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Białynicki-Birula schemes in Hilbert schemes of points
and monic functors
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Abstract. The Białynicki-Birula strata on the Hilbert scheme Hn(Ad) are smooth in dimension
d = 2. We prove that there is a schematic structure in higher dimensions, the Białynicki-Birula
scheme, which is natural in the sense that it represents a functor. Let ρi :Hn(Ad)→ Symn(A1)
be the Hilbert-Chow morphism of the ith coordinate. We prove that a Białynicki-Birula scheme
associated with an action of a torus T is schematically included in the fiber ρ−1

i (0) if the ith weight
of T is non-positive. We prove that the monic functors parametrizing families of ideals with a
prescribed initial ideal are representable.
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Schémas de Białynicki-Birula dans les schémas de Hilbert de points et foncteurs moniques

Résumé. Les strates de Białynicki-Birula sur le schéma de Hilbert Hn(Ad) sont lisses en dimension
d = 2. Nous démontrons qu’il existe une structure schématique en dimension supérieure, le
schéma de Białynicki-Birula, qui est naturelle au sens où elle représente un foncteur. Considérons
ρi :Hn(Ad)→ Symn(A1) le morphisme de Hilbert-Chow de la ième coordonnée. Nous prouvons
qu’un schéma de Białynicki-Birula associé à l’action d’un tore T est schématiquement inclus dans
la fibre ρ−1

i (0) si le ième poids de T est négatif ou nul. Nous prouvons que les foncteurs moniques
qui paramètrent les familles d’ideaux ayant un idéal initial donné sont représentables.
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1. Introduction

Let Hn(Ad) be the Hilbert scheme parametrizing zero-dimensional subschemes of length n in the affine
d-space A

d over a field k. This scheme is mostly called the Hilbert scheme of points, sometimes also the
punctual Hilbert scheme. There is a natural action of the d-dimensional split torus on A

d , which induces
a natural action on Hn(Ad). If T is a one-dimensional split subtorus of the d-dimensional torus, then T
defines the Białynicki-Birula strata HBB(T ,∆) parametrizing the subschemes of Ad converging to some fixed
point Z∆ under the action of T , where Z∆ is a monomial subscheme with staircase ∆. When T is general,
any T -fixed point is monomial and is a Z∆ for some staircase ∆. The case where T is general is thus of
particular interest, however we will consider HBB(T ,∆) for any T .

These stratifications are preeminent in most studies of the punctual Hilbert scheme in dimension two. For
instance, they appear in the computation of the Betti numbers (see [ES87], [ES88]), in the determination of
the irreducible components of (multi)graded Hilbert schemes (see [Eva04], [MS10]), or in the study of the
ring of symmetric functions via symmetric products of embedded curves (see [Gro96], [Nak99]).

The Białynicki-Birula strata in Hn(A2) are affine spaces. In contrast, not much is known on these strata
for higher dimensional Ad , and the difficulty to control and describe the Białynicki-Birula strata is probably
one of the reasons why the Hilbert scheme of points is still mysterious in higher dimensions.

In dimension three, the Białynicki-Birula strata are not irreducible (Proposition 7.1). In higher dimensions,
they are not reduced either [Jel20]. It is therefore necessary to define them with their natural scheme
structure as representing a functor. Apart from the necessity to define them schematically, it is desirable to
have functorial descriptions of Hilbert schemes at hand, as these descriptions are known to be both powerful
and easy to handle.

In the present paper, we introduce the Białynicki-Birula functor parametrizing families of subschemes Z
such that limt→0,t∈T t ·Z = Z∆ for some fixed monomial subscheme Z∆. We will prove (Theorem 5.4):

Theorem. The Białynicki-Birula functor is representable by a locally closed subscheme HBB(T ,∆)(Ad) of the
Hilbert scheme Hn(Ad).

The theorem is constructive: if a flat family is given, the Białynicki-Birula strata are computable by the
algorithms encapsulated in the proofs.
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During the proof, a linchpin construction is to consider ideals with a prescribed initial ideal for a total
order. The total order considered is any order refining the partial order on the monomials induced by their
weight for the torus action. We prove the representability of the corresponding functor (Theorem 4.6).

Theorem. The monic functor Hmon(<,∆) parametrizing ideals with initial ideal I∆ = I(Z∆) is representable.

There are results in the same circle of ideas when Gröbner basis theory is workable [Led11, LR16]. In the
context of Theorem 4.6, Gröbner basis theory does not apply because of possible negative weights. As far as
we know, monic functors have never been considered in this context. We develop an original approach for
the proof as the ideas from [Led11, LR16] are not easily adjustable.

Our sign convention for the weight ξ = (ξ1, . . . ,ξd) is that the action of the one-dimensional subtorus
T on A

d is given by t · (a1, . . . , ad) := (tξ1a1, . . . , t
ξdad). If ξi ≤ 0, then the closed points of HBB(T ,∆)(Ad)

correspond to subschemes Z whose support is in the hyperplane xi = 0. This follows from the naive
observation that if t ·Z tends to Z∆, then the support of t.Z tends to the support of Z∆. A much more subtle
question is to ask whether this remains true at the schematic level, when we consider the Białynicki-Birula
scheme with its possibly non-reduced structure. The answer is positive. Recall that there is a Hilbert-Chow
morphism ρi : Hn(Ad)→ Symn(A1) 'A

n which sends a point p parametrizing a subscheme Z to (the
coefficients of) the characteristic polynomial of the multiplication by the ith coordinate xi in O(Z). We will
prove (see Theorem 6.1):

Theorem. Let ρi be the Hilbert-Chow morphism associated with the ith coordinate. If ξi ≤ 0, then HBB(T ,∆)(Ad)
is schematically included in the fiber ρ−1

i (0).

For simplicity, we have considered a field k in this introduction. But throughout the paper, we shall work
over a ring k of arbitrary characteristic.

After the first version of this article appeared, several authors dealt with the Białynicki-Birula decomposi-
tion for singular schemes, algebraic spaces, stacks... with methods, scope, computability specific to each
approach and important applications [Dri15, AHR20, Ric19, Jel19, Jel20, Kam19].

Let Z be an algebraic k-space of finite type equipped with a Gm-action. Drinfeld [Dri15] defines the
attractor Z+, which informally is the functor whose points are the points z ∈ Z(k) with an existing limit
limt→0 t · z. He proves that Z+ is representable (Theorem 1.4.2, ibid.). Using the results by Drinfeld, it is
possible to recover some results of the present paper (see Section 7).

Alper-Hall-Rydh [AHR20] work in the context of algebraic stacks. They prove (Theorem 5.27, ibid.)
the existence of Białynicki-Birula decomposition for Deligne-Mumford stack of finite type over a field k,
equipped with a Gm-action. They recover some results by Drinfeld (cf. Remark 5.28, ibid.).

Richarz extends some representability results by Drinfeld to algebraic spaces with an étale locally
linearizable Gm-action [Ric19, Theorem A]

An important application of the Białynicki-Birula decomposition is due to Jelisiejew. In [Jel19, Proposi-
tion 3.1], he realizes the Białynicki-Birula decomposition in the multigraded Hilbert scheme of Haiman-
Sturmfels [HS02]. Then, in [Jel20], the decomposition is used to prove that the Hilbert scheme of points on a
higher dimensional affine space is non-reduced and has components lying entirely in characteristic p for all
primes p, and that Vakil’s Murphy’s Law (every singularity type of finite type appears) holds up to retraction
for this scheme.

Proofs. Let us say a word about the proofs. The action of T on A
d = Speck[x] = Spec k[x1, . . . ,xd] with

weight ξ induces a partial order <ξ on the monomials of k[x]: the monomials are ordered according
to their weight for the T -action. To control the Białynicki-Birula strata HBB(T ,∆) we prove that, roughly
speaking, a subscheme Z is in HBB(T ,∆) if and only if its initial ideal in<ξ (I(Z)) equals the monomial ideal

I(Z∆) (Proposition 2.7). Therefore, a natural strategy could be to introduce a monic functor Hmon(<ξ ,∆)
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parametrizing ideals with a prescribed initial ideal and to show that this functor is representable and
isomorphic to the Białynicki-Birula functor.

However, a technical barrier is that the initial ideal in our context is a poor analog of the same notion
used in the context of Gröbner basis, for instance in [Eis99, Chapter 15] for two reasons: the order on the
monomials is a only a partial order, and when some weights of the action are negative, the division algorithm
may not terminate. This makes the above strategy inefficient.

The modified strategy is the following. We consider total orders rather than partial orders when we
introduce the monic functors mainly because this condition ensures functoriality (Remark 3.1). However,
because of the possible negative weights, we still don’t have in general a monomial order in the sense of
[Eis99]. We prove that the monic functor Hmon(<,∆) parametrizing ideals with initial ideal I∆ is representable
(Theorem 4.6).

In this modified strategy, we realize the Białynicki-Birula functor HBB(T ,∆) as the intersection of two well-
chosen monic functors Hmon(<−,∆) ∩Hmon(<+,∆) where <− and <+ are total orders refining <ξ (Proposition
5.3). Realizing the Białynicki-Birula functor as an intersection is the functorial counterpart to the following
remark : having a prescribed initial ideal for the partial order <ξ is equivalent to having the same prescribed
initial ideal for both <− and <+. The representability of the Białynicki-Birula functors then follows from the
representability of the monic functors.

When dealing with representability of functors, constructions for individual subschemes often require
uniformity lemmas when one passes to families. The paragon of this situation is the Castelnuovo-Mumford
regularity, in the construction of the Hilbert scheme. In contrast, punctual subschemes localized at a fixed
point p of the projective space are not representable by a closed subscheme of the Hilbert scheme because
the families lack a uniformity property : The smallest infinitesimal neighborhood of p containing a family of
such subschemes may be of arbitrary large order.

When the weights of the action are non-positive, the families that we consider are supported on the origin.
It may be surprising that we get the representability in this context. The reason is that Białynicki-Birula
families are included in an infinitesimal neighborhood of uniform order. This uniformity is settled in Lemma
2.11 which says that the families of the Białynicki-Birula functor are included in xni if xi is a coordinate with
a non-positive weight, where n is the length of the parameterized punctual subschemes. In some sense, these
families are uniformly bounded. As to the monic functors, some boundedness condition is included in their
definition, i.e. the families are included in xri for some r, and one proves that r may be chosen uniform in
Proposition 4.5 to get the representability.

Acknowledgements

We give many thanks to Robin Hartshorne, Diane Maclagan and Gregory G. Smith, the organizers of
the workshop Components of Hilbert Schemes held at American Institute of Mathematics in Palo Alto, CA, in
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2. Białynicki-Birula functors and ∆-monic families

In this section, we introduce the Białynicki-Birula functors whose geometric points are subschemes having
a prescribed limit under the action of a torus T . These subschemes are characterized by their initial ideal for
some order. Accordingly, we reformulate Białynicki-Birula families in terms of ∆-monic ideals (Proposition
2.7). Finally, we prove an important uniformity lemma for Białynicki-Birula families (Corollary 2.10).
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In this paper, we consider schemes over a commutative ring k of arbitrary characteristic. We denote by
k[x] the polynomial ring k[x1, . . . ,xd]. Similarly, for e = (e1, . . . , ed) ∈Nd , we use the multi-index notation
xe := xe1

1 · · ·x
ed
d .

A standard set, or staircase, is a subset ∆ ⊂N
d whose complement C := N

d \∆ satisfies C +N
d = C.

We call the minimal elements of C the outer corners of ∆. All standard sets under consideration will be of
finite cardinality n. The ideal generated by the monomials xe, e ∈ C is denoted by I∆. The notation I∆

makes sense in k[x], but more generally in any ring containing the monomials xe, such as the ring B[x]
introduced below. We shall freely identify the monomials xe with their exponent e. In particular, the notion
of a staircase of monomials makes sense.

If B is a k-algebra, then the tensor product B⊗k k[x] is just B[x], the ring of polynomials with coefficients
in B. Similarly, we write B[t, t−1,x] := B[x]⊗k k[t, t−1]. Let ξ ∈ Rd , we denote by fξ ∈ (Rd)∗ the linear
form defined by fξ(α1, . . . ,αd) =

∑
αiξi . If ξ ∈ Zd , and I ⊂ B[x], Iξ [t, t−1] ⊂ B[t, t−1,x] denotes the ideal

generated by the elements t · g :=
∑
t−fξ (e)cexe where g =

∑
cexe ∈ I . We denote by Iξ [t] ⊂ B[t,x] the ideal

Iξ [t, t−1,x]∩B[t,x]. When a ∈ k, we denote by Iξ [a] ⊂ B[x] the ideal φa(Iξ [t]) where φa : B[t,x]→ B[x] is
the evaluation morphism sending t to a. In particular I = Iξ [1].

Definition 2.1. We denote by HBB(∆,ξ)(B), or more simply by HBB(∆)(B) when ξ is obvious, the set of ideals
I ⊂ B[x] such that limt→0 t · I = I∆, which means:

• B[t,x]/Iξ [t] is a locally free B[t]-module of rank n = #∆.

• Iξ [0] = I∆ ⊂ B[x]

HBB(∆) is a covariant functor from the category of k-algebras to the category of sets. We call it the
Białynicki-Birula functor.

Remark that the sign convention for the action is consistent with the choices made in the introduction.
The action of the torus was t · (a1, . . . , ad) := (tξ1a1, . . . , t

ξdad) on A
d . This corresponds to the torus action

on the polynomial ring k[x] which is trivial on scalars and is given by t.xe := t−fξ (e)xe on monomials.
The first bulleted item of the definition says that SpecB[t,x]/Iξ [t]→ SpecB[t] is a finite flat family. The

second bulleted item says that its fiber over t = 0 is the monomial subscheme of SpecB[t,x]/ < t >= SpecB[x]
defined by I∆. The limit limt→0 t · I is therefore a well-defined flat limit.

Definition 2.2. Let ξ ∈ Rd . We define the partial order <ξ on monomials in k[x] by setting xe <ξ xg if
fξ(e) < fξ(g), and letting xe and xg be incomparable if fξ(e) = fξ(g). Since we identify monomials and
exponents, we adopt the convention fξ(xe) := fξ(e).
A variable xi is called positive (resp. negative, non-positive, non negative) for <ξ if ξi > 0 (resp ξi < 0,
ξi ≤ 0, ξi ≥ 0).

If the weights ξi are linearly independent over Q, then <ξ is a total order on monomials. Otherwise, the
order is only partial. The most interesting case for us is when ξ ∈Zd is the weight vector of the action.

Definition 2.3.

• Let ξ ∈ Rd , <ξ be the associated order, and f =
∑
aexe ∈ B[x]. Let xe1 , . . . ,xel be the maximal

monomials appearing in f (with non-vanishing coefficients aei , i = 1 . . . l). The initial form of f for
<ξ is in(f ) :=

∑
aeix

ei . This is a unique term when <ξ is a total order, but may be a sum of terms
otherwise. We denote by in(I) the ideal generated by the elements in(f ), f ∈ I .
• Let I ⊂ B[x] and m = xe be a monomial. We denote by inm(I) ⊂ B the ideal generated by the

elements b ∈ B such that in(f ) = bm for some f ∈ I .
• Let ∆ be a standard set of cardinality n. The ideal I is called ∆-monic if inm(I) = 〈1〉 for all m < ∆

and inm(I) = 0 for all m ∈ ∆.
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The following proposition connects Białynicki-Birula families and the order <ξ : an element g is in the
limit ideal I[0] = limt→0 t · I iff its homogeneous components gi are initial parts of elements of I .

Proposition 2.4. Let I ⊂ B[x]. Let g =
∑
i gi ∈ B[x], with gi =

∑
gξ (e)=i cex

e. Then the following conditions are
equivalent:

(1) g ∈ Iξ [0]

(2) ∀i, ∃li ∈ I, in(li) = gi for the order <ξ .

Proof. To prove 2⇒ 1, let si := ti(t · li). We have si ∈ Iξ [t] and si(0) = in(li) = gi . Thus gi ∈ Iξ [0] and
g =

∑
gi ∈ Iξ [0] too.

Conversely, if g ∈ Iξ [0], then g = h(0) with h ∈ Iξ [t]. We decompose h as h =
∑
j sj with sj = Pj(t ·lj ) for some

lj ∈ I and Pj ∈ B[t, t−1,x]. By linearity, we may suppose that Pj = cjx
aj tbj . Since Pj(t·lj ) = tbj+fξ (aj )(t·(cjxaj lj ))

we may suppose that aj = 0 and cj = 1. Grouping terms by linearity, we may suppose that the exponents bj
are pairwise distinct. If we put the weights on the variables with the formulas deg(xe) = fξ(e) and deg(t) = 1,
then sj = tbj (t · lj ) is the only term with degree bj in the sum h =

∑
j sj . Since h ∈ B[t,x] it follows that

sj ∈ B[t,x] and bj ≥ fξ(e) for every term cexe in lj . If bj > fξ(e) for every term, then sj(0) = 0 and we may
ignore sj in the definition of g =

∑
sj(0). If the equality occurs for some term, then sj(0) = in(lj ). This

shows that the homogeneous components of g are initial terms. �

Lemma 2.5. Let A be a commutative ring, M be an A-module, n ≥ 1 be an integer and f : An ⊕M→ An be an
injective morphism of A-modules. Then M = 0.

Proof. First, we suppose that A is Noetherian. Let M i be the direct sum M ⊕ · · · ⊕M with i copies of M .
Let fi : An ⊕M i+1 → An ⊕M i be the morphism defined by fi(a,m0,m1, . . . ,mi) = (f (a,m0),m1, . . . ,mi).
In particular f0 = f . Let ci = f0 ◦ f1 ◦ · · · ◦ fi : An ⊕M i+1 → An. Since f is injective, fi and ci are
injective for all i ≥ 0. Let M i

i+1 ⊂ M
i+1 be the set of elements (m0, . . . ,mi) with m0 = 0. If M is not

zero, the inclusion M i
i+1 ⊂ M

i+1 is strict . The inclusions 0 ⊕M i = fi(0 ⊕M i
i+1) ⊂ fi(0 ⊕M i+1), and

ci−1(0⊕M i) ⊂ ci−1 ◦ fi(0⊕M i+1) = ci(0⊕M i+1) are strict too by injectivity. Thus M = 0, otherwise we
would have a non stationary increasing sequence ci−1(0⊕M i) of submodules in the Noetherian module An.

To prove the general case, let N be the matrix of g : An→ An, where g is the restriction of f to An ⊕ 0,
and let m be any element of M . Let B be the Z-subalgebra of A generated by the entries of N and the
entries of the vector f (0,m). Let h : Bn ⊕Bm→ Bn be the morphism of B-modules obtained by restriction
of f . Since B is Noetherian and h is injective, we get m = 0. �

Lemma 2.6. Let I ⊂ B[x] be an ideal with in(I) = I∆ for the order <ξ and B[x]/I free of rank #∆ as a B-module.
Then the monomials xe, e ∈ ∆ form a basis of B[x]/I .

Proof. The monomials xe, e ∈ ∆ are independent mod I since in(I) = I∆. We argue by contradiction and
we suppose that they generate a strict B-submodule C ⊂ B[x]/I . Then there exists f ∈ B[x] whose class
ḟ ∈ B[x]/I satisfies ḟ < C. Let B[x∆] ⊂ B[x] be the B-submodule generated by the monomials xe, e ∈ ∆.
Replacing f by f − h, h ∈ B[x∆], one may suppose that f has no terms in ∆. In particular, there exists
g ∈ I , with in(g) = in(f ). Replacing f by f − g lowers the initial form of f . Repeating the process of killing
the terms of f in ∆ and of lowering the initial form in(f ), one may suppose that in(f ) is smaller than any
monomial in the finite set ∆. It follows that any term λexe in f =

∑
λexe is smaller than any monomial in ∆

too, hence not in ∆. In particular f ∈ I∆ and there is a direct sum

Bf ⊕B[x∆] ⊂ B[x] = I∆ ⊕B[x∆].

Since in(I) = I∆, the intersection of I with Bf ⊕B[x∆] contains only elements of the form bf ⊕0. Quotienting
the displayed inclusion by I yields an injection Bf /(I ∩Bf )⊕B[x∆]→ B[x]/I . This contradicts Lemma 2.5
since rank(B[x]/I) = rank(B[x∆]) = #∆. �
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Proposition 2.7. Let ξ ∈ Zd and <ξ the associated partial order. Then I ∈ HBB(∆,ξ)(B) if, and only if, the
following conditions are satisfied:

(1) in(I) = I∆

(2) B[x]/I is a locally free B-module of rank #∆.

Proof. We only prove that the conditions imply that I ∈ HBB(∆,ξ), the converse being easy using Proposi-
tion 2.4.

Let us temporarily assume that B[t,x]/Iξ [t] is a locally free B[t]-module. Then the flat limit limt→0 t · I
exists and Proposition 2.4 implies that this limit is I∆. For proving that I ∈ HBB(∆,ξ)(B), it therefore remains
to show that P [t] := B[t,x]/Iξ [t] is a locally free B[t]-module.

Upon localizing B (that is to say, upon replacing SpecB with an affine open subset), we may assume that
B[x]/I is B-free of rank #∆.

The monomials xe, e ∈ ∆ are a basis of B[x]/I by Lemma 2.6. They are therefore also a basis of the
B[t, t−1]-module B[x]/I ⊗k k[t, t−1] ' B[x, t, t−1]/Iξ [t, t−1] the latter isomorphism being given by the torus
action t · xe = t−ξ·exe on the polynomial ring.

The monomials xe, for e ∈ ∆, remain linearly independent in the B[t]-module P [t]. It remains to prove
that P [t] is a finite B[t]-module generated by the elements xe, e ∈ ∆. It suffices to exhibit for every monomial
m ∈ B[x], m < ∆ a polynomial P =m+

∑
e∈∆ cex

e with P ∈ Iξ [t]. Since the elements xe, e ∈ ∆ form a basis of
B[x]/I , the decomposition of m yields an expression m =

∑
cexe mod I . By condition 1), ce = 0 if xe ≥ξ m.

Thus we can take P = tfξ (m)(t · (m−
∑
cexe)). �

Remark 2.8. According to the intuition from Gröbner bases, one could think that the second condition is a
consequence of the first one. This is not the case, as is shown by the example d = 1, I = 〈x2 + x3〉, ξ = −1,
∆ = {1,x}.

Definition 2.9. Let ξ ∈Rd and <ξ the corresponding order. An ideal I ⊂ B[x] with B[x]/I finite is called
bounded for <ξ if for every non-positive variable xi , there exists an integer ri ≥ 0 with xrii ∈ I .

Lemma 2.10. Let I ∈ HBB(ξ,∆)(B) be an ideal. Then I is bounded for <ξ .

Proof. Up to reordering the components of ξ , one can assume that ξi ≥ ξi+1. We denote by k, l the integers
such that ξi > 0⇔ i < k and ξi < 0⇔ i ≥ l.

The monomials with exponents in ∆ form a basis of B[x]/I by Proposition 2.6. In particular, every
monomial xe leads to an element xe +

∑
m∈∆ cmx

m in I . For i ≥ l, ri � 0 and xe = xrii , we have cm = 0 since
in(I) = I∆. Thus hi := xrii ∈ I .

Let xi be a non-positive variable of weight 0. To prove that xri ∈ I for large r, we shall prove that for
any monomial m ∈ B[xl , . . . ,xd], xrim ∈ I for large r, and subsequently apply that to the monomial m = 1.
If the exponent (el , . . . , ed) of m = xell · · ·x

ed
d is large (in concrete terms, if ei ≥ ri for some i), then m ∈ I by

the above. We are therefore left with a finite collection of m for which the claim has to be checked. We
proceed by induction over m. Let m be a minimal element of the finite collection for which the claim has
not been proved yet. By our hypothesis on I , for large r, the monomial xrim lies in the limit ideal Iξ [0],
thus I contains an element f = xrim+R, where all terms in R are strictly smaller with respect to <ξ than
xrim. We write the monomials appearing in R as m1m2m3, with m1 ∈ k[x1 . . . ,xk−1],m2 ∈ k[xk . . . ,xl−1],
m3 ∈ k[xl , . . . ,xd]. Such a product satisfies m1m2m3 <ξ x

r
im only if m3 <ξ m. By induction we know that

when multiplying by an adequate power x
p
i , we get x

p
i m3 ∈ I , hence x

r+p
i m = xpi f −x

p
i R ∈ I , as required. �

Proposition 2.11. Let I ∈ HBB(ξ,∆)(B) be an ideal. Then for every non-positive variable xi , we have xni ∈ I ,
where n := #∆ is the cardinality of ∆.

Proof. After applying a suitable permutation, we may assume that x1, . . . ,xl (resp. xl+1, . . . ,xd ) are the
non-positive (resp. positive) variables, and we shall prove that xn1 ∈ I . For every monomial m ∈ k[x2, . . . ,xd],
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there exists a unique h(m) ∈N, call it the height, such that m− := xh(m)−1
1 m ∈ ∆ and m+ := xh(m)

1 m < ∆. In
particular, h(m) = 0 iff m < ∆, and all heights of all xe ∈ k[x2, . . . ,xd] sum up to n, the cardinality of ∆.

Let M ⊂ k[x2, . . . ,xl] be the set of monomials with exponents in ∆′ := N
l−1 ∩∆. The set M is finite, and

we number its elements such that m+
1 ≤ξ m

+
2 ≤ξ · · · ≤ξ m

+
#M . For any monomial m ∈ k[x2, . . . ,xd], we define

H(m) :=
∑
m+
i ≤ξm+ h(mi). Note that H(m) ≤

∑
xe∈k[x2,...,xd ]h(xe) = n. In particular, if we prove

(1) ∀m = xe ∈ k[x2, . . . ,xl], x
H(m)
1 m ∈ I

then for the particular choice m := 1, (1) implies xn1 ∈ I , which concludes the proof.
Since I is bounded by Lemma 2.10, for each i with 2 ≤ i ≤ l, there exists some ri such that xrii ∈ I . Thus (1)

is true if xrii divides m. It follows that the set C :=
{
m ∈ k[x2, . . . ,xl] |m is a monomial, x

H(m)
1 m < I

}
is finite.

If (1) is not true, then C , ∅ and C contains an element m0 which is minimal in the sense that m+
0 ≤ξ m+ for

every m ∈ C,m ,m0.
The decomposition of m+

0 on the basis xe, e ∈ ∆ of B[x]/I yields an expression f =m+
0 +

∑
e∈∆ cex

e with
f ∈ I . By Proposition 2.7, ce = 0 if xe ≥ξ m+

0 . Thus

(2) f =m+
0 +

∑
xe<m+

0

cex
e.

We have

xe = xe1
1 · · ·x

ed
d ∈ ∆⇒ xe1

1 · · ·x
el
l ∈ ∆⇒ e1 < h(xe2

2 · · ·x
el
l ).

Since x1 is a non-positive variable, and xl+1, . . . ,xd are positive, we get:

(xe2
2 · · ·x

el
l )+ = x

h(x
e2
2 ···x

el
l )

1 (xe2
2 · · ·x

el
l ) ≤ξ x

e1
1 x

e2
2 · · ·x

el
l x

el+1
l+1 · · ·x

ed
d = xe

Here is the upshot of the above: if C , ∅, m0 ∈ C is its minimum, and a monomial xe = xe1
1 · · ·x

ed
d appears

in a term of f , then me := xe2
2 · · ·x

el
l satisfies m+

e ≤ξ xe <ξ m+
0 . Thus H(me) ≤ H(m0) − h(m0), and by

minimality of m0, mex
H(me)
1 ∈ I . It follows that the multiple xexH(m0)−h(m0)

1 lies in I . The product of the

expression (2) with x
H(m0)−h(m0)
1 yields

m0x
H(m0)
1 =m+

0x
H(m0)−h(m0)
1 = f xH(m0)−h(m0)

1 −
∑

cex
ex
H(m0)−h(m0)
1 ∈ I,

a contradiction. It follows that C = ∅, and (1) is true. �

Using the order <ξ , it not in general possible to make a division like in Gröbner basis theory because
the algorithm may not terminate, due to the possible negative signs in the coordinates of ξ . However, for
Białynicki-Birula families, a substitute of a division is possible. This proposition will not be used in the
sequel, but we include it for itself.

Proposition 2.12. Let I ∈ HBB(ξ,∆)(B). Let o1, . . . , ou be the outside corners of ∆, and f1, . . . , fu ∈ I be elements
with in<ξ (fi) = oi . Then for all f ∈ B[x], there exists a division

f =
∑

λifi +R∆ +R′

such that

• each term τ = bxe of R∆ satisfies e ∈ ∆,

• for every term cxs of R′ and for every m ∈ ∆, xs <ξ xm.

For every such division,

• R∆ is independent of the choice of the division,

• f ∈ I if, and only if, R∆ = 0,
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• the map f 7→ R∆ is a homomorphism of B-modules B[x]→ B[x]/I , where we identify the latter module
with B[∆] := ⊕e∈∆Bxe using Lemma 2.6.

Proof. To construct the expected expression f =
∑
λifi +R∆ +R′ , we proceed in several steps. At each

step j, we have an expression f =
∑
λijfi + Tj . For j = 0, we take λi0 := 0, T0 := f . We decompose

Tj = R∆,j +R′j , with R∆,j :=
∑
m∈∆ cmjm and R′j :=

∑
m<∆ cmjm. The initial part in<ξ (R′j ) contains a term

µj in<ξ (fij ) for some fij by hypothesis. We set λij (j+1) := λij j + µj and λi′(j+1) := λi′j for i′ , ij . Then
Tj+1 := f −

∑
λi(j+1)fi = Tj −µjfij decomposes, analogously as above, into Tj+1 = R∆,j+1 +R′j+1.

If, for some j, it happens that R′j = 0, then we define R∆ := R∆,j and R′ := 0, and have constructed the
expected expression. Otherwise, after a finite number of steps, the terms in R′j are arbitrarily small and the
condition of the second bullet is satisfied with R′ = R′j and R∆ = R∆,j .

If f ∈ I , then in the expression f =
∑
λifi +R∆ +R′ , we have R∆ = 0 since in<ξ (f −

∑
λifi) cannot lie in

∆ by hypothesis. In particular, if f =
∑
µifi +S∆ +S ′ is another division, we take their difference and obtain

a division of 0 ∈ I , which implies R∆ = S∆.
It is obvious that f 7→ R∆ is a homomorphism of B-modules as it is possible to add divisions, or to

multiply them with a scalar λ ∈ B.
Let us now consider the B-submodule B[∆] of B[x]. The identity on B[∆] factors as B[∆]→ B[x]→ B[∆]

where the first arrow is the inclusion and the second is the morphism R∆. The above implies that this
factorization induces a factorization B[∆]→ B[x]/I → B[∆]. This composition is surjective between locally
free modules of the same rank, so it is an isomorphism. In particular, we obtain that R∆ = 0 implies
f ∈ I . �

3. Definition of monic functors

The goal of this section is to define monic functors, which parameterize ideals with a prescribed initial
ideal. In general, the initial ideal does not commute with arbitrary base change, but only with flat base
change (see [BGS93]). However, we prove that ∆-monic families are stable by arbitrary (non flat) base change
(Proposition 3.3) and functoriality follows.

Remark 3.1. When working with monic functors, we will consider total orders rather than the partial orders
used in the previous section. The reason is that we control the base changes and the functoriality for the
graded parts inm(I). With a total order, in(I) =

⊕
m monomial inm(I)m, thus we control the base change of

the initial ideal through its graded pieces. The following proposition shows that this control may fail for a
partial order.

Proposition 3.2. Let I ⊂ B[x] be a ∆-monic ideal for an order < refining the partial order <ξ , ie. in<,m(I) = B
if m < ∆ and in<,m(I) = 0 if m ∈ ∆. If < is a total order, then in(I) = I∆. This may not be true if < is not a
total order.

Proof. If the order is total, then the initial ideal is generated by terms thus it is graded by the degrees of the
corresponding monomials. As for the counterexample, we take I ⊂ k[x,y] generated by < x+ y,x2,xy,y2 >,
∆ = {1,x,y},ξ = (1,1) and < identical to <ξ (trivial refinement). Then the sum of the graded parts
⊕m monomialinm(I)m = I∆ but in(x+ y) = x+ y ∈ in(I) is not in I∆. �

Proposition 3.3. Let < be a total order refining <ξ . Let I ⊂ B[x] be a bounded ideal. Let m be a monomial.
If for all m′ ≥ m, either inm′ (I) = 0 or inm′ (I) = 〈1〉 holds, then for every base change B→ A, the equality
inm(IA[x]) = inm(I)A holds.

Proof. Obviously, inm(I) = 〈1〉 implies inm(IA[x]) = 〈1〉. If inm(I) = 0, we argue by contradiction, supposing
that inm(IA[x]) , 0. Choose f ∈ IA[x] with in(f ) = am, a , 0. Let xj be a non-positive variable. Then
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x
dj
j ∈ I for dj large. In particular, replacing f with f −λxej , we may assume that f has no term divisible by

x
dj
j . Choose an expression

(3) f =
∑

aifi

with ai ∈ A and fi ∈ I ⊂ B[x]. As above, we may assume that none of the fi contains a term divisible by x
dj
j .

Let m′ be the maximal monomial appearing in the fi . Note that m′ ≥m and, more precisely, m′ > m since
inm(I) = 0. Among all possible expressions (3), choose one with minimal m′ . (Although < is not necessarily
a monomial order, a minimal m′ exists since we have bounded the exponent of the non-positive variables.)
Let J := {i : in(fi) = λim′} be the set of indices of fi with initial monomial m′ . The coefficient of m′ vanishes
on the right hand side of (3), thus

∑
i∈J ai in(fi) =

∑
i∈J (aiλi)m

′ = 0. Thus
∑
i∈J aiλi = 0. Let g ∈ I with

in(g) =m′ and such that g has no term divisible by x
dj
j . Let f ′i := fi if i < J and f ′i := fi −λig if i ∈ J . Then

f =
∑

aif
′
i

and this expression contradicts the maximality of m′ . �

Let X = SpecA be the affine scheme corresponding to the ring A. The ideal inm(I) ⊂ A defines a closed
subscheme of X. If X is a scheme which is not affine, we wish to glue the local constructions we have been
working with so far. Since open immersions are flat, the following proposition implies that gluing is possible
and that for any sheaf of ideals I ⊂ OX[x], there is a well-defined sheaf of ideals inm(I ) ⊂ OX on a possibly
non-affine scheme X. This allows us to speak of bounded and monic, resp., ideal sheaves rather than ideals.

Proposition 3.4. Let < be a total order refining <ξ . Let I ⊂ B[x] be a bounded ideal. Let B→ A be a ring
homomorphism which makes A a flat B-module. Then inm(IA[x]) = inm(I)A.

Proof. Theorem 3.6 of [BGS93] proves the statement in the case where < is a monomial order. The same
proof also goes through in our context, provided that we take care of the high powers of the non-positive
variables as we did in the proof of Proposition 3.3. �

Definition 3.5. Let < be a total order refining <ξ and ∆ be a standard set. Let B be a k-algebra and
Hmon(<,∆)(B) be the set of ideals I ⊂ B[x] such that

• I is bounded and ∆-monic

• B[x]/I is B locally free of rank #∆

This defines a covariant functor Hmon(<,∆), which we call a monic functor, from the category of k-algebras to
the category of sets.

Remark 3.6. The above definition makes sense. Indeed, it follows from the base change Proposition 3.3
that being a ∆-monic ideal is stable by base change. The boundedness property and the local freeness are
also stable by base change.

4. Monic functors are representable

The goal of this section is to prove that the monic functors are representable (Theorem 4.6).

Proposition 4.1. Let < be a total order refining <ξ . Let I ⊂ B[x] be a bounded ideal with B[x]/I a locally free
B-module of rank n, and let I ⊂ OX[x] be the ideal sheaf on X := SpecB defined by I . Let ∆ be a standard set of
cardinality n. There exists a locally closed subscheme Z ⊂ X such that

• the restriction of I to Z is a bounded ∆-monic family,

• any morphism f : SpecA→ SpecB such that IA[x] is a bounded ∆-monic family factors through Z .
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Proposition 4.1 is a particular case of Proposition 4.3, which we shall prove by induction.

Lemma 4.2. Let I ⊂ B[x] be a bounded ideal for the order <ξ such that B[x]/I is a finite B-module. Let
C := {xe | ei < ri} be a “hypercuboid of monomials” with edges of lengths ri . Then it is possible to choose the integers
r1, . . . , rd such that:

• the monomials in C generate B[x]/I and B[x, t]/Iξ [t]

• if m is a monomial with m < C, there exists f ∈ I with f =m+
∑
e∈C cex

e, and in<ξ (f ) =m .

Proof. Since I is bounded, if xi is non-positive, we can choose ri such that xrii ∈ I . Let S be a set of
monomials generators of B[x]/I . We may suppose that for every m in S and every non positive variable xi ,
the exponent of xi in m is smaller than ri . For xi positive, we can choose ri large, such that any monomial
m multiple of xrii whose exponent in any non-positive variable xj is less than rj satisfies m >ξ s for any s ∈ S .
Moreover, we may choose ri larger than the exponent of xi in any monomial of S . The monomials in C
generate B[x]/I as C ⊃ S .

Let m < C be a monomial. Then m is a multiple of some xrii . If one can take xi non-positive, m ∈ I
and we take f =m. If not, xi is positive and the decomposition in B[x]/I of m on S yields an expression
f =m−

∑
s∈S csx

s in I with in<ξ (f ) =m.

Then Iξ [t] contains the elements tfξ (m)(t · f ) = m −
∑
s∈S t

fξ (m)−fξ (s)csxs. It follows that the quotient
B[t,x]/Iξ [t] is a finite B[t]-module generated by the monomials in C. �

Proposition 4.3. Let < be a total order refining <ξ . Let I ⊂ B[x] be a bounded ideal such that B[x]/I is
a locally free B-module of rank n, and let I ⊂ OX[x] be the ideal sheaf on X := SpecB defined by I . Let
C := {xe | ei < ri} be a “hypercuboid of monomials” of edge lengths ri and therefore, of cardinality s :=

∏d
i=1 ri ,

satisfying the conditions of Lemma 4.2. We number the monomials mi ∈ C such that m1 > m2 > · · · > ms. Let
r ≤ s, and fix a map µ : {1, . . . , r} → {0,1}. Then there exists a locally closed subscheme Zr ⊂ X (possibly empty)
such that

• The sheaf of ideals Ir , which we define as the restriction of I to Zr , is a bounded monic family with
in(Ir )m = 〈1〉 for m < C and in(Ir )mi

= 〈µ(i)〉 for 1 ≤ i ≤ r .
• Let f : SpecA→ SpecB be a morphism and K := IA[x]. Then in(K)m = 〈1〉 for m < C and we have

in(K)mi
= 〈µ(i)〉 for 1 ≤ i ≤ r if, and only if, f factors through Zr .

Proof. We start with the first item, which we prove by induction on r ≥ 0.
When r = 0, we may take Z0 = X since the condition in(Ir )m = 〈1〉 for m < C is true by construction of

C. We may assume that Zr−1 is adequately defined. Let Fr ⊂ Zr−1 the closed subscheme defined by the
sheaf of ideals I (Fr ) := in(Ir−1)mr

. Let Or := Zr−1 \Fr . We define

Zr :=

Fr if µ(r) = 0

Or otherwise.

By Proposition 3.3 and the induction hypothesis, we have in(Ir )m = 〈1〉 for m < C and in(Ir )mi
= 〈µ(i)〉

for 1 ≤ i ≤ r − 1. We have to prove that in(Ir )mr
= 〈µ(r)〉. This is a local problem, so we may assume that

Zr−1 ⊂ X is a closed subscheme defined by an ideal Jr−1 ⊂ B. If µ(r) = 1, the base change Zr ↪→ Zr−1 is
open, thus flat. Proposition 3.4 therefore shows that in(Ir )mr

= 〈1〉 on a neighborhood of any p ∈ Zr .
Assume now that µ(r) = 0. We claim that in(Ir )mr

= 0. The problem is local, so we may assume that
both Zr and Zr−1 are affine. Accordingly, we replace the sheaves Ir and Ir−1 by their respective ideals of
global sections, which we denote by Ir and Ir−1, respectively. We will argue by contradiction, supposing
that there exists some f ∈ Ir with in(f ) = cmr , c , 0. Take some g ∈ Ir−1 that restricts to f over Zr . Using
Lemma 4.2, we may assume that both f and g are linear combinations of monomials in C, f =

∑
mi∈C aimi

and g =
∑
mi∈C bimi , resp. Among all possible g , choose one which minimizes in(g). Then in(g) = dm with
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m ≥ mr . Suppose that m > mr . Since in(Ir−1)m = 〈0〉 or 〈1〉 by induction hypothesis and since d , 0, we
obtain that in(Ir−1)m = 〈1〉. Choose h ∈ Ir−1 with in(h) =m. Then g ′ := g −dh contradicts the minimality of
g . Thus m =mr , and d ∈ (Ir−1)mr

= I(Fr ) vanishes on Fr . Since d restricts to c on Fr , it follows that c = 0.
This is a contradiction, which finishes the proof of in(Ir )mr

= 0.
We now come to the second point. If f factors through Zr , then in(K)m = 〈1〉 for m < C and in(K)mi

=
〈µ(i)〉 for 1 ≤ i ≤ r, as these properties are inherited from Zr by Proposition 3.3.

If, on the other hand, f does not factor through Zr , then we want to prove that in(K)mi
, 〈µ(i)〉 for some

i, 1 ≤ i ≤ r . We may assume that f factors through Zr−1, since in the complementary case, we are done by
induction.

We first consider the case µ(r) = 0. By the factorization property of f through Zr−1, we may assume that
B is the coordinate ring of the scheme Zr−1. We denote by f # : B→ A the morphism associated with f .
Since f does not factor through Zr , there exists some g ∈ Ir−1 with in(g) = cmr , f #(c) , 0. The pullback of
g to A[x] shows that in(IA[x])mr

, 〈0〉, and we are done.
Now consider the case µ(r) = 1. Since Zr ⊂ Zr−1 is open in this case, the factorization property of

f implies the existence of a point p ∈ SpecA with f (p) ∈ Zr−1 and f (p) < Zr = Zr−1 \ Fr . In particular,
in(I · k(p)[x])mr

= 0 by Proposition 3.3. Thus in(K)mr
, 〈1〉, as expected, since otherwise we would have

in(I · k(p)[x])mr
= 〈1〉 by Proposition 3.3. �

Remark 4.4. It is natural to try to formulate the last proposition in terms of commutative algebra, without
sheafs of ideals. However, the subscheme Zr is in general not an affine scheme. For instance, suppose that k
is an algebraically closed field, let B = k[a,b], I = I(a,b) = 〈x3

1,x2 + ax1 + bx2
1〉 and choose the order such

that x1 >> x2. Then for every closed point (a0,b0) , (0,0), the ideal I(a0,b0) contains an element with
initial term x2

1. Since I(0,0) = 〈x2,x
3
1〉, it follows that the locus where I admits x2

1 as an initial term is the
complement of the origin in the plane, which is not affine.

Proposition 4.5. Let < be a total order refining <ξ , Let I ⊂ B[x] be an ideal in Hmon(<,∆)(B), then for every
non-positive variable xi , we have xni ∈ I (with n = #∆).

Proof. By definition, I is bounded and in<(I) = I∆. Then we can run exactly the same proofs as in Lemma
2.6 and Proposition 2.11. In these statements, the order is partial, but we can a fortiori consider the proof for
a total order. �

Theorem 4.6. Let < be a total order refining <ξ . Then the monic functor Hmon(<,∆) is representable by a locally
closed scheme Hmon(<,∆) of Hn(Ad), where n = #∆.

Proof. Let I ⊂ B[x] be an ideal defining a flat family SpecB[x]/I → SpecB of relative length n with I
bounded and ∆-monic. Let Li ⊂Hn(Ad) be the closed subscheme of Hn(Ad) parametrizing the subschemes
Z included in the subscheme {xni = 0} ⊂A

d . Let L := ∩xi negative Li . Since the universal ideal of the Hilbert
scheme (see [Led11] for the construction and properties of that universal ideal) is bounded over L, there is a
locally closed subscheme L∆ ⊂ L parametrizing ∆-monic ideals (Proposition 4.1). By the universal property
of the Hilbert scheme, the ideal I corresponds to a unique morphism φ : SpecB→ Hn(Ad). Proposition
4.5 implies that the morphism φ factors through L. Proposition 4.1 (the universal property of L∆) implies
that φ even factors through L∆. Conversely, any morphism SpecB→ L∆ yields a ∆-monic bounded ideal
by pullback of the universal ideal over the Hilbert scheme. Upon defining Hmon(<,∆) := L∆, we thus get the
required result. �

5. Białynicki-Birula functors are representable

The goal of this section is to prove that Białynicki-Birula functors are representable.
So far, we have identified Białynicki-Birula families with families with an appropriate initial ideal for a

partial order. On the other hand, we have proved that functors of families with a prescribed initial ideal for



Białynicki-Birula schemes in Hilbert schemes of points 13Białynicki-Birula schemes in Hilbert schemes of points 13

a total order are representable. To conclude, we will prove that having an initial ideal for a partial order is
equivalent to having an initial ideal for two ad hoc total orders. The representability of the Białynicki-Birula
functors will follow.

The total orders that we need are introduced in the following definition. We call them signed orders.
They refine the partial orders <ξ used in Section 2. Like the orders <ξ , they are not monomial orders in the
sense of [Eis99, Chapter 15] if some components of ξ are negative.

Definition 5.1. Suppose given a map ε : {1, . . . ,d} → {−1,1}. The partial order <ξ on the monomials can
be refined to a total order < as follows: For all monomials xe and xf with fξ(e) = fξ(f ), we have xe < xf if,
and only if, (ε(1)e1, . . . ,ε(d)ed) < (ε(1)f1, . . . ,ε(d)fd) in the lexicographic order.

We call such an order < a signed order refining <ξ .

Remark 5.2. Special cases of signed orders are implicit in [ES87, ES88, Gro96, Nak99], for studying the
Hilbert scheme of points in the two-dimensional case.

Proposition 5.3. Let ξ ∈ Z
d . Let <+ be a signed order which refines <ξ and ε the function that defines

<+. Let <− be the “opposite” signed order, i.e. the signed order defined by the opposite function −ε. Then
HBB(∆,ξ) =Hmon(<+,∆) ∩Hmon(<−,∆).

Proof. It is clear that HBB(∆,ξ) ⊂Hmon(<+,∆) ∩Hmon(<−,∆) since by Proposition 2.7, HBB(∆,ξ) ⊂Hmon(<,∆) for
any refinement < of <ξ . Conversely, take I ∈ Hmon(<+,∆)(B)∩Hmon(<−,∆)(B). For proving that I ∈ HBB(∆,ξ)(B),
we first prove that in<ξ ,m(I) = 〈1〉 for m < ∆. This will imply by Proposition 2.4 that a monomial m < ∆
satisfies m ∈ Iξ [0].

We argue by contradiction. Suppose that the set C :=
{
m < ∆ | in<ξ ,m(I) , 〈1〉

}
is non empty. Since I

is bounded, C is finite and the quotient B[t,x]/Iξ [t] is a finite B[t]-module, by Lemma 4.2. Let m′ be
the smallest element of C for the order <+. Since m′ < ∆, there is an f ∈ I with in<+

(f ) = m′ . We write
f =m′ + r + s+ t, with

r =
∑

fξ (e)<fξ (m′)

cex
e, s =

∑
e∈∆

fξ (e)=fξ (m′)
e<+m

′

cex
e, and t =

∑
e<∆

fξ (e)=fξ (m′)
e<+m

′

cex
e.

By minimality of m′ , for any term cexe in t, there exists some ge ∈ I of shape ge = xe +
∑
fξ (f )<fξ (e)df x

f .
Let

h := f −
∑

cexe a term of t

cege.

Then h reads h =m′ + r + s+u with

u =
∑
e<∆

fξ (e)=fξ (m′)
e<+m

′

ce(x
e − ge).

The only terms cexe in h with fξ(e) = fξ(m′) are the terms in s. Note that the orders <+ and <− have been
chosen such that any pair of monomials m,m′ satisfies the following:

• if fξ(m) , fξ(m′), then m <+ m
′⇔m <− m

′

• if fξ(m) = fξ(m′), then m <+ m
′⇔m′ <− m.

Thus, if s , 0, then in<−(h) is a term cexe with e ∈ ∆, contradicting the assumption that I ∈ Hmon(<−,∆)(B).
We thus obtain that s = 0 and in<ξ (h) =m′ , contradicting the definition of C.

Summing things up, SpecB[t,x]/Iξ [t] is a finite family over SpecB[t]. By construction, this is a flat family
of relative length n over the open set t , 0. The fiber B[x]/Iξ [0] over t = 0 is a quotient of B[x]/I∆ which
is a flat family of relative length n over SpecB. It follows by semi-continuity that B[t,x]/Iξ [t] is a locally
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free B[t]-module of rank n with Iξ [0] = I∆. Indeed, let Fitti ⊂ B[t] be the ith Fitting ideal of B[t,x]/Iξ [t].
The local freeness of rank n of B[t,x]/Iξ [t] is equivalent to the equalities Fittn = B[t] and Fittn−1 = 0. The
equality Fittn = B[t] is true since the fiber of the family has length at most n over each closed point. Since
the Fitting ideals commute with the base change B[t]→ B[t, t−1], we obtain Fittn−1B[t, t−1] = 0, hence
Fittn−1 = 0 and B[t,x]/Iξ [t] has rank n. Since a surjective morphism between free modules of the same
rank is an isomorphism, the equality Iξ [0] = I∆ follows. �

Theorem 5.4. The Białynicki-Birula functor HBB(∆,ξ) is representable.

Proof. By the above, the Białynicki-Birula functor is an intersection of two functors Hmon(<+,∆) and
Hmon(<−,∆), both representable by locally closed subschemes Hmon(<+,∆) and Hmon(<−,∆), respectively,
of the Hilbert scheme. The Białynicki-Birula functor is therefore representable by the schematic intersection
Hmon(<+,∆) ∩Hmon(<−,∆). �

5.1. Signed orders are limit orders

The results of this section are not directly used in the proof of our main results. However, they give
some intuition on the role of the signed orders which may appear unnatural at first glance: a signed order
< is obtained from <ξ with an infinitesimal deformation of ξ, and the monic functors are stable under
infinitesimal deformations. These facts explain our strategy to replace <ξ with a signed order < when
studying the representability of monic functors.

Definition 5.5.

• A sequence of partial orders <j converges to the total order < if for every pair of monomials a,b, we
have a < b if, and only if, a <j b for j large enough.

• Let < be a signed order defined by the function ε. A sequence compatible with ε is a sequence ξj in

R
d converging to 0 such that the sign of ξ

j
k is ε(k) and such that the quotient ξ

j
l /ξ

j
k tends to 0 if,

and only if, k < l.

The connection between signed orders and convergence is given by the next proposition (the proof of
which, being easy, is left to the reader).

Proposition 5.6. Let < be a refinement of the order <ξ . Then the following conditions are equivalent:

• The order < is the signed order defined by the function ε

• For every sequence ξj compatible with ε, the sequence of orders <ξ+ξj converges to <.

The following proposition tells that monic functors are stable under small deformations of the order as
long as we consider families parameterized by noetherian rings.

Proposition 5.7. Let <,<j be total orders refining <ξ . We suppose that the sequence of orders <j converges to <.

Then for j large, the functors Hmon(<j,∆)
noeth and Hmon(<,∆)

noeth are isomorphic.

Proof. This is Proposition 22 in the first arxiv version of this paper [EL12], where noetherianity is always
assumed. The proof is thus omitted. �

6. Białynicki-Birula schemes and Hilbert-Chow morphisms

The goal of this section is to prove the following theorem:

Theorem 6.1. If ξi ≤ 0, then HBB(ξ,∆) is schematically included in the fiber over the origin ρ−1
i (0), where

ρi :Hn(Ad)→ Symn(A1) is the Hilbert-Chow morphism associated with the ith coordinate.
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To be precise, let ρ : Hn(Ad) → Symn(Ad) be the usual Hilbert-Chow morphism. The projection
pi : Ad → A

1 to the ith-coordinate induces a morphism pni : Symn(Ad) → Symn(A1). Recall that
Symn(A1) ' A

n via elementary symmetric functions. We denote by ρi := pni ◦ ρ the Hilbert-Chow
morphism associated with the ith coordinate. We denote by 0 ∈ Symn(A1) the point corresponding to n
copies of the origin of A1.

Lemma 6.2. Let I ∈ HBB(ξ,∆)(B). Suppose that xi is a non-positive variable. Let mi be the multiplication by xi
in B[x]/I . Then there exists a basis of B[x]/I such that the matrix of mi is strictly lower triangular.

Proof. We consider any signed order < refining <ξ and defined by (ε,o) with o = Identity and ε(i) = −1. The
monomials bi with exponents in ∆ are a basis of B[x]/I . We number them such that b1 > b2 > · · · > bn. Then,
if xibj ∈ ∆, we get xibj = bl , l > j . If xibj < ∆. The decomposition of xibj ∈ B[x]/I yields xibj =

∑
bk∈∆ ckbk

mod I . Since in<ξ (I) = I∆, ck , 0 implies bk <ξ xibj ≤ξ bj and k > j . �

Proof of Theorem 6.1. We recall the observation by Bertin [Ber10] that the Hilbert-Chow morphism is given
by the linearized determinant of Iversen. Let I ∈ Hmon(<,∆)(B) and b1, . . . , bn a basis of B[x]/I . If P ∈ k[xi],
we denote by C

j
P the jth column of the matrix (with respect to our fixed basis) of multiplication by P .

If P1 ⊗ · · · ⊗ Pn is a pure tensor in k[xi]⊗n, we put ld(P1 ⊗ · · · ⊗ Pn) := det(C1
P1
, . . . ,CnPn). The symmetric

group Sn acts on k[xi]⊗n; we denote by k[xi](n) ⊂ k[xi]⊗n the invariant part. Iversen [Ive70] proved
that ld : k[xi](n) → B is a k-algebra homomorphism. As was remarked by Bertin, this homomorphism
corresponds to the Hilbert-Chow morphism ρi . The ideal of the origin is generated by the elementary
symmetric polynomials, which have degree at least one. For proving the theorem, it therefore suffices to
show that det(C1

P1
, . . . ,CnPn) = 0 if xi divides some Pj . According to the lemma above, that determinant is the

determinant of a lower triangular matrix, and that triangular matrix has a zero term on the diagonal if xi
divides some Pj . �

7. Relations to literature

After the first version of this paper was posted on the arXiv, Drinfeld has proved in [Dri15] results that
allow to retrieve several results of this paper, with a different approach.

Drinfeld settles his constructions in the category of algebraic spaces of finite type over a field. Using
Drinfelds’s language (§ 0.2, ibid.), let H+ be the attractor of the Hilbert scheme of points H =Hn(Ad), then
H+ is represented by a finite type scheme, and the limit map q+ :H+→HT is affine (Theorem 1.4.2, ibid.).
Theorem 1.4.2 deals with algebraic spaces, but since HT is a scheme and q+ is affine, it follows that H+

is a scheme as well. The functor HBB(∆,ξ) is canonically identified with the fiber (q+)−1([Z∆]), hence is
representable by an affine scheme.

The Hilbert-Chow morphism is considered in Theorem 6.1 under the condition ξi ≤ 0. In the special case
ξi < 0, Drinfeld’s results can be applied : (Symn(A1))+ = {0} by [Dri15, § 1.3.4]; it follows by functoriality of
(−)+ that the whole H+ is schematically included in the fiber over {0}.

To get the locally closed embedding, note that H is quasi-projective and fix a T -equivariant locally closed
embedding H ⊂ P

N . Then (H)+ ⊂ (PN )+ is also a locally closed embedding by Lemmas 1.4.7 and 1.4.9 from
[Dri15]. Moreover, by the classical Białynicki-Birula decomposition, each component of (PN )+ is locally
closed in P

N . Putting everything together, a component of H+ is a locally closed subscheme of PN that
factors through the locally closed H . It follows that HBB(∆,ξ)→H is a locally closed embedding.

We conclude by proving that some Białynicki-Birula strata are reducible for the Hilbert scheme of A3. It
is a consequence of the reducibility of the Hilbert scheme proved by Iarrobino in [Iarr72].
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Proposition 7.1. Let n be such that the Hilbert scheme Hn(A3) is reducible. Let n1 >> n2 >> n3 >> 0 and let
T be the one-dimensional torus acting on A

3 via t · (x,y,z) = (tn1x, tn2y, tn3z). Then there exists ∆ such that the
Białynicki-Birula stratum HBB(T ,∆) ⊂Hn(A3) is reducible.

Proof. Let C1 ⊂ Hn(A3) be the component containing the unions of n distinct points and C2 ⊂ Hn(A3)
be any other component. By the choice of the weights, the fixed points for the torus action are the
monomial schemes Z∆ with ideal I∆. Thus, if Z ∈ C2 \C1, limt→0 t ·Z = Z∆ for some ∆. In particular,
dim(C2 ∩HBB(T ,∆)) ≥ 1.

We have dim(C1∩HBB(T ,∆)) ≥ 1 too. Indeed, let Z be the disjoint union of points with integer coordinates
(i, j,k) with (i, j,k) ∈ ∆. If xaybzc ∈ I∆, any point in the support of Z has coordinates 0 ≤ x < a or 0 ≤ y < b
or 0 ≤ z < c, thus f = x(x−1) . . . (x− (a−1))y(y −1) . . . (y − (b−1))z(z−1) . . . (z− (c−1)) is in I(Z). We have
limt→0 t

n1a+n2b+n3c(t · f ) = xaybzc, thus limt→0 t ·Z ⊂ Z∆. The equality limt→0 t ·Z = Z∆ follows since the
two schemes have the same length.

Thus HBB(T ,∆) contains at least two components, one in C1 and one in C2, meeting in Z∆. �
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