions A.4.1 a) and A.6.2. �

If (A,Σ) is a localiser with A additive and Σ enjoys a calculus of right fractions, then Σ−1A is additive
and so is the functor Q : A→ Σ−1A [GZ67, Chapter I, Corollary 3.3]. For future reference, we give the
additive analogue of Theorem A.6.4 (see the paragraph before Proposition A.4.1 for Mod–A):
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Theorem A.6.5. Let (A,Σ) be a localiser; assume that A is an additive category and that Σ has a calculus
of right fractions. Let Q : A→ Σ−1A denote the localisation functor, as well as the string of adjoint functors
(Q!,Q

∗,Q∗) between Mod–A and Mod–Σ−1A. Then:

(1) Q! has a pro-left adjoint, and is therefore exact.

(2) For F ∈Mod–A and Y ∈ Σ−1A, we have

Q!F(Y ) = lim−−→
X∈Σ↓Y

F(X).

A.7. cd-structures

Let C be a category with an initial object. According to [Voe10a], a cd-structure on C is given by a collection
of commutative squares stable under isomorphisms, called distinguished squares. Any cd-structure defines a
topology on C: the smallest Grothendieck topology such that for a distinguished square of the form

(A.7.1) S :

W
v−−−−−→ V

q
y p

y
U

u−−−−−→ X,

the sieve generated by the morphisms {p : V → X, u : U → X} is a cover sieve and such that the empty
sieve is a cover sieve of the initial object ∅.

Recall from [Voe10a] some important properties of cd-structures.

Definition A.7.1. Let C be a category with an initial object ∅.
(1) Let P be a cd-structure on C. The class SP of simple covers is the smallest class of families of

morphisms of the form {Ui → X}i∈I satisfying the following two conditions:
• for any isomorphism f , {f } is in SP
• for a distinguished square Q of the form (A.7.1) and families {pi : Vi → V }i∈I and {qj :Uj →U }j∈J

in SP the family {p ◦ pi ,u ◦ qj}i∈I,j∈J is in SP .

(2) A cd-structure on C is called complete if any cover sieve of an object X ∈ C which is not isomorphic to
∅ contains a sieve generated by a simple cover.

(3) A cd-structure P is called regular if for S ∈ P of the form (A.7.1) one has
• S is a pullback square (i.e., is cartesian)

• u is a monomorphism

• the morphisms of sheaves

∆
⊔

ρ(v) : ρ(V )
⊔

ρ(W )×ρ(U ) ρ(W )→ ρ(V )×ρ(X) ρ(V )

is surjective, where for C ∈ C we denote by ρ(C) the sheaf associated with the presheaf represented
by C, and ∆ is induced by the diagonal map.

Lemma A.7.2 ([Voe10a, Lemma 2.5]). A cd-structure is complete provided:

(1) any morphism with values in ∅ is an isomorphism, and

(2) for any distinguished square S of the form (A.7.1) and for any morphism X ′→ X, the square S ′ = X ′ ×X S
is defined and distinguished. �

Lemma A.7.3 ([Voe10a, Lemma 2.11]). A cd-structure is regular provided, for any distinguished square S of the
form (A.7.1) we have

(1) S is cartesian,
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(2) u is a monomorphism, and

(3) the objects V ×X V and W ×U W exist in C and the derived square

(A.7.2) d(S) :

W
v //

∆W/U
��

V

∆V /X
��

W ×U W // V ×X V

is distinguished. �

Definition A.7.4. A cd-structure verifying the conditions of Lemma A.7.2 (resp. A.7.3) is called strongly
complete (resp. strongly regular ).

Remark A.7.5. The square (A.7.2) is cartesian. This is a formal consequence of Lemma A.7.3, since any
distinguished square with respect to a regular cd-structure is cartesian by definition. However, there is a more

direct proof: let Z
a−→ V and Z

b−→W ×U W be two morphisms making the corresponding square commute.
Then b amounts to two morphisms b1,b2 : Z →W such that (with the notation of (A.7.1)) qb1 = qb2 and
a = vb1 = vb2. Since S is cartesian by (1), we have b1 = b2 : Z →W , which is a solution to the universal
problem.

Proposition A.7.6. Let (C,Σ) be a localiser such that Σ admits a calculus of right fractions.

(1) If C has an initial object verifying Conditon (1) of Lemma A.7.2, so does Σ−1C.
(2) Assume (1) and let Q : C → Σ−1C be the localisation functor. Suppose given a cd-structure P on C, and let

P ′ be the cd-structure on Σ−1C given by all squares isomorphic to a square of the form Q(S), where S ∈ P .
If P is strongly complete (resp. strongly regular), so is P ′ .

