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Abstract. We construct here many families of K3 surfaces that one can obtain as quotients of algebraic
surfaces by some subgroups of the rank four complex reflection groups. We find in total 15 families with at
worst ADE-singularities. In particular we classify all the K3 surfaces that can be obtained as quotients by the
derived subgroup of the previous complex reflection groups. We prove our results by using the geometry of the
weighted projective spaces where these surfaces are embedded and the theory of Springer and Lehrer-Springer
on properties of complex reflection groups. This construction generalizes a previous construction by W. Barth
and the second author.
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Résumé. Nous construisons ici de nombreuses familles de surfaces K3 que I'on peut obtenir comme quotients
de surfaces algébriques par certains sous-groupes des groupes de réflexions complexes de rang 4. Nous
trouvons au total 15 familles avec au plus des singularités ADE. En particulier, nous classifions toutes les
surfaces K3 pouvant étre obtenues comme quotients par le sous-groupe dérivé des groupes de réflexions
complexes susmentionnés. Nous démontrons nos résultats en utilisant la géométrie des espaces projectifs a
poids dans lesquels ces surfaces sont plongées et la théorie de Springer et Lehrer-Springer sur les propriétés
des groupes de réflexions complexes. Cette construction généralise une construction précédente introduite par
W. Barth et la seconde auteure.
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1. Introduction

In this paper we describe a relation between complex reflection groups and K3 surfaces. A relation
already appeared recently in the paper [BS21] by the authors, where they use the reflection group denoted by
Gy in the Shepard-Todd classification [ST54] to describe K3 surfaces with maximal finite automorphism
groups containing the Mathieu group M;,. The motivation for our paper is an early paper of the second
author [Sar(0l] and of W. Barth and the second author [BS03] where they study first one parameter families
of surfaces of general type in the three dimensional complex projective space containing four surfaces with a
high number of nodes (i.e. A;-singularities). Then they study the quotients of these families by some groups
related to the platonic solids: tetrahedron, octahedron and icosahedron and which they call bipolyhedral
groups. These turn out to be subgroups of some complex reflection groups and they show that the quotients
are K3 surfaces with ADE-singularities. In this paper we show that these examples are only a few examples
of K3 surfaces that one can produce by using complex reflection groups. Moreover the theory of Springer
and Lehrer-Springer and some technical lemmas allow a deep understanding of the reason why the quotients
have trivial dualizing sheaf and admit only ADE-singularities. This allows then to conclude that the minimal
resolution are K3 surfaces. We find in total 15 families of K3 surfaces.

More precisely we consider a complex reflection group W acting on a four dimensional complex vector
space V. By Shephard-Todd/Chevalley/Serre Theorem [Brol0, Theorem 4.1] there exist 4 algebraically
independent polynomials which are invariant under the action of W and which generate algebraically the
ring of all W-invariant polynomials. We assume furthermore that W is generated by reflections of order 2
and in Table 1 we give the list of the degrees of the four invariant polynomials (observe that these degrees
do not depend on the polynomials) and of the codegrees corresponding to the degrees of four invariant
derivatives which generate the module of all W-invariant derivatives. The aim of the paper is to study
the quotient of the projective zero set Z(f) of an homogeneous fundamental invariant f of W by some
subgroup I' of W: the derived subgroup W’ and the group W*' = Ker(det) N W. A reason for this choice is
that the simple structure of the invariant ring of W and the fact that W is generated by reflections of order
2 imply that Z(f)/T is a complete intersection in a weighted projective space. More precisely the quotient
surface Z(f)/W*" is a double cover of a weighted projective plane whereas if W’ is different from W*" then
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Z(f)/W’ is a complete intersection in a four dimensional weighted projective space. We also explain how to
obtain explicit equations for Z(f)/W’ or Z(f)/W*".

It turns out that if the degree d of f is "well chosen” and Z(f) has only ADE-singularities, then Z(f)/T
is a K3 surface with ADE-singularities (“well chosen” means that the sum of the degrees of the equations
of the surface is equal to the sum of the weights of the ambient weighted projective space: the set of pairs
(W, d) such that d is “well-chosen” is denoted by K3 and is described in §5.2). To show that we have
ADE-singularities on the double covers one has to study carefully the singularities of the branching curve
as well as the singularities that one gets from the singularities of the weighted projective plane. Our main
Theorem 5.4 is the following:

Theorem 1.1. Assume that (W,d) € K3. Let T’ be the subgroup W’ or W of W and let f be a fundamental
invariant of W of degree d whose projective zero set Z(f) has only ADE -singularities.
Then Z(f)/T is a K3 surface with ADE -singularities.

In particular the theorem allows us to classify all the K3 surfaces that can be obtained as quotient by W’
or W*. Theorem 5.4 is a qualitative result, that insures that one can build from invariants of some complex
reflection groups of rank 4 several families of K3 surfaces with ADE-singularities. However, it does not say
anything about the types of the singularities and important invariants of their minimal resolution (rank of
the Picard number, description of the transcendental lattice).

Theorem 5.4 (and its proof) improves previous works by Barth and the second author [BS03] for two
reasons:

- By looking at all complex reflection groups of rank 4, it enlarges considerably the class of examples
of K3 surfaces that can be constructed as above. It shows moreover that the discovery of families of
K3 surfaces in [BS03] is not just "an accident” but it is strictly related to polynomial invariants of
complex reflection groups and their action on these.

- The main difficulty is to prove that Z(f)/I' has only ADE singularities. Our proof involves some
general facts about singularities (see Appendix B) and more complex reflection group theory (as the
theory of Springer and Lehrer-Springer on eigenspaces of elements of complex reflection groups): as
a consequence, our proof avoids as much as possible (but not completely) a case-by-case analysis,
and so may also be viewed not only as a generalization but also as an enlightenment of results
from [BS03].

An important feature of the K3 surfaces constructed in Theorem 5.4 is that most of them have big Picard
number, and generally as big as possible compare to the number of moduli of the family they belong to. In
particular, we can build in this way several (more than thirty) K3 surfaces with Picard number 20, often
called singular K3 surfaces, whose moduli space is a 0-dimensional subspace of the 20-dimensional moduli
space of K3 surfaces. This will be explained in the sequel to this paper [BS-II], [BS-III], where we aim to
complete the qualitative results of this first part by quantitative results whenever W is assumed to be primitive
(i.e. W = Gpg, Gag, Gz or G3z1). We will for instance compute the transcendental lattice of the singular K3
surfaces, and describe explicit elliptic fibrations in most cases. Note that the case where (W,d) = (Gg,6) or
(G30,12) and ' = W’ was already treated by Barth and the second author [BS03]: these examples will be
revisited thanks to our new techniques, and more geometrical informations will be given. Note also that, by
taking Galois invariant models for complex reflection groups as in [MMI0], it turns out that all our families
of K3 surfaces are defined over Q and, in particular, all the singular K3 surfaces we obtain are defined over
Q: this fact is only checked case-by-case [BS-II|, [BS-III] but would deserve a general explanation.

The paper is organized as follows: Section 2 contains basic facts on the action of groups of matrices on
homogeneous polynomials and Section 3 recalls facts on reflection groups, in particular we find equations
for the quotient surfaces and we recall basic facts from Springer and Lehrer-Springer theory, that we use
in the next sections (and in the sequel to this paper [BS-II], [BS-III]) to describe the singularities that we
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have on the quotient surfaces. In Section 4 we give several useful facts to describe the singularities of the
quotient surfaces in particular in the case that these are a double cover of a weighted projective plane. Note
that Sections 2-4 are written in a greater generality (reflection groups acting on vector spaces of any finite
dimension) as they might be of general interest. In Section 5 we describe how to obtain K3 surfaces. In Table
2 we recall the degrees of the equations and the weighted projective spaces where the (singular) surfaces are
embedded. We give in this section the main part of the proof of our main Theorem 5.4. We finish the proof
in Section 6 where we show that the quotient K3 surfaces have at worst AD E-singularities.

Acknowledgements. We wish to thank Sylvain Brochard for useful discussions about the results of
Appendix B. We thank also Enrica Floris and Etienne Mann for several interesting discussions.

2. Notation, preliminaries

If d > 1, we denote by p; the group of d-th roots of unity in C* and we fix a primitive d-th root of unity
C4 (we will use the standard notation i = C4). If I1,..., ], are positive integers, then IP(/y,...,/,) denotes the
corresponding weighted projective space.

We fix an n-dimensional C-vector space V and we denote by IP(V) its associated projective space. If
v € V'\ {0}, we denote by [v] € IP(V) the line it defines (i.e. [v] = Cv). The group GL¢(V) acts on the
algebra C[V'] of polynomial functions on V as follows: if g € GL¢(V) and f € C[V], we write

)= £lg7 v
If g € GL¢(V) and C € C*, we denote by V(g,C) the C-eigenspace of g. If v € V(g,C) and f € C[V |8, then

21 %) = COuf.

