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Combinatorial Reid’s recipe for consistent dimer models
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Abstract. Reid’s recipe [Rei97, Cra05] for a finite abelian subgroup G ⊂ SL(3,C) is a combinatorial
procedure that marks the toric fan of the G-Hilbert scheme with irreducible representations of G. The
geometric McKay correspondence conjecture of Cautis–Logvinenko [CL09] that describes certain objects in
the derived category of G -Hilb in terms of Reid’s recipe was later proved by Logvinenko et. al. [Log10, CCL17].
We generalise Reid’s recipe to any consistent dimer model by marking the toric fan of a crepant resolution of
the vaccuum moduli space in a manner that is compatible with the geometric correspondence of Bocklandt–
Craw–Quintero–Vélez [BCQ15]. Our main tool generalises the jigsaw transformations of Nakamura [Nak01] to
consistent dimer models.
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Procd́é de Reid combinatoire pour les modèles de dimères cohérents

Résumé. Le procédé de Reid [Rei97, Cra05] pour un sous-groupe abélien fini G ⊂ SL(3,C) est une procédure
combinatoire qui fournit un marquage de l’éventail torique du G-schéma de Hilbert par les composantes
irréductibles de G. La version géométrique de la correspondance de McKay, conjecture formulée par Cautis–
Logvinenko [CL09] qui décrit cerains objets de la catégorie dérivée de G -Hilb en termes de procédé de Reid,
a été démontrée ensuite par Logvinenko et. al. [Log10, CCL17]. Nous généralisons à tout modèle de dimère le
procédé de Reid qui consiste à marquer l’éventail torique d’une résolution crépante de l’espace des modules
d’une manière compatible avec la correspondance géométrique de Bocklandt–Craw–Quintero–Vélez [BCQ15].
Notre outil principal généralise les transformations de puzzles de Nakamura [Nak01] aux modèles de dimères
cohérents.
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1. Introduction

For a finite subgroup G ⊂ SL(2,C), the construction by McKay [McK80] of an affine Dynkin diagram of type
ADE directly from the representation theory of G established a bijection between the nontrivial irreducible
representations of G and the irreducible components of the exceptional divisor on the minimal resolution S of
C
2/G. For a geometric interpretation, identify S with the G-Hilbert scheme following Ito–Nakamura [IN99]

and use the induced universal family on S to obtain an equivalence of derived categories of coherent sheaves

ΦKV : D
b
(
G-coh(C2)

)
−→Db

(
coh(S)

)
as in Kapranov–Vasserot [KV00]. For a nontrivial irreducible representation ρ of G, ibid. shows that the
functor ΦKV sends the simple G-sheaf O0⊗ρ on C

2 to the pure sheaf OCρ(−1)[1] on S whose support is the
irreducible component Cρ of the exceptional locus associated to ρ by McKay’s bijection. Alternatively, the
first Chern classes of the vector bundles ΦKV(OC

2 ⊗ ρ) introduced by Gonzalez-Sprinberg–Verdier [GSV84]
provide the basis of H2(S,Z) dual to the basis of H2(S,Z) given by the curves classes [Cρ] for nontrivial ρ.

A similar story emerges for any finite subgroup G ⊂ SL(3,C), though the final step is well-understood
only when G is abelian. Indeed, building on work of Nakamura [Nak01] in the abelian case, Bridgeland–
King–Reid [BKR01] used the universal family on G -Hilb to obtain an equivalence of derived categories of
coherent sheaves

ΦBKR : D
b
(
coh(G -Hilb)

)
−→Db

(
G-coh(C3)

)
from which they deduced that G -Hilb is a crepant resolution of C3/G. The conventions from [KV00] and
[BKR01] are such that the functors ΦKV and ΦBKR determined by the universal family on G -Hilb point in
opposite directions, so to implement the final step in the programme extending the McKay correspondence
to dimension three, Cautis–Logvinenko [CL09] considered the quasi-inverse functor

Ψ := Φ−1BKR : D
b
(
G-coh(C3)

)
−→Db

(
coh(G -Hilb)

)
and studied the images under Ψ of the simple G-sheaves O0 ⊗ ρ on C

3 when G is abelian. Their
conjecture, proved by Logvinenko [Log10] when C

3/G has a single isolated singularity and by Cautis–Craw–
Logvinenko [CCL17] for any finite abelian subgroup G ⊂ SL(3,C), asserted that the objects Ψ (O0 ⊗ ρ) can
be computed explicitly from a recipe of Reid [Rei97] for marking torus-invariant subvarieties of G -Hilb
with irreducible representations of G. Reid’s recipe, shown to hold for any finite abelian subgroup of SL(3,C)
by Craw [Cra05], therefore provides the combinatorial input allowing for a complete understanding of the
geometric McKay correspondence that sends each nontrivial irreducible representation ρ of G to the pure
sheaf Ψ (O0 ⊗ ρ) on G -Hilb.
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We study a more general situation in which the singularity C
3/G is replaced by an arbitrary Gorenstein

affine toric threefold SpecR, and where G -Hilb is replaced by a moduli space of cyclic modules over a
noncommutative crepant resolution (NCCR) A of R. Bocklandt [Boc12, Boc13] shows that every such algebra
A arises as the path algebra of a quiver Q modulo the ideal of relations encoded by a consistent dimer model
Γ in a real 2-torus. To study cyclic A-modules we specify a vertex of Q, denoted 0 ∈Q0, that determines
a 0-generated stability condition θ (see (4.1) below). The fine moduli space Mθ of θ-stable A-modules of
dimension vector (1, ..,1) comes armed with a tautological vector bundle T =

⊕
i∈Q0

Li , where each Li
has rank one. Results of Ishii–Ueda [IU08, IU15] and Broomhead [Bro12] imply thatMθ is a toric, crepant
resolution of SpecR and, moreover, the universal family overMθ induces a derived equivalence Φθ with
quasi-inverse

Ψθ := Φ−1θ : Db(mod-A) −→Db
(
coh(Mθ)

)
.

Each i ∈ Q0 defines a vertex simple A-module Si and the object Ψθ(Si) is known to be a pure sheaf for
every i , 0 by work of Bocklandt–Craw–Quintero-Vélez [BCQ15]. In light of the works of Logvinenko
et. al. [CL09, Log10, CCL17], it is natural to seek a recipe that marks cones in the fan Σθ of the toric variety
Mθ with nonzero vertices of the quiver in such a way that the objects Ψθ(Si) for i , 0 can be computed
from this marking.

To state our first main result, each cone σ ∈ Σθ determines a θ-stable A-module Mσ that is isomorphic
to the fibre of the tautological bundle T over a distinguished point y ∈Mθ in the torus-orbit determined by
σ (see Lemma 3.1). In what follows, it is convenient to identify Σθ with the induced triangulation of the
polygon obtained as the height one slice of Σθ , so we refer to cones in Σθ of dimension one, two and three
as lattice points, line segments and lattice triangles respectively. The following statement combines results
from Definitions 4.13 and 4.16, as well as Corollary 4.18:

Theorem 1.1 (Combinatorial Reid’s recipe). Let Q be the quiver dual to a consistent dimer model and choose a
vertex 0 ∈Q0. There is a combinatorial recipe that marks every internal lattice point and line segment of the fan
Σθ with one or more nonzero vertices of Q; specifically, vertex i ∈Q0 marks:

(i) a lattice point ρ iff Si lies in the socle of each torus-invariant θ-stable A-module Mσ defined by a lattice
triangle σ ∈ Σθ satisfying ρ ⊂ σ ; and

(ii) a line segment τ iff i is a source vertex of a pair of quivers Q(τ)+ and Q(τ)− that we obtain from the
θ-stable A-modules Mσ+ and Mσ− defined by the pair of lattice triangles σ± ∈ Σθ satisfying τ ⊂ σ±.

Moreover, this recipe agrees with Reid’s original recipe for marking cones in the toric fan of G -Hilb in the special
case when Q is the McKay quiver of a finite abelian subgroup G ⊂ SL(3,C).

The torus-invariant θ-stable A-modules Mσ that provide the input for Theorem 1.1 are each encoded
combinatorially by a fundamental domain in R

2 for the action of the group Z
2 of deck transformations

of the real 2-torus containing the dimer model Γ . These fundamental hexagons, introduced originally by
Ishii–Ueda [IU08, Section 4], are easy to calculate by hand in small examples, while a computer program
written by Raf Bocklandt can perform the calculation for larger examples. As a result, our recipe is easy to
implement in practice, and we illustrate this by presenting two examples in Section 4.4. These examples
exhibit many new features that were not present in Reid’s original recipe for the toric fan of G -Hilb (see
Remark 4.21).

The statement in Theorem 1.1 that is by no means obvious, however, is that the quivers Q(τ)± associated
to the interior line segment τ share the same source vertices. To define these quivers we first reconstruct the
A-module Mσ− directly from Mσ+ , and vice versa, using a procedure that we call a jigsaw transformation.
This procedure (see Theorem 3.12) establishes that the choice of the facet τ ⊂ σ+ determines a way to cut
up the fundamental hexagon Hex(σ+) into ‘jigsaw pieces’, each of which is a union of (lifts to R

2 of) tiles
in Γ , and moreover, each piece can be translated by a uniquely determined element in the group Z

2 of
deck transformations such that the newly arranged jigsaw pieces reconstruct Hex(σ−); see Figure 9 for an
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illustration. Now, a unique jigsaw piece contains the tile dual to the vertex 0 ∈ Q0, and once we remove
this jigsaw piece from each of Hex(σ±), we are left with the combinatorial data encoding the quivers Q(τ)±.
These two quivers do not coincide in general (see Remark 4.8), but the striking fact is that the source vertices
of these two quivers are the same (see Corollary 4.11). This key ingredient allows us to mark vertices on line
segments in Σθ as in Theorem 1.1(ii). That our recipe generalises that of Reid [Rei97] when Q is the McKay
quiver of a finite abelian subgroup G ⊂ SL(3,C) follows from the fact that our jigsaw transformations recover
the so-called ‘G-igsaw transformations’ of Nakamura [Nak01] in that case (see Corollary 3.13).

By combining Theorem 1.1 with results of [BCQ15], we provide the following simple combinatorial descrip-
tion of the objects Ψθ(Si) onMθ associated to some of the nonzero vertices i ∈Q0 (see Proposition 5.2).

Corollary 1.2 (Compatibility with Geometric Reid’s recipe). The recipe from Theorem 1.1 is such that:

(i) if a vertex i marks at least one interior lattice point in Σθ , then Ψθ(Si) � L
−1
i ⊗OZi where Zi is the

(connected) union of all torus-invariant divisors Dρ indexed by lattice points ρ marked with i;

(ii) if a vertex i marks a unique interior line segment τ in Σθ , then Ψθ(Si) � L
−1
i ⊗OCτ where Cτ is the

torus-invariant curve defined by τ ;

Corollary 1.2 makes no mention of the vertices i marking two or more line segments; instead, we conjecture
in such cases that the support of Ψθ(Si) is the union of all torus-invariant divisors Dρ defined by lattice
points ρ in Σθ attached to two or more line segments marked with vertex i (see Conjecture 5.5 for a stronger
statement). In fact, we anticipate in such cases that the object Ψθ(Si) can be described explicitly in terms of
the lattice points at the endpoints of the line segments singled out by Theorem 1.1(ii) in a manner similar
to that given by Cautis–Craw–Logvinenko [CCL17, Theorem 1.2] for the toric fan of G -Hilb. The key
technical tool in that work, namely the construction of CT-subdivisions in the fan, required as input the
original combinatorial recipe from [Rei97, Cra05]. Thus, Theorem 1.1(ii) paves the way for a dimer model
generalisation.

We have focused on the geometric interpretation of Reid’s recipe that describes the objects Ψθ(Si), but
the application that Reid originally had in mind was to encode a minimal set of relations in Pic(G -Hilb)
between the tautological line bundles Li for i , 0 (see [Cra05, Theorem 6.1]). Using Theorem 1.1, we formulate
a conjecture presenting a similar set of minimal relations in Pic(Mθ) for any consistent dimer model with a
chosen vertex 0 ∈Q0 (see Conjecture 5.7). A proof of this conjecture should lead to the following:

• the construction of a Z-basis of the cohomology H ∗(Mθ ,Z) following the approach from [Cra05,
Section 7]. This would provide the appropriate analogue of the original geometric construction of the
McKay correspondence by Gonzalez-Sprinberg–Verdier [GSV84].