Proof. (1) Let ∅ be an initial object of C. Since Q is (essentially) surjective, Q(∅) admits a morphism to any
object; Condition (1) of Lemma A.7.2 for ∅ implies that this morphism is unique, and this in turn implies the
same condition for Q(∅).

(2) By Proposition A.5.6 a), Q commutes with finite limits. This implies Condition (2) of Lemma A.7.2.
Conditions (1), (3) of Lemma A.7.3 for P ′ follow from the same conditions for P (note that the diagonals are
preserved by Q, since they are finite limits). It remains to show that Q carries a monomorphism u :U → X
to a monomorphism. Let f ,g : V →U be two morphisms in Σ−1C such that Q(u)f =Q(u)g . By calculus
of fractions, we may write f = Q(f̃ )Q(s)−1 and g = Q(g̃)Q(s)−1 for some f̃ , g̃ ∈ Ar(C) and s ∈ Σ. Then
Q(uf̃ ) = Q(ug̃). By Proposition A.5.2 c), we may find t ∈ Σ such that uf̃ t = ug̃t, which implies f̃ t = g̃t
since u is a monomorphism. This shows f = g , as desired. �

A.8. A pull-back lemma

We shall use the following elementary lemma several times.

Lemma A.8.1. Let C,D be abelian categories and let C′ ⊂ C,D′ ⊂ D be full abelian subcategories. Let c : C →D
and c′ : C′ →D′ be additive functors satisfying ciC = iDc′ , where iC : C′ → C and iD : D′ →D are inclusion
functors.

(1) If c is faithful, so is c′ .

(2) Suppose that iD is strongly additive or has a strongly additive left inverse (for example, a left adjoint). If c
and iC are strongly additive, so is c′ .

(3) Suppose that iC has a left adjoint aC . If c has a left adjoint d, then d′ = aCdiD is a left adjoint of c′ . If
d and aC are exact, so is d′ . Moreover, aCd = d′aD if iD has a left adjoint aD.

(4) Suppose that iC and iD have left adjoints aC and aD , that aD is exact, and that aDc = c′aC . If c is exact,
then so is c′ .
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Proof. (1) is obvious. (2) Let {Fi}i∈I be a family of objects of C′ . We must show that the natural map

f :
⊕
i∈I

c′(Fi)→ c′
(⊕
i∈I

Fi
)

is an isomorphism. The composition⊕
i∈I

iDc
′Fi

g
−→ iD

(⊕
i∈I

c′(Fi)
) iDf−−−→ iDc

′
(⊕
i∈I

Fi
)

is an isomorphism by the strong additivity of c and iC . If iD is strongly additive, g is also an isomorphism
and we are done. If now iD has a strongly additive left inverse aD , we apply it to the diagram and get a
composition ⊕

i∈I
aD iDc

′Fi
∼−→ aD

⊕
i∈I

iDc
′Fi

aDg−−−→ aD iD
(⊕
i∈I

c′(Fi)
) aD iDf−−−−−→ aD iDc

′
(⊕
i∈I

Fi
)

which is an isomorphism and naturally isomorphic to f . This concludes the proof of (2).
(3) For F ∈ C′ and G ∈ D′ , we have C′(aCdiDF,G) = D(iDF,ciCG) = D(iDF, iDc′G) = D′(F,c′G). This

proves the first claim; therefore if d and aC are exact, d′ is left exact, hence exact since it is right exact as a
left adjoint. The last isomorphism follows from taking left adjoints of the isomorphism ciC = iDc′ .

(4) Let us take an exact sequence 0→ F→ G→H → 0 in C′ . Put K := Coker(iCG→ iCH) ∈ C. Since
aDcK = c′aCK = 0, we get an exact sequence 0→ aDciCF → aDciCG→ aDciCH → 0 by the exactness
of c and aD . Using aDc = c′aC and aCiC = Id (Lemma A.3.1), we conclude 0→ c′F→ c′G→ c′H → 0 is
exact. �

The proof of Lemma A.8.1 (2) implicitly used the following (trivial) lemma, which we state for the sake of
clarity.

Lemma A.8.2. Let D ⊆ C be a full embedding of categories. Suppose that a direct (resp. inverse) system (dα) of
objects of D has a colimit (resp. a limit) in C, which is isomorphic to an object d of D. Then d represents the
(co)limit of (dα) in D.

