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Abstract. We show that any reduced non-degenerate closed subscheme X ⊂ P
n of dimension

m ≥ 1 whose graded coordinate ring is Cohen-Macaulay is of wild Cohen-Macaulay type, except
for a few cases which we completely classify.
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Le type de représentation de Cohen-Macaulay des variétés projectives arithmétiquement
Cohen-Macaulay

Résumé. Nous montrons que tout sous-schéma fermé réduit et non dégénéré X ⊂ P
n de di-

mension m ≥ 1 dont l’anneau de coordonnées homogènes est Cohen-Macaulay est de type de
Cohen-Macaulay sauvage, excepté dans quelques cas que nous classifions complètement.
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1. Introduction

A classical result in representation theory of quivers is Gabriel’s theorem, stating that a finite connected
quiver supports only finitely many irreducible representations (that is, indecomposable modules over the
associated path algebra) if and only if it is of type A, D, E. The classification of tame quivers as Euclidean
graphs, or extended Dynkin diagrams, of type Ã, D̃, Ẽ came shortly afterwards. Remarkably, any other finite
connected quiver supports arbitrarily large families of indecomposable representations, which is to say, it is
of wild representation type.

In algebraic geometry and commutative algebra, the relevant problem in terms of representation theory of
algebras concerns the complexity of the category of maximal Cohen-Macaulay modules over the coordinate
ring k[X] of a closed m-dimensional subvariety X ⊂ P

n over a field k. For m > 0, assuming k[X] to
be Cohen-Macaulay (so X is said to be arithmetically Cohen-Macaulay, briefly ACM), these correspond
to ACM sheaves, namely coherent sheaves E on X without intermediate cohomology, that is, satisfying
Hi(X,E(t)) = 0 for all t ∈ Z and 0 < i < m. For hypersurfaces [] these modules correspond to matrix
factorizations, which in turn are related to mirror symmetry, see [].

In this sense, reduced projective ACM varieties of finite CM-type are classified, see [], see also
[,,,]. Their list (for positive dimension) consists of rational normal curves, projec-
tive spaces, smooth quadrics, the Veronese surface in P

5 and the cubic scroll in P
4. Of course this result is

connected with Horrocks’ and Grothendieck’s classical splitting theorems for vector bundles over Pn, which
in turn relates to ideas going back to Segre, [].

The next class consists of CM-tame varieties. These include CM-countable varieties (for example
quadrics of corank one) and varieties where all indecomposable ACM sheaves are parametrized by a curve.
Besides smooth elliptic curves (by seminal work of Atiyah, [], also related to classical work of Segre,
cf. []), trees and cycles of rational curves (see [,], see also []), two sporadic examples
were given in [], consisting of smooth quartic surface scrolls in P

5.
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The main goal of this paper is to prove that, besides theses cases, all reduced closed ACM subschemes
X ⊂ P

n of positive dimension are CM-wild. Without loss of generality, we may assume that X is non-
degenerate, namely X is contained in no hyperplane.

Theorem. Let X ⊂ P
n be a reduced non-degenerate closed ACM subscheme of dimension m ≥ 1. Then X is of

wild CM-type unless X is one of the following:

(i) a linear space;
(ii) a quadric hypersurface of corank at most one;
(iii) a tree of rational curves;
(iv) a smooth elliptic curve or a cycle of rational curves;
(v) a smooth rational scroll of dimension 2 and degree d = 3 or d = 4;
(vi) the Veronese surface in P

5.

As for the terminology used here, a rational scroll is a variety obtained as the image in P
n of the

projective bundle Y = P(⊕mi=1OP
1(ai)), for some integers 0 ≤ a1 ≤ · · · ≤ am , 0, by the relatively ample line

bundle OY (1). A rational scroll is smooth if and only if a1 > 0 or am−1 < am = 1 (in which case Y = P
m),

otherwise it is a cone, see §. As we will recall in a minute, rational scrolls and quadrics form the class of
varieties of minimal degree, that play a rather special role in representation theory of algebras.

A tree of rational curves is the union of distinct smooth rational curves X1, . . . ,Xs, namely each Xi is
isomorphic to P

1, such that Xi ∩Xj is a single point if j ∈ {i − 1, i + 1} and empty otherwise. A cycle of
rational curves can be either the same thing, but using cyclic notation on the indices (so X1 ∩Xs , ∅) or
an irreducible rational curve with a single ordinary double point. This means that the only singularities of
the whole scheme X are ordinary double points, so the intersections points Xi−1 ∩Xi and Xi+1 ∩Xi are
distinct.

A word on the base field k is in order. The result holds for an algebraically closed field of arbitrary
characteristic except 2. Actually all the results that we prove in this paper are valid also in characteristic
2. The only point where char(k) , 2 is needed is when we recall the fact, due to Knörrer and Buchweitz-
Greuel-Schreyer, that quadric cones of corank 1 are CM-countable. We refer to Remark for a discussion
of this issue.

As a consequence of our main result, we get a strong version of the finite-tame-wild trichotomy, namely
that any reduced ACM closed subscheme X ⊂ P

n of dimension m > 0 falls in exactly one of the following
classes:

Finite: there are only finitely many indecomposable ACM sheaves on X up to isomorphism and degree
shift. This happens in cases,, for d = 3 and the smooth cases of,.

Tame: in turn also classically divided into tame discrete: the parameter space of indecomposable non-
isomorphic ACM sheaves is a countable set of points (in the singular cases of,); or properly
tame: for any given rank r, the parameter space of indecomposable non-isomorphic ACM sheaves
of rank r is a finite union of curves (in cases for d = 4 and).

Wild: the category of modules of any finite-dimensional algebra admits a representation embedding into
the category of MCM k[X]-modules; in particular X supports families of arbitrarily large dimension
of indecomposable non-isomorphic ACM sheaves.

The result was known for some specific cases, such as smooth cubic surfaces (see []), all linearly
embedded Segre varieties besides the CM finite ones (see []), smooth del Pezzo surfaces (see
[,]), positive-dimensional hypersurfaces of degree at least 4 and some complete intersections
(see []), some Fano varieties (see []), the triple Veronese embedding of any variety (see []).

One should expect that non-projective varieties may behave differently (see [] for a detailed picture,
see also []). More varieties of tame type appear from germs of elliptic singularities, see [] or
from non-isolated affine surface singularities, see also [].
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Let us indicate the strategy of our proof. The first step is to isolate some datum in order to build
large families of indecomposable non-isomorphic MCM modules on k[X]. This will be accomplished by
Theorem, where we establish that this datum should be a pair of ACM sheaves A and B on X, whose only
endomorphisms are homotheties (that is, A and B are simple), satisfying some semistability condition or a
mutual orthogonality condition HomX(B,A) = HomX(A,B) = 0, and such that Ext1X(B,A) is sufficiently
large, namely of dimension w ≥ 3. From this datum we construct a representation embedding from the
category RepΥ of finite-dimensional representations of the Kronecker quiver Υ = Υw with w arrows to
the category MCMk[X] of MCM modules over k[X]. This quiver should be seen as parametrizing ACM
sheaves appearing as extension of copies of A and B. In turn, by a standard argument, the existence of
this embedding suffices to prove CM-wildness of X. This procedure is not completely new, see [], but
we endow it with a quite more general flavour.

The next step is to actually construct the sheaves A and B. This turns out to be quite complicated to
achieve by working directly on X in general. For this we need our next result, Theorem, which shows how
to deduce CM-wildness of X from CM-wildness of Y when Y is a linear section of X of codimension c > 0,
except when X has minimal degree that is deg(X) = n−m+1, or equivalently when the sectional genus pX
of X is 0.

In order to do this, we need to further assume that A and B are Ulrich sheaves, namely their modules
of global sections have the maximal number of generators. We see this as a further indication of the
importance of these sheaves, see [,].

The idea of Theorem is that taking the cth syzygy Ωc
k[X] of the k[X]-module of an MCM module L

over k[Y ] one obtains an MCM module over k[X] and that this entails no essential loss of information if L
is Ulrich and pX > 0. In fact, for Ωc

k[X] to be a functor we need to pass to the stable category MCMk[X]
where we quotient out by morphisms factoring through a free module. The point is that the stable syzygy
functor Ωc is fully faithful on Ulrich modules when pX > 0. The proof uses cohomology vanishing of Ulrich
sheaves combined with duality.

The next result, Theorem, shows how to put these two ingredients together. Indeed, by resolving over
k[X] the module of global sections of the universal extension of the sheaves B by A over Y needed for
Theorem and taking its cth syzygy, we get a functor RepΥ →MCMX whose stabilization is fully faithful
by Theorem. Then, although the functor itself is not quite fully faithful, nevertheless it is a representation
embedding, that is, it sends non-isomorphic (respectively, irreducible) representations to non-isomorphic
(respectively, indecomposable) modules, and this suffices to show CM-wildness of X.

In view of these results, in order to complete the proof it remains to treat directly the case pX = 0, and
to construct the Ulrich sheaves A and B as above over a linear section Y of X, which we take to be of
dimension 1 when pX ≥ 2, or of dimension 2 for pX = 1.

The case pX ≥ 2 is rather easily seen to provide only CM-wild varieties, as A and B can be taken to be
sufficiently general bundles of rank 2 over Y of slope deg(Y ) + g − 1, where g is the geometric genus of Y .
This is treated in §.

For pX = 1 our proof of the existence of A and B is based on a study of locally free Ulrich sheaves of
rank 2 on surfaces of sectional genus 1, also called of almost minimal degree. Special care has to be taken
to allow Y to be singular and even non-normal (yet neither reducible nor a cone, see the next paragraphs);
nevertheless these varieties are completely classified and sufficiently detailed information is available, in
particular on their divisor class group, to construct the required sheaves and to control their deformations.
Theorem gathers the results of §, devoted to this case.