If G is a subgroup of GL¢(V), we write PG for its image in PGLg(V). Recall that a subgroup G of
GL¢(V) is called primitive if there does not exist a decomposition V=V, ®---@®V, with V; #0 and r > 2
such that G permutes the V;’s. If S is a subset of V, we denote by Gg (resp. G(S)) the setwise (resp.
pointwise) stabilizer of S (so that G(S) is a normal subgroup of Gg and Gg/G(S) acts faithfully on S). Note
that Gg = Ggs and G(S) = G(CS), where CS denotes the linear span of S. The derived subgroup of G will
be denoted by G’, and we set G** = GNSL¢(V). Note that G’ C G*" and that the inclusion might be strict.
We state here a totally trivial result which will be used extensively and freely along this series of papers:

Lemma 2.2. Let g € GL¢(V), let C be a root of unity of order d, let v € V be such that g(v) = Cv and let
f € C[V]8 be homogeneous of degree e not divisible by d. Then f(v) = 0.

Proof. As f € C[V]8, we have f(g(v)) = f(v). But f(g(v)) = f(Cv) = C°f(v) because f is homogeneous of
degree e. So the result follows from the fact that C° = 1. O

If X is a complex algebraic variety and x € X, we denote by T,(X) the tangent space of X at x. If
f € C[V] is homogeneous, we will denote by Z(f) the projective (possibly non-reduced) hypersurface in
IP(V) ~P" ! defined by f. Its singular locus will be denoted by Zsing(f)-

Lemma 2.3. Let G be a finite subgroup of GLc(V), let f € C[V]C be homogeneous and let v € VC \ {0} be such
that f(v) = 0. Then G acts trivially on T, )(P(V))/T,1(Z2(f))-

Proof. Since G is finite, there exists a G-stable subspace E of V such that V = E®Cv. Let a € V" be such
that a(v) =1 and a(E) = 0. The affine chart U, of IP(V) defined by a = 0 is identified with v + E and, after
translation, is identified with E: through this identification, Z(f) N U, is the affine hypersurface defined
by the polynomial F € C[E], where F(e) = f(v +¢). Since v is G-invariant, F is also G-invariant. Let us
denote by F; its i-th homogeneous component: it is G-invariant. Then Fy = 0 because f(v) = 0. Moreover,
T},)(IP(V)) = E and T,)(Z(f)) = Ker(F;) (and these identifications are G-equivariant since v € 1%45))
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But CF, is the dual space to E/Ker(F;): since G acts trivially on CFy, this shows that G acts trivially on
E/Ker(F;) = T[V](IP(V))/T[V](Z(]()). ]

The next result is just an easy generalization of [Sar(1, §6].

Corollary 2.4. Let G be a finite subgroup of GL¢(V) such that dim VO = 1 and let f € C[V]C be non-zero
and homogeneous. We assume that f vanishes at VC, viewed as a point of P(V). Then VC is a singular point of

Z(f)-

Proof. Let v € VC\ {0}. We keep the notation of the proof of the previous Lemma 2.3 (E, a, F, F;). Since
VG = Cv, we have E© = 0 and so, by semisimplicity, we have that (E/Ker(F;))® = 0. But G acts trivially on
E/Ker(F;) by Lemma 2.3. Therefore, E/Ker(F;) = 0 so T[,(Z(f)) = Ker(F;) = E and so Z(f) is singular
at [v] = VO. O

Remark 2.5. The previous lemma might be used to explain the construction of several singular curves and
surfaces constructed by the two authors [Sar01], [Bonl9]. Let us explain how to proceed.

Let G be a finite subgroup of GL¢(V), and let Hy, ..., H, be a set of representatives of conjugacy classes
of maximal subgroups of G among the subgroups H satisfying dim(V) = 1. Let Ny = Ng(Hy), let
vy € VHe\ {0} and let Q) denote the G-orbit of [v;] in P(V). Then

(€

2.6 10 = -2
(2.6) =N

For this, it is sufficient to prove that Ny = Gy, ;. First, Ny stabilizes VHr = [v], which proves that Ny C Gy, |-
Conversely, G, ] normalizes G,,. But Hy C G, by construction and, by the maximality of Hy, this implies
that H, = Gvk-

Now, we fix two linearly independent homogeneous polynomials f; and f, of the same degree such that
f1(vg) = 0 for all k. We also set Ay = f,(vr)/f1(vk). Then it follows from Corollary 2.4 that

(2.7) Z(f, — Ak f1) contains Qy in its singular locus.

It also shows that, if G is defined over a subfield K of C, then the points of () (which are singular points of
Z(f, — Ak f1)) have coordinates in K.

Corollary 2.8. Let G be a finite subgroup of GL¢(V) such that dim VO = 2, let f € C[V]C be homogeneous
and non-zero and let v € VO \ {0} be such that f(v) = 0. Let L be the line P(VC) and assume that [v] is a smooth
point of Z(f). Then the intersection of L with Z(f) is transverse at [v].

Proof We keep again the notation of the proof of Lemma 2.3 (E, @, F, F;). Since dimV® = 2, this
forces dimEC = 1. Since [v] is smooth, this means that F; # 0. It then follows from Lemma 2.3 that
E = ES@Ker(F;). But EC = T(y)(L) and Ker(F;) = T[,)(Z(f))- This shows the result. O

Corollary 2.9. Let G be a finite subgroup of GLc(V) such that dim VO = 2, and let f € C[V]|° be homogeneous
and non-zero. Let L be the line P(VC) and assume that L C Z(f). Then L C Zing(f)-

Proof. Let v e VG \ {0} and assume that [v] is a smooth point of Z(f). Then the intersection of L with Z(f)

is not transverse at [v] because L C Z(f): this contradicts Corollary 2.8. O

3. Reflection groups

We fix a finite subgroup W of GL¢(V) and we set
Ref(W)={se W | dim(V®)=n-1}.



6 C. Bonnafé and A. Sarti

Hypothesis. We assume throughout this paper that
W = (Ref(W)).

In other words, W is a complex reflection group. The number codim(V'"W) is called the
rank of W.

Standard arguments allow to reduce most questions about reflection groups to questions about irreducible
reflection groups. These last ones have been classified by Shephard-Todd and we refer to Shephard-Todd
numbering [ST54] for such groups: there is an infinite family G(de,e,r) with d, e, r > 0 (they are of rank r
if (d,e) #(1,1) and of rank r — 1 otherwise) and 34 exceptional ones numbered from G4 to G37 (they are
exactly the primitive complex reflection groups). If W can be realized over the field of real numbers, then it
is a Coxeter group and we will also use the notation W(X;) where X; is the type of some Coxeter graph. For
instance, the group G3¢ in Shephard-Todd numbering is the Coxeter group W(Hy).

3.1. Invariants

By Shephard-Todd/Chevalley/Serre Theorem [Brol0, Theorem 4.1], there exist n algebraically independent
homogeneous elements fi, f,,..., f, of C[V]" such that

CVIY =Clfi, for-r ful

Let d; = deg(f;). A family (fy, f5,..., f,;) satisfying the above property is called a family of fundamental
invariants of W. Observe that by a result of Marin-Michel [MMI0], these polynomials can be defined

W is called a

over the rational numbers (for more details, see [BS-II]). A homogeneous element f € C[V]
fundamental invariant if it belongs to a family of fundamental invariants. Whereas such a family is not
uniquely defined even up to permutation, the list (dy,d,,...,d,) is well-defined up to permutation and is

called the list of degrees of W: it will be denoted by Deg(W).

Notation. From now on, and until the end of this paper, we fix a family £ = (f1, fo,..., f)
of fundamental invariants and we set d; = deg(f;).

The following equalities are well-known [Brol0O, Theorem 4.1]:

n
(3.1) \W|=ddy--d, and |Ref(W) =Y (d;—1).
i=1

Also, as W acts irreducibly on V, its center |Z(W)| consists of homotheties, so it is cyclic. Moreover by
[Brol0, Proposition 4.6],

(3.2) 1Z(W)| = Ged(dy, dy, .., d,,).

The C[V]-module Der(C[V]) of derivatives of the algebra C[V] is naturally graded in such a way that
d, has degree —1 for all v € V. By Solomon Theorem [Brol0, Theorem 4.44 and §4.5.4], the graded
C[V]"-module Der(C[V])" of invariant derivatives is free of rank 1, hence it admits a homogeneous
C[V]" -basis (Dy, ..., D,) whose respective degrees are denoted by d...,d};. Again, the family (Dy,...,D,)
is not uniquely defined even up to permutation, but the list (d},d5,...,d},) is well-defined up to permutation
and is called the list of codegrees of W: it will be denoted by Codeg(W).

We conclude this subsection by a general easy result which follows immediately from the fact that C[V ]V
is a graded polynomial algebra whose weights are given by Deg(W).
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Proposition 3.3. The map
ng: P(V) — P(dy,d,,...,d,)
[v] = [A@): L)t fulv)]
is well-defined and induces an isomorphism
P(V)/W — P(dy,dy,...,d,).
Moreover, 1tg induces by restriction an isomorphism

Z()W —P(dy,...,d,).

3.2. Reflecting hyperplanes

If s € Ref(W), then the hyperplane V* is called the reflecting hyperplane of s (or a reflecting hyperplane
of W). We denote by A the set of reflecting hyperplanes of W. If X is a subset of V, then, by Steinberg-Serre
Theorem [Brol0, Theorem 4.7], W(X) is generated by reflections and so is generated by the reflections whose
reflecting hyperplane contains X: such a subgroup is called a parabolic subgroup of W.