A.9. Homological algebra

Recall Grothendieck’s theorem [Gro57, théorème 2.4.1]:

Theorem A.9.1. Let A F−→ B G−→ C be a string of left exact functors between abelian categories. Suppose that A
and B have enough injectives and that F carries injectives of A to G-acyclics. Then, for any A ∈ A, there is a
convergent spectral sequence

E
p,q
2 = RpGRqF(A)⇒ Rp+q(GF)(A).

Examples A.9.2. If F has an exact left adjoint, it carries injectives to injectives. If G is exact, the hypothesis
on F is automatically verified.

The following is a slight generalization of [Mil80, Chapter III, Proposition 2.12], (where the underlying
category of S is supposed to be a category of schemes).

Lemma A.9.3. Let F be a sheaf of abelian groups on a site S . The following conditions are equivalent.

(1) We have Hq(X,F) = 0 for any X ∈ S and q > 0.

(2) We have Ȟq(X,F) = 0 for any X ∈ S and q > 0.

(3) We have Ȟq(U/X,F) = 0 for any cover U → X in S and q > 0.

(4) The sheaf F is iS -acyclic, where iS is the inclusion functor of the category of sheaves to that of presheaves.
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Proof. For X ∈ S , we write ΓX (resp. Γ
pr
X ) for the functor F 7→ F(X) from the category of sheaves (resp.

presheaves) to Ab. We have ΓX = Γ
pr
X iS . Since Γ

pr
X is exact, Theorem A.9.1 implies RqΓX = Γ

pr
X R

qiS , and
hence Hq(X,F) = RqiSF(X). This proves the equivalence of (1) and (4). The rest is shown in the same way
as [Mil80, Chapter III, Proposition 2.12]. �

Definition A.9.4. We say F is flabby if the conditions of Lemma A.9.3 are satisfied.

Lemma A.9.5. Let S be the category of abelian sheaves on a site C, T an abelian category, and c∗ : T → S an
additive functor which has a left adjoint c! : S → T . Suppose that any cover in C admits a refinement U → X
such that c!(Č(U/X)) is exact in T , where

Č(U/X) = (· · · → y(U ×X U )→ y(U )→ y(X)→ 0)

is the Čech complex associated to U → X (y denotes the Yoneda functor). Then c∗I is flabby for any injective object
I ∈ T .

Proof. (Compare [Voe00, Proposition 3.1.7].) It suffices to show Ȟq(U/X,c∗I) = 0 for any q > 0 and for any
U → X as in the assumption. If we denote by Un

X the n-fold fiber product of U over X, then Ȟq(U/X,c∗I)
is computed as the cohomology of the complex

c∗I(U•+1
X ) = S(y(U•+1

X ), c∗I) = T (c!y(U•+1
X ), I),

which is acyclic by the assumption and the injectivity of I . �

A.10. Grothendieck categories

Recall that a Grothendieck abelian category (for short, a Grothendieck category) is an abelian category
verifying Axiom AB5 of [Gro57]: small colimits are representable and exact, and having a set of generators
(equivalently, a generator). These generators are generators by strict epimorphisms. We have the following
basic facts:

Theorem A.10.1.

a) Any Grothendieck category is complete and has enough injectives.

b) Let F : C →D be a functor, where C is a Grothendieck category. Then F has a right adjoint if and only if
it commutes with all colimits.

c) Let C be a Grothendieck category, B ⊂ C be a Serre subcategory, D = C/B and G : C → D the (exact)
localisation functor. Then G has a right adjoint D if and only if B is stable under infinite direct sums. In
this case, B and D are Grothendieck.

d) Let G : C�D :D be a pair of adjoint additive functors between additive categories, with D fully faithful.
If C is Grothendieck and G is exact, D is Grothendieck.

Proof. a) See [Gro57, théorème 1.10.1], [SGA4, exposé V, remarque 0.2.1] or [KS06, Theorem 8.3.27 (i) and
9.6.2]. b) See [KS06, Proposition 8.3.27 (iii)]. c) See [Gab62, chapitre III, proposition 8 and 9]. d) Let B be
the kernel of G. Then B is easily seen to be a Serre subcategory (e.g. [Gab62, chapitre III, proposition 5]), so
the claim follows from c). �

Theorem A.10.2. For any additive category A, Mod–A is a Grothendieck category with a set of projective
generators.

Proof. See e.g. [AK02, Proposition 1.3.6] for the first statement; the projective generators are given by
E = {y(A) | A ∈ A}. �
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