• a description of the GIT chamber containing the 0-generated stability parameter θ definingMθ , in
a manner similar to that given recently by Wormleighton [Wor20] for the GIT chamber of G -Hilb.

As a word of warning on terminology, we use three different combinatorial objects determined by points
and lines: the dimer model Γ ; the quiver Q; and the triangulation of a polygon that determines the fan Σθ .
To avoid confusion, we use different terminology and notation in each case that we summarise here:

0-dimensional 1-dimensional 2-dimensional
Dimer model Γ nodes (n) edges (e) tiles (t)

Quiver Q vertices (i) arrows (a)
Triangulation Σθ lattice points (ρ) line segments (τ ) lattice triangles (σ )

Acknowledgements

We thank Raf Bocklandt for sharing with us the computer-generated examples upon which the results of this
paper are based. Thanks to Timothy Logvinenko and Alastair King for examining the PhD thesis of the



Combinatorial Reid’s recipe 5Combinatorial Reid’s recipe 5

third author that contains many of our results. Thanks also to the anonymous referee for several helpful
comments.

2. Background

2.1. Dimer models

Let Γ be a dimer model in the real two-torus T , i. e. Γ is a polygonal cell decomposition of T , where elements
of the set of i-cells Γi are called nodes, edge and tiles when i = 0,1,2 respectively, that satisfies the following
properties: first, the set Γ0 decomposes as the disjoint union of a set of black nodes and a set of white nodes,
such that every edge e ∈ Γ1 joins a black node to a white node; and secondly, every tile is a simply-connected
convex polygon. We may assume that Γ contains no bivalent nodes.

Dually, we obtain a quiver Q = (Q0,Q1) embedded in T , where each vertex i ∈Q0 lies in the interior of a
tile of Γ , and each arrow a ∈Q1 crosses a unique edge ea ∈ Γ1 in such a way that the white endnode of ea
lies to the right of a. Let h(a), t(a) ∈Q0 denote the head and tail of an arrow a ∈Q1. Let Q2 denote the set
of connected components of the complement of this quiver in T , and we refer to elements of Q2 as faces of
Q. Each face f ∈Q2 contains a unique node of Γ , and the arrows in the boundary of f form a cycle in Q
that is clockwise (resp. anticlockwise) when the dual node is white (resp. black). Every arrow a ∈Q1 therefore
appears in the cycle traversing the boundary of precisely one white face and one black face, and we may
write these cycles in the form ap+a and ap−a respectively, where p±a are paths in Q with tail at h(a) and head
at t(a). The Jacobian algebra of the dimer model Γ is defined to be the quotient

(2.1) A :=CQ/〈p+a − p−a | a ∈Q1〉

of the path algebra CQ of the quiver Q by the ideal of relations 〈p+a − p−a | a ∈Q1〉.
A perfect matching of Γ is a set of edges Π ⊂ Γ1 such that for each node n ∈ Γ0, there is a unique edge

e ∈Π for which n is an endnode of e. Given a pair of perfect matchings Π,Π′ , the locus R2 \ (Π∪Π′) is a
union of connected components. The height function hΠ,Π′ : R2→R, which is only well-defined up to the
choice of an additive constant, is locally-constant on R

2 \ (Π∪Π′) and is determined as follows: the value
of hΠ,Π′ increases (resp. decreases) by 1 when a path passing between connected components crosses either
an edge e ∈Π with a black (resp. white) node to the right, or an edge e ∈Π′ with the white (resp. black)
node to the right. The ambiguity in the choice of additive constant is removed by defining functions

hx(Π,Π
′) := hΠ,Π′

(
p+ (1,0)

)
− hΠ,Π′ (p) and hy(Π,Π

′) := hΠ,Π′
(
p+ (0,1)

)
− hΠ,Π′ (p)

for any point p ∈R2 \ (Π∪Π′), and the height change of Π with respect to Π′ is defined to be

(2.2) h(Π,Π′) =
(
hx(Π,Π

′),hy(Π,Π
′)
)
∈H1(T ,Z).

Fix a reference perfect matching Π0, and define the characteristic polygon of Γ to be the convex polygon

∆(Γ ) := conv
{
h(Π,Π0) ∈H1(T ,R) |Π is a perfect matching of Γ

}
obtained as the convex hull of the lattice points in H1(T ,R) �R

2. Given perfect matchings Πi and Πj , the
line segment joining the lattice points is h(Πi ,Πj ) := h(Πi ,Π0)−h(Πj ,Π0). If we choose a different reference
perfect matching then ∆(Γ ) undergoes a translation. For the rank three lattice N := H1(T ,Z) ⊕Z, let
σ0 ⊂N ⊗ZQ denote the cone over the lattice polygon ∆(Γ )×{1}. Then for the dual latticeM := Hom(N,Z),
the toric threefold X := SpecC[σ∨0 ∩M] determined by the characteristic polygon ∆(Γ ) is Gorenstein.

Example 2.1. Consider the dimer model shown in black in Figure 1(a). The dual quiver Q is drawn in grey
in the same picture. This dimer model admits 60 perfect matchings, but for any reference matching Π0
there are only 10 distinct height changes h(Π,Π0). The characteristic polygon ∆(Γ ) is shown in Figure 1(b).
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Figure 1. (a) A dimer model Γ and its dual quiver Q; (b) The characteristic polygon ∆(Γ ).

2.2. Consistency

A dimer model Γ determines a graph in T with nodes Γ0 and edges Γ1. A zig-zag path on Γ is a path in this
graph that turns maximally right at every white node and maximally left at every black node. Each zig-zag
path γ is necessarily periodic, so each determines a class [γ] ∈ H1(T ,Z). Each edge e ∈ Γ1 determines
two zig-zag paths: one traversing the edge in each direction. Following Ishii–Ueda [IU11, Definition 3.5], we
say that Γ is consistent if: there is no homologically trivial zig-zag path; no zig-zag path intersects itself on
the universal cover; and no pair of zig-zag paths intersect each other on the universal cover in the same
direction more than once. For alternative definitions of consistency and for a comparison between them, see
ibid. or Bocklandt [Boc12]; for a single paragraph that summarises the situation, see [BCQ15, Remark 2.1].

Combining the work of Broomhead [Bro12, Lemma 5.6] with results by Ishii–Ueda [IU08, Proposition 6.3]
and Craw–Quintero-Vélez [CQ12, Theorem 3.15] leads to the following result:

Proposition 2.2. Let Γ be a consistent dimer model. The centre Z(A) of the Jacobian algebra of Γ is isomorphic to
the semigroup algebra C[σ∨0 ∩M]. In particular, the Gorenstein toric threefold determined by the characteristic
polygon satisfies X � SpecZ(A).

2.3. Moduli of quiver representations

A representation of the quiver Q is a collection {Vi | i ∈ Q0} of finite dimensional C-vector spaces and
a collection {va : Vt(a) → Vh(a) | a ∈ Q1} of C-linear maps. A representation V of Q is said to satisfy
the relations {p+a − p−a | a ∈ Q1} from (2.1) if and only if the corresponding linear combination of C-
linear maps from Vh(a) to Vt(a) is zero. A morphism f : V → V ′ of representations of Q is a collection
{fi : Vi → V ′i | i ∈ Q0} of C-linear maps such that v′aft(a) = fh(a)va for all a ∈ Q1. The category of
representations of Q satisfying the relations from (2.1) is equivalent to the abelian category mod-A of
finite-dimensional left modules over the Jacobian algebra A. The dimension vector of a representation V is
the vector dim(V ) ∈NQ0 whose ith component is dim(Vi) for i ∈Q0. Each vertex i ∈Q0 defines a simple
object Si =Cei in mod-A called the vertex simple for i ∈Q0; as a representation of Q, this has Vi =C and
Vj = 0 for j , i, where the maps va are zero for all a ∈Q1.

We are interested primarily in representations of dimension vector v := (1,1, . . . ,1) ∈NQ0 . Consider the
rational vector space

Θ =
{
θ ∈Hom

(
Z
Q0 ,Q

)
| θ(v) = 0

}
.
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Given a representation V of Q, define θ(V ) := θ(dimV ) for θ ∈Θ. A representation V is θ-semistable if
θ(V ) = 0 and every subrepresentation V ′ ⊂ V satisfies θ(V ′) ≥ 0, and it is θ-stable if these inequalities are
strict for every nonzero, proper subrepresentation V ′ ⊂ V . These notions apply to representations satisfying
the relations from (2.1), so the equivalence of abelian categories mentioned above gives us the notion of
θ-(semi)stability for A-modules. For any θ ∈Θ, King [Kin94, Proposition 5.2] constructs the coarse moduli
spaceMθ of S-equivalence classes of θ-semistable A-modules of dimension vector v using GIT. We say
that θ ∈Θ is generic if every θ-semistable A-module of dimension vector v is θ-stable, in which caseMθ

coincides with the fine moduli spaceMθ of isomorphism classes of θ-stable A-modules of dimension vector
v. The universal family of θ-stable A-modules onMθ is a tautological locally free sheaf

T =
⊕
i∈Q0

Li ,

where Li has rank one for all i ∈Q0, together with a tautological C-algebra homomorphism

(2.3) φ : A→ EndOMθ (T ).

We fix once and for all a vertex of the quiver that we denote 0 ∈ Q0, and we normalise the tautological
bundle by fixing L0 � OMθ

. For each closed point y ∈Mθ , the fibre Ty = T ⊗Oy of the tautological bundle
T over y is a θ-stable A-module of dimension vector v, where the A-module structure is obtained by
restriction from the tautological maps φ(a) : Lt(a)→ Lh(a) for a ∈Q1.

2.4. Toric VGIT for consistent dimer models

Assume from now on that Γ is a consistent dimer model in T . In this case, the moduli spacesMθ can be
constructed using toric geometry. To describe the relevant toric GIT quotients, note that the homology
H∗(T ,Z) is computed by the complex

Z
Q2

∂2−→Z
Q1

∂1−→Z
Q0

with maps given by ∂2(f ) = Σa⊆∂f a for f ∈ Q2 and ∂1(a) = h(a)− t(a) for a ∈ Q1. Since Q is connected,
the sublattice B := Image(∂1) ⊂Z

Q0 has corank one. Mozgovoy–Reineke [MR10, Lemma 3.3] show that

Λ :=Z
Q1/〈∂2(f )−∂2(f ′) | f , f ′ ∈Q2〉

is a free abelian group (when Γ admits a perfect matching which is the case since Γ is consistent); an explicit
list of generators of Λ is given in [CQ12, Lemma 3.14]. The incidence map ∂1 : ZQ1 → B of the quiver Q
factors through the quotient map wt: ZQ1 →Λ, giving rise to a commutative diagram

(2.4)
Z
Q1

0 M Λ B 0

wt
∂1

d

of lattices. It follows that the map of semigroup algebras C[ZQ1]→ C[Λ] induced by the quotient map
wt is compatible with the B-gradings induced by ∂1 and d. In geometric terms, this means the inclusion
of algebraic tori SpecC[Λ]→ SpecC[ZQ1] induced by wt is equivariant with respect to the action of the
algebraic torus TB := Hom(B,C×) whose weights are encoded by ∂1 and d. If we write Λ+ for the image
under wt of the subsemigroup N

Q1 ⊂Z
Q1 , then the induced closed immersion

(2.5) V := SpecC[Λ+] ↪→C
Q1 := SpecC[NQ1]

is equivariant with respect to the TB-action. For any character θ ∈ B = Hom(TB,C×), write

V //θ TB := Proj

⊕
j≥0

C[Λ+]jθ


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for the GIT quotient, where C[Λ+]jθ denotes the vector space of jθ-semi-invariant elements of C[Λ+].
Since Γ is consistent, the study of the moduli spacesMθ by Ishii–Ueda [IU08] can be interpreted directly
as variation of GIT quotient for the toric varieties V //θ TB as in Mozgovoy [Mog09, Section 4] or Craw–
Quintero-Vélez [CQ12]; for a one paragraph summary of the argument, see [BCQ15, Remark 2.4].

Proposition 2.3. Assume that Γ is consistent. For any generic θ ∈Θ, there is a commutative diagram

(2.6)

Mθ V //θ TB

X V //0TB

∼

∼

of toric varieties in which the horizontal arrows are isomorphisms, the vertical arrows are projective, crepant
resolutions, and where the right-hand arrow is obtained by variation of GIT quotient.

2.5. The (dual) tautological bundle is a tilting bundle

To state an important result linking the geometry of the moduli spacesMθ with the Jacobian algebra A of a
consistent dimer model, let Db(coh(Mθ)) denote the bounded derived category of coherent sheaves onMθ

and Db(mod-A) the bounded derived category of finitely-generated left A-modules.