A different method is needed for reducible or non-reduced subschemes, since our basic technique to
construct the sheaves A and B may fail for various reasons. The two major ones are the following: first, the
sheaves A and B may degenerate to non-simple ones when more components appear. Second, we partially
rely on the classification of varieties of minimal and almost minimal degree, and for reducible subschemes
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this is a far more complicated question than for irreducible ones. We deal with this in Theorems and6.3.
To summarize again, it remains to work out the case of minimal degree, which is equivalent to pX = 0.

This is easy if X is smooth, but needs some care if X is singular, or equivalently if X is a cone, which
is to say, the generators of the homogeneous ideal of X do not involve a given set of variables (see §).
This case is not quite straightforward, mainly because some smooth finite CM-type varieties degenerate to
singular ones that turn out to be CM-wild. In § we describe a method to deal with cones and varieties of
minimal degree in a uniform manner. This proves the stated CM-wildness of all cones except for a single
exceptional variety, namely the cone over a rational normal cubic. In turn, in Theorem we treat this
intriguing case with an ad-hoc method based on representations of a certain quiver with three vertices.

If one carefully goes through the constructions carried out in this paper, it can be observed that many
CM-wild varieties actually support unbounded families of Ulrich sheaves. A strong conjecture in this sense
would be the following.

Conjecture 1. Let X ⊂ P
n be a closed non-degenerate integral subscheme of dimension m ≥ 2, not of minimal

degree. Then X is strictly Ulrich wild.

Our main theorem offers an affirmative answer in case X is ACM, after replacing “strictly Ulrich wild” by
“CM-wild”. The conjecture is known to hold for several classes of varieties, most notably of surfaces, like
del Pezzo surfaces or K3 surfaces (see Theorem for surfaces of almost minimal degree, which coincide
with del Pezzo surfaces in the smooth case). It is also true that curves of arithmetic genus greater or equal
than two (see Section) and smooth varieties of minimal degree of dimension m ≥ 2 are strictly Ulrich wild
except in cases,,, of our main theorem. However this fails in general for singular varieties of
minimal degree. For example, consider a quadric cone X ⊂ P

n over a vertex Λ of dimension at least 1.
Then X is CM-wild. On the other hand, an Ulrich sheaf on X is the sheafification of E0 ⊗ k[Λ], where E0

is the module associated with a direct sum of spinor bundles on a smooth quadric X0, the base of the cone.
These sheaves are rigid, so X is not Ulrich-wild.

In a sense, the statement of the previous conjecture admits no converse, as it turns out that the Segre
variety P

1 ×P2 ⊂ P
5 is a CM-wild ACM variety whose only infinite family of non-isomorphic indecompos-

able ACM sheaves (up a degree shift) consists of Ulrich bundles. We refer to [] for this and related
issues.

One may also observe that many singular CM-wild varieties admit unbounded families of non-isomorphic
ACM sheaves of fixed rank, while this does seem not to happen for smooth varieties. This motivates the
following question.

Problem 1. Let X ⊂ P
n be a smooth projective variety of positive dimension. Given r ≥ 1, is the family

of isomorphism classes of indecomposable ACM initialized sheaves of rank r parametrized by a finite union of
irreducible quasi-projective schemes?

The problem of classifying the representation type of integral subschemes X ⊂ P
n of dimension m ≥ 2

which are not ACM seems interesting. Some cases are known, such as abelian and Enriques surfaces, (see
[] and []) but the general problem remains wide open even for smooth surfaces. For reducible
subschemes, already the representation type of 2-regular subschemes seems to be unknown in general.

Acknowledgements. The second named author would like to thank the University of Bourgogne for the
hospitality during the stay when part of this work was done.
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2. CM-wild varieties

Let k be a field and set S = k[x0, . . . ,xn] for the symmetric graded k-algebra with n + 1 indeterminates,
seen also as the coordinate ring of the projective n-space P

n = Proj(S) of 1-dimensional linear quotients
of the vector space V = kn+1.

2.1. ACM varieties and modules

We first recall some basic terminology for various Cohen-Macaulay properties of varieties, sheaves and
modules.

2.1.1. ACM subschemes. Let X ⊂ P
n be a closed subscheme of dimension m > 0. Write IX for the

saturated homogeneous ideal of X and R = k[X] = S/IX for its coordinate ring.

Definition 2.1. The subscheme X ⊂ P
n is arithmetically Cohen-Macaulay (ACM) if R = k[X] is a graded

Cohen-Macaulay ring, namely if R has a graded S-free resolution of length n−m.

2.1.2. Terminology on coherent sheaves. Let X ⊂ P
n be a closed subscheme, m = dim(X). We write

CohX for the category of coherent sheaves on X. We denote by OX(1) the restriction to X of O
P
n(1) and

we employ the usual notation E(t) = E ⊗OX(1)⊗t . The ideal sheaf of a subscheme Z ⊂ X will be denoted
by IZ |X . Given E ,F in CohX and i ∈Z, we consider the Ext modules:

ExtiX(E ,F )∗ =
⊕
t∈Z

ExtiX(E ,F (t))

as R-modules. For i ∈N, we write Hi
∗(E) = ExtiX(OX ,E)∗ for the i

th cohomology module of E . One may
also replace t ∈ Z by any truncation t ≥ t0. The module H0

∗ (E) is also denoted by Γ∗(E). It is finitely
generated if E has no zero-dimensional subsheaf.

We say that a coherent sheaf E on X is simple if its only endomorphisms are homotheties, that is, if
HomX(E ,E) = k idE . We write χ(E ,F ) for the Euler characteristic of two coherent sheaves E and F over
X, namely

χ(E ,F ) =
∑
i∈Z

(−1)i dimkExt
i
X(E ,F ),

provided this is a finite sum. This is the case for instance when X is smooth or when E or F are locally
free. We abbreviate χ(F ) = χ(OX ,F ).

We write HX for the very ample divisor class on X associated with OX(1). The Hilbert polynomial of
a coherent sheaf E is defined as P (E , t) := χ(E(t)). The degree d = deg(X) is defined in terms of the
polynomial P (OX , t), namely by the condition that the leading term of P (OX , t) be d/m!. Similarly, for E
in CohX , the rank r = rk(E) ∈Q is defined by the condition that the leading term of P (E , t) be rd/m!. We
write p(E , t) := P (E , t)/r for the reduced Hilbert polynomial.

We write p � q (resp. p � q) for polynomials p,q ∈ Q[t] if p(t) ≥ q(t) (resp. p(t) > q(t)) for t � 0. A
coherent sheaf E is called pure if all of its subsheaves are supported in dimension m. A pure sheaf is HX-
semistable in the sense of Gieseker-Maruyama if, for any coherent subsheaf F ( E , one has p(E , t) � p(F , t).
The sheaf is called HX-stable if for all F as above p(E , t) � p(F , t). We will often suppress HX from the
notation.

2.1.3. Cohen-Macaulay and Ulrich conditions. Again X ⊂ P
n is a closed subscheme of dimension

m ≥ 1 with coordinate ring R = k[X]. Given a graded R-module M and t ∈ Z, we denote by Mt its
degree-t piece and M≥t = ⊕i≥tMi . Analogously M<t = ⊕i<tMi .
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Definition 2.2. A coherent sheaf E on an m-dimensional closed subscheme X ⊂ P
n is called arithmetically

Cohen-Macaulay (ACM) if E is locally Cohen-Macaulay (that is, Ex is a Cohen-Macaulay OX,x-module for all
x ∈ X) and Hi

∗(E) = 0 for i = 1, . . . ,m− 1.

This is equivalent to asking that E = Γ∗(E) is a maximal graded Cohen-Macaulay module over R. In turn,
this amounts to requiring that E has a graded free S-resolution of length n−m.

Let d = deg(X). Given an MCM module E of rank r over R = k[X], the number of independent
minimal generators of E is at most dr . Analogously, for an ACM sheaf E , assuming that E is initialized (i.e.,
H0(X,E) >H0(X,E(−1)) = 0), we have:

(2.1) dimkH
0(X,E) ≤ dr.

An ACM coherent sheaf E on X is called an Ulrich sheaf on X (and E = Γ∗(E) is called an Ulrich module
over R) if H0(X,E(−1)) = 0 and equality is attained in (). The reader can consult [] for an account
on Ulrich sheaves. Let us just gather here the main properties that will be used throughout this paper:

a) Any Ulrich sheaf E of rank r on an m-dimensional closed subscheme X ⊂ P
n of degree d has a

linear O
P
n-resolution of the form

0←E ←Odr
P
n

d1←−− O
P
n(−1)a1 ← ·· ·

dn−m←−−−− O
P
n(m−n)an−m ← 0.

The length of the resolution is n −m and the maps (di | i ∈ {1, . . . ,n −m}) are given by matrices
whose entries are linear forms of S . Also one has ai =

(n−m
i

)
dr for all i ∈ {1, . . . ,n−m} This follows

from [, Proposition 2.1], see also the comments after this proposition.
b) Any Ulrich sheaf E is globally generated. Its Hilbert polynomial is P (E , t) = dr

(t+m
m

)
. This is a

consequence of the previous point.
c) For any linear projection π : X → P

m, the direct image π∗E is isomorphic to Odr
P
m . Again [,

Proposition 2.1].
d) Any E Ulrich sheaf on a subscheme X ⊂ P

n is semistable and any destabilizing subsheaf of E is
also Ulrich. This has been proved in a number of papers, with variable hypothesis; see for instance
[, Theorem 2.9] for smooth varieties. We refer to Lemma for a statement on an arbitrary
closed subscheme.