If H € A, then the group W(H) is cyclic (indeed, by semisimplicity, it acts faithfully on V/H which
has dimension 1) and we denote its order by ey. Note that Wy \ {1} is the set of reflections of W whose
reflecting hyperplane is H, so

(3.4) |Ref(W)| = Z(eH ~1).

HeA

We denote by ay an element of V* such that H = Ker(ay). In particular, if all the reflections have order 2,
then |Ref(W)| = | A|. Finally, note the following equality [Brol0, Remark 4.48]

n

(3.5) [Al= ) (d;+1).

i=1
If () is a W-orbit in A, then we denote by e the common value of the ey’s for H € (). We then set

Jo= ]_IOCH-

HeQ

Then there exists a unique polynomial P ) in variables x1,...,x,, of respective weights d1,...,d,, such that

(3.6) J& =Peafis o fu)-

Note that P ) is homogeneous of degree eq|(Q)|. Then (see [Sta77, Theorem 2.3 and Corollary 4.3] or [LT09,
Theorem 9.19 and Corollary 9.21])

(37) CVIV =Clfi,- fw Ua)aeaw]
and a presentation of C[V]"' is given by the relations (3.6). Consequently:
Proposition 3.8. Let Qy,...,Q, denote the W -orbits in A. Then the map
T(;: P(V) — P(dy,dy,..., 4,14, ..,1Q,])
vl — [A@): @) fuv) o, (@) o, (v)]

is well-defined and induces an isomorphism

P(V)/W —{[x; :-:x, cj1iee g €P(dy, ., dy 1O 1) |

VY1<k<r, jZQ" =P, (%1, %))

Moreover, Tt induces by restriction an isomorphism

Z(fl)/wl;){[XZ et Xy :jl : ]r] EH)(dZ""ldnl|QI|"":|Qr|) |
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V1<k<r ji ™ =P (0%, %))

Note that W/W*" is cyclic but W*" is not necessarily equal to the derived subgroup W’ of W. We have
W’ = W* if and only if |[4/W| = 1. Now, let

J=|lau=|] Jnecivi
HeA QeA/wW
It is well-defined up to a scalar and homogeneous of degree | A|. It is the generator of the ideal of the reduced
subscheme of the ramification locus of the morphism V' — V/W. Then by [Brol0, Remark 3.10 and Proposi-
tion 4.4]
(3.9) vJ = det(w)J

for all w € W. In particular | € C[V]Y™ and JW/W™ e C[V]W. So there exists a unique polynomial
P e C[X;,..., X, ], which is homogeneous of degree |IW/W?®"|-|A| if we assign to X; the degree d;, and such
that

(3.10) JWWE = By fo).

Proposition 3.11. Assume that the map H w— ey is constant on A (and let e denote this constant value,
which coincides with |W/W). Then C[V]W™" = Clf1, f2r---» fn, ]] and a presentation is given by the single
equation (3.10).
So the map
T(;L . ]P(V) —> H)(dl,dz,...,dn,|./4|)
[v]  — [AW): fo(v):---: fu(w) ] (V)]
is well-defined and induces an isomorphism
P(V)/W 5 {[xg : -1 x,: j] €P(dy, ..., dy, |A]) | ¢ = Pe(xq,..., X))
Moreover, g induces by restriction an isomorphism

Z(fl)/WSL ;) {[XZ i Xy ]] EH)(dZ’-";dnJ|A|) | ]-e = Pf(OfXZl""xn)}'

3.3. Eigenspaces, Springer theory

We now recall the basics of Springer and Lehrer-Springer theory: all the results stated in this subsection
can be found in [Spr74], [LS99a], [LS99b]. Note that some of the proofs have been simplified in [LM03]. Let
us fix now a natural number e. We set

d(e) = {1 <k <n| e divides di},

d*(e)={1 <k <n|e divides d;},
o(e)=ld(e)l and  6%(e)=[d(e)l.
With this notation, we have
(3.12) oe) = gle%((dlm V(w, Ce)).

In particular, C, is an eigenvalue of some element of W if and only if 6(e) # O that is, if and only if e divides
some degree of W. In this case, we fix an element w, of W such that
dim V(w,, C.) = d(e).
We set for simplification V(e) = V(w,,C,) and W(e) = Wy (,)/W(V (e)): this subquotient of W acts faithfully
on V(e).
If f € C[V], we denote by £l its restriction to V(e). Note that if i d(e), then fi[e] =0 by Lemma 2.2.
Let us recall here the results of Springer and Lehrer-Springer we will need:
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Theorem 3.13 (Springer, Lehrer-Springer). Assume that o(e) # 0. Then:
(a) If we W, then there exists x € W such that x(V(w,C,)) C V(e).
(b) W(e) acts (faithfully) on V (e) as a group generated by reflections.
(c) The family (fk[E])ked(e) is a family of fundamental invaraints of W (e). In particular, the list of degrees of
W (e) consists of the degrees of W which are divisible by e (i.e. Deg(W (e)) = (di)ked(e))-
(d) We have
U V(w,C,) = U x(Vie)={veV|Yke(l,2,.. n\d(), fi(v)=0).
weWw xeW
(e) o%(e) > o(e) with equality if and only if W(V (w,,C,)) = 1.

(f) If o*(e) = o(e), then W(e) = Wy () = Cy(w,) and the family of eigenvalues (with multiplicity) of w, is
equal to (Cel_dk)lskSM. Moreover, if w is such that dim V(w,C,) = o(e), then w is conjugate to w,.
Remark 3.14. Let k €{1,2,...,n} be such that 6(dy) = 6*(dy) = 1. Then z; = V(di) is a line in V, so we can
view it as an element of IP(V'). By Theorem 3.13(f), the stabilizer W,_of z; acts faithfully on V (dy), so it is

cyclic and contains wy, . In fact,
Wzk = <wdk>
For proving this, let e = [W,, |. We just need to verify that e = dj. But dj divides e and C, is the eigenvalue of

some elements of W. So e divides some d; by the remark following (3.12). Therefore, dj divides d; and so
dy = d; because 6(dy) = 1. This proves that e = dj, as desired.

Corollary 3.15. Assume that 5(e) = 6*(e) # 0 and let ko € {1,2,...,n} be such that dy is divisible by e. Let
v e V(e)\ {0} and let z = [v].

(a) The family of eigenvalues of w, for its action on the tangent space T,(IP(V')) is equal to (Ce_dk)k;tko-

(b) Let f € C[V]W be homogeneous of degree d and assume that f (v) = 0. Then:
(bl) Ifd z d, mod e for all k # ky, then Z(f) is singular at z.
(b2) Assume that Z(f) is smooth at z and let ki # kg be such that d = dy, mod e (the existence of ky is
guaranted by (bl)). Then the family of eigenvalues of w, for its action on the tangent space T,(Z(f))

i —d
is equal 10 (Co ™" ) ko k, -

Proof. By permuting if necessary the degrees, we may assume that kg = 1. Note that Cel_dl = C,. Choose a
basis (vy,...,v,) of V such that v = v and w(vy) = Cel_dkvk for all k € {1,2,...,n} (see Theorem 3.13(e)).

(a) Identify IP(V') with IP"~!(C) through the choice of this basis. Then the action of w, is transported to

1-d 1_dn —d _dn
We-[x7:x0 0%, = [Coxq 1 Co Pxp i Ce "Xy =[x1:Ce Pxpier T "Xyl
Since z=[1:0:---: 0], this shows (a).
(b) Let us work in the affine chart “x; = 17, identified with A”~!(C) through the coordinates (x5,...,x,,).
The equation of the tangent space T,(Z(f)) is given in this chart by

n

) (@0 @) = 0.

k=2
By (2.1),
Yy, ) = Co M (B, ).
But
Yy ))®) = (D )W ™ (v) = (D T ).



10 C. Bonnafé and A. Sarti

As d,, f is homogeneous of degree d — 1, this implies that

e M N =0 D))
Therefore, if d Z d; mod e for all k € {2,...,n}, we get (d,, f)(v) =0 for all k € {2,...,1}, and so Z(f) is
singular ar [v]. This shows (bl).
Now, if Z(f) is smooth at z, then there exists ky € {2,...,n} such that avklf(v) # 0, and in particular
d =di, mod e. Then there exists k € {2,...,n} such that d,, f(v)# 0. This shows that the action of w, on
the one-dimensional space T,(IP(V))/T[,1(Z2(f)) is given by multiplication by Ce_dk‘ = ;4. The proof of (b2)
is complete. O

4. Determining singularities

An important step for analyzing the properties of the K3 surfaces constructed in the next section is to
determine the singularities of the variety Z(f)/T in the cases we are interested in (here, f is a fundamental
invariant of W and I is a subgroup of W). We provide in this section two different tools that will be used in
the sequel to this paper [BS-II], [BS-III], where particular examples will be studied.

4.1. Stabilizers

The singularity of Z(f)/I" at the I'-orbit of z € Z(f) depends on the singularity of Z(f) at z and the
action of [, on this (eventually trivial) singularity. We investigate here some facts about the stabilizers W,
and their action on the tangent space T,(Z(f)).

Let f denote a homogeneous invariant of W, let d denote its degree and let v € V' \ {0} be such that
f(v)=0. We set z=[v] € Z(f) c P(V). We denote by 0, : W, — C* the linear character defined by
w(v) = 0,(w)v for all w e W,. Then W,, = Ker(6,) and we denote by e, = [Im(6,)|. So there exists w € W,
such that 6,(w) = C,_. In other words, v € V(w, C,) and so, by Theorem 3.13(a), we may, and we will, assume
that v € V(w,_, C,,) = V(e;). This shows that

(4.1) W, = Wy (w,,).
Recall from §3.2 that W, is a parabolic subgroup of W and so is generated by reflections. Note the following
useful facts:
(a) Let m =|Z(W)| (recall from (3.2) that m = gcd(Deg(W))). Since p,, = Z(W) C W,, m divides e,.
(b) If 6(e;) = 6*(e;), f(v) = 0 and Z(f) is smooth at z, then the eigenvalues of w, on the tangent space
T,(Z(f)) are given by Corollary 3.15.
(c) Let P be a parabolic subgroup of W of rank # — 2 and assume that Z(f) is smooth. Then dim V' =2

and so L = IP(V?) is a line in IP(V). Then L intersects Z(f) transversally by Corollary 2.8, so
ILN Z(f)| = d because f has degree d. Moreover,

(4.2) Ifze LN Z(f), then W, = P.

Indeed, P C W, by construction and, if this inclusion is strict, this means that W, has rank n—1 or n.
But it cannot have rank n for otherwise W, = W and v = 0 (which is impossible). And it cannot have
rank 71— 1 because Corollary 2.4 would imply that Z(f) is singular at z, contrarily to the hypothesis.
This implies for instance that two smooth points in L N Z(f) are in the same I'-orbit if and only if
they are in the same N (P)-orbit.

Moreover, in this case, we have a P-equivariant isomorphism

(4.3) T)(2(f) = V/VFP
(see the proof of Corollary 2.8).
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D
w wl | wzow) | w COZig"V\),)
G(1,1,5) = W(Ay) = S5 120 120 60 éj?izg
Glee,4)e> 2 24¢3 | 24¢3/ged(e,4) | 1263 066222266 * \
G(2e,e,4),e>1 3843 | 192¢3/gcd(e,4) | 9663 3,6}23,22?’6&2
Gag = W(Fy) 1152 576 288 g Z: 2115
Gag 7680 1920 3840 3: : 3 fg
G0 = W(Hy) 14400 7200 7200 g 1(2) fg ;g
G31 46080 11520 | 23040 2 3%2 ig

Table 1. Irreducible complex reflection groups of rank 4 generated by reflections of order 2

4.2. Singularities of double covers

If n=4,T = W* and W is generated by reflections of order 2, then the surface Z(f)/T is the double
cover of a weighted projective plane. Most of (but not all) the singularities of Z(f)/I' may be then analyzed
through the singularities of the branch locus of this cover.

So we fix a double cover 77 : Y — X between two irreducible algebraic surfaces and we assume that Y is
normal and X is smooth. By the purity of the branch locus, the branch locus R of 7t is empty or pure of
codimension 1 (i.e. pure of dimension 1). The next well-known fact (see for instance [BPVdV84, Part III, §7])
will help us in our explicit computations:

Proposition 4.4. Lety € Y be such that x = 7t(y) belongs to R. We assume that x is an ADE curve singularity
of the branch locus R. Then y is an ADE surface singularity of the same type.

5. Invariant K3 surfaces

Hypothesis. In this section, and only in this section, we assume that n = 4 and that W is
irreducible and generated by reflections of order 2.

5.1. Classification

We provide in Table 1 the list of irreducible complex reflection groups W of rank 4 which are generated
by reflections of order 2 together with the following informations: the order of W, the order of W/Z(W)
(which is the group that acts faithfully on IP(V)), the order of W’ and the lists of degrees and codegrees. We
also recall their notation in Shephard-Todd classification [ST54| as well as their Coxeter name whenever they
are real.

Recall that G(2,1,4) = W(By) and G(2,2,4) = W(Dy). Note that the hypothesis on the order of the
reflections implies that

(W]

5.2 W = —.
(5:2) W=
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In particular, W’ = W*' if and only if W = G,g3 or W = G(2¢,¢,4) for some e > 1. Also, note the following
diagram of non-trivial inclusions between those of the complex reflection groups which are contained in a

primitive one (here, H <~ G means that H is a normal subgroup of G).

214:(<G29
G(2,2,4)¢

L

G(4,4,4) > G(4,2,4)

(5.3)

31

5.2. K3 surfaces

Equations of surfaces of the form Z(f)/W’ or Z(f)/W?®" (where f is a fundamental invariant of degree
d) in a weighted projective space are provided by Propositions 3.8 and 3.11. Whenever some arithmetic
conditions on d and the degrees of W are satisfied, it can then be proven thanks to results of Appendix A
(and particularly Corollary A.3) that the canonical sheaf of Z(f)/W’ or Z(f)/W?" is trivial (provided that
Z(f) is normal, so that the quotient is also normal and the canonical sheaf is well-defined): it turns out
that, in most cases, the quotient Z(f)/W’ or Z(f)/W*" has only ADE singularities and positive Euler
characteristic so that their minimal resolution are K3 surfaces. A particular feature of these examples is
that their minimal resolution have always a big Picard number, as big as possible compare to the number
of moduli of the family. Note that some of these examples were already studied by Barth and the second
author [BS03]: we revisit these cases and simplify some arguments using more theory about complex
reflection groups.

We denote by K3 the set of pairs (W, d) where W is an irreducible complex reflection group of rank 4
and d is a positive integer satisfying one of the following conditions:

e W=0G(1,1,5), G(4,2,4) or Gyg, and d = 4.
G(2e,2e,4) with e odd, and d € {4e, 6¢}.

o W = G(4e,4e,4), and d = 4e.

e W=G(2,1,4),and d € {4,6}.

e W =Gyg, and d € {6, 8}.

e W=Gjzp,and d =12.

e W =Gjq, and d = 20.

e W=

Theorem 5.4. Assume that (W,d) € K. Let T be the subgroup W’ or W™ of W and let  be a fundamental
invariant of W of degree d such that Z(f) has only ADE singularities.
Then Z(f)/T is a K3 surface with ADE singularities.

The proof of Theorem 5.4 will be given in §5.5 and Section 6. As an immediate consequence, we get:

Corollary 5.5. Under the hypotheses of Theorem 5.4, the minimal resolution of Z(f)/T is a smooth projective K3
surface.

5.3. Numerical informations

Before proving this Theorem 5.4, let us make some remarks. By Propositions 3.8 and 3.11, the variety
Z(f)/T is a weighted complete intersection (see [Dol82, §3.2] for the definition) in a weighted projective
space (it is defined by one or two equations). If ' = W*, then Z(f)/T is a weighted hypersurface in a
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weighted projective space of dimension 3 (see Proposition 3.11). If I' = W’, then Z(f)/T is a codimension
2 weighted complete intersection in a weighted projective space of dimension 4 (see Proposition 3.8). We
give in Table 2 the list of the weights of the ambient projective space as well as the list of the degrees of the
equations in all the different cases (we also give the description of Z(f)/W as a weighted projective space).

By looking at this Table 2, the reader might think that we have build infinitely many families of K3
surfaces, by letting the integer e vary in the fourth and fifth group considered. However, as it will be
explained in §5.4 (see the isomorphisms (5.12), (5.13) and (5.15)), the general group with parameter e and the
particular group for e = 1 give exactly the same families of surfaces.

Also, it turns out that G(2,2,4)" = G(2,1,4)’, and since invariants of G(2,1,4) = W(By) are invariants
for G(2,2,4) = W(Dy), this shows that two of the families of K3 surfaces constructed with G(2,1,4) are
contained in families built from G(2,2,4): note however that, for these particular examples, having the two
points of view give different embeddings in weighted projective spaces.

As a consequence, we have build 15 families of K3 surfaces (note that the families corresponding to
the groups G(4,2,4) and G,9 are 0-dimensional, as there is, up to scalar, a single quartic polynomial
invariant by each of these groups). If we exclude the “easy” case of the quotient of a quartic by a finite
subgroup of SL4(C) (see §6.1), it remains 8 non-zero dimensional families of K3 surfaces whose construction
is non-trivial.

Hypothesis and notation. From now on, and until the end of this paper, we assume
that (W,d) € K3, that T is the subgroup W’ or W3 of W, and that f is a fundamental
invariant of W of degree d such that Z(f) has only ADE singularities. We also fix a family
f=(f, fi, fo, f3) of fundamental invariants containing f and we set d; = deg(f;).

Proof of the results given in Table 2. The proof follows from Table 1 and a case-by-case analysis. We will not
give details for all cases, we will only treat two cases (the reader can easily check that all other cases can be
treated similarly).

e Assume that (W,d) = (G31,20) and that [ = W’ (= W*"). Then (dy,d,,d3) = (8,12,24) by Table 1 and
| Al = 60 by (3.1) and (3.4). It then follows from Proposition 3.11 that

Z(f)T ={[x1: x5 : x3: j] €IP(8,12,24,60) | j> = P(0,x1, %7, x3)}.
But IP(8,12,24,60) = P(2,3,6,15) = P(2,1,2,5), so that
Z(fUT ={[y1:92:93:j1€P(2,1,2,5) | j> = Q(v1,%2,93))
for some polynomial Q € C[Y},Y>, Y3]. Hence Z(f)/T is defined by an equation of degree 10 in IP(2,1,2,5),

as expected.

Finally, by Proposition 3.1, Z(f)/W ~1P(8,12,24)=1P(2,3,6) ~P(2,1,2) ~IP(1,1, 1), as expected.

e Assume that (W,d) = (Gyg,6) and I' = W’. Then (dy,d,,d3) = (2,8,12) by Table 1. Note that W’ = W*"
and that there are two W-orbits (2 and (), of reflecting hyperplanes, which are both of cardinality 12. It
then follows from Proposition 3.8, that

Z(FWT ={[x1 1 x2:x3:jy 1 jo] €IP(2,8,12,12,12) | j§ = Py, (0,1, %2, X3)
and ]% = PerZ(O’ xl,X2,X3)}.
But IP(2,8,12,12,12) =1P(1,4,6,6,6) =IP(1,2,3,3,3), so that

Z(A/T=Av1:92:93: 1 : 121 €P(1,2,3,3,3) | j = Q1(v1,¥2,¥3) and j3 = Qx(31,¥3,V4)}

for some polynomials Q; and Q; in C[Yy,Y), Y3]. So Z(f)/T is defined by two equations of degree 6 in
IP(1,2,3,3,3), as expected.



14 C. Bonnafé and A. Sarti

f
W d r Ambient space degre?(s) Clz (f)/W
equation(s)
W(A)~Ss | 4 | w=ws| P(©23510) 20 P(2,3,5)
’
s | w P(1,3,4,6,2) 12,4 —
’ SL
~Wi, w (1,3, 4,8) 16
; W P(1,1,2,3,1) 6,2 PL12)
W P(1,1,2,4) 8
w’ IP(2,3,2,1, 2,12
G(4,2,4) | 4 (2,3,2,1,6) P(1,3,1)
W P(2,3,2,7) 14
G(2¢,2¢,4) | 4e | W =ws| P(1,3,2,6) 12 P(1,3,2)
e odd
° 6e | W=w| P(1,1,1,3) 6 P(1,1,1)
G(de de,4) | e | W =ws| P(2,31,6) 12 P(2,3,1)
’
) oW P(1,2,3,3,3) 6,6 P(L2,3)
28 st
—W(E W P(1,2,3,6) 12
’
ol W P(1,1,2,2,2) 4,4 PLL2)
W P(1,1,2,4) 8
Gao 4 | W=ws| P(Q23,5,10) 20 P(2,3,5)
Gso=W(Hy) | 12| w=ws| P@,236) 12 P(1,2,3)
Gay 20| W=ws | P(@2,1,2,5) 10 P(1,1,1)

Table 2. Weights of ambient projective spaces and degree(s) of equation(s) of Z(f)/T

Finally, by Proposition 3.8, Z(f)/W ~1P(2,8,12) =1P(1,4,6) ~IP(1,2, 3), as expected. O

Remark 5.7. The arithmetic of degrees and the classification of reflection groups imply that it does not seem
possible to find a complex reflection W and a degree d of W such that W is not generated by reflections of
order 2 and Z(f)/T has a trivial canonical sheaf, except whenever d = 4. But this is in some sense the less
exciting case, as it is shown by the argument given in §6.1 below.

Also, note that if e {1, 2,4}, then G(e, e,4) has a unique invariant of degree 4 that defines a quartic in
IP3(C), but this invariant is equal to xyzt, and so Z(f) is not irreducible and does not fulfill the hypothesis
of Theorem 5.4. That is why this case does not appear in the list 5.

Remark 5.8. If (W,d) = (G,g,6) or (G3p,12), and I' = W', then the above result was obtained by Barth and
the second author [BS03]: the group I was denoted by G, in their paper (this must not be confused with
Shephard-Todd notation).
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5.4. About the families attached to G(2e,2e,4)

Assume in this subsection, and only in this subsection, that W = G(2e, 2¢,4) for some e. Recall that
G(2¢,2e,4) is the group of monomial matrices in GL4(C) with coefficients in y,, and such that the product
of the non-zero coefficients is equal to 1. Note that this implies that W’ = W*".

If 1 <k <4, we denote by oy the j-th elementary symmetric function in the variables x, y, z, t, and let

Ji=x=p)(x=2)(x =)y -2)(y ~1)(z ).
If p € C[x, 7,2 t] and | > 1 is an integer, we set p[l] = p(x', 9,2}, t)) € C[x, v, 2, t]. For instance, oy [I] = Z(x!).
Then (01,01[2],01[3], 04) is a family of fundamental invariants of G(1,1,4) =~ S,. So there exists a unique
polynomial P € C[xy, x,,x3,X4] such that
(5.9) Jt = P(01,01[2],01(3], 04).

We do not need here the explicit form of P. If a, b, ¢ € C, we set

Fope=ao[4] +bog+coy[2])? = a¥(xh) + bxyzt + c(X(x2))%,

Gupe = 01[6] +acy [4]01[2] + boy [2]° + coy[2] 0y
With this notation, we may, and we will, choose as a family of fundamental invariants of W the family
(01[2e], 01[4e], 01[6€], 04). Note that the element ] € C[x,v,z,t]" defined in §3.2 is equal to J;[2¢] (up to a

scalar). Applying the endomorphism p — p[2e] of C[x,, z,t] to the formula (5.9) and using Proposition 3.11
gives

(5.10) P(V)/W’ = {[x1:x3:x3:x4:]] € IP(2e, 4e, 6¢,4,12¢)|j> = P(x1, X5, X3,%3°)},
because 0[2e] = 07°. Let us examine the situation according to the parity of e.
5.4.1. The case where ¢ is odd Assume here that e is odd. Then
IP(2e,4e, 6¢,4,12¢) =1P(e, 2¢,3e,2,6e) ~1P(1,2,3,2,6).
So it follows from (5.10) that
(5.11) P(V)/W’ =~ {[x]:x:x3:x4:j]€P(1,2,3,2,6) | j2 = P(x1,%),X3,%3)).
Now, a fundamental invariant of degree 6e of W if of the form G, .[e]. We deduce from (5.11) that
Z(Gupele])/W = {[x1:x0:x4:j]€P(1,2,2,6) | j2 = P(x1, x5, —ax; xp — bx; — cx1x4,X3)}
and in particular
(5.12) Z(Gap,cle])/G(2¢e,2e,4) = Z(G,p.0)/G(2,2,4).
Similarly, a fundamental invariant of degree 4e of W is of the form F,; .[e] with (a,b) # 0 and
(5.13) Z(Fup,cle])/G(2e,2e,4) = Z(F,p,.)/G(2,2,4)".

This shows that the varieties Z(G, c[e])/G(2e,2e,4)" and Z(F, .[e])/G(2e,2e,4)" do not depend on e.
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5.4.2. The case where ¢ is even Assume here that e = 2¢’ for some ¢’ > 1. Then
P(2e, 4e,6¢,4,12¢) = P(e’,2¢/,3¢’,1,6¢") =P(1,2,3,1,6).

So it follows from (5.10) that

(5.14) P(V)/W’ =~ {[x;:x5:x3:x4: j] €P(1,2,3,1,6) | j2 = P(x1,%),X3,X3)).

Now, a fundamental invariant of G(4e’, 4e’,4) of degree 4¢’ is of the form F,;, [¢’] and a similar argument
as before shows that

(5.15) Z(Fopcle'))/G(4e, 4, 4) = Z(F,p,0)/G(4,4,4).

Again, the variety Z(F,; c[e'])/G(4e’,4¢’,4)" does not depend on e’.

5.4.3. Complements Note for future reference (see §6.3) the following fact:
Lemma 5.16. If Z(F,; ) is irreducible, then it is smooth or has only A, singularities.

Proof. Assume that Z(F, ) is irreducible and singular. Let us first assume that @ = 0. Then we may
assume that b = 1 and the irreducibility of Z(F ;) forces c # 0. An easy computation then shows that the
only singular points of Z(F; ) are the ones belonging to the G(2,2,4)-orbit of p=[0:0:i:1]. But the
homogeneous component of degree 2 of F 1 .(x,9,i +2,1) is ixy — 422, which is a non-degenerate quadratic
form in x, v, z. So p is an A; singularity of Z(F), as expected.

Le us now assume that a # 0, and even that @ = 1. Assume that we have found (b, cy) € C? such that
Z(F py,c,) admits a singular point g =[x : o : zg : fo] which is not an A; singularity. Then, by permuting
the coordinates if necessary, we may assume that ¢ty # 0. So let us work in the affine chart t # 0 and set
Fy . =Fipc(x,9,2,1). Let Hy denote the Hessian matrix of Fy . Then (xo, 0,20, bo, ¢o) belongs to the

variety
JF?
X ={(x,9,2,b,c) e A(C) | Fj (x,,2) = ai’C (x,9,2) =
OF; IFy.,

i3

7y (x,9,2) = e (x,v,2) = det(Hp (x,v,2)) = 0}.

Now let 7t : A>(C) — A*(C), (x,9,2,8,7) — (B,7). A Magma [BCP97] computation:

> Ab<x,y,z,b,c>:=AffineSpace(Rationals(),5);
A2<b0,c0>:=AffineSpace(Rationals(),2);
pi:=map<A5 -> A2 | [b,c]>;
Fbco:=(x"4+y~4+z"4+1) +tb*x*y*z+ck (x~2+y~2+2~2+1) ~2;
Hbc:=Matrix(CoordinateRing(A5),3,3,
[[Derivative(Derivative(Fbco,k),1) :
k in [1..3]] : 1 in [1..311);
X:=Scheme (A5, [Fbco] cat [Derivative(Fbco,k) : k in [1,2,3]]
cat [Determinant(Hbc)1);
MinimalBasis (ReducedSubscheme (pi(X)));

— V V V V V V V V V

cO + 1/2,
b0~2 - 16
]
shows that 7t(X') = {(4,—1/2),(—4,—1/2)}. This implies that (by, cq) € {(4,-1/2),(—4,-1/2)}. But F4_;,, and
F_4_1/, are not irreducible (they are divisible by x —y -z +t and x + v + z — t respectively): this contradicts
the hypothesis. U
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Remark 5.17. Observe that the previous family Z(F, ;) with (a,b) = (1,0) was studied in [Sar04], where it is
shown that the family contains exactly four singular surfaces with 4,8,12,16 A;-singularities. In particular
the surface with 16 A;-singularities is a Kummer K3 surface.

5.5. Proof of Theorem 5.4

The rest of this paper is devoted to the proof of this Theorem 5.4. Note that it proceeds by a case-by-case
analysis, but this case-by-case analysis is widely simplified by the general facts about complex reflection
groups recalled in the previous sections.

Proof of Theorem 5.4. Assume that the hypotheses of Theorem 5.4 are satisfied. For proving that Z(f)/T is a
K3 surface with ADE singularities, we need to show the following facts:

(S) The surface Z(f)/I" has only ADE singularities.
(E) The Euler characteristic of Z(f)/T is positive.
(C) The canonical divisor of Z(f)/T is trivial.

Indeed, if X denotes the minimal resolution of Z(f)/T and if (S), (E) and (C) are proved, then X has a trivial
canonical sheaf by (S) and (C), so by the classification of smooth algebraic surfaces X is a K3 surface or an
abelian surface. But, by (S), the Euler characteristic of X is greater than or equal to the one of Z(f)/T, so is
also positive by (E). Since the Euler characteristic of an abelian surface is 0, we deduce that X is a smooth
K3 surface.

The technical step is to prove (S), namely that Z(f)/I' has only ADE singularities. This will be postponed
to the next Section 6. So assume here that (S) is proved.

Let us now prove the statement (E), namely that the Euler characteristic of Z(f)/T is positive. Since Z(f)
has only isolated singularities by (S), it follows from [Dim92, Theorem 4.3] that H!(Z(f),C) = 0. Since Z(f)
has only ADE singularities, it is rationally smooth [KL79, Definition Al]. As it is also projective, one can
apply Poincaré duality and so H?>(Z(f),C) is the dual of H!(Z(f),C), hence is equal to 0. So Z(f) has no
odd cohomology and since H/(Z(f)/T,C) = H/(Z(f),C)", this shows that Z(f)/T has no odd cohomology.
So its Euler characteristic is positive.

Now it remains to prove (C), namely that the canonical sheaf of X = Z(f)/T is trivial. For this, we
use Corollary A.3, so we need to prove that X satisfies the hypotheses (Hl), (H2), (H3), (H4) and (H5) of
Appendix A. Statements (H1), (H2) and (H4) are easily checked thanks to Table 2 while (H5) follows from (S).
So it remains to prove (H3), namely that X is a well-formed weighted complete intersection. There are two
cases:

e If I' = W*, then X is a weighted hypersurface of degree e in some IP(ly,11,[,13), and, according
to [IF00, §6.10], X is well-formed if, for all 0 <a < b < 3, gcd(l,,I;) divides e. This is easily checked
with Table 2.

o IfI'=W’ s W5 then X is a weighted complete intersection defined by two equations of degree ¢;
and e, in some P(ly,1y,15,13,14), and, according to [IF00, §6.11], X is well-formed if the following two
properties are satisfied:

- Forall 0 <a<b<4,gcd(l, 1) divides e or e;.

- Forall 0 <a<b<c<4,gcd(l,lyl.) divides e; and e,.
Again, this is easily checked with Table 2.

The proof of Theorem 5.4 is complete, up to the proof of (S). U
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6. Singularities of Z(f)/T

The aim of this section is to complete the proof of Theorem 5.4, by proving that, under its hypotheses,
the surface Z(f)/I" has only ADE singularities. The first subsection is devoted to the (easy) case where d = 4
while the third subsection deals with the case where (W, d) = (G(2e, 2¢, 4), 4¢) for some odd e by reduction
to the d = 4 case. The other cases are treated in the second and fourth section.

6.1. The case d =4

Assume in this subsection, and only in this subsection, that 4 = 4. This case is somewhat particular
and requires its own treatment. It is also well known in the literature, but we recall the discussion for
convenience of the reader. First, note that the hypothesis implies that Z(f) is already a K3 surface (with
eventually ADE singularities) and we denote by w a non-degenerate global holomorphic 2-form on the
smooth locus (it is well-defined up to a scalar). By hypothesis, I' € SL4(C), so I preserves w. So Z(f)/T
inherits a non-degenerate global holomorphic 2-form wr on its smooth locus.

Now, let p : X — Z(f) denote a minimal resolution of Z(f), and let wx denote the unique non-degenerate
2-form on X extending w. Then X is a K3 surface which inherits an action of I' which stabilizes w: so
this is a symplectic action and so X/T is a K3 surface with ADE singularities [Nik76, §5]. Let g: Y — X/T’
denote a minimal resolution. We have a commutative diagram

1( P z(p)
y — L x-S z(pyr,

where pr is induced by p. This shows that prog: Y — Z(f)/T is a symplectic resolution, so Z(f)/T is a K3
surface with ADE singularities (and Y is its minimal resolution). This completes the proof of Theorem 5.4
whenever d = 4.

6.2. The case where Z(f)/W is smooth

Assume in this subsection, and only in this subsection, that Z(f)/W is smooth. By examining Table 2,
this occurs only if (W,d) = (G(2e, 2¢,4), 6¢) or (G31,20). In both cases, ' = W = W*" is of index 2 in W,
and so the result follows from Corollary B.7.

6.3. The case where W = G(2e,2e¢,4)

Assume in this subsection, and only in this subsection, that W = G(2e, 2e,4). The case where e is odd
and d = 6e is treated in the previous subsection 6.2. If e is odd and d = 4e, then it follows from the
isomorphism (5.13) and Lemma 5.16 that we may assume that e = 1. Then d = 4 and this case is treated
in §6.1. If e = 2¢’ is even and d = 4¢’, then it follows from the isomorphism (5.13) and Lemma 5.16 that we
may assume that ¢’ = 1. Then d = 4 and this case is treated in §6.1.

6.4. Remaining cases

According to the cases treated in §6.1, §6.2 and §6.3, we may now work under the following hypothesis:

Hypothesis. From now on, and until the end of this section, we assume that d # 4 and
W e {G(2, ].,4.), G28r G30}.
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6.4.1. The case where ' = W*" Assume in this subsection, and only in this subsection, that I' = W*'. In

this case, I' is a subgroup of index 2 of W. Recall from Propositions 3.3 and 3.11 that

(6.1) Z(f)/W =1P(dy,d,,d3)
and
(6.2) Z(f)/W = {[x) 1 xp 1 x5 1 jl € P(dy, da, d3, |Al) | j7 = P(0,x1,%2,X3)).

We denote by p : Z(f)/W*" — Z(f)/W the canonical map, let I/ denote the smooth locus of IP(d,d,,d3)
and let S denote the set of singular points of P(d,d,, d3).

Now, U = n;l(u)/w is smooth so p~}(U) = nf_l(U)/F contains only ADE singularities by Corollary B.7
(because I' = W' has index 2 in W). Hence, it remains to show that the points in p~!(S) are smooth or ADE
singularities. Let p; =[1:0:0], pp=[0:1:0] and p3 =[0:0: 1] in IP(dy,d,,d3). Then S C {p1,p2,p3}-
The following fact is checked by a case-by-case analysis:

Lemma 6.3. Assume thatd #4 and W € {G(2,1,4), Gog, G30}. If px € P(dy,d,, d3) is singular, then:
(a) O(di) = &% (dy) = 1.
(b) det(wg,)=1.
(c) pk is an A; singularity of P(dy,d>, d3) for some j > 1.

The proof will be given below. Let us first explain why this lemma might help to check that the points in
p~1(S) are smooth or ADE singularities. So let p; € S and let O} = T(f_l(pk). Then

Qp={peP(V)|¥1<j#k<3, fi(p)= fi(p) =0}
By Lemma 6.3, dim V(dy) = 1, so we might view V(dy) € P(V) as a point z; € Z(f). We denote by z;" the
image of z; in Z(f)/I'. By Theorem 3.13(d), we have that () is the W-orbit of z;. But the stabilizer of z; in
W is (wy, ) by Remark 3.14, so it is contained in ' by Lemma 6.3. So the map p is étale at z;', and so the
singularity of Z(f)/T at z}" is equivalent to the singularity of IP(d},d,, d3) at py, hence is an A; singularity
by Lemma 6.3. This completes the proof of Theorem 5.4 whenever I' = W*" and (W, d) = (G(2e, 2¢,4), 4e),
provided that Lemma 6.3 is proved. This is done just below:

Proof of Lemma 6.3. Let us examine the different cases:

o Tjpe G(2,1,4). Assume here that W = G(2,1,4). Then d = 6 and (dy,d,,d;) = (2,4,8). But
P(2,4,8) ~P(1,2,4) ~P(1,1,2), so S = {p3} and p3 is an A; singularity. Moreover, d3 = 8 and it
follows from Table 1 that 6(8) = 9%(8) = 1. Also, Theorem 3.13(f) implies that the eigenvalues of wg
are (CgS,Cgl,Cg3, Cg), so det(wg) = 1.

e Tjpe Grg. Assume here that W = Gyg. If d = 6, then (dy,dy,d3) = (2,8,12): but in that case
P(2,8,12) = IP(1,4,6) = IP(1,2,3) so S = {p,,p3} and so d; € {8,12} (and note that p, is an
A; singularity, while p3 is an A, singularity). If d = 8, then (d;,d,,d3) = (2,6,12) and we have
P(2,6,12) =1P(1,3,6) =IP(1,1,2) so S = {p3} and so dx = 12 (and note that p3 is an A; singularity).
It follows fom Table 1 that 6(8) = 0*(8) =1 = 6(12) = 6*(12). Also, Theorem 3.13(f) implies that
det(wg) = Cg_d_dl_dz_d3 = C§24 =1 and det(wq,) = Cfgd_dl_dz_% = C1_224 =1.

e Type G3o. Assume here that W = G3o. Then d = 12 and (dy,d,,d3) = (2,20,30). But we have
then IP(2,20,30) =P(1,10,15) = IP(1,2,3) so S = {py,p3}, so dy € {20,30}. Note also that p, is
an Aj-singularity while p3 is an A,-singularity. It follows from Table 1 that 6(20) = 06*(20) =1

= 0(30) = 6*(30). Also, Theorem 3.13(f) implies that det(w,q) = C%d—dl_drd3 =058%=1 and
4-d-d,-d,—d —
det(w30) = C3() 17 = C:,)go =1.

The proof of Lemma 6.3 is complete. 0
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6.4.2. The case where ' = W’ = W*" This case can only occur if W = G(2,1,4) or Gg.

o Tjpe G(2,1,4). Assume here that W = G(2,1,4). Then d = 6 and f is also an invariant of degree 6

of G(2,2,4). Since W' = G(2,2,4)" = G(2,2,4)", the result follows from the previous subsection.

Tppe Gyg. Then d € {6,8}. Then d; =2, d3 =12 and d, is the unique element of {6, 8} \ {d}. Then
Z(f)/W’ = {[xl 1XpiX3: j] : ]2] € IP(Z,dz, 12, 12,12) |

jt = Pr0,(0,x1,x,x3) and j3 = P, (0,x1,%),x3)}.

The group W*/W’ has order 2 (we denote by ¢ its non-trivial element) and it acts on Z(f)/W’ as
follows:

o(lxi1:xp:x3: 1 o)) =[x 1 x0 0 x3 1 —j1 1 =2
So one can check that the ramification locus R of the morphism 6 : Z(f)/W’' — Z(f)/W*" is
defined by j; = j, = 0 in both cases. We only need to prove that R is finite: indeed, if it is finite, then
0 is unramified in codimension 1 and Z(f)/W*" has only ADE singularities as it was shown in §6.4.1,
so Z(f)/W’ has only ADE singularities by Lemma B.4.

Now,

g (R)={p €P(V) | ji(p) = ja(p) = £ (p) = 0}.

We only need to prove that 7t;"~ (R) is finite. First, let

H={peP(V)|ji(p)=ja(p) =0}

Then the irreducible components of H are lines of the form IP(Hy NH;), where H; € (1 and H; € Q,.
This means that we only need to prove that such a line cannot be entirely contained in Z(f). So,
let Hy € O and H;, € (), and let s; denote the reflection of W whose reflecting hyperplane is H.
Let G = (s1,5;). Then VG = H; N H, so dim VC = 2. If P(V©) is entirely contained in Z(f), it then
follows from Corollary 2.9 that it is contained in Zjns(f): but this contradicts the fact that Z(f) has
only ADE singularities.

The proof of Theorem 5.4 is complete. O

Appendix A. Surfaces in weighted projective spaces

Let m > 3 and let Iy, I,...,1,, be positive integers. We denote by x(, xq,...,x,, the coordinates in the

weighted projective space P(ly,1q,...,1,,) and we fix m — 2 polynomials Fy,...,F,,_, in the variables x,

X1,...,X;; which are homogeneous of degree ey,...,e,,_, (where xi is given the degree I;). We consider the

variety

X=A{[xg:xy 1 xp,] €Plo, Iy, L) |V 1< j<m—2, Fi(xp,Xq,...,%p) = 0}

Let Py, (resp. Pgjng) denote the smooth (resp. singular) locus of IP(ly, Iy, ...,1,). We assume throughout this

section that the following hold:

(H1) The weighted projective space P(ly, 1,...,1,,) is well-formed, i.e.

(
(
(
(

gcd(lo,...,lj_l,lj+1,...,lm) =1
for all j €{0,1,...,m}.

H2) The variety X is a weighted complete intersection, i.e. dim(X) = 2.

H3
H4

)
)
)
)

The variety X is well-formed, i.e. codimy (X N Pgjpg) > 2.

o+l 4+, =1+ +e,_.

H5) X has only ADE singularities.
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Note that we do not assume that X is quasi-smooth (i.e. we do not assume that the affine cone of X in C"*!
is smooth outside the origin [Dol82, §3.1.5]). The following result is certainly well-known but, due to the lack
of an appropriate reference (particularly in the non-quasi-smooth case), we provide here an explicit proof:

Lemma A.l. Under the hypotheses (H1), (H2), (H3), (H4) and (H5), the smooth locus of the surface X has a
non-degenerate 2-form.

Proof. We set P =1P(ly,1y,...,1,,) for simplification. Let U denote the smooth locus of X NIP,,,. By (H3),
X N Pging has codimension > 2 in X and so X \ U has codimension > 2 in X by (H5). Again by (H5), it is
sufficient to prove that U admits a non- degenerate 2-form.

If0<a<mand1<j<m-2, we denote IP¥) the open subset of IP defined by x, # 0: we identify it
with C™ /Vla’ where the coordinates in C"” are denoted by (xq,...,X; 1, X541,--.,%,,) and W), acts through

C-(X0re o Xge1r Xasrer X)) = (Cloxg, ..., Clotx, g, Claving,, ..., Clnx,,), and we set
(a)
F]. (X0r+ s Xae1s Xas1re - Xim) = Fj(x0, .0, Xa1, 1, Xaq 1,000, Xy)-

The smooth locus of P will be denoted by IP §m and, since IP is well-formed by (H1), the above action of
(@) .

p; on C" contains no reflection and so Psy, is the unramified locus of the morphism C" — C"/y, .

Let J@ = (BF;a)/axk) denote the Jacobian matrix of the family (FY),...,F,SQZ). If b, c

1<j<m—-2,0<k=a<m
are two different elements of {0, 1,..., m} which are different from a, we denote by ]éac) the (m—2)x (m—2)

minor of /¥ obtained by removing the two columns numbered by b and c. We set

P, =lpePi | 7,2(p) = 0)
and U()—XﬂlPirr)le.

By the above description of ]P(sf-r)1 and (H2), we get

o= U o

0<a,b,c<m

[{a,b,c}|=3
We now define a 2-form a)ég on IP;I)1 be DY
(@ _, dxp Adx.
(A2) a)b'c = la](—u)
b,c

(a)

sm,b,c*

(a)

Let us first explain why this defines a 2-form on IP This amounts to show that Wy, ¢ is invariant under

the action of y, on the variables (Xx)o<kza<m given by & - x; = élkxk But, if M is a monomial in Ib of
degree e in the variables (Xk)o<k=a<m> then

(#) e=ej+-+eur—(lg+ly+---+1,-1,-1;,-1.) modl,

because the variable x, is specialized to 1. So & € p; acts on ] lgac) by multiplication by &%+ by (H4). So it
()

acts trivially on w, .

(a)

We now denote by wy;, . the restriction of wé “ to U( %

( ) (a) (a)
Note that U but that Wyype =~y

so we have to make some choice. We denote by £ the set of triples (a, b c) of elements of {0, 1,. m} such
that a<b <corc<a<b or b<c<a. Then again

v={J v

(a,b,c)eE
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and we want to show that the family of 2-forms (a)({]l)b ab,c)ee glue together to define a 2-form on U. The
argument is standard and will be done in two steps.

First step: glueing inside an affine chart. We fix a € {0,1,...,m} and we set U® = UNP@. Let b, c, b,
¢’ €{0,1,...,m} be such that (a,b,c), (a,b’,c’) € £. We need to prove that

) 0 _ o
U,b,c Ué,ﬂc)ﬂszf,)cf U,b,c U(a ﬂUb, )

Proving () is a computation in C" and amounts to prove that
#) ],(;,)C,dxb Adx, = ],fc)dxb, Adxy

on the variety X% defined by F, W ... = F =0 inside C". By applying a power of the cyclic permutation

m—2 =
(0,1,...,m) to the coordmates, we may (and we will) assume that 2 = 0 (so that 0 <b <cand 0 < b’ < ().

(0)

Since F j vanishes on X(O), its differential vanishes also on X, which implies that

OF\
Vi<j<m- ZZax dx;=0 on X0,
k

Then (#') is an easy application of generalized Cramer’s rule [GA95].

Second step: glueing affine charts. We denote by a)(l?) the glueing of the 2-forms a)g)b' » where b, ¢ are such

that (a,b,c) € £. Let a, a’ €{0,1,...,m}. We need to prove that

(b) 0 ywaver = @ lyenye

For simplifying the notation, we will assume that (a,a’) = (0,1), the general case being treated similarly.

We will denote by (xy)o<kza<m the coordinates on IP*) and (X} )o<kza'<m the coordinates on P(@). Also for
simplifying the notation, we will assume that Ul(oz) U((Z1 )0) # @. So, for proving (b), we only need to prove

that
() Lo\ 0dxy Adxy = T\ adxy Adxy  on PO AP,

The variables (xX¢)o<kza<m and (X} )o<kza'<m are related as follows:

, 1
Yo = T
X1

V2<k<m, x,’(:f—k.
xlk/h
) _ —1—10/11
Therefore dx, = —(Ip/11)x, dx; and so
(b”) Ldx) Adxl = Tox; N ax ) A dx,.

Moreover, since F; is homogeneous of degree e;, we get

0) e/l (1
F](- (X1,X0, .. 0) Xpy) = x1 1F](- )(x(’),xé,...,x;n).

]

We deduce that

(0) (1)
O (et
dxy 1 dx;,
for all k > 3 and then
77 0 ey o )—(Iz+-+1,))/ 1 (1
(b ) ]i,Z) — x(1(61+ +ep—p)—(l3++1,)) 1];3

So (b’) follows from (b”’) and (b"”) since ey + -+ e,,_o = lg+1; +---+1,, by (H4). O
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Corollary A.3. Under the hypotheses (H1), (H2), (H3), (H4) and (H5), the smooth locus of the surface X has a
trivial canonical sheaf and its minimal resolution is a smooth K3 surface or an abelian variety.

Appendix B. Around ADE singularities

The results of this appendix are certainly well-known. Here, we let GL,(C) act on the ring of formal
power series C[[t, #]] naturally by linear changes of the variables. We set B = Spec C|[[t, #]] and we denote
by 0 its unique closed point. We set B¥ = B\ {0}: it is an open subscheme of B. Since B is normal, it follows
from Hartog’s Lemma that

(B.1) Op(B*) = C[[t, u]).

Lemma B.2. Let G be a finite subgroup of GL,(C) containing no reflection and let o be an automorphism of
C[[t,u]]C. Then o lifts to an automorphism of C[[t,]].

Remark B.3. If G is a finite subgroup of SL,(C), then G contains no reflection. This shows that the above
lemma applies to ADE singularities C[[t, u]]°.

Proof. First, note that B has a trivial fundamental group by [Gro7l, exposé I, théoréme 6.1]. As it is regular
of dimension 2, its open subset B has also a trivial fundamental group by [Gro7l, exposé X, corollaire 3.3].
Therefore, the natural map

n:B* — B*/G
is a universal covering: indeed, the morphism B — B/G is ramified only at 0 because G does not contain
any reflection. In particular, 77 o o is also a universal covering, which means that o lifts to an automorphism
of B* since B*/G is connected. Taking global sections and using (B.1) yields the result. O

Lemma B.4. Let t:Y — X be a finite morphism of normal surfaces which is unramified in codimension 1. We
assume moreover that X has only ADE singularities. Then Y has only ADE singularities.

Proof- Let y € Y and let x = 7t(y). Then there exists a finite subgroup G of SL,(C) such that the completion
of the local ring Oy, of X at x is given by Oy , ~ C[[t,u]]®. Therefore, the morphism of schemes
m, : (SpecOy )\ {y} — B*/G
induced by 7t is unramified by hypothesis, so there exists a morphism of schemes
B* — (Spec @y,y) \ {v}

whose composition with us is a universal covering of B*/G (see the proof of Lemma B.2).
Consequently, there exists a subgroup H of G such that

(SpecOy )\ {y} = B*/H.
Taking global sections and applying Hartog’s Lemma together with (B.1) yields that @y,}, =C[[t,u]]f. O

Recall that, if G C GL,(C), then the only point of C?/G that might be singular is the G-orbit of 0
(denoted by ()) The next result is certainly well-known:

Lemma B.5. Let G be a finite subgroup of GL,(C) which is generated by Ref(G) and let T be a subgroup of G of
index 1 or 2. Then 0 € V/T is smooth or an ADE singularity.

Proof- We argue by induction on the order of G, the case where |G| = 1 being trivial. Also, if I' = G, then
V/T is smooth so we may assume that I' # G. As I' is of index 2, it is normal and we denote by 7: G — p,
the unique morphism such that I' = Ker(7). Let I, be the subgroup of I' generated by reflections belonging
to I'. It is a normal subgroup of G and

V/G=(V/T)/G/T,) and  V/T=(V/L)/(T/T).



24 C. Bonnafé and A. Sarti

Two cases may occur:

e If I, # 1, then V/I, is isomorphic to a vector space on which G/I; acts linearly as a reflection group
since V/G is smooth (see also [BBR02, proposition 3.5]). So the result follows from the induction
hypothesis.

e If I, =1, then 7(s) # 1 for all s € Ref(G). This implies that all reflections of G have order 2. Indeed,
if s € Ref(G), then 7(s?) = 1 so s> cannot be a reflection, hence is equal to 1. This shows in particular
that 7(s) = det(s) for all s € Ref(G) and so t(w) = det(w) for all w € W. In particular, I' C SL,(C)
and the result follows.

The proof of the lemma is complete. OJ

Remark B.6. We explain here why the general result stated in Lemma B.5 is in some sense optimal. Let
d > 3. Then there exists a reflection group G in GL;(C) admitting a normal subgroup I' such that W/T
is cyclic of order d and C*/T admits a non-simple singularity. Take for instance G = p,; x p, embedded
through diagonal matrices, and I’ =~ p; embedded through scalar multiplication. Then 0 is not an ADE
singularity of C/T.

In the same spirit, there exists a reflection group G in GL,(C) admitting a normal subgroup I' such that
G/T =~ u, x p, and such that V/T' admits a non-simple singularity. Take for instance G = G(4,2,2) and
I' =Z(W). Then G/T is indeed isomorphic to y, X u, and I' is isomorphic to p, acting through scalar
multiplication. So 0 is not an ADE singularity of C2/T.

Corollary B.7. Let X be a surface with only ADE singularities and let G be a group acting on X such that X/G
is smooth. Let I' be a subgroup of G of index 2. Then X/T has only ADE singularities.

Proof. Let x € X. It is sufficient to show that X/T, has an ADE singularity at the image of x. Note that we
know that X/G, is smooth at the image of x. Also, I, has index 1 or 2 in G,. This shows that we may, and
we will, assume that G = G, (and so I' =1T}).

By hypothesis, there exists a subgroup H of SL,(C) such that the complete local ring @X,x is isomorphic
to C[[t, u]]". Let us identify @X,x with C[[t, u]]¥, so that the group G acts on C[[t,«]]". By Lemma B.2,
the action of an element ¢ € G on C[[t,u]]" lifts to an automorphism ¢ of C[[t, u]]: we fix such a ¢ for all
¢ € G. Note that {¢h | h € H} is the set of all lifts of g to C[[t,u]]. Let

G={¢h|geGand heH).
Then G is a group (as ghg'h’ is a lift of gg’ so belongs to G) and we have an exact sequence
1—-H—>G—G—1.

Let T denote the inverse image of I' in G. Note that (C[[t, u]]")C = C[[t,u]]é and (C[[t, u]])F = C[[t, u]]".

Now, by hypothesis, (C[[t,%]]7)C is regular. This shows that G acts as a reflection group on the tangent
space of Spec C[[t,u]] at its unique closed point, and so the result follows from Lemma B.5 because T has
index 1 or 2 in G. U
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