Theorem 2.4 (Ishii–Ueda [IU15]). Let Γ be a consistent dimer model. For generic θ ∈ Θ, let T denote the
tautological bundle onMθ . The tautological C-algebra homomorphism φ : A→ End(T ) is an isomorphism, and
the functor

(2.7) Φθ(−) = RHomOMθ (T
∨,−) : Db(coh(Mθ)) −→Db(mod-A)

induced by the dual bundle T ∨ :=Hom(T ,OMθ
) is an exact equivalence of triangulated categories.

In fact, [IU15] show that RHom(T ,−) is an equivalence, i. e. that T itself is a tilting bundle. However, the
fact that T ∨ is tilting follows as in [BCQ15, Lemma 3.2], and the functor Φθ from (2.7) has some especially
nice properties. For example, for each point y ∈Mθ , the skyscraper sheaf Oy is sent by Φθ to the A-module

(2.8) Φθ(Oy) = RΓ ◦RHomOMθ (OY ,T ⊗Oy) = RΓ (T ⊗Oy) = Γ (T ⊗Oy) � Ty
obtained as the fibre of the tautological bundle T over y (here and here alone, Γ denotes global sections).

Theorem 2.4 also facilitates our understanding of the tautological line bundles {Li | i ∈ Q0} on Mθ .
Indeed, for each i, j ∈Q0, the tautological isomorphism φ : A→ End(T ) induces an isomorphism between
the space ejAei spanned by classes of paths in Q from i to j and the C-vector space Hom(Li ,Lj ). Under this
isomorphism, each a ∈Q1 is assigned to an effective torus-invariant divisor div(a) obtained as the divisor of
zeroes of a section of Lh(a) ⊗L−1t(a). Explicitly, for each ray ρ ∈ Σθ(1) in the toric fan ofMθ , if we write Πρ

and Dρ for the corresponding θ-stable perfect matching in Γ and torus-invariant divisor inMθ respectively,
then [BM09, Theorem 4.2] and [IU15, Lemma 4.1] give that div(a) is the divisor of zeroes of the section

(2.9) tdiv(a) :=
∏

{ρ∈Σθ(1)|ea∈Πρ}
tρ ∈H0(Lh(a) ⊗L−1t(a)),

where ea is the edge in the dimer model dual to the arrow a; here, we write the section in the variables of
the Cox ring C[tρ | ρ ∈ Σθ(1)] ofMθ . For i = 0, if we choose any path p in the quiver Q from 0 to j ∈Q0
and write div(p) for the sum of the divisors div(a) indexed by arrows a in the support of p, then div(p) is
the divisor of zeroes of the section tdiv(p) :=

∏
a∈supp(p) t

div(a) ∈H0(Lj ) and hence Lj � OMθ

(
div(p)

)
.

Example 2.5. Consider again the consistent dimer model Γ from Example 2.1. The stability parameter
θ = (θi) ∈Θ satisfying θi > 0 for all i > 0 is generic. After listing all 10 of the θ-stable perfect matchings
(see [Tap15, Figure 1.5]), it is straightforward to label each arrow in Q with the section from Equation (2.9) as
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shown in Figure 2(a). The triangulation of the characteristic polygon ∆(Γ ) that determines the toric fan Σθ
ofMθ is shown in Figure 2(b).
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Figure 2. (a) Divisors labelling arrows in Q; (b) Triangulation of ∆(Γ ) defining a fan Σθ .

To illustrate how to compute with the tautological line bundles, let σ+ and σ− denote the 3-dimensional
cones in Σθ generated by the rays {ρ7,ρ8,ρ9} and {ρ8,ρ9,ρ10} respectively, and consider τ := σ+∩σ− ∈ Σθ(2).
Let p+ denote the path in Q from vertex 0 to vertex 9 labelled with the section

tdiv(p+) = t2t3t4t10 ∈H0(Uσ+ ,L9).

The primitive vector m ∈ M orthogonal to τ that is positive on σ+ determines the Laurent monomial
tm = t5t6t7/t2t3t10 in the variables of the Cox ring, and

tm · tdiv(p+) = t4t5t6t7 ∈H0(Uσ− ,L9).

The path p− from vertex 0 to 9 labelled with tdiv(p−) = t4t5t6t7 is the generating section of H0(Uσ− ,L9), and
since tm appears with exponent 1 in the equation tdiv(p−) = tm · tdiv(p+), it follows that L9 has degree one on
the torus-invariant rational curve Cτ inMθ defined by the cone τ .

2.6. Classical Reid’s recipe

The first example in the literature of a consistent dimer model Γ in a real 2-torus is the hexagonal tiling for
a finite abelian subgroup G ⊂ SL(3,C) studied by Reid [Rei97]; a more formal construction in the context of
dimer models was given by Ueda–Yamazaki [UY11, Section 5]. In this case:

• the quiver Q is the McKay quiver of G with vertex set Q0 = Irr(G) given by the set of isomorphism
classes of irreducible representations of G;

• the Jacobian algebra A =C[x,y,z]oG is the skew group algebra of G;

• the characteristic polygon ∆(Γ ) is the junior simplex and the Gorenstein toric threefold is X �C
3/G.

Let 0 ∈ Q0 denote the vertex corresponding to the trivial representation of G. For the generic stability
condition θ ∈Θ satisfying θi > 0 for i , 0, the fine moduli spaceMθ is isomorphic to the G-Hilbert scheme
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G -Hilb that parametrises G-invariant subschemes Z ⊂ C
3 such that H0(OZ ) is isomorphic as a G-module

to C[G]. The fan Σ of the toric variety G -Hilb can be constructed as in Craw–Reid [CR02].
Reid’s recipe was introduced in several examples by Reid [Rei97] and proved in general by Craw [Cra05].

The recipe marks interior line segments and lattice points of the triangulation Σ with certain nontrivial
irreducible representations i ∈Q0 \ {0}. To state the result, let Si := Cei denote the vertex simple A-module
where ei ∈ A is the idempotent corresponding to the trivial path at vertex i.

Recipe 2.6 (Classical version of Reid’s recipe).

(1) Let τ ∈ Σ(2) be an interior line segment and let m = (m1,m2,m3) ∈M be the primitive vector in either
direction normal to the hyperplane spanned by τ . The line segment τ is marked with the vertex i ∈Q0 such
that the numerator and denominator of the G-invariant Laurent monomial xm1ym2zm3 ∈C[x±1, y±1, z±1]
lie in the i-character space.

(2) Let ρ ∈ Σ(1) be an interior lattice point. A vertex i ∈Q0 marks ρ if and only if Si lies in the socle of every
G-cluster defined by a torus-invariant point of the divisor Dρ in G -Hilb.

Surprisingly, every nonzero vertex marks either a unique lattice point or a connected chain of edges
that branches at most once [Cra05, Corollary 4.5]. As an application, a complete set of minimal relations
in Pic(G -Hilb) between the tautological lines bundles {Li | i ∈ Q0} of G -Hilb can be given [Cra05,
Theorem 6.1]. The description of the marking of lattice points presented in Recipe 2.6(2) above is equivalent
to the recipe from the original construction, see Craw–Ishii [CI04, Proposition 9.1].

Logvinenko [Log10] opened up the study of a geometric version of Reid’s recipe when he proved a pair of
conjectures from Cautis–Logvinenko [CL09] in the special case when C

3/G has a single isolated singularity.
To state these results, considerMθ = G -Hilb and the functor Φθ from (2.7). Write the quasi-inverse to Φθ
as

(2.10) Ψθ(−) := T ∨
L
⊗A (−) : Db(mod-A) −→Db

(
coh(Mθ)

)
rather than −

L
⊗Aop T ∨. It is immediate that Ψθ sends the indecomposable projective A-module Aei to the

line bundle L−1i for each i ∈Q0. Cautis–Logvinenko [CL09] studied the image under Ψθ of the vertex simple
A-modules Si , and showed that the object Ψθ(Si), which a priori is a complex of coherent sheaves, is in fact
quasi-isomorphic to the shift (by 0 or 1) of a coherent sheaf. Logvinenko [Log10] went further by establishing
the following striking relationship between Reid’s recipe and the (support of the) object Ψθ(Si):

Theorem 2.7 (Logvinenko [Log10]). Let C3/G have a single isolated singularity and let i ∈Q0 be any non-zero
vertex, i. e. i is not the trivial representation. According to Reid’s recipe, vertex i marks either:

(i) a unique interior lattice point ρ ∈ Σ(1), and Ψθ(Si) is quasi-isomorphic to L−1i ⊗ODρ ;

(ii) a unique interior line segment τ ∈ Σ(2), and Ψθ(Si) is quasi-isomorphic to L−1i ⊗OCτ ;
(iii) two or more interior line segments in Σ(2), and Ψθ(Si) is quasi-isomorphic to an object F [1], where F is

a coherent sheaf whose support is the union of all torus-invariant divisors Dρ such that two line segments τ
in Σ containing ρ are marked by vertex i.

Cautis–Craw–Logvinenko [CCL17] later described the mysterious sheaves F that appear in Theorem 2.7(iii)
in terms of Reid’s recipe and they generalised Theorem 2.7 to every finite abelian subgroup G ⊂ SL(3,C), i. e.
C
3/G need not have a single isolated singularity. This complete description of the objects Ψθ(Si) is called

Derived Reid’s recipe. Even for this derived category statement, the classical Recipe 2.6 forms an important
part of the result and it is essential in defining the notion of a CT-subdivision (see [CCL17, Definition 4.2])
that provides the key technical tool for the proofs.
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3. Nakamura’s jigsaw transformations

This section studies fundamental hexagons and provides a dimer model analogue of the ‘G-igsaw transfor-
mations’ introduced originally by Nakamura [Nak01] for a finite abelian subgroup G ⊂ SL(3,C).

3.1. Distinguished θ-stable A-modules

For any generic stability parameter θ ∈Θ, we now describe how to associate a θ-stable A-module Mσ to
each cone in the fan Σθ of the toric varietyMθ .

First, for any ray ρ ∈ Σθ(1), let Oρ ⊂Mθ denote the corresponding two-dimensional torus-orbit. For
any point y ∈ Oρ, let (va) ∈ CQ1 be any quiver representation that determines the θ-stable A-module Ty
obtained as the fibre of T over the point y. Ishii–Ueda [IU08, Lemma 6.1] prove that the set of edges

(3.1) Πρ := {ea ∈ Γ1 | va = 0}

in Γ is a perfect matching that is independent of the choice of point y ∈Oρ and the choice of representative
(va) of Ty , and moreover, every θ-stable perfect matching of Γ arises in this way.

Using these perfect matchings, we associate a θ-stable A-module to each cone of the fan Σθ as follows.
For σ ∈ Σθ , write σ (1) := {ρ ∈ Σθ(1) | ρ ⊆ σ }, and for each a ∈Q1, define scalars

(3.2) va :=
{

0 if ea ∈
⋃
ρ∈σ (1)Πρ

1 otherwise
.

For example, the zero cone σ contains no rays, so va = 1 for all a ∈Q1 in that case. For each cone σ ∈ Σθ ,
the point (va) ∈CQ1 is a representation of the quiver Q of dimension vector v that depends only on σ . Let
Mσ denote the corresponding CQ-module of dimension vector v. In fact we can say more about Mσ :

Lemma 3.1. For σ ∈ Σθ , there exists a unique point y ∈Oσ ⊆Mθ such that Mσ � Ty . In particular, Mσ is a
θ-stable A-module of dimension vector v.

Proof. This is essentially a restatement of results from Ishii–Ueda [IU08] and Mozgovoy [Mog09]. Indeed, for
σ ∈ Σθ , we claim that the point (va) ∈ CQ1 from (3.2) is a θ-stable point of the subscheme V ⊆ C

Q1 from
(2.5) and, moreover, the point y := [(va)] ∈Mθ lies in Oσ . The proof is a case-by-case analysis according
to the dimension of σ as follows. For 0 ∈ Σθ , we have va = 1 for all a ∈ Q1, so (va) ∈ V ∩ (C×)Q1 . Every
point in (C×)Q1 is θ-stable for all θ ∈ Θ, so y = [(va)] satisfies y ∈

(
V ∩ (C×)Q1

)
/(C×)Q0 = O0 ⊂ Mθ as

required. For a cone σ ∈ Σθ(d) of dimension d > 0, the result was established by [IU08, Lemma 6.2] when
d = 1, by [Mog09, Corollary 4.19] when d = 2 and by both [IU08, Section 4] and [Mog09, Corollary 4.18]
when d = 3. �

3.2. Fundamental hexagons

We now recall the combinatorial description of the torus-invariant θ-stable A-modules Mσ for σ ∈ Σθ(3) by
Ishii–Ueda [IU08, Lemma 4.5]. Let π : R2→ T denote the universal cover of the two-dimensional torus.
The preimage of Γ defines a Z

2-periodic regular cell decomposition Γ̃ of R2. Similarly, the preimage of
the quiver Q dual to Γ is a Z

2-periodic quiver Q̃ in R
2, such that each vertex ĩ of Q̃ lies inside a unique

polygonal tile of Γ̃ .
For a cone σ ∈ Σθ(3), let ρ0,ρ1,ρ2 ∈ Σθ(1) denote the rays in σ , and write Π0,Π1,Π2 for the corre-

sponding θ-stable perfect matchings. Let Qσ denote the subquiver of Q with vertex set Q0 and with arrow
set comprising those a ∈Q1 for which the corresponding scalar from (3.2) satisfies va , 0; in terms of perfect
matchings, this is the set of arrows a ∈ Q1 such that ea <

⋃
0≤i≤2Πi . Fix a vertex i ∈ Q0. Then for any

choice of ĩ ∈ π−1(i), there is a uniquely defined subquiver Q̃σ of Q̃ that has ĩ as a vertex such that π
identifies the quivers Q̃σ and Qσ [IU08, Lemma 4.1].
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Definition 3.2. For σ ∈ Σθ(3), the fundamental hexagon Hex(σ ) is the subset of R2 covered by the tiles
of Γ̃ dual to the vertices of Q̃σ . Let Graph(σ ) denote the Z

2-periodic graph obtained as the union of all
Z

2-translates of the boundary of Hex(σ ).

Note that Hex(σ ) encodes the same information as the quiver Qσ , so it allows one to reconstruct the
A-module Mσ for σ ∈ Σθ(3). Also, since the boundary of Hex(σ ) is a subset of Graph(σ ), it is sometimes
convenient to regard an edge of the boundary of Hex(σ ) as an edge of the dimer model Γ in the 2-torus T .

Example 3.3. Consider the dimer model from Example 2.1, and let σ ∈ Σθ(3) be the cone generated by the
rays ρ8,ρ9,ρ10 in the fan Σθ shown in Figure 2(b). The dashed arrows in green in Figure 3 illustrate one lift
Q̃σ to R

2 of the quiver Qσ , while the dashed edges in red illustrate the edges in the boundary of Hex(σ ).
The set

⋃
0≤ρ≤2Πρ is the union of all edges shown in black and all edges shown in dashed red; note that

Graph(σ ) is obtained from this set by removing each connected component comprising only a single edge.
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Figure 3. The red dashed lines form the boundary of the fundamental hexagon.

Since the tiles in Hex(σ ) are obtained by lifting each tile of Γ in T , we see that Hex(σ ) forms a
fundamental domain for the action of Z2 on R

2, and the boundary of Hex(σ ) coincides with Graph(σ )
when both are viewed as subsets of T . To fully justify the terminology from Definition 3.2 and to show how
the boundary of Hex(σ ) can be calculated directly from perfect matchings, we bring together results of
Ishii–Ueda and Mozgovoy in the following statement.

Proposition 3.4. For σ ∈ Σθ(3), the boundary of Hex(σ ) contains precisely six trivalent nodes of Graph(σ )
that, when listed cyclically, alternate between white nodes of one Z2-orbit and black nodes in a second Z2-orbit;
all other nodes of Graph(σ ) have valency two. Moreover, Graph(σ ) is the unique connected component of the
locus

⋃
0≤ρ≤2Πρ in T comprising more than a single edge.

Proof. The first statement follows from [IU08, Lemma 4.4] and the proof of [IU08, Lemma 4.5]. For the
second statement, Mozgovoy [Mog09, Corollary 4.18] shows that each edge e ∈

⋃
0≤ρ≤2Πρ lies either:

(i) strictly in the interior of Hex(σ ), in which case e ∈Π0∩Π1∩Π2. Such edges do not touch any other
edge of

⋃
0≤ρ≤2Πρ, because no two edges of the same perfect matching touch; or
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(ii) on the boundary of Hex(σ ), where e is an edge in a chain linking adjacent trivalent points of
Graph(σ ). These six chains are identified pairwise by the quotient map π. Each chain comprises
an odd number of edges, and for 0 ≤ ρ ≤ 2, the edges in each chain belong alternately to either a
single perfect matching Πρ or to a pair of perfect matchings Πρ±1, where addition of indices is taken
modulo 3 as shown in Figure 4.

Therefore edges of Graph(σ ) are precisely those of type (ii), and these edges form a connected component
of

⋃
0≤ρ≤2Πρ. Every other edge in

⋃
0≤ρ≤2Πρ is of type (i), and every such edge lies in a connected

component comprising only that single edge. This completes the proof. �

Π1

Π1

Π
0

Π
2

Π
2Π

0

Π
0
∩Π

1
∩Π

2

Π0 ∩Π1 ∩Π2

Π0 ∩Π1 ∩Π2
Π
0
∩
Π
1
∩
Π
2

Π1

Π0 ∩Π2 Π1

Π0 ∩Π2...

m0,1 ∩m1,2

Π
2

Π
0
∩
Π
1

Π
0
∩
Π
1

Π
2

...

m
0,
2
∩
m
1,
2

Π
0

Π
1 ∩
Π
2

Π
1 ∩
Π
2

Π
0

...

m
0,1 ∩

m
0,2

Π1

Π0 ∩Π2 Π1

Π0 ∩Π2...

m0,1 ∩m1,2

Π
2

Π
0
∩
Π
1

Π
0
∩
Π
1

Π
2

...

m
0,
2
∩
m
1,
2

Π
0

Π
1 ∩
Π
2

Π
1 ∩
Π
2

Π
0

...

m
0,1 ∩

m
0,2

Figure 4. The perfect matchings and meandering walks (see Section 3.3) for Hex(σ ).

3.3. Meandering walks

We now generalise the notion of a zig-zag path in Γ by associating a walk in a consistent dimer model Γ to
any line segment τ ∈ Σθ(2), where Σθ is the toric fan ofMθ for any generic stability parameter θ ∈Θ. In
fact, the content of this section requires only that Γ is non-degenerate [IU08].

Definition 3.5. Let Πi , Πj be θ-stable perfect matchings of Γ , and let ρi ,ρj ∈ Σθ(1) be the corresponding
rays. The symmetric difference of Πi and Πj is the set Πi 	Πj := (Πi ∪Πj ) \ (Πi ∩Πj ). For τ ∈ Σθ(2), the
meandering walk of τ is the set mτ :=mi,j =Πi 	Πj , where ρi ,ρj are the ray generators of τ .

To explain the terminology, we’ll see that the edges in a meandering walk form a cycle that does not
always turn maximally right at white nodes and maximally left at black nodes, but rather, it meanders.
Meandering walks provide a common generalisation of the notions of a zig-zag path as in Broomhead [Bro12]
and a σ -Strand as in Logvinenko [Log03, Definition 6.51].

The proof of Proposition 3.4, and specifically statement (ii) of that proof, implies that if ρi and ρj are the
endpoints of a side τ in a triangle σ ∈ Σθ(3), then the edges of the chains that form two adjacent sides of
the boundary of Hex(σ ) belong alternately to the corresponding perfect matchings Πi and Πj . Therefore,
the edges in a meandering walk mτ form a cycle in Γ , and conversely, the edges of the chains that form
any two adjacent sides of Hex(σ ) form the edges in a meandering walk mτ for some two-dimensional cone
τ ⊂ σ . We illustrate this in Figure 4 where, for example, the meandering walk m1,2 traverses edges that
lie alternately in perfect matchings Π1 and Π2. Note that the chain of edges along any single side of the
boundary of Hex(σ ) form the intersection of a pair of meandering walks.
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Traversing the edges in a meandering walk mτ around the torus defines a homology class [mτ ] ∈H1(T ,Z).
Changing the direction in which we traverse the edges would change the sign of this class, but this sign is
irrelevant for the next result.

Lemma 3.6. Let τ ∈ Σθ(2). For either choice of direction on the meandering walk mτ , the resulting homology
class [mτ ] ∈ H1(T ,Z) is orthogonal to the line segment τ in the characteristic polygon ∆(Γ ) ⊂ H1(T ,R) with
respect to (the extension over R of ) the perfect pairing H1(T ,Z)⊗H1(T ,Z)→Z.

Proof. Let ρi ,ρj ∈ Σθ(1) be the ray generators of τ , and choose σ ∈ Σθ(3) satisfying τ ⊂ σ . Traversing the
edges of mτ in T defines a cycle obtained as the image under π : R2→ T of a path that follows two adjacent
sides of the fundamental hexagon Hex(σ ). If we choose coordinates on R

2 such that this path travels from
(0,0) to (0,1), then tracing the cycle mτ ⊂ T in this direction defines the class (0,1) ∈H1(T ,Z). Figure 5
depicts part of Graph(σ ) in the universal cover: the thicker edges of Graph(σ ) show lifts of mτ via the
universal cover π; the dashed lines delineate a fundamental domain for the action of Z2 on R

2.

(0,0)

(0,1)

(1,0)

Figure 5. Lifts of the meandering walk mτ with homology class [mτ ] = (0,1).

For the θ-stable perfect matchings Πi and Πj at the lattice points ρi and ρj respectively, we saw in
Section 2.1 that the height change h(Πi ,Πj ) ∈Z2 is a vector parallel to the line segment τ in the characteristic
polygon ∆(Γ ). More invariantly, we regard the height change as a cohomology class h(Πi ,Πj ) ∈H1(T ,Z)
that we now compare to the homology class of the corresponding meandering walk mτ ; here, the walk mτ

up two sides of the hexagon at the extreme left of Figure 5 corresponds to the walk m0,2 in Figure 4, so
for the purposes of comparison we set i = 0 and j = 2. Every edge in the perfect matchings Π0 and Π2 is
shown in Figure 4. Comparing this with the top-left hexagon in Figure 5, we see that it is possible to travel
from p = (ε,ε) for small ε > 0 to p+ (0,1) in Figure 5 without crossing a single edge in either Π0 or Π2, so
according to (2.2), the y-coordinate of h(Πi ,Πj ) equals 0. On the other hand, when travelling from p to
p+ (1,0), one is forced to cross once the walk m0,2 whose edges lie alternately in Π0 and Π2 (as shown in
Figure 4), so the x-coordinate of h(Πi ,Πj ) equals 1. Therefore h(Πi ,Πj ) = (1,0) ∈Z2 =H1(T ,Z), and the
natural pairing gives h(Πi ,Πj ) · [mi,j ] = (1,0) · (0,1) = 0 as required. �

Remark 3.7. Ishii–Ueda [IU15, Theorem 11.1] implies that the homology class of each zig-zag in Γ is orthogonal
to the corresponding line segment in the boundary of ∆(Γ ). Lemma 3.6 provides a generalisation of this
statement to any line segment in the triangulation of ∆(Γ ) determined by the crepant resolution τθ : Mθ→ X
for any generic θ ∈ Θ. Lemma 3.6 also extends the result of Logvinenko [Log03, Proposition 6.57] for
σ -Strands beyond the McKay quiver case.

3.4. Generalised Nakamura jigsaw transformations

For any finite abelian subgroup G ⊂ SL(3,C), Nakamura [Nak01] introduced an algorithm to construct the
G-Hilbert scheme where the key step in each iteration of the algorithm was a combinatorial procedure called
a ‘G-igsaw transformation’ from one torus-invariant G-cluster to another. In this section we generalise



Combinatorial Reid’s recipe 15Combinatorial Reid’s recipe 15

Nakamura’s G-igsaw transformations to any generic stability condition θ and any consistent dimer model Γ
in T .

First we recall Nakamura’s G-igsaw transformation using the notation from Section 2.6. Let Σ be the fan
of G -Hilb. For each σ+ ∈ Σ(3), there is a G-invariant monomial ideal I+ ⊂ C[x,y,z] such that the torus-
invariant G-cluster C[x,y,z]/I+ is the fibre of the universal family on G -Hilb over the origin in the chart
Uσ+ . The set S+ of monomials in C[x,y,z] \ I+ provides an eigenbasis for C[x,y,z]/I+, i. e. each monomial
in S+ lies in a different character space of the G-action. Following Nakamura [Nak01], we obtain the G-graph
of C[x,y,z] \ I+ by introducing directed edges between monomials in S+ to encode the C[x,y,z]-module
structure on C[x,y,z]/I+; in particular, each directed edge in the G-graph is naturally labelled by a variable
x, y or z. To describe the G-igsaw transformations of this monomial G-cluster, let τ ∈ Σ(2) be any interior
line segment satisfying τ = σ+∩σ− for some σ− ∈ Σ(3) and let m = (m1,m2,m3) ∈M be the primitive vector
in the normal direction to the hyperplane spanned by τ such that 〈m,n〉 ≥ 0 for all n ∈ σ+.

Proposition 3.8. (Nakamura [Nak01, Lemma 2.8]). Let S− be the G-graph of the torus-invariant G-cluster
obtained as the fibre of the universal family on G -Hilb over the origin in Uσ− . For each monomial x

aybzc ∈ S+,
the unique element of S− in the same character space is obtained by multiplying xaybzc by the highest power of the
G-invariant Laurent monomial xm1ym2zm3 such that the product lies in C[x,y,z], i. e.

S− =
{
xaybzc(xm1ym2zm3)d(a,b,c) ∈C[x,y,z] | xaybzc ∈ S+

}
for d(a,b,c) := max{d ∈N | a+ dm1 ≥ 0,b+ dm2 ≥ 0, c+ dm3 ≥ 0}.

Remarks 3.9.

(1) At least one of m1,m2,m3 ∈ Z is negative because τ is an interior line segment, so d(a,b,c) is
well-defined for each xaybzc ∈ S+.

(2) Since G ⊂ SL(3,C), the result of [Nak01, Lemma 2.8] is correct; compare [CMT07, Remark 4.13].

(3) Worked examples of jigsaw transformations illustrating Proposition 3.8 appear in [Nak01, Section 5].

We now work towards the generalisation of this statement. Let θ ∈ Θ be generic and write Σθ for the
toric fan of Mθ . Let σ± ∈ Σθ(3) be adjacent cones in Σθ , with τ = σ+ ∩ σ− ∈ Σθ(2). Let ρ0,ρ1,ρ2 and
ρ1,ρ2,ρ3 denote the rays in σ+ and σ− respectively as shown in Figure 6, and for 0 ≤ i ≤ 3 we write Πi for
the perfect matching associated to the ray ρi as in (3.1).

ττσ+ σ−ρ0 ρ3

ρ1

ρ2

Figure 6. Cones σ+ and σ− in the triangulation Σ.

Definition 3.10. Let τ ∈ Σθ(2). A jigsaw piece for τ is the closure of any connected component of the locus
T \

⋃
0≤i≤3Πi .

Each jigsaw piece for τ is the union of a collection of tiles of Γ . Tiles can be lifted from Γ to Γ̃ , and we
draw the jigsaw pieces in the universal cover. The terminology is chosen to suggest that one can move jigsaw
pieces around in Γ̃ by deliberately choosing different lifts.
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Lemma 3.11. Let σ± ∈ Σθ(3) satisfy τ = σ+ ∩ σ− as in Figure 6 above, and regard

(3.3) c− :=m1,3 ∩m2,3

as a subset of the edges in the boundary of Hex(σ−). The closure of any connected component of Hex(σ+) \ c− is a
jigsaw piece of τ , and every jigsaw piece of τ arises in this way. In particular, if we cut Hex(σ+) along the edges of
c− then we obtain precisely the jigsaw pieces of τ .

Proof. The rays ρ1,ρ2 lie in σ+∩σ−, so the fundamental hexagons Hex(σ±) share four of their six boundary
sides, namely those along the lifts of m1,2 in Figure 4. We also know m0,1∩m0,2 traverses the other boundary
sides of Hex(σ+), and cutting Hex(σ+) along the set c− requires that we cut along the edges of m1,3 ∩m2,3.
All together then, the edges that cut out the connected components of Hex(σ+) \ c− are those in the set

(3.4) C :=m1,2 ∪ (m0,1 ∩m0,2)∪ (m1,3 ∩m2,3)

that forms the union of all edges in the boundaries of Hex(σ ) and Hex(σ−). Regarding Graph(σ±) as
subsets of T , we have that

π(C) = π
(
∂Hex(σ+)

)
∪π

(
∂Hex(σ−)

)
= Graph(σ+)∪Graph(σ−).

Proposition 3.4 implies that this subset of T is the unique connected component of the locus
⋃

0≤i≤3Πi

comprising more than a single edge. Since each jigsaw piece for τ is the closure of a union of tiles in Γ , we
may ignore isolated edges of

⋃
0≤i≤3Πi when computing the jigsaw pieces. Thus, jigsaw pieces for τ are

precisely the (images under π of the) closures of the connected components of Hex(σ+) \ c−. �

Theorem 3.12 (Generalised jigsaw transformation). LetMσ+ be the torus-invariant θ-stable A-module associated
to σ+ ∈ Σθ(3). By cutting the fundamental hexagon Hex(σ+) in R

2 along the edges of c− and rearranging the
resulting jigsaw pieces (i. e. translating each piece by a carefully chosen element of Z2), one obtains Hex(σ−), thereby
determining the θ-stable A-module Mσ− for the adjacent cone σ− ∈ Σθ(3).

Proof. By lifting the result of Lemma 3.11 to the universal cover, we may cut the interior of Hex(σ+) in R
2

along c− in order to decompose Hex(σ+) into the union of all jigsaw pieces for τ , each a particular lift of
the corresponding jigsaw piece in T

2. By symmetry, a similar statement holds for the cut of Hex(σ−) along
the chain of edges c+ :=m0,1 ∩m0,2 in the boundary of Hex(σ+). The result follows since any two lifts of a
jigsaw piece differ only in translation by an element of Z2. �

To see that Nakamura’s G-igsaw transformations from Proposition 3.8 can be recovered as a special
case of Theorem 3.12, we adopt the notation from Section 2.6. In particular, for the stability parameter θ
satisfying θi > 0 for each i , 0, the fine moduli spaceMθ is isomorphic to G -Hilb.

Corollary 3.13. Let G ⊂ SL(3,C) be a finite abelian subgroup. Nakamura’s G-igsaw transformations from
Proposition 3.8 are a special case of those from Theorem 3.12.

Proof. Let Σ be the fan of G -Hilb and σ± ∈ Σ(3) adjacent cones satisfying τ = σ+ ∩ σ−. The isomorphism
Mθ � G -Hilb identifies the torus-invariant θ-stable A-modules Mσ± with the torus-invariant G-clusters
C[x,y,z]/I± obtained as the fibres of the universal family on G -Hilb over the origins in Uσ± . Under this
identification, the quivers Qσ± correspond to the G-graphs S± of C[x,y,z]/I±. Theorem 3.12 cuts the quiver
Qσ+ (equivalently, the A-module Mσ+ ) into pieces and rearranges them to produce Qσ− (equivalently Mσ− ),
just as Nakamura’s G-igsaw transformation cuts S+ (equivalently C[x,y,z]/I+) into pieces and rearranges
them to produce S− (equivalently C[x,y,z]/I−) as in Proposition 3.8. �

Remark 3.14. Each edge of the G-graphs S± is labelled with one of the variables x,y,z according to the
C[x,y,z]-module structure of C[x,y,z]/I±. Contrast this with our labelling of arrows in Qσ± with monomials
tdiv(a) in the Cox ring C[tρ | ρ ∈ Σ(1)] following (2.9). To compare these labels, identify x,y,z with the
variables in the Cox ring indexed by the lattice points ρ ∈ Σ(1) defined by corners of the junior simplex ∆(Γ ).
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If we substitute tρ = 1 in tdiv(a) for each lattice point that is not a corner of the polygon ∆(Γ ), then we obtain

a single variable x,y or z. Indeed, labelling each arrow by tdiv(a) encodes the tautological isomorphism
φ : A→ End(T ), whereas labelling each edge in a G-graph by a variable x,y,z encodes the description
of A as the endomorphism algebra of the direct sum of the maximal Cohen–Macaulay modules on C

3/G.
The process of substituting tρ = 1 for all non-corner lattice points corresponds to pushing forward each
tautological line bundle on G -Hilb to the corresponding maximal Cohen–Macaulay module on C

3/G.

Example 3.15. Continuing Examples 2.1 and 3.3, consider the cones σ+ and σ− in Figure 2 generated by the
rays {ρ7,ρ8,ρ9} and {ρ8,ρ9,ρ10} respectively. Figure 7 illustrates several copies of the fundamental hexagons
Hex(σ±), where edges in

⋃
7≤i≤10Πi are coloured as follows: edges in m1,2, c+ and c− are blue, green and

red respectively. The boundary of Hex(σ−) comprises the edges in red and blue (compare Figure 3); notice
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Figure 7. The edges of
⋃

7≤i≤10Πi shown in the universal cover of T .

that the green edges of c+ split this hexagon into two jigsaw pieces. If we fix the position of the jigsaw piece
containing the tile dual to the vertex of the quiver labelled 0, and translate the second jigsaw piece along the
direction of the blue edges until it sits on the opposite side of the first jigsaw piece, then we cover precisely
Hex(σ+) whose boundary edges are blue and green (with the red edges of c− cutting it in two).

For each cone σ± ∈ Σ(3) from Figure 6, recall the subquiver Qσ± of Q that has vertex set Q0 and arrow
set Qσ±1 comprising the arrows a ∈Q1 that support the corresponding A-module Mσ± .

Corollary 3.16. Suppose that the head and tail of a ∈ Q1 are dual to tiles in different jigsaw pieces for τ . If
a ∈Qσ+1 then ea ∈Π3, and similarly, if a ∈Q

σ−
1 then ea ∈Π0

Proof. For a ∈ Qσ+1 , Lemma 3.11 shows that ea ∈ c− = m1,3 ∩m2,3, so either ea ∈ Π3 or ea ∈ Π1 ∩Π2.
However, ea <

⋃2
i=0Πi because a ∈Q

σ+
1 , giving ea ∈Π3 as required. The case a ∈Qσ−1 is similar. �

Let Hex(σ+)◦ and ∂Hex(σ+) denote the interior and the boundary of Hex(σ+) respectively.

Lemma 3.17. The cuts c− of Hex(σ+) and c+ of Hex(σ−) have the following properties.

(i) Neither c− nor c+ intersects itself;
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(ii) If an edge lies in either c−∩∂Hex(σ+) or c+∩∂Hex(σ−), then this edge lies in c−∩c+, and the connected
component of c− ∩ c+ containing this edge comprises an odd number of edges;

(iii) If we follow c− (resp. c+) in either direction around the torus, then the list of nodes where we depart from
and arrive at ∂Hex(σ+) (resp. ∂Hex(σ−)) have colours that alternate between black and white.

(iv) The set of nodes that are simultaneously an endnode of an edge in c− (resp. c+) and an endnode of an edge
in m1,2 comprises one black node and one white node; these are the trivalent nodes of Graph(σ−) (resp.
Graph(σ+)).

Proof. We prove each statement for c− and σ+; swap signs throughout to obtain the proof for c+ and σ−. For
(i), if c− intersects itself at a node n ∈ Γ0, then at least three edges of c− touch n. Since edges in c− belong
alternately to Π3 and Π1 ∩Π2, it follows that two of the three edges in c− touching n belong to the same
perfect matching, a contradiction. For (ii), let e be an edge of c−∩∂Hex(σ+). Edges of c− belong alternately
to Π3 and Π1 ∩Π2, and Figure 4 illustrates that e is forced to lie in c+ ⊂ ∂Hex(σ+). Moreover, since edges
of c+ belong alternately to Π0 and Π1 ∩Π2, the connected component of c− ∩ c+ containing e must begin
and end with an edge in Π1 ∩Π2, so this component comprises an odd number of edges. For (iii), we
deduce from (ii) that the endnodes of each connected component of c− ∩ c+ must be of different colours. It
suffices therefore to prove that each connected component of c−∩Hex(σ+)◦ also contains an odd number of
edges, as again the endnodes will be of different colours. Every node in ∂Hex(σ+) is an endnode of an edge
in ∂Hex(σ+) that lies in either Π1 or Π2 (or both); see Figure 4. Since the edges of c− alternate between
edges of Π3 and Π1 ∩Π2, an edge in c− ∩Hex(σ+)◦ that has an endnode in ∂Hex(σ+) must therefore
lie in Π3. It follows that each connected component of c− ∩Hex(σ+)◦ contains an odd number of edges.
Statement (iv) follows by combining statement (iii) with an examination of the endnodes of c−. �

m1,2

m1,2

m1,2

m1,2

Figure 8. Hex(σ+) and one of its translates are both pictured with the cut c− (in dashed green); we
highlight the edges of c+ (in red) to illustrate the statements of Lemma 3.17.

4. Combinatorial Reid’s recipe

4.1. The 0-generated stability condition

Our normalisation of the tautological bundle T is chosen so that L0 � OMθ
for the vertex 0 ∈Q0; we refer

to the tile of Γ dual to 0 as the zero tile. Choose a lift of 0 ∈Q0 to the universal cover that we also denote
0 ∈ Q̃; again, we refer to the tile of Γ̃ dual to 0 as the zero tile. For each cone σ ∈ Σθ(3), choose the lift Q̃σ

of the subquiver Qσ ⊂Q so that 0 ∈ Q̃σ . In particular, the zero tile in Γ̃ is contained in the fundamental
hexagon Hex(σ ) for every σ ∈ Σθ(3).

Fix once and for all a 0-generated stability parameter, i. e. a parameter of the form

(4.1) θ = (θi) ∈Θ such that θi > 0 for all i , 0.
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It is well known that 0-generated stability conditions are generic. Furthermore, we have the following:

Lemma 4.1. A quiver representation (va) ∈ CQ1 is θ-stable if and only if for every vertex i ∈Q0 \ {0}, there is a
path p = a` · · ·a1 in Q from 0 to i such that

∏
1≤j≤` vaj , 0.

Proof. See, for example, [BCQ15, Lemma 3.1(ii)]. �

We now study jigsaw transformations of torus-invariant θ-stable A-modules for a 0-generated stability
parameter θ ∈Θ. As in Figure 6, choose adjacent three-dimensional cones σ± ∈ Σθ(3) and let τ := σ+ ∩ σ−
be the common face of dimension two. As above, the subquivers Qσ± of Q from T lift to define subquivers
Q̃σ± of Q̃ in R

2 such that Hex(σ±) both contain the zero tile.

Definition 4.2. The zero jigsaw piece for τ , denoted J0, is the jigsaw piece in Γ̃ containing the zero tile.

Both Hex(σ+) and Hex(σ−) can be obtained by gluing jigsaw pieces of τ along parts of their boundaries,
so the zero jigsaw piece J0 lies in Hex(σ+)∩Hex(σ−). The next result records an important consequence of
Lemma 4.1 for certain edges in the boundary of J0. Recall that we write Hex(σ+)◦ and ∂Hex(σ+) for the
interior and the boundary respectively of Hex(σ+).

Lemma 4.3. Let ea ∈ Γ1 be an edge in the boundary of J0 that lies in the interior of Hex(σ+). The dual arrow
a ∈Qσ+1 is such that t(a) is dual to a tile in J0 and h(a) is dual to a tile that does not lie in J0.

Proof. Every edge in the boundary of J0 is contained in ∂Hex(σ+) or c− ∩Hex(σ+)◦ by Lemma 3.11. The
boundary of J0 is not contained in ∂Hex(σ+), otherwise there would only be one jigsaw piece; nor is it
contained in c− ∩Hex(σ+)◦, because c− does not intersect itself by Lemma 3.17(i). Therefore, the boundary
of J0 comprises edges from both c− ∩Hex(σ+)◦ and ∂Hex(σ+). Let γ be any connected component of
c− ∩Hex(σ+)◦ that lies in the boundary of J0. Note that γ cuts Hex(σ+) into two connected components,
say C0 and C1; assume without loss of generality that the interior of J0 is contained in C0. Suppose for a
contradiction that the arrow a dual to an edge ea in the path γ is such that t(a) is dual to a tile in C1 and
h(a) is dual to a tile in J0. Since edges of γ belong alternately to Π3 and Π1 ∩Π2, every arrow of Qσ+ dual
to an edge in γ also has tail dual to a tile in C1 and head dual to a tile in J0. But then for any vertex i dual
to a tile in C1, there does not exist a path p in Qσ+ from 0 ∈ J0 to i ∈ C1; this contradicts Lemma 4.1. �

The statement of Lemma 4.3 also holds if we replace + by − throughout. We now construct an
A-submodule N (τ)+ of the torus-invariant A-module Mσ+ .

Definition 4.4. Let Q(τ)+ denote the subquiver of Qσ+ with vertex set and arrow set satisfying

Q(τ)+0 :=
{
i ∈Q0 | the tile dual to i does not lie in J0

}
Q(τ)+1 :=

{
a ∈Qσ+1 | t(a),h(a) are dual to tiles that do not lie in J0

}
.

Consider the dimension vector d := (di) ∈NQ0 with di = 1 for i ∈Q(τ)+0 and di = 0 otherwise, and define a
representation of Q of dimension vector d by associating to each arrow a ∈Q1 the scalar

va =
{

1 if a ∈Q(τ)+1 ;
0 otherwise.

Let N (τ)+ denote the corresponding CQ-module of dimension vector d.

Proposition 4.5. The CQ-module N (τ)+ is a proper, nonzero A-submodule of Mσ+ .

Proof. The CQ-module Mσ+ is an A-module because it satisfies the relations (2.1). If we prove that N (τ)+ is
a CQ-submodule of Mσ+ , then it will be an A-submodule because it will satisfy the same relations. For this,
it suffices to show every arrow a ∈ Qσ+1 with t(a) ∈ Q(τ)+0 also has h(a) ∈ Q(τ)+0 . If we suppose otherwise,
then there exists a ∈Qσ+1 with t(a) ∈Q(τ)+0 and h(a) <Q(τ)+0 . The dual edge ea ∈ Γ1 lies in the boundary
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of J0 and in the interior of Hex(σ+), so Lemma 4.3 gives a contradiction. It follows that N (τ)+ is an
A-submodule of Mσ+ . Since Hex(σ+) and Hex(σ−) are distinct, there are at least two jigsaw pieces for τ , so
N (τ)+ is nonzero. It’s a proper submodule of Mσ+ because J0 contains the zero tile. �

Remark 4.6. If we replace + by − throughout Definition 4.4 and Proposition 4.5, then we obtain a proper
nonzero submodule N (τ)− of Mσ− . The A-modules N (τ)+ and N (τ)− are isomorphic if and only if there
are precisely two jigsaw pieces.

4.2. Tautological bundles of degree one on the curve

Recall that for each vertex i ∈Q0, the tautological line bundle Li onMθ is of the form Li � OMθ
(div(p))

where p is any path in the quiver Q from vertex 0 to vertex i and where div(p) is the divisor of zeroes of
the section tdiv(p) =

∏
a∈supp(p) t

div(a) determined by the sections (2.9) that label arrows a in the path p.

Lemma 4.7. For i ∈Q0, let p be a path in Q
σ+ from vertex 0 to vertex i. Then tρ3 appears with multiplicity one

in tdiv(p) if and only if vertex i is dual to a tile in a jigsaw piece that lies adjacent to J0 in Hex(σ+).

Proof. We claim that the multiplicity of tρ3 in tdiv(p) is equal to the number of arrows a in the support of the
path p such that the dual edge satisfies ea ∈ c−. To prove the claim, let a ∈Qσ+1 and consider two cases:

(i) if ea ∈ c−, then Corollary 3.16 gives ea ∈Π3, in which case equation (2.9) shows that tρ3 appears with

multiplicity one in tdiv(a);

(ii) if ea < c−, then we must show that tρ3 does not divide tdiv(a) or, equivalently, that ea <Π3. Since
a ∈ Qσ+1 , the edge ea lies in neither Π1 nor Π2 (nor c−), so ea does not lie in the boundary of
Hex(σ−). The proof of Proposition 3.4 applied to Hex(σ−) shows that ea <

⋃
1≤i≤3Πρi as required.

This proves the claim. Since the edges of c− provide the cuts that separate jigsaw pieces in Hex(σ+), and
since p has tail at vertex 0, it follows that the number of arrows a in the support of p satisfying ea ∈ c− is
equal to one if and only if the head of p lies in a jigsaw piece that lies adjacent to J0 in Hex(σ+). �

Remark 4.8. Similarly, if p is a path in Qσ− from vertex 0 to vertex i, then tρ0 appears with multiplicity one

in tdiv(p) iff vertex i is dual to a tile in a jigsaw piece that lies adjacent to J0 in Hex(σ−).

Proposition 4.9. Let Cτ ⊆Mθ be the rational curve determined by the cone τ = σ+ ∩ σ− ⊆ Σθ . A tile of Γ lies
in a jigsaw piece adjacent to J0 in Hex(σ+) iff the vertex i ∈Q0 dual to the tile satisfies deg(Li |Cτ ) = 1.

Proof. We first compute the coordinate function on the toric chart inMθ corresponding to τ . Let m ∈M be
the primitive vector that is perpendicular to τ such that 〈m,n〉 ≥ 0 for all n ∈ σ+. Since ρ1,ρ2 ⊂ τ , we have
〈m,vρ1〉 = 〈m,vρ2〉 = 0, where vρi ∈ N = Hom(M,Z) is the primitive lattice point on the ray ρi ∈ Σθ(1).
Our choice of m gives 〈m,vρ0〉 > 0 and 〈m,vρ3〉 < 0, see Figure 6. Since m is a primitive generator and
both cones σ± are basic, we have 〈m,vρ0〉 = 1 and 〈m,vρ3〉 = −1. Thus, if we use the natural inclusion

M ↪→Z
Σθ(1) to identify C[M] with a subring of the ring of Laurent monomials C[t±1ρ | ρ ∈ Σθ(1)] in the

variables of the Cox ring ofMθ , then

(4.2) tm =
tρ0
tρ3
· t`

where 〈`,vρi 〉 = 0 for 0 ≤ i ≤ 3, i. e. t` is independent of tρ0 , tρ1 , tρ2 , tρ3 .
Let i ∈ Q0 be any vertex, let p± be any path in Qσ± from 0 to i and write Uσ± := SpecC[σ∨± ∩M] for

the toric chart inMθ . Given the section tdiv(p+) that generates H0(Uσ+ ,Li) as a C[σ∨+ ∩M]-module, we
obtain the generating section tdiv(p−) ∈H0(Uσ− ,Li) directly using the transition function from Uσ+ to Uσ− .
Explicitly, tdiv(p−) is obtained by multiplying tdiv(p+) by the highest power of the above toric coordinate
function tm such that the resulting Laurent monomial lies in C[σ∨− ∩M], i. e.

(4.3) tdiv(p−) = (tm)d · tdiv(p+);
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here d = deg(Li |Cτ ) is the greatest positive integer such that (tm)d · tdiv(p+) ∈ C[σ∨− ∩M]. Since p− is a path
in the quiver Qσ− and since any arrow a ∈Q1 satisfying ea ∈Π3 does not appear in Qσ− by construction, it
follows that the left hand side of (4.3) is independent of tρ3 . The Laurent monomial t` is also independent of

tρ3 , so Equation (4.2) implies that the multiplicity of the variable tρ3 in tdiv(p+) must be d = deg(Li |Cτ ). The
result follows immediately from Lemma 4.7. �

Remark 4.10. The statement of Proposition 4.9 holds with − replacing + because the analogue of Lemma 4.7
holds in this case, see Remark 4.8. In particular, the question of whether a tile lies in a jigsaw piece adjacent
to J0 is independent of whether one views the jigsaw piece in Hex(σ+) or in Hex(σ−). We may therefore
refer to a jigsaw piece as being adjacent to J0 without further qualification.

Corollary 4.11. The source vertices of the quivers Q(τ)+ and Q(τ)− from Definition 4.4 and Remark 4.6 coincide.

Proof. It is enough to prove that the source vertices of the quivers Q(τ)± are dual to tiles that lie in jigsaw
pieces adjacent to J0, because then the result follows from Remark 4.10. Let i ∈ Q(τ)+0 = Q(τ)−0 be any
vertex. Lemma 4.1 shows that there exist paths p+ and p− in the quivers Qσ+ and Qσ− respectively, such that
t(p+) = 0 = t(p−) and h(p+) = i = h(p−). The tile dual to the vertex i does not lie in J0 by Definition 4.4,
so both p+ and p− must each traverse precisely one arrow a+ and a− respectively such that the vertices
t(a+), t(a−) are dual to tiles in J0 and h(a+),h(a−) are dual to tiles in jigsaw pieces that lie adjacent to J0.
Thus, after arriving at the vertices h(a+) and h(a−), the paths p+ and p− go on to traverse paths in Q(τ)+

and Q(τ)− respectively that end at vertex i. In particular, for every vertex i ∈Q(τ)+0 =Q(τ)+0 , there exists a
path in Q(τ)+ and a path in Q(τ)− that start at a vertex dual to a tile in a jigsaw piece adjacent to J0 and
that end at vertex i. Thus, the source vertices of Q(τ)+ and Q(τ)− are those dual to tiles in jigsaw pieces
adjacent to J0. �

Example 4.12. Suppose that a given cone τ = σ+ ∩ σ− determined three jigsaw pieces. Figure 9 illustrates
(lifts to the universal cover of) the jigsaw pieces in Hex(σ+), where they are denoted J0, J1, J2, each separated
from the others by lifts of the cut c− shown in green. Figure 9 also illustrates how different lifts of the jigsaw
pieces form Hex(σ−), where they are denoted J0, J′1, J

′
2. Since J1 and J′1 are different lifts of the same jigsaw

piece, we see that only one jigsaw piece lies adjacent to J0 in the sense of Remark 4.10.

. .
.

. .
.

m1,2

m1,2

m1,2

m1,2

J0

J1

J2

J′1

J′2

Figure 9. Translates of Hex(σ+) and several lifts of the cut c− illustrate how Hex(σ−) is formed
from jigsaw pieces J0 and the translates J′1 and J′2 of J1 and J2 respectively.

4.3. Combinatorial Reid’s recipe

We now introduce Reid’s recipe for a consistent dimer model Γ . We begin by introducing the recipe for
marking interior lattice points of Σθ with vertices of Q. For i ∈ Q0, write Si := Cei for the vertex simple
A-module corresponding to the vertex i. For any 0-generated A-module M, the module Si is contained in
the socle of M if and only if Si is a submodule of M .
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Definition 4.13 (Marking interior lattice points). Let ρ ∈ Σθ(1) be an interior lattice point. A vertex
i ∈Q0 marks ρ if Si lies in the socle of the A-module Mσ for every cone σ ∈ Σθ(3) satisfying ρ ⊂ σ .

Remark 4.14. The vertex 0 never marks a lattice point since θ is a 0-generated stability parameter.

Lemma 4.15. Reid’s recipe marks every interior lattice point of Σθ with at least one nonzero vertex of Q.

Proof. Let ρ ∈ Σθ(1) be an interior lattice point. We claim that the A-module Mρ is nilpotent, i. e. there
exists n ∈N such that any element a ∈ A represented by a path of length greater than n in Q satisfies
a ·m = 0 for all m ∈Mρ. Indeed, any path in Q of length n := |Q0|+ 1 contains a cycle γ , and it suffices
to show that γ ·m = 0 for all m ∈Mρ. Le Bruyn–Procesi [LP90, Theorem 1] associates to γ a polynomial
function fγ ∈C[V ]TB on the affine variety X � V //0TB. Since ρ is interior, the point y ∈Mθ associated to
the A-moduleMρ by Lemma 3.1 satisfies τθ(y) = x0, where τθ : Mθ→ X is the crepant resolution from (2.6)
and x0 ∈ X is the unique torus-invariant point. It follows that the value of fγ on the quiver representation
(va) associated to Mρ by (3.2) is zero. In particular, there exists a nonzero vertex i ∈ Q0 such that Mρ

contains the vertex simple A-module Si as a submodule. This means that Si lies in the socle of Mρ.
Let σ ∈ Σθ(3) satisfy ρ ⊂ σ , in which case the module structure on Mσ is obtained from Mρ by setting

some of the scalars va from (3.2) to zero, i. e. Mσ is a quotient module of Mρ. Since Mσ is isomorphic to
Mρ as a C-vector space, it follows that having Si in the socle of Mρ implies that Si is in the socle of Mσ . As
a result, vertex i marks the lattice point ρ by Definition 4.13. �

Definition 4.16 (Marking interior line segments). Let τ ∈ Σθ(2) be an interior line segment. A vertex
i ∈Q0 marks τ if i is one of the common source vertices of the quivers Q(τ)± from Corollary 4.11.

Remarks 4.17.

(1) Vertex 0 never marks an interior line segment, because 0 cannot be a vertex of Q(τ)±.

(2) The quivers Q(τ)± are contained in the acyclic quivers Qσ± , so Q(τ)± are themselves acyclic and
hence have at least one source. It follows that each interior line segment τ ∈ Σθ(2) is marked by at
least one nonzero vertex of Q.

Corollary 4.18. Let G be a finite abelian subgroup of SL(3,C). Reid’s recipe for the fan Σ of G -Hilb as given
by Definitions 4.13 and 4.16 agrees with the classical Recipe 2.6.

Proof. Recall from Corollary 3.13 that the isomorphismMθ � G -Hilb identifies the torus-invariant quiver
representationsMσ± with the G-clusters C[x,y,z]/I± obtained as the fibres of the universal family on G -Hilb
over the origins in the charts Uσ± . It follows that the marking of an interior lattice point ρ ∈ Σ(1) according
to Recipe 2.6(2) agrees with the marking from Definition 4.13.

To show that the recipes agree for an interior line segment τ ∈ Σ(2), consider first the classical recipe.
Let σ± ∈ Σ(3) satisfy τ = σ+ ∩ σ− and let m = (m1,m2,m3) ∈M denote the primitive vector in the normal
direction to the hyperplane spanned by τ satisfying 〈m,n〉 ≥ 0 for all n ∈ σ+. Nakamura [Nak01, Lemma 1.8]
implies that the denominator of the G-invariant Laurent monomial xm1ym2zm3 is one of the monomials of
S+, say xaybzc, and the classical Recipe 2.6(1) marks τ with the vertex i ∈Q0 \ {0} such that xaybzc lies in
the i-character space. Crucially, Proposition 3.8 shows that a monomial in S+ moves during the G-igsaw
transformation across τ if and only if it is divisible by xaybzc, i. e. the directed subgraph of S+ comprising
monomials that move in the G-igsaw transformation has a unique source given by the monomial xaybzc.

To compare this with the recipe from Definition 4.16, identify the G-graphs S± with the quivers Qσ± as
in Corollary 3.13 and let x,y,z denote the variables in the Cox ring C[tρ | ρ ∈ Σ(1)] indexed by the lattice
points ρ ∈ Σ(1) defined by corners of the junior simplex as in Remark 3.14. The jigsaw transformation from
Mσ+ to Mσ− as in Theorem 3.12 moves the tile dual to a vertex j ∈ Q0 if and only if the section tdiv(p)

labelling a path from 0 to j in Qσ+ is divisible by xaybzc. This jigsaw transformation coincides with that
of Nakamura by Corollary 3.13, so the subquiver Q(τ)+ of Qσ+ whose vertex set comprises vertices dual
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to tiles that move in the jigsaw transformation across τ has a unique source vertex i corresponding to the
eigencharacter of the monomial xaybzc. Definition 4.16 marks τ with vertex i, so the recipes agree. �

4.4. Examples

We now present two examples where Combinatorial Reid’s recipe from Definitions 4.13 and 4.16 is used to
mark the interior lattice points and line segments of the toric fan Σθ with vertices of the quiver Q dual to a
consistent dimer model.

Example 4.19. Consider the dimer model from Example 2.1. The stability parameter θ = (−9,1,1, . . . ,1) is
0-generated and the fan Σθ ofMθ in Figure 2(b) shows how we list the lattice points ρ1, . . . ,ρ10 ∈ Σθ(1).

To implement Reid’s recipe, first compute the quiver Qσ for each cone σ ∈ Σθ(3). One such quiver Qσ is
shown in green in Figure 3: notice that vertices 2 and 5 are both sinks of that quiver, so both vertices are
candidates to mark the interior lattice point ρ8 according to Definition 4.13. In fact, both 2 and 5 are sinks in
every quiver Qσ determined by a cone σ ∈ Σθ(3) such that ρ8 ⊂ σ , so both 2 and 5 mark lattice point ρ8 in
Reid’s recipe. A similar calculation shows that vertex 2 also marks the lattice point ρ9 as shown in Figure 10.
As for the interior line segments, consider the cone τ generated by the rays ρ8 and ρ9. Figure 7 illustrates

9

3,9

3

74

66

8

8 4

1

2, 5

2

Figure 10. Marking of Σθ using combinatorial Reid’s recipe for the dimer model from Example 2.1.

the jigsaw pieces for τ : there is precisely one jigsaw piece J1 that lies adjacent to J0, and the quivers Q(τ)±

supported in J1 coincide. The vertices 3 and 9 are the sources of this quiver and, according to Definition 4.16,
Reid’s recipe marks the interior line segment τ with both 3 and 9. More generally, Combinatorial Reid’s
recipe marks all interior lattice points and interior line segments of Σθ with vertices as shown in Figure 10.

Example 4.20. Consider the consistent dimer model shown in black in Figure 11(a); the dual quiver Q is
illustrated in grey in the same figure. The stability condition θ = (−25,1,1, . . . ,1) is 0-generated and the
labelling sections tdiv(a) from equation (2.9) that determine the tautological isomorphism φ : A→ End(T )
are written explicitly on (or can be deduced from) [Tap15, Figures 4.2(a), 4.3]. The toric fan Σθ is shown in
Figure 11(b), where we have marked every interior line segment and interior lattice point of Σθ with vertices
of the quiver Q according to Combinatorial Reid’s recipe.

Remark 4.21. These examples exhibit several new phenomena that are not present in the classical Reid’s
recipe [Rei97, Cra05] for the toric fan Σ of the G-Hilbert scheme for a finite abelian subgroup G in SL(3,C).
Indeed:

(1) distinct interior lattice points can be marked with the same vertex: in Figure 10, vertex 2 marks both
interior lattice points; while in Figure 11(b), vertex 8 marks a pair of lattice points. Contrast this with
the classical case, where any vertex of the McKay quiver that marks an interior lattice point of Σ
does not mark another lattice point or line segment in Σ (see [Cra05, Corollary 4.6]);

(2) interior line segments can be marked with more than one vertex: in Figure 10, vertices 3 and 9 both
mark the same line segment; in Figure 11(b), vertices 7 and 21 mark the same line segment. In the
classical case, every interior line segment of Σ is marked with a unique vertex of the McKay quiver.



24 A. Craw, L. Heuberger, and J. Tapia Amador24 A. Craw, L. Heuberger, and J. Tapia Amador

0

1

23

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 1920

21

22

23

24

25

1

2

3

4

4

5
5

6

7

8

8 8

9
10

11
11

12

13

14

1515

16

17

18

1920

21

22

2323

24

25

26
27

28

29
29

30

31
31

32

33
33

34

35

36

37

38

39

40

41

42
42

43

44 44

45

46

47

47

48

49
50

51

52

53

54

55

56

57

58

59

60

60

61 61

62

63
63

64 6465

66

67 67
68

69

69

70

7171

72

(a)

7

7, 21

21

20

4

15

15

11

11

11

11

10101010

777

333

1

1

2

2

2

23

236

179

211915

8

8,22

25

5

16,24

18

12

13

14

(b)

Figure 11. (a) A consistent dimer model; (b) the fan Σθ marked according to Reid’s recipe.

(3) the marking of an interior line segment τ ∈ Σθ(2) is not determined by the hyperplane containing τ :
in Figure 10, three coplanar cones in Σθ(2) are marked with 3, with 3 and 9 and with 9 respectively.
In the classical case, the marking of an interior line segment τ is determined by the normal vector of
the hyperplane containing the cone, so each cone in a given hyperplane is marked identically.

(4) the marking of an interior lattice point ρ ∈ Σθ(1) is not determined by the geometry of the toric
surface Dρ: in Figure 11(b), one del Pezzo surface of degree six is marked by a pair of vertices 16 and
24, while a second del Pezzo surface of degree six is marked by the single vertex 5. In the classical
case, the marking is determined by the geometry of the surface (see [Cra05, Section 3]).

(5) the Euler number of an irreducible component of the exceptional divisor is not bounded above by six:
in Figure 11(b), the unique interior lattice point of Σθ marked by vertex 25 determines a toric surface
with Euler number 7. In the classical case, a result of Craw–Reid [CR02, Corollary 1.4] shows that the
Euler number of every torus-invariant projective surface Dρ in G -Hilb is at most six.

5. Compatibility with Geometric Reid’s Recipe

Motivated by Logvinenko’s geometric version of Reid’s recipe (see Theorem 2.7), we now study the relation
between Reid’s recipe for a consistent dimer model as in Definitions 4.13 and 4.16 and the statement of
Geometric Reid’s recipe given by Bocklandt–Craw–Quintero Vélez [BCQ15, Theorem 1.4]. We conclude with
a pair of natural conjectures.

5.1. Compatibility with Geometric Reid’s Recipe

To begin we generalise a statement from Cautis–Craw–Logvinenko [CCL17, Proposition 4.8] to consistent
dimer models.

Lemma 5.1. Let σ ∈ Σθ(3) and i ∈ Q0. Assume that the vertex simple A-module Si lies in the socle of the
torus-invariant θ-stable A-module Mσ . According to Reid’s recipe, vertex i marks either:

(i) an edge of the triangle σ , i. e. there exists τ ∈ Σθ(2) with τ ⊂ σ such that i marks τ . In this case, Si lies
in the socle of every θ-stable A-module in the torus-invariant curve Cτ ; or
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(ii) a node of the triangle σ , i. e. there exists ρ ∈ Σθ(1) with ρ ⊂ σ such that i marks ρ. In this case, Si lies in
the socle of every θ-stable A-module in the torus-invariant divisor Dρ.

Proof. Let y ∈Mθ be the torus-invariant point defined by the cone σ ∈ Σθ(3), so My =Mσ by Lemma 3.1.
Since Si lies in the socle of Mσ , the vertex i cannot be the zero vertex (unless Γ has only one node, in
which case X = C

3 and Reid’s recipe says nothing of interest). We may therefore apply several results of
Bocklandt–Craw–Quintero-Vélez [BCQ15, Propositions 3.4, 4.7, Lemma 4.8, Correction] to deduce that the
intersection of

Zi :=
{
y ∈Mθ | Si ⊆ soc(My)

}
with the locus τ−1θ (x0) is either a single (−1,−1)-curve inMθ , a single (0,−2)-curve inMθ or a connected
union of compact torus-invariant divisors inMθ . We have Si ⊆ soc(My) by assumption, hence y ∈ Zi . We
consider each case in turn.

If this locus is a (−1,−1)-curve inMθ then there exists τ ∈ Σθ(2) such that Zi = Cτ , so Si lies in the
socle of every θ-stable A-module parametrised by points of Cτ . Also, y ∈ Zi = Cτ , so the inclusion-reversing
correspondence between orbit-closures inMθ and cones in the fan Σθ gives τ ⊂ σ . To see that Reid’s recipe
marks τ with vertex i, the result of [BCQ15, Lemma 4.10] implies that the jigsaw transformation across τ
defines precisely two jigsaw pieces, where the jigsaw piece adjacent to J0 comprises a single tile dual to
vertex i. In particular, i is the source vertex of the quivers Q± associated to τ , so i marks τ according to
Definition 4.16.

The case of a (0,−2)-curve in Mθ is almost identical, except now the curve Cτ defined by the cone
τ ∈ Σθ(2) coincides with the intersection Zi ∩ τ−1θ (x0) as noted in [BCQ15, Correction]. Otherwise, by
applying the analogue of [BCQ15, Lemma 4.10] as stated in [BCQ15, Correction, Lemma 3], the argument
from the previous paragraph goes through verbatim to give that vertex i marks the cone τ as required.

Otherwise, Zi is a compact torus-invariant divisor. Since y ∈ Zi , there exists ρ ∈ Σθ(1) such that
y ∈ Dρ ⊆ Zi , so Si lies in the socle of every θ-stable A-module parametrised by a point in Dρ. It follows
from Definition 4.13 that vertex i marks ρ. Applying the inclusion-reversing correspondence between orbit
closures inMθ and cones in Σθ to the inclusion y ∈Dρ gives ρ ⊂ σ as required. �

Recall that the derived equivalence Ψθ from (2.10) sends the vertex simple A-module Si for i ∈Q0 to an
object Ψθ(Si) in the bounded derived category of coherent sheaves onMθ . In particular, for each k ∈Z we
obtain a coherent sheaf Hk(Ψθ(Si)).

Proposition 5.2. Let i ∈Q0 be a nonzero vertex and assume H
0(Ψθ(Si)) , 0. According to Reid’s recipe, vertex i

marks either:

(i) a unique interior line segment τ ∈ Σθ(2), in which case the corresponding torus-invariant curve Cτ satisfies
Ψθ(Si) � L

−1
i |Cτ ; or

(ii) at least one interior lattice point ρ ∈ Σθ(1), in which case the corresponding torus-invariant divisor Dρ is
contained in the support of Ψθ(Si). In fact, if Zi denotes the union of all torus-invariant divisors marked
by vertex i, then Ψθ(Si) � L

−1
i |Zi .

Proof. Since i is nonzero and H0(Ψ (Si)) , 0, [BCQ15, Proposition 4.7] gives σ ∈ Σθ(3) such that the
corresponding torus-invariant θ-stable A-moduleMσ contains Si in its socle. Now Lemma 5.1 applies, giving
two cases. If Lemma 5.1(i) occurs, then there exists an interior line segment τ ∈ Σθ(2) such that vertex i marks
τ , and Si lies in the socle of every θ-stable A-module in the curve Cτ = {y ∈Mθ | Si ⊆ soc(My)} ∩ τ−1θ (x0).
In this case, [BCQ15, Proposition 1.3, Correction] gives Ψθ(Si) � L

−1
i |Cτ as required. Otherwise Lemma 5.1(ii)

occurs, giving an interior lattice point ρ ∈ Σθ(1) such that vertex i marks ρ, and Si lies in the socle of every
θ-stable A-module corresponding to a point of Dρ. This holds if and only if Dρ is contained in the locus
Zi = {y ∈Mθ | Si ⊆ soc(My)}. In particular, Zi is non-empty, so [BCQ15, Proposition 1.3] applies to show
that Zi is equal to the support of Ψθ(Si) and in fact Ψθ(Si) � L

−1
i |Zi . This completes the proof. �



26 A. Craw, L. Heuberger, and J. Tapia Amador26 A. Craw, L. Heuberger, and J. Tapia Amador

Remarks 5.3.

(1) The support of Ψθ(Si) in Proposition 5.2(ii) is known to be connected [BCQ15, Lemma 4.8]. Therefore
Proposition 5.2(ii) implies that the union of all divisors Dρ inMθ such that ρ is marked by vertex i
is connected. This statement is not an obvious consequence of Definition 4.13.

(2) The examples from Section 4.4 show that Zi from Proposition 5.2(ii), may be reducible. That the
support of Ψθ(Si) may be reducible was surely known to Ishii and Ueda, see [IU16, Lemma 11.2].

As a result, we may enhance slightly the statement of Geometric Reid’s recipe for consistent dimer models
from [BCQ15, Theorem 1.4] to one that makes reference to the marking of lattice points and some line
segments of the fan Σθ according to Definitions 4.13 and 4.16:

Corollary 5.4 (Geometric Reid’s recipe for dimer models). Let Γ be a consistent dimer model and let i ∈Q0 be
a vertex in the dual quiver. Precisely one of the following statements holds:

(i) vertex i marks at least one interior lattice point in Σθ(1), in which case Ψθ(Si) � L
−1
i ⊗OZi , where Zi is

the connected union of torus-invariant divisors indexed by lattice points ρ marked with i;

(ii) vertex i marks a unique interior line segment τ ∈ Σθ(2), in which case Ψθ(Si) � L−1i ⊗OCτ ;
(iii) Ψθ(Si) � F [1], where F is a coherent sheaf whose support is a connected union of compact torus-invariant

divisors; or

(iv) i = 0, in which case Ψθ(S0) is quasi-isomorphic to the dualising complex of the locus τ
−1
θ (x0).

Proof. The only enhancement to [BCQ15, Theorem 1.4] is in parts (i) and (ii), but for convenience we explain
the logic of the proof. If i = 0, then case (iv) holds by [BCQ15, Proposition 3.7]. Otherwise, i , 0 and [BCQ15,
Theorem 1.1, Proposition 3.4] gives a unique k ∈ {−1,0} such that Hk(Ψθ(Si)) , 0. If k = −1, then case (iii)
holds by [BCQ15, Corollary 5.2, Proposition 5.6]. Otherwise k = 0, in which case [BCQ15, Proposition 4.11,
Correction] gives Ψθ(Si) � L

−1
i |Zci for Z

c
i :=

{
y ∈ τ−1θ (x0) | Si ⊆ soc(My)

}
. Proposition 5.2 implies that Zci is

determined by the interior lattice points and line segments of Σθ marked by i according to Definitions 4.13
and 4.16. Note that Zci is equal to Zi = {y ∈Mθ | Si ⊆ soc(My)} in case (i), and to Cτ in case (ii). �

5.2. Open questions

After comparing Corollary 5.4 with the statement of Theorem 2.7, it is natural to suggest the following.

Conjecture 5.5. Let i ∈ Q0 be nonzero. Then F := H−1(Ψθ(Si)) , 0 if and only if i marks two or more
interior line segments in Σθ according to Definition 4.16, in which case the support of Ψθ(Si) is the union of all
torus-invariant divisors Dρ such that two line segments τ in Σθ containing ρ are marked by vertex i.

Remarks 5.6.

(1) A proof of Conjecture 5.5 would imply that every nonzero vertex of Q appears ‘once’ on the fan Σθ
in a sense similar to the statement from [Cra05, Corollary 4.6]. In particular, each nonzero vertex
i ∈Q would either mark lattice points in Σθ (this happens when H0(Ψθ(Si)) , 0) or line segments in
Σθ (this happens when H−1(Ψθ(Si)) , 0). Note that i would not be able to mark both lattice points
and line segments, because [BCQ15, Theorem 1.1, Proposition 3.4] gives a unique k ∈ {−1,0} such that
Hk(Ψθ(Si)) , 0. The examples from Section 4.4 illustrate this dichotomy.

(2) When H−1(Ψθ(Si)) , 0, the support of the object Ψθ(Si) is known to be connected [BCQ15, Corol-
lary 5.2]. A proof of Conjecture 5.5 would therefore also imply that the union of line segments marked
by i is a connected graph in the triangulation. Such a statement would be similar to that from
Remark 5.3(1) which applies when i marks lattice points.

Conjecture 5.5 is not strong enough to be called Derived Reid’s recipe for consistent dimer models because it
does not describe explicitly the objects Ψθ(Si) in terms of the labelling of lattice points and line segments in
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Σθ as was done for classical Reid’s recipe in [CCL17, Theorem 1.2]. Such an explicit description would require
that one computes the cohomology of the wheel associated to L−1i as defined by Craw–Quintero-Vélez [CQ15].
This calculation becomes increasingly complicated as the number of arrows with head at vertex i increases;
see Example 3.5 from ibid. for one such example.

We also anticipate that Combinatorial Reid’s recipe will enable one to compute a minimal set of relations
in Pic(Mθ) between the tautological line bundles onMθ . A proof of the following would extend the result
of [Cra05, Theorem 6.1] to any consistent dimer model.

Conjecture 5.7. The Picard group ofMθ is generated by the nontrivial tautological bundles {Li}i,0, modulo the
subgroup generated by one relation for each interior lattice point ρ ∈ Σθ(1), namely⊗

i marks ρ

Li �
⊗
i∈Q0

L
⊗(n(i,ρ)−1)
i ,

where n(i,ρ) is the number of interior line segments τ ∈ Σθ(2) marked by vertex i such that ρ ⊂ τ .

Example 5.8. In Example 4.19, one computes explicitly that there are two such relations:

L2 ⊗L5 � L3 ⊗L6 ⊗L8 and L2 � L4 ⊗L9.

Similarly, in Example 4.20 there are nine such relations:

L14 � L10 ⊗L11; L18 � L10 ⊗L15; L25 � L10 ⊗L21; L13 � L7 ⊗L11; L8 � L1 ⊗L7;

L16 ⊗L24 � L7 ⊗L15 ⊗L23; L8 ⊗L22 � L2 ⊗L7 ⊗L21; L12 � L3 ⊗L11; L5 � L2 ⊗L3.
Additional examples where Conjectures 5.5 and 5.7 have been verified can be found in [Tap15].

A proof of Conjecture 5.7 would enable one to cook-up virtual bundles in the spirit of the classical case
(see Reid [Rei97] and Craw [Cra05, Section 7]), leading to a Z-basis of the integral cohomology H ∗(Mθ ,Z)
indexed by the vertices of the quiver Q. This would provide the analogue for consistent dimer models
of the geometric McKay correspondence for a finite subgroup of SL(2,C) given by Gonzalez-Sprinberg–
Verdier [GSV84].
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