Let us denote by ACMX (resp. UlrX ) the full subcategory of CohX consisting of ACM sheaves (resp. of
Ulrich sheaves). We denote by MCMR,0 (resp. UlrR,0) the subcategory of the category ModR of finitely
generated R-modules whose objects are MCM modules (resp. Ulrich modules) and whose morphisms are
degree-0 morphisms of R-modules. There is a basic equivalence between these notions as in the next
lemma (see [, Proposition 2.2.4]).

Lemma 2.3. The functor Γ∗ : ACMX →MCMR,0 is an equivalence, whose inverse is the sheafification functor
M 7→ M̃ . The equivalence carries UlrX to UlrR,0.

Let E and F be coherent sheaves on X whose associated modules E = Γ∗(E) and F = Γ∗(F ) are finitely
generated as R-modules. In spite of the previous lemma, ExtiX(E ,F (t)) and ExtiR(E,F)t may differ. The
following lemma will be useful to compare them.

Lemma 2.4. Assume F is ACM. Then, there is t ∈ Z depending on the minimal graded free resolution of F as
S-module, such that there is an isomorphism:

ExtiR(E≥t ,F)≥0 '
⊕
q≥0

ExtiX(E ,F (q)), as graded R-modules.

i) If i ≤m− 1, in the above isomorphism we may replace E≥t by E.
ii) If F is Ulrich, we may take t = 1− i.
iii) If F is linearly presented and E is generated in degree 0 over S , then Ext1R(E,F)<−1 = 0.
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Proof. Since the sheaf F is ACM of positive dimension, the associated R-module F is finitely generated. The
first statement follows from [, Theorem 1]. If F (or F ) is Ulrich, the minimal graded free resolution
of F as S-module is linear, so the same result allows t = 1− i, so we get.

Next, F is a graded Cohen-Macaulay R-module, so ExtiR(k,F) = 0 for i ≤m, where k is the residue field
seen as a R-module. Then, for any j ∈ Z, since the module E<j := E/E≥j is Artinian, by induction on the
length of the composition series of E<j we get ExtiR(E<j ,F) = 0 for i ≤ m. The isomorphism needed for
follows from the exact sequence:

ExtiR(E<j ,F)→ ExtiR(E,F)→ ExtiR(E≥j ,F)→ Exti+1R (E<j ,F).

It remains to prove. A minimal graded presentation of F as S-module is an exact sequence of the
form Sβ1(−1)→ Sβ0 � F, while E admits a surjection Sα0 � E, for some positive integers α0,β0 and β1.
The surjection Sβ0 → F, whose kernel is an S-module that we denote by N , descends to a surjection of
R-modules Rβ0 → F, whose kernel we call M . Using HomR(−,E) we get an exact sequence of R-modules:

HomR(R
β0 ,E)→HomR(M,E)→ Ext1R(F,E)→ 0.

Now, M is the quotient of N ⊗S R by TorS1(R,F), so we have surjections R(−1)β1 � N ⊗S R� M . We
deduce that HomR(M,E) is a submodule of HomR(R(−1)β1 ,E). From the surjection Sα0 � E we get
Rα0 � E and thus a surjection:

HomR(R(−1)β1 ,Rα0)�HomR(R(−1)β1 ,E).

This proves that HomR(R(−1)β1 ,E) vanishes in degree strictly below −1 so the same happens to
HomR(M,E) and thus to Ext1R(F,E). �

2.2. CM-wildness

We will consider a couple of related notions of CM-wildness for a closed scheme X ⊂ P
n. Algebraically this

means that, for any finitely generated associative k-algebra Σ, the category of MCM modules over R = k[X]
contains, in some sense, the category ModΣ of finitely generated left Σ-modules. We spell this out in more
detail in the next paragraph. We adopt [, Chapter XIX] as general reference for this part.

Definition 2.5. Let X ⊂ P
n be a closed subscheme and set R = k[X]. For any finitely generated associative

k-algebra Σ, and any finitely generated R-graded (R,Σ)-bimodule M , flat over Σ, define the functor:

ΦM :ModΣ→ModR,

N 7→M ⊗ΣN.

The variety X is of wild CM-type if, for any Σ as above, there is M such that ΦM takes values in MCMR

and is a representation embedding in MCMR, which is to say:

a) the module N is decomposable whenever ΦM (N ) is;
b) for any pair (N,N ′) of modules in ModΣ, we have:

N 'N ′⇔ ΦM (N ) ' ΦM (N ′).

The variety X is of wild Ulrich type if moreover:

c) for any N in ModΣ, ΦM (N ) is Ulrich.

The variety X is said to be strictly CM-wild if for any Σ as above there is an M such that ΦM is fully
faithful into MCMR,0, that is

HomΣ(N,N
′) 'HomR(Φ(N ),Φ(N ′))0,

If moreover ΦM (N ) is Ulrich for all N , then X is strictly Ulrich wild.

Remark 2.6. The following facts are well-known, or quickly proved in the next lines.
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i) To check that X is CM-wild, it is enough to construct a representation embedding from FModΣ

into MCMR, where Σ is a wild algebra of finite dimension over k and FModΣ is the category of
Σ-modules of finite dimension over k. Thanks to Lemma, we may work interchangeably with
ACMX or MCMR,0.

ii) If all non-zero graded R-modules Φ(M) are generated in the same degree and X is strictly CM-
wild, then it is CM-wild, and if X is strictly Ulrich wild then it is of wild Ulrich type. Indeed,
given M,N ∈ ModΣ, since Φ(M) and Φ(N ) are generated in the same degree, an isomorphism
Φ(M) → Φ(N ) must be of degree 0 and therefore must come from an isomorphism M → N by
full faithfulness. Also any idempotent of Φ(M) must have degree 0 and is therefore induced by an
idempotent of M .

iii) If X is of wild CM-type, then for any r ∈N there are families of dimension at least r consisting of
indecomposable ACM sheaves on X, all non-isomorphic to one another. In other words, X is of wild
CM-type in the geometric sense. If X is of wild Ulrich type, these families can be taken to consist of
Ulrich sheaves.

iv) Any exact functor Φ : ModΣ→ModR is of the form ΦM for some finitely generated Σ-flat (R,Σ)-
bimodule M .

Let w ≥ 1 be an integer and consider the Kronecker quiver Υ = Υw with two vertices and w arrows from
the first vertex to the second. Write RepΥ for the abelian category of finite-dimensional k-representations
of Υ .

v) To check that X is strictly CM-wild (resp., of wild CM-type), it suffices to construct a fully faithful
exact functor (resp., a representation embedding):

Φ : RepΥ →ACMX

where Υ = Υw is the Kronecker quiver with w ≥ 3. If moreover Φ(R) is Ulrich for any R in RepΥ ,
then X is strictly Ulrich wild (resp., of wild Ulrich type). The same argument works if we replace
RepΥ with FModΣ where Σ = k[x1,x2].

3. CM-wildness from extensions

Let X ⊂ P
n be a closed k-subscheme, and let A and B be coherent sheaves on X such that:

Ext1X(B,A) , 0.

We describe how extensions of B by A are parametrized by representations of the Kronecker quiver Υw
having two vertices and as many arrows as w = dimkExt

1
X(B,A), pointing in the same direction.

3.1. The functor from the Kronecker quiver to CohX

Set W = Ext1X(B,A) and consider the projective space P(W ∗) of lines through the origin in W . Then, over
X ×P(W ∗), there is a universal extension:

0→A�O
P(W ∗)→U →B �OP(W ∗)(−1)→ 0,

where we write p and q for the projections from X × P(W ∗) to X and P(W ∗), and for E ∈ CohX and
F ∈ Coh

P(W ∗), we set E �F = p∗(E)⊗q∗(F ). Then we consider:

ΦU = Rp∗(q
∗(−)⊗U ) :Db(Coh

P(W ∗))→Db(CohX).

It is clear that:

ΦU (OP(W ∗)) ' A, ΦU (ΩP(W ∗)(1)) ' B[−1].
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Set w = dimkExt
1
X(B,A) and consider the Kronecker quiver Υ = Υw. Then, the natural isomorphism

W 'Hom
P(W ∗)(ΩP(W ∗)(1),OP(W ∗)) provides an equivalence:

(3.1) Ξ :Db(RepΥ ) ' 〈ΩP(W ∗)(1),OP(W ∗)〉.

We compose this equivalence with the inclusion of 〈Ω
P(W ∗)(1),OP(W ∗)〉 into Db(Coh

P(W ∗)). Explicitly, this
is described as follows. Choose a basis (e1, . . . , ew) of W = Ext1X(B,A). Let R be a representation of Υ
having dimension vector (a,b). Then R corresponds to the choice of w linear maps m1, . . . ,mw : ka→ kb.
Take the element:

(3.2) ξ =
w∑
i=1

mi ⊗ ei ∈Homk(k
b,ka)⊗W.

Then, under the identification W �Hom
P(W ∗)(ΩP(W ∗)(1),OP(W ∗)), we obtain from ξ a morphism:

(3.3) M :Ω
P(W ∗)(1)

b→Oa
P(W ∗).

The cone of M is the element of Db(Coh
P(W ∗)) associated with R via Ξ. This is directly extended to

morphisms.
We consider a functor Φ which can be thought of as the restriction of ΦU ◦Ξ to RepΥ :

(3.4) Φ : RepΥ → CohX .

Let us first give an explicit description of Φ . At the level of objects, given a representation R of the
quiver RepΥ with dimension vector (a,b) let (m1, . . . ,mw) be the w linear maps associated with R and let
ξ be as in (). Then Φ(R) fits as middle term of a representative of the extension class corresponding to
ξ :

0→Aa→ Φ(R)→Bb→ 0.

Let us check now that this is well-defined on morphisms. Let S be another representation of Υ , of dimen-
sion vector (c,d), corresponding to the linear maps (n1, . . . ,nw). A morphism λ :R→S of representations
is given by linear maps α : ka→ kc and β : kb→ kd such that:

(3.5) niα = βmi , for all i = 1, . . . ,w.

Consider the map of coherent sheaves βA = β⊗ idA : Aa → Ac. Then, βA defines a morphism of
extensions:

(3.6) 0 // Aa

βA
��

// Φ(R)
φ
��

// Bb // 0

0 // Ac i // D
p
// Bb // 0

for a certain sheaf D representing the element:
w∑
i=1

βmi ⊗ ei ∈ Ext1X(B
b,Ac).

Analogously αB = α⊗ idB : Bb→Bd defines:

(3.7) 0 // Ac i′ // D′
φ′
��

p′
// Bb

αB��

// 0

0 // Ac // Φ(S) // Bd // 0

with the upper row representing an extension class in:
w∑
i=1

niα ⊗ ei ∈ Ext1X(B
b,Ac).
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Because of (), the lower extension of () is the same as the upper one in (). Then the morphisms
φ′ and φ of extensions compose to give a map from Φ(R) to Φ(S).

This construction agrees with the principle of considering Φ as restriction of ΦU ◦Ξ to RepΥ . Indeed,
the representation R is mapped by Ξ to the cone of the matrix M of (), which is sent by ΦU to the cone
of:

ΦU (M) : Bb[−1]→Aa.

By construction this cone is represented by the extension class Φ(R).

3.2. Representation embeddings of the Kronecker quiver

Now we state a basic result on representation embeddings and fully faithful embeddings of the Kronecker
quiver via extensions. Some forms of this result have been used already by several authors, however the
following rather general statement seems to be new.

Theorem A. Let A and B be simple coherent sheaves on a closed subscheme X ⊂ P
N .

i) Let A and B be semistable with p(B) � p(A) and suppose that any non-zero morphism A → B is an
isomorphism. Then the functor Φ from () is a representation embedding.

ii) Assume that HomX(A,B) = HomX(B,A) = 0. Then the functor Φ is fully faithful.

Proof. To check we first prove that, given an irreducible representation R of Υ , the associated sheaf
F = Φ(R) is indecomposable. Let R have dimension vector (b,a) so we have:

(3.8) 0→Aa i−→ F
p
−→ Bb→ 0.

Assume first p(B) ≺ p(A). Then, () is the Harder-Narasimhan filtration of F , so the graded object
gr(F ) associated with F is just Aa ⊕Bb. Assume F ' F ′ ⊕F ′′ , with F ′ , 0 , F ′′ . By the uniqueness of
gr(F ), we have gr(F ′) ' Aa′ ⊕Bb′ and gr(F ′′) ' Aa′′ ⊕Bb′′ for some (b′ , a′) and (b′′ , a′′) with a′ + a′′ = a
and b′ + b′′ = b. It follows that Aa′ is the maximal destabilizing subsheaf of F ′ with quotient Bb′ , that is,
F ′ is an extension of the form:

0→Aa
′
→F ′→Bb

′
→ 0,

associated with some ξ ′ ∈W ⊗ka
′
⊗kb

′
. Similarly, there is ξ ′′ ∈W ⊗ka

′′
⊗kb

′′
corresponding to F ′′ . More-

over, composing the embedding Aa′ ↪→ F ′ with F ′ ↪→ F we get a map Aa′ ↪→ F , that composes to zero
with p, for A and B are semistable with p(B) ≺ p(A).

We obtain thus a map Aa′ ↪→Aa which must be of the form α⊗ idA for some monomorphism α : ka
′
→

ka, because A is simple. This induces a map Bb′ → Bb which is likewise of the form β⊗ idB for some
β : kb

′
→ kb. This defines a representation R′ of dimension vector (b′ , a′) corresponding to ξ ′ which is a

subrepresentation of R, the embedding being given by (β,α). The quotient R′′ =R/R′ corresponds then
to ξ ′′ . The embedding F ′′ ↪→ F provides a splitting R′′ →R, so R ' R′ ⊕R′′ , with R′ , 0 ,R′′ which
is what we wanted.

Now assume p(B) = p(A) and take R indecomposable such that F = F ′ ⊕F ′′ with F ′ , 0 , F ′′ . Then
() is a Jordan-Hölder filtration of F , so the graded object gr(F ) associated with F is again Aa ⊕ Bb,
hence gr(F ′) and gr(F ′′) take the same forms as above, in particular F ′ and F ′′ are semistable with
p(F ′) = p(A) = p(F ′′).

Next, we compose i with the projection F → F ′′ to get a map q : Aa → F ′′ . The sheaf Im(q) is
semistable with p(Im(q)) = p(A). Composing with the projection to Bb′′ , since any non-zero map A→ B
is an isomorphism, we get as image a direct sum of copies of A. So Im(q) projects onto copies of A and
thus, since A is simple, we actually have Im(q) ' Aa′′ for some integer a′′ , which also gives ker(q) ' Aa′

with a′ = a − a′′ . By the same argument, composing the injection F ′ ↪→ F with p gives a map j whose
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image is Bb′ , for some integer b′ , and whose cokernel is then Bb′′ with b′′ = b− b′ . Using that A and B are
simple, we finally get a commutative exact diagram:

0 // Aa′

α′⊗ idA ��

// F ′

��

p
// Bb′

β′⊗ idB��

// 0

0 // Aa
α′′⊗ idA ��

// F //

��

Bb
β′′⊗ idB��

// 0

0 // Aa′′ // F ′′
p
// Bb′′ // 0

for some maps α′ : kα
′
→ kα , α′′ : kα → kα

′′
, and similarly for β. This says that there are representations

R′ , 0 , R′′ of Υ with dimension vectors (b′ , a′) and (b′′ , a′′) such that F ′ ' Φ(R′) and F ′′ ' Φ(R′′).
Also, the maps α′ , α′′ , β′ , β′′ provide a exact sequence:

0→R′
(β′ ,α′)
−−−−−→R

(β′′ ,α′′)
−−−−−−→R′′→ 0.

Using the splitting map F → F ′ we see that R =R′ ⊕R′′ , which is what we needed.
Finally, we would like to show that two representations R and S of Υ are isomorphic if and only if their

images via Φ are. Let R and S have dimension vectors (b,a) and (d,c). We may suppose that R and S
are irreducible, so that F = Φ(R) and G = Φ(S) are indecomposable, by the first part of the proof. Take
an isomorphism φ : F → G. Composing φ on the left with the injection Aa→F and on the right with the
projection G → Bb, we get a map φ0. We distinguish two cases according to whether φ0 is zero or not.

In the latter case, there is a summand A of Aa that maps non-trivially, hence isomorphically, to a
summand B of Bd . We deduce that B is a direct summand of G. By the assumption on irreducibility of S ,
G ' B, which gives the conclusion.

In the former case, we get a map αA :Aa→Ac inducing an exact commutative diagram:

0 // Aa
αA
��

i // F
φ
��

p
// Bb

βB��

// 0

0 // Ac // G // Bd // 0

Hence coker(αA) ' Ac−a ' Bb−d ' ker(βB). Then a ≤ c and d ≤ b. But using φ−1 we get the opposite
inequalities, which implies that αA and βB are isomorphisms. Again αA = α⊗ idA and βB = β⊗ idB . It
follows that (β,α) induces an isomorphism R→S .

It remains to prove. To check this, consider a commutative diagram:

0 // A
0��

i // D
λ��

p
// B

0��

// 0

0 // A i′ // D′
p′
// B // 0

Since p′ ◦λ = 0, we have Imλ ⊆ A. But λi = 0 implies that λ factors as:

D λ //

��5555 A

B D/A
λ̄

@@�����

If λ , 0, this would give a nonzero map λ̄ : B →A, contradicting HomX(B,A) = 0. With this in mind, we
deduce the injectivity of the natural map:

(3.9) HomΥ (R,S)→HomX(Φ(R),Φ(S)).

As for surjectivity, given a morphism µ : Φ(R)→ Φ(S), we compose µ on one side with the projection
Φ(S)→Bd , and with the injection Aa→ Φ(R) on the other side. We obtain thus a map Aa→Bd , which



The CM-representation type of ACM varieties 13The CM-representation type of ACM varieties 13

must vanish since HomX(A,B) = 0. We deduce that µ defines maps Aa→Ab and Bc→Bd , which must
be of the form β⊗ idA and α⊗ idB by the assumption that A and B are simple. The pair (β,α) defines a
morphism R→S whose image via () is µ. �

We deduce a criterion for an ACM variety being strictly CM-wild.

Corollary 3.1. In the hypothesis of Theorem, case, resp. case, we have:

i) if w ≥ 3 and A and B are ACM, then X is CM-wild, resp. strictly CM-wild;
ii) if moreover A and B are Ulrich, then X is Ulrich wild, resp. strictly Ulrich wild.

Proof. By construction of the functor Φ of Theorem, the sheaf Φ(R) associated with a representation R
of Υ is ACM (respectively, Ulrich) if A and B are ACM (respectively, Ulrich).

The composition of Φ with the equivalence ACMX 'MCMR,0 gives the statement in case. For casei), we further compose Φ with the inclusion MCMR,0→MCMR. The resulting functor is a representation
embedding by Remark. To see this, we denote by F and F′ the R-modules associated with Φ(R) and
Φ(R′). We claim that an isomorphism F→ F′ of graded R-modules must have degree 0.

Indeed, given an injective morphism F → F′ of degree t, that is, an injective map F → F′(t), assuming
t < 0 and letting A and B be the R-modules associated with A and B, we see that any submodule A of
E maps to zero in A(t) by semistability of A. Also, A maps to zero in B(t) because choosing an injection
B(t) ↪→ B we would get a map A→ B which is not an isomorphism. So the map F → F′(t) cannot be
injective, namely t ≥ 0. Using the inverse F′→ F we see that t ≥ 0, so finally t = 0.

The same argument applies to idempotents of F and shows that any non-trivial splitting of F into
R-modules takes place in MCMR,0. This shows that the functor RepΥ → MCMR is a representation
embedding. �

Remark 3.2. The hypothesis HomX(B,A) = 0 in Theorem, case ii), is necessary. If HomX(B,A) , 0 we
could indeed consider the map:

φ :D
p
−→ B →A i−→D

This map φ is not zero, and makes the following diagram commute:

0 //

A
0��

i // D
φ
��

p
// B

0��

// 0

0 // A i′ // D
p′
// B // 0

Notice, however that any φ fitting in such a diagram will be nilpotent.
As an explicit example, let X ⊂ P

m+1 be a hypersurface of degree d and Z ⊂ X be an arithmetically
Gorenstein (which is to say, k[Z] is a graded Gorenstein ring) subscheme of codimension two and index iZ ,
where:

iZ =max{s ∈Z |Hm−1(X,IZ |X(s)) , 0}.
Define e = iZ +m+2− d and assume that e < 0 so that HomX(IZ |X(e),OX) , 0. Let D be the sheaf fitting
as the middle term of the non-trivial extension of IZ |X(e) by OX . (One can show that this extension exists
and is unique up to a nonzero scalar, by the definition of e and by Serre duality.)

Whenever Z is not a complete intersection inside X, D is indecomposable. Anyway D is an ACM sheaf
of rank 2 over X which is never simple, as it always admits a nonzero nilpotent endomorphism. The
conclusion of Theorem fails in this case.

4. Stable syzygies of Ulrich modules

Let X ⊂ P
n be a closed ACM subscheme of dimension m ≥ 1, let Y be a general linear section of X of

codimension c < m. Set T = k[Y ], R = k[X] and write ωY for the dualizing sheaf of Y . The ideal IY |X of
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Y in X is generated by a regular sequence of linear forms of R of length c. Looking at a finitely generated
graded module E over T as a graded module over R, we take its minimal graded R-free resolution:

(4.1) 0← E← F0
d1←−− F1← ·· · ← F`−1

d`←−− F`← ·· ·

Write Ω`
R(E) for the `

th syzygy of E over R, by which we mean Ω`
R(E) = Im(d`). It is well-known that, if E

is MCM over T , then Ω`
R(E) is MCM over R for ` ≥ c.

Let MCMR be the stable category of graded maximal Cohen-Macaulay (MCM) modules over R. Given
E,E′ in MCMR, we write HomR(E,E

′) for the morphisms in this category, namely the morphisms from E
to E′ , modulo the ideal of morphisms that factor through a free R-module. We write HomR(E,E

′)t for the
graded piece of degree t of HomR(E,E

′). We will also use the notation MCMR,0, the stable category where
we take HomR(E,E

′)0 as set of morphisms from E to E′ . We write Π for the stabilization functor:

Π :MCMR→MCMR.

For ` ≥ c, we have also the `th syzygy stable functor:

Ω` :MCMT →MCMR,

E 7→Π ◦Ω`
R(E).

The following theorem is the center of this section and will play a major role throughout the rest of the
paper.

Theorem B. Let X ⊂ P
n be a closed non-degenerate ACM subscheme of dimension m ≥ 1. Assume that X is not

of minimal degree, namely, deg(X) > n −m + 1. Then the restriction to UlrT ,0 of the cth stable syzygy functor
provides a fully faithful embedding:

Ωc :UlrT ,0→MCMR,0.

We start with a lemma that characterizes varieties of minimal degree by a negativity condition on the
canonical sheaf.

Lemma 4.1. Let X ⊂ P
n be a closed ACM subscheme of dimension m ≥ 1. Then X has minimal degree

deg(X) = n−m+1 if and only if H0(X,ωX(m− 1)) = 0.

Proof. Without loss of generality, we may assume that k is algebraically closed. Let us work by induction
on m. For m = 1, the statement holds as an ACM subscheme X ⊂ P

n has minimal degree if and only if
the sectional genus of X is zero, see the discussion at §. For m ≥ 2, if Y is a hyperplane section of X, the
adjunction formula gives an exact sequence

0→ωX(m− 2)→ωX(m− 1)→ωY (dim(Y )− 1)→ 0

Because X is ACM and m ≥ 2 we get H1
∗ (X,ωX) = 0. So, since by the induction hypothesis the statement

holds for Y , taking global sections of the above sequence we see that it also holds for X.
For a proof in the language of modules, note that the dual of the minimal S-resolution of k[X] provides a

resolution of the canonical module KX (see [, Remark 1.2.4]) and therefore, by [, Theorem 0.4],
X is of minimal degree if and only if it is 2-regular if and only if H0(X,ωX(m− 1)) = (KX)m−1 = 0. �

The following lemma will be one of the keystones of our analysis. Given a finitely generated graded
R-moduleM, we write 〈M≤d〉 for the graded submodule ofM generated by the elements of degree at most
d of M . We also write M∗ for the dual HomR(M,R).

Lemma 4.2. Fix the hypothesis as in Theorem, let L be an Ulrich module over T , and set M =Ωc
R(L).

Then we have a functorial exact sequence:

0→ 〈M∗≤1−c〉 →M∗→HomT (L,T (c))→ 0.
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Proof. Recall that L is generated in a single degree, and that the number of minimal generators of L equals
α0 = deg(X) rk(L). In other words, we can assume F0 ' Rα0 . By the minimality of the resolution, we have,
for i ≥ 1:

F` '
⊕
j≥`

R(−j)α`,j , for some integers α`,j .

Also, X is not a linear space, so neither is Y , so that L has no free summands.
We are going to apply the functor HomR(−,R) to (). We have:

• ExtiR(L,R) = 0 for i = 0, . . . , c − 1. This is due to the fact that the smallest integer l such that
ExtlR(L,R) , 0 is the grade (see [, De finition 1.2.11 and ff.]), and

grade(M) := grade(AnnR(L),R) = grade(IY |X ,R) = c.

• ExtcR(L,R) ' HomT (L,T (c)), which follows from noticing that IY |X is generated by a regular se-
quence of linear forms of length c and applying inductively the graded version of Rees’ Theorem
(see [, Theorem 8.34]).

From the previous remarks, we obtain the long exact sequence:

(4.2) 0→ F∗0→ ·· · → F∗c−2
d∗c−1−−−→ F∗c−1

π−→M∗→HomT (L,T (c))→ 0.

Now comes the main point, namely that HomT (L,T )1 = 0. To see this, recall the isomorphism
HomT (L,T )1 ' HomY (L,OY (1)) and that L is Ulrich on Y as well as HomY (L,ωY ). Then, by Serre
duality and [, Proposition 2.1] we get:

HomY (L,ωY (m− c)) 'Hm−c(Y ,L(c −m))∗ = 0.

Note that, by the assumption and Lemma, H0(Y ,ωY (m− c−1)) , 0 and therefore we get an embedding:

OY (1) ↪→ωY (m− c).

Therefore, HomY (L,ωY (m− c)) = 0 implies HomY (L,OY (1)) = 0.
We have thus established that HomT (L,T (c)) contains no element of degree ≤ 1− c. Also, we may write:

F∗c−1 = R(c − 1)
αc−1,c−1 ⊕R(c)αc−1,c ⊕ · · ·

Then, () says that F∗c−1 generates all the elements of M∗ of degree at most 1− c, that is, the image of π
is the submodule 〈M∗≤1−c〉 of M∗. This is clearly functorial, and the lemma is proved. �

Proof of Theorem. Let L and N be two Ulrich modules over T . Our goal will be to describe two mutually
inverse maps:

HomT (L,N )0�HomR(Ω
c
R(L),Ω

c
R(N ))0.

Set M = Ωc
R(L) and P = Ωc

R(N ). First, let ϕ : L→ N belong to HomT (L,N )0. Consider the minimal
graded free resolutions of L and N over R and choose a lifting of ϕ to these resolutions:

(4.3) 0 Loo

ϕ

��

F0oo

ϕ0

��

· · ·oo Fc−1oo

ϕc−1
��

Moo

ϕ̃
��

0 Noo G0
oo · · ·oo Gc−1oo Poo

The morphism ϕ̃ induced on the cth syzygy modules gives the class ϕ̄ in HomR(M,P )0. This does not
depend on the choice of the lifting ϕi , as any other choice would provide a map ϕ̃′ such that ϕ̃− ϕ̃′ factors
through a free module.
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Conversely, given ψ̄ ∈ HomR(M,P )0, we choose a representative ψ : M → P with dual ψ∗ : P ∗ → M∗.
Since ψ∗ is homogeneous of degree 0, it maps elements of degree at most 1− c in P ∗ to elements of degree
at most 1− c in M∗. By Lemma we obtain a diagram:

(4.4) 0 // 〈M∗≤1−c〉 // M∗ // HomT (L,T (c)) // 0

0 // 〈P ∗≤1−c〉
ψ∗
OO

// P ∗ //

ψ∗
OO

HomT (N,T (c))

ψ̂
OO

// 0

We wish to associate with ψ̄ the morphism ψ̂∗ : L→ N . To do this, we have to check that ψ̂ does not
depend on the choice of the representative ψ of ψ̄. By definition any other representative differs from
ψ by a map ζ : M → P that factors through a free module, which we call F, which means ζ = ζ2ζ1
with ζ1 : M → F and ζ2 : F → P . Therefore ζ∗ factors through F∗ and again by Lemma we get the
commutative diagram:

0 // 〈M∗≤1−c〉 // M∗ // HomT (L,T (c)) // 0

0 // 〈F∗≤1−c〉
ζ∗1

OO

// F∗

ζ∗1

OO

0 // 〈P ∗≤1−c〉
ζ∗2

OO

// P ∗ //

ζ∗2

OO

HomT (N,T (c))

ζ̂

OO

// 0

Call G the quotient F∗/〈F∗≤1−c〉. The diagram says that ζ̂ factors through G.
Now observe that G is a free R-module. Indeed, any direct summand of F takes the form R(a) for some

a ∈Z, and:

(4.5) 〈R(a)≤1−c〉 =
{
R(a), if a ≥ c − 1,
0, if a < c − 1.

Therefore G is the direct sum of all summands R(a) of F∗ with a < c − 1, hence G is a graded free
R-module. But HomT (N,T (c)) is a torsion R-module. So it admits no non-trivial morphism with target in
G, and therefore ζ̂ = 0.

Let us check now that these maps are mutually inverse. Given ϕ ∈ HomT (L,N )0, we consider the
representative ψ = ϕ̃ of the class ϕ̄. Dualizing () we obtain a commutative diagram:

· · · // F∗c−1
// M∗ // HomT (L,T (c)) // 0

· · · // G∗c−1

ϕ∗c−1

OO

// P ∗ //

ψ∗
OO

HomT (N,T (c))

ϕ∗
OO

// 0

This diagram is the extension of () to a minimal resolution of 〈P ∗≤1−c〉 and 〈M
∗
≤1−c〉. This says that ψ̂ = ϕ∗,

so ψ̂∗ = ϕ.

Conversely, let ψ be a representative of ψ̄ ∈HomR(M,P )0 and set ϕ = ψ̂∗. Let us lift the map 〈P ∗≤1−c〉 →
〈M∗≤1−c〉 induced by ψ to the minimal graded free resolutions of these modules and dualize to obtain:

0 Loo

ϕ

��

F0oo

ψ0
��

· · ·oo Fc−1oo

ψc−1
��

Moo

ψ
��

0oo

0 Noo G0
oo · · ·oo Gc−1oo Poo 0oo

Then ψ is induced by a lifting of ϕ : L→ N to the minimal resolutions of L and N . Our proof is thus
complete. �

We isolate the following consequence of Lemma.
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Lemma 4.3. If L is an Ulrich module L over T , then Ωc
R(L) has no free summands.

Proof. Suppose Ωc
R(L) =M ⊕F, with F a nonzero direct summand. Lemma gives:

0→ 〈M≤1−c〉 ⊕ 〈F≤1−c〉
π−→M ⊕F→HomT (L,T (c))→ 0,

with π block-diagonal. Then, () says that the restriction of π is an isomorphism between 〈F≤1−c〉 and F,
as L has no free summand. Therefore, looking at () we see that dc is surjective onto F, which contradicts
minimality of the resolution (). �

Example 4.4. Let X ⊂ P
m+1 be a hypersurface of degree d and Y be a linear section of codimension c of

X. Based on the theory of matrix factorizations developed in [], the resolution of an Ulrich module L
of rank r on T = k[Y ] reads:

(4.6) 0← L← T rd ← T (−1)rd ← T (−d)rd ← ·· ·

Since L(−d) ' ker(T (−1)rd → T rd), this yields a resolution:

(4.7) 0←HomT (L,T (d − 1))← T rd ← T (−1)rd ← T (−d)rd ← ·· ·

Combining () with the Koszul resolution of Y in X we get a resolution over R = k[X]:

(4.8) 0← L← Rrd ← R(−1)rd(c+1)← R(−2)rd(c+(
c
2)) ⊕R(−d)rd ← ·· ·

The kth term Fk of this resolution looks as follows (here ε ∈ {0,1}):

Fk =
⊕

2h+ε+j=k

R(−(j + hd + ε))(
c
j)rd .

Let M =Ωc
R(L). The resolution of the dualized syzygy M∗ starts with:

· · · → R(c − d)rd(c+1) ⊕F∗c−2→ R(c − d +1)rd ⊕F∗c−1→M∗→ 0.

Now we may remove from this resolution the dual of the truncation atM =Ωc
R(L) of (), which is to say,

by Lemma, the resolution of 〈M∗1−c〉. The residual strand recovers precisely (), twisted by R(c−d+1).
The two strands of the resolution do not mix if d > 2.

Remark 4.5. Theorem is sharp, in the sense that it fails in general for ACM closed schemes X ⊂ P
n of

minimal degree. Take for instance char(k) , 2, choose a positive integer k and let X be a smooth quadric
hypersurface in P

2k+1. Let Y be a smooth hyperplane section of X. It is well-known that, over T = k[Y ]
there is a unique indecomposable ACM (and Ulrich) module L with no free summands, namely the module
associated with the spinor bundle. This module has rank 2k−1. On the other hand R = k[X] supports
exactly two non-isomorphic ACM (and Ulrich) modules F′ and F′′ , which have both rank 2k−1. There is a
short exact sequence

0← L← R2k ← F′ ⊕F′′← 0, hence Ω1
R(L) ' F

′ ⊕F′′ .

Therefore, the functor Ω1 is not even a representation embedding as it sends indecomposable modules
to decomposable ones. The condition of preserving non-isomorphy of modules also fails in general, as
choosing n = 2k +2 we get L′ and L′′ non-isomorphic spinor modules on T , but both Ω1

R(L
′) and Ω1

R(L
′′)

are isomorphic to the single spinor module on X.

For ACM schemes of minimal degree, even though Theorem cannot be applied, the following proposi-
tion shows that the syzygy functor enjoys a somehow opposite kind of nice feature, namely it preserves the
property of being Ulrich.

Proposition 4.6. Let X ⊂ P
n be a variety of minimal degree d = deg(X) = n −m + 1 and dimension m ≥ 1.

Let Y ⊂ X be a general linear section of codimension c < m. Then, for any Ulrich module L over T = k[Y ], the
cth syzygy module Ωc

R(L) is an Ulrich module over R = k[X].
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Proof. By induction, we can suppose that c = 1. Therefore, given an Ulrich module L over T , since
we already know that Ω1

R(L) is MCM over R, we just need to show that it is minimally generated by
d rk(Ω1

R(L)) elements. From [, Prop. 2.1], we see that the beginning of the minimal resolution of L
over T has the following form

0← L← T rd ← T (−1)rd(n−m)← ·· ·
Therefore, merging it with the minimal resolution of T over R we obtain that the minimal resolution of

L over R starts

0← L← Rrd
d1← R(−1)rd

2
← ·· ·

Namely, Ω1
R(L) = Im(d1) is a MCM module over R of rank rd generated by rd2 elements of the same

degree. In other words, Ω1
R(L) is Ulrich. �

5. CM-wildness from syzygies of Ulrich extensions

Let us fix the setup for this section. Let X ⊂ P
n be an ACM subscheme of dimension m ≥ 1, put R = k[X]

and let Y be a linear section of X of codimension c < m. Let A and B be two simple Ulrich sheaves on Y .
Set W = Ext1Y (B,A), w = dimkW . Here we want to prove the following fundamental result.

Theorem C. Assume w ≥ 3, X ⊂ P
n is not of minimal degree and suppose that A and B satisfy hypothesis orii) of Theorem. Then X is of wild CM-type.

Let us assume for the time being that w , 0 and write Υ = Υw. Over Y ×P(W ∗), there is a universal
extension:

0→A�O
P(W ∗)→U →B �OP(W ∗)(−1)→ 0.

Take the sheafified minimal graded free resolutions of A and B as OX-modules, pull-back via p to
X ×P(W ∗), and use the mapping cone construction to build a minimal graded free resolution of U over
X ×P(W ∗):

0 0 0

0 //

A�O
P(W ∗)

OO

// U

OO

// B �O
P(W ∗)(−1) //

OO

0

0 // F0 �OP(W ∗)

OO

// H0

d0

OO

// G0 �OP(W ∗)(−1)

OO

// 0

...

OO

...

OO

...

OO

0 // Fc−1 �OP(W ∗)

OO

// Hc−1

OO

// Gc−1 �OP(W ∗)(−1)

OO

// 0

0 // Fc �OP(W ∗)

OO

// Hc

dc

OO

// Gc �OP(W ∗)(−1)

OO

// 0

...

OO

...

OO

...

OO

Here, Hi = Fi �OP(W ∗) ⊕Gi �OP(W ∗)(−1). Set:

V = Im(dc).

Then we consider:

ΦV = Rp∗(q
∗(−)⊗V ) :Db(Coh

P(W ∗))→Db(CohX).
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Lemma 5.1. Let T = k[Y ], and set L and N for the modules of global sections of A and B. LetM and N be
the sheafifications of Ωc

R(L) and Ω
c
R(N ). Then:

ΦV (OP(W ∗)) 'M, ΦV (ΩP(W ∗)(1)) 'N [−1].

Proof. By the diagram we have an exact sequence:

0→M�O
P(W ∗)→V →N �OP(W ∗)(−1)→ 0,

We get the conclusion by using Künneth formula, see [, §3.3], and the vanishing of cohomology of
O
P(W ∗) and Ω

P(W ∗) except in degree 0 and 1, respectively. �

Now consider the equivalence Ξ of (). Then the restriction of ΦV ◦Ξ to RepΥ , composed with the
global sections functor, gives an exact functor:

Ψ0 : RepΥ →MCMR,0.

We denote by Ψ the induced functor RepΥ →MCMR. Theorem amounts to the next result.

Theorem 5.2. If X ⊂ P
n is not of minimal degree and A and B are Ulrich, then Ψ : RepΥ →MCMR is a

representation embedding. So if A and B satisfy hypothesis or of Theorem and w ≥ 3, X is of wild CM
representation type.

Proof. By construction we have the commutative diagram of functors:

RepΥ

Ψ0 //

Φ

��

MCMR,0

Π

��
UlrT ,0

Ωc
R // MCMR,0

We proved in Theorem that Ωc
R is fully faithful, and in Theorem that Φ is also fully faithful. So the

same happens to Ωc
R ◦Φ and hence to Π ◦Ψ0.

Therefore, if R and S are two representations of Υ such that Ψ0(R) ' Ψ0(S), we still have an isomor-
phism Π(Ψ0(R)) 'Π(Ψ0(S)) and thus R' S by full faithfulness.

Moreover, if Ψ0(R) is decomposable, then HomR(Ψ0(R),Ψ0(R))0 contains a non-trivial idempotent ψ.
The class ψ̄ is also an idempotent, which is trivial if and only if the summand of Ψ0(R) associated with ψ
is free. But this cannot happen by Lemma. Also, again by full faithfulness of Π◦Ψ0, ψ̄ corresponds to a
non-trivial idempotent of R, so R is also decomposable. This finishes the proof that Ψ0 is a representation
embedding.

The consequence that Ψ is also a representation embedding follows from the argument of Corollary.
Therefore, X of wild CM-type. �

Example 5.3. The first class of varieties where it is a priori unknown how to construct large families of
ACM bundles is given by general cubic hypersurfaces of dimension m ≥ 4. We can do this with Theorem.
Indeed, start with a cubic hypersurface X in P

m+1, sufficiently general to admit a smooth surface section Y .
Then we may take A = OY (A) and B = OY (B), where A and B are twisted cubics in Y meeting at 5 points,
see [] : these will satisfy the assumptions of Theorem. Indeed, H0(ωY (m − c − 1)) = H0(OY ) = k
and, by Riemann-Roch:

dimkExt
1(B,A) = −χ(OY (A−B)) = 3

In the next section we will see how to deal in a similar fashion with any variety besides the non-wild
varieties listed in the main result.
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6. Wildness of non-integral projective schemes

In this short section we pay attention to the case of non-integral projective schemes. We first focus on the
case of reducible subschemes. For them, the next lemma is our starting point. In order to use it one starts
with an ACM subscheme X, recalls that X is thus equidimensional, takes X0 to be a union of components
of X, and studies the representation type of X in terms of that of X0. Let us put R = k[X] and R0 = k[X0].

Lemma 6.1. Let X0 ⊂ X ⊂ P
n be closed subschemes of the same dimension m and suppose that X0 is CM-wild.

Then X is CM-wild.

Proof. The inclusion X0 ⊂ X gives a surjective morphism of rings R → R0 that bestows a structure of
R-module to any R0-module. Because X0 and X have the same dimension, any MCM R0-module is also
an MCM R-module. Non-isomorphic R0-modules remain non-isomorphic R-modules. Also, an indecom-
posable R0-module is indecomposable as R-module. In other words, we have a representation embedding
MCMR0

→MCMR, so the lemma is proved. �

As a consequence of the previous lemma, in order to classify reducible projective schemes, it only remains
to take care of reducible varieties having no CM-wild component. This is the content of the following result.

Theorem 6.2. Let X1,X2 ⊂ P
n be m-dimensional closed integral varieties with m ≥ 2. Assume that X1∩X2 is

a Weil divisor in X1, that X2 is ACM and that X1 carries an ACM sheaf. Then X1 ∪X2 is CM-wild.

Proof. Put X = X1 ∪ X2 and Y = X1 ∩ X2. The surjection OX → OY factors as OX → OX1
→ OY and

OX →OX2
→OY and, since X = X1 ∪X2, this induces an isomorphism of OX-sheaves IX2|X ' IY |X1

. In
other words, we have an exact sequence:

0→IY |X1
→OX →OX2

→ 0.

Let F1 be an ACM sheaf on X1. Note that HomX(OX2
,F1) =HomX(F1,OX2

) = 0, because F1 and OX2

are respectively supported on X1 and X2, and these varieties have no common component. So:

HomX(OX2
,F1(q)) = HomX(F1(q),OX2

) = 0, for all q ∈Z.

Also, HomX(OX ,F1) ' F1. So, applying HomX(−,F1) to the previous exact sequence, we get:

(6.1) 0→F1→HomX(IY |X1
,F1)→Ext1X(OX2

,F1).

We look at IY |X1
as the kernel of OX1

→OY . Applying HomX1
(−,F1) gives:

(6.2) 0→F1→HomX1
(IY |X1

,F1)→Ext1X1
(IY |X1

,F1)→ 0,

because F1 is locally Cohen-Macaulay. On the other hand, applying HomX1
(−,OX1

) gives:

0→OX1
→HomX1

(IY |X1
,OX1

)→NY |X1
→ 0,

where we used the standard identification of the sheaf Ext1X1
(IY |X1

,OX1
) with the normal sheaf NY |X1

of Y
in X1. Tensoring the previous exact sequence with F1 gives:

(6.3) · · · → F1→HomX1
(IY |X1

,OX1
)⊗F1→NY |X1

⊗F1→ 0.

Because HomX(IY |X1
,F1) ' HomX1

(IY |X1
,F1), putting together () and () yields an inclusion

Ext1X1
(IY |X1

,F1) ↪→Ext1X(OX2
,F1). Therefore, for q ∈N, we have a linear inclusion:

(6.4) H0(X1,Ext1X1
(IY |X1

,F1(q))) ↪→H0(X,Ext1X(OX2
,F1(q)) ' Ext1X(OX2

,F1(q)).

where the isomorphism follows from the (degenerate) local-to-global spectral sequence.
There is a dense open subset of the reduced structure over Y where Y is Cartier and F1 is locally free.

Over such open set, the exact sequences () and () become the same and NY |X1
⊗F1 is locally free of

positive rank. Therefore, since dim(Y ) =m− 1 ≥ 1, the dimension of H0(Y ,NY |X1
⊗F1(q)) grows at least
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linearly when q� 0. Hence the same happens to H0(X1,Ext1X1
(IY |X1

,F1(q))). Therefore, in view of (),

Ext1X(OX2
,F1(q)) has unbounded dimension for growing q. The result now follows by applying item of

Theorem with B = OX2
and A = F1(q) for q� 0. �

We finish this section with a foray into non-reduced schemes.

Theorem 6.3. Let X ⊂ P
n be an m-dimensional closed subscheme containing a double structure over an integral

ACM subscheme X0 of dimension m ≥ 1. Then X is CM-wild.

Proof. This follows the same path as the previous lemma. We have an exact sequence:

0→IX0|X →OX →OX0
→ 0.

Since X contains a double structure over X0, the sheaf IX0|X has rank at least one as a sheaf over X0.
Applying HomX(−,OX0

) to this sequence, we get an exact sequence:

0→OX0

'−→OX0
→HomX(IX0|X ,OX0

)→Ext1X(OX0
,OX0

).

Since the ideal sheaf IX0|X has rank at least one, the sheaf E =HomX(IX0|X ,OX0
) is (torsion-free) of rank

at least one over X0 as well. Therefore, since m ≥ 1, for q� 0, the dimension of H0(X,E(q)) is unbounded,
and thus also the dimension of H0(X,Ext1X(OX0

,OX0
(q))).

We use now the exact sequence of lower degree terms of the local-to-global spectral sequence, together
with the fact that OX0

'HomX(OX0
,OX0

). This gives an exact sequence:

Ext1X(OX0
,OX0

(q))→H0(X,Ext1X(OX0
,OX0

(q))→H2(X,OX0
(q))

Now by Serre’s vanishingH2(X,OX0
(q)) = 0 for q� 0, so the dimension of Ext1X(OX0

,OX0
(q)) is unbounded

for q� 0. The conclusion again follows from item of Theorem, applied to B = OX0
and A = OX0

(q)
with q� 0. �

7. Varieties of minimal degree

Assume k is algebraically closed and char(k) , 2. Let X ⊂ P
n be a reduced closed ACM subscheme of

dimension m ≥ 1 and degree d. The subscheme X is thus linearly normal and, without loss of generality,
we may assume throughout that X spans Pn, so that X is embedded by the complete linear series of a very
ample line bundle OX(1). We argue on the sectional genus p of X, that is, the arithmetic genus of a reduced
1-dimensional linear section of X. We also introduce the ∆-genus of X, defined as ∆(X) = d − n +m − 1.
Since X is connected in codimension one (see [] for the de finition and the result), a theorem of Xambó
(see []) generalizing the classical lower bound on d (see for example [, Corollary 5.13]), asserts
that ∆(X) ≥ 0, or in other words d ≥ n −m + 1. If equality is attained, X is said to be of minimal degree.
This happens if and only if ∆(X) = 0, and also if and only if p = 0.

Before proceeding, a few words for the non-reduced case are in order: if X is ACM but not reduced,
of dimension m ≥ 1 and of degree n −m + 1, it still makes sense to ask about the representation type
of X. In this case, X is a 2-regular scheme (see [] and references therein for this notion and
related results) and therefore X has a non-reduced irreducible component whose reduction X0 is integral
of minimal degree (see [, Corollary 0.8 and Theorem 0.4]); therefore X0 is ACM, in which case X
is CM-wild by Theorem.

Let us return to the reduced case: we can suppose m ≥ 2, which is harmless since the representation
type of curves is well-known, see [,,]. Here is the main result of this section.

Theorem 7.1. Let X be a non-degenerate ACM closed subscheme of minimal degree and dimension m ≥ 2. Then
X is CM-wild, except if X a linear space, a quadric hypersurface of corank at most 1, the Veronese surface in P

5,
or a smooth rational normal surface scroll of degree 3 or 4.
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By [, Theorem 0.4 and 1.4] and [, Theorem 1], if the scheme X is reducible, then it has at
least two reduced irreducible components, both of minimal degree, meeting along a divisor, so that X is
CM-wild by Theorem.

Therefore it only remains to see what happens when X is integral. In this case X fits in the classification
of del Pezzo and Bertini, see []. If X is smooth, then X is either a quadric, or a Veronese surface, or
a rational normal scroll, and the representation type of all these varieties is known. Indeed, X is of finite
CM-type (see [,]) if it is a linear space (see []), or a smooth quadric (see []), or the
Veronese surface in P

5, or a smooth cubic scroll in P
4 (see [], see also []), or a rational normal

curve. Also, X is of tame CM-type if it is a rational normal surface scroll of degree 4, see []. Besides
these cases, X is strictly Ulrich wild, as we see by applying Theorem to the Ulrich line bundles considered
in [,]. For the reader’s convenience (and because these sheaves will play a role further on), we
recall that, if the scroll X ⊂ P

n has degree d, the Ulrich line bundles are the ideal of a fibre of the scroll
twisted by OX(1), and the dual of the ideal of d − 1 fibres.

It remains to understand what happens when X is an integral but singular scheme of minimal degree.
The goal of the rest of this section is to settle this point.

Theorem 7.2. An integral, non-degenerate, singular variety X of minimal degree and dimension m ≥ 2 is of
wild CM type unless X is a quadric of corank 1.

According to del Pezzo and Bertini, singular varieties of minimal degree are cones over smooth varieties
of minimal degree, so we start by studying in some detail the behavior of sheaves defined on cones.

7.1. Extension of sheaves over cones

Let X ⊂ P
n be a closed non-degenerate subscheme. Fix a linear subspace Λ ⊂ P

n. Let Λ0 ⊂ P
n be a linear

subspace disjoint from Λ such that Λ and Λ0 span P
n, and consider a subscheme X0 ⊂Λ0.

Definition 7.3. We say that X is a cone with vertex (or apex) Λ and base X0 if X is the union of all lines
joining a point of Λ and a point of X0.

When X is a cone with vertex Λ ⊂ P
n of codimension n0 + 1, any subspace Λ0 disjoint from Λ and of

dimension n0 provides X0 = X ∩Λ0 as base of X. To write the equations of a cone, choose coordinates so
that Λ0 is defined by the vanishing of the linear forms xn0+1, . . . ,xn. We denote λi = xn0+1+i the coordinates
of Λ so that k[Λ] ' k[λ0, . . . ,λn−n0−1]. Setting S

0 = k[x0, . . . ,xn0], the ideals IX |S of X in S and IX0|S0 of
X0 in S0 are generated by the same minimal set of polynomials. Put R = k[X] and R0 = k[X0]. In terms
of graded rings:

R ' R0 ⊗k k[Λ].

Lemma 7.4. Given finitely generated R0-modules E0 and F0, set E = E0 ⊗R0 R and F = F0 ⊗R0 R. Then, for
all i ≥ 0, we have an isomorphism of graded k[X]-modules:

ExtiR(E,F) ' ExtiR0(E0,F0)⊗k[Λ].

Proof. We have

ExtiR(E,F) ' ExtiR0(E0,F0 ⊗R0 R) ' ExtiR0(E0,F0)⊗R0 k[X]

where the first isomorphism is [, Theorem 11.65], using that R is a flat R0-module. In order to finish,
we need only to observe the standard isomorphism:

ExtiR0(E0,F0)⊗R0 (R0 ⊗k k[Λ]) ' (ExtiR0(E0,F0)⊗R0 R0)⊗k k[Λ]

' ExtiR0(E0,F0)⊗k k[Λ].

�
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7.2. The cubic cone

We focus now on the only case where all construction methods of representation embeddings seen so far fail,
for two reasons. First, no extension group grows enough to use Theorem. Second, all the ACM sheaves
that do have deformations have many endomorphisms, which is another obstruction to use Theorem. We
develop a specific technique to study this very intriguing case. For this subsection, the field k is arbitrary.

Theorem 7.5. The cone X ⊂ P
4 over a rational normal cubic curve in P

3 is CM-wild.

Proof. We divide the proof into eight steps.

Step 1. Define the sheaf F 0 on the twisted cubic and compute its self-extensions.

Let us write X0 for the base of the cone X. Using the convention of § let us put R = k[X], R0 = k[X0]
so that R ' R0 ⊗ k[λ0], and let us abbreviate λ = λ0. Define F 0 to be the line bundle of degree 2 on X0,
that is, F 0 ' O

P
1(2). This is a stable Ulrich sheaf on X0. We write F0 for its associated k[X0]-module.

Set W for the 2-dimensional vector space W = Ext1X0(F 0(1),F 0) 'H1(P1,O
P

1(−3)). By Lemma with
E0 = F 0(s) for all s ∈Z we get a graded isomorphism:

Ext1R0(F0(s)≥0,F
0)≥0 '

⊕
t≥0

Ext1X0(F 0(s),F 0(t)) '
⊕

0≤t≤s−1
S3(s−t)−2W,

where by convention a symmetric power with negative exponent is zero.

Step 2. Define the sheaf F on X and compute its self-extensions.

We now pay attention to X. Let F be the ideal sheaf of a ray of the cone X, twisted by OX(1); this
is a stable Ulrich sheaf of rank 1 on X. The R-module of global sections F associated with F satisfies
F ' F0 ⊗k[λ]. By Lemma we have, for all q ∈Z:

Ext1R(F(1),F)q ' Ext1R0(F0(1),F0)⊗k[λ]q.

Using Lemma and setting λq = 0 by convention for q < 0, we conclude, for all q ∈Z:

Ext1X(F (1),F (q)) ' Ext1R(F(1),F)q 'W ·λ
q.

Step 3. Define the quiver Θ and a functor RepΘ →ACMX .

We introduce now the quiver Θ, which we depict as follows.

Θ:
e1 e0 e2• • •

Let R be a representation of Θ with dimension vector (a0, a1, a2), so that R consists of two pencils of
linear maps A1⇔ A0⇒ A2, where Ai is a vector space of dimension ai . As we did in § we associate a
linear map with each of these two pencils by indexing the arrows of Θ with basis elements of W . This way,
the datum or R is tantamount to:

(ξ1,ξ2) ∈Homk(A0,A1)⊗W ·λ2 ×Homk(A0,A2)⊗W ·λ3.

In other words, we identify R with:

(ξ1,ξ2) ∈ Ext1X(A0 ⊗F , (A1 ⊗F (1))⊕ (A2 ⊗F (2))).

By the procedure described in §, this gives a sheaf E fitting into the exact sequence:

0→
A1 ⊗F (1)
⊕

A2 ⊗F (2)
→E → A0 ⊗F → 0.
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The sheaf E is thus clearly ACM and has a Jordan-Hölder filtration whose associated graded object is
F a0 ⊕ F (1)a1 ⊕ F (2)a2 . The procedure of constructing E from ξ, or equivalently from R, is functorial,
which can be seen readily following the proof of Theorem.

Step 4. Define a functor Φ : FModk[x1,x2]→ACMX factoring through RepΘ →ACMX .

Put Σ = k[x1,x2]. We define a functor from FModΣ towards the category of ACM sheaves over X.
Choose a basis (w0,w1) of W . A finite-dimensional Σ-module is a finite dimensional vector space M
together with two commuting endomorphisms x1 and x2. We define two representations ξ1 and ξ2 by
setting A0 =M ⊕M, A1 = A2 =M and:

ξ1 = (idMw0 + x1w1,0), ξ2 = (0, idMw0 + x2w1).

The sheaf E associated with M is defined by the pair ξ = (ξ1,ξ2) as in Step.

Step 5. Prove that, if E = Φ(M) and E ′ = Φ(M ′) are isomorphic, then M 'M ′ as k[x1]-modules.

Given two finite-dimensional Σ-modules M and M ′ , we have two sheaves E and E ′ . Assume that
these sheaves are isomorphic. By the Harder-Narasimhan filtrations of E ' E ′ we get that F (2)a2 is a
maximal destabilizing subsheaf of both E and E ′ , which implies that the quotient sheaves E1 = E/F (2)a2

and E ′1 = E ′/F (2)a2 are isomorphic. These sheaves are given by the extension classes ξ1 and ξ ′1, which are
thus isomorphic by the argument we used in the proof of Theorem.

We identify M and M ′ as vector spaces and consider x1 and x′1 as endomorphisms of M . Recall the
expressions ξ1 = (idMw0 + x1w1,0) and ξ ′1 = (idMw0 + x′1w1,0). Because ξ1 and ξ ′1 are isomorphic, there
are linear isomorphisms α0 ∈ Endk(M⊕M), α1 ∈ Endk(M) such that α1⊗idW ◦ξ ′1 = ξ1◦α0. Decomposing

α0 as a block matrix of endomorphisms α
i,j
0 of M, we rewrite this as

α1(idMw0 + x′1w1,0) = (idMw0 + x1w1,0)
(
α1,1
0 α1,2

0
α2,1
0 α2,2

0

)
In particular we get:

α1w0 +α1x
′
1w1 = α

1,1
0 w0 + x1α

1,1
0 w1,

so α1 = α
1,1
0 and α1 conjugates x′1 to x1. Then M and M ′ are isomorphic as k[x1]-modules.

Step 6. Prove that, if the sheaves E = Φ(M) and E ′ = Φ(M ′) are isomorphic, then M 'M ′ .

Suppose again E ' E ′ and assume now ξ1 = ξ ′1, which can be achieved after linear automorphisms by
the previous point.

By definition, E and E ′ are obtained from E1 = Eξ1 by using ξ2 and ξ ′2, which are both linear maps
A0→ A2 ⊗W . Let us look more closely at how this is achieved. Start with the extension ξ1 and the sheaf
E1 fitting into:

(ξ1) 0→ A1 ⊗F (1)→E1→ A0 ⊗F → 0.

Apply to this the functor HomX(−,A2 ⊗F (2)). We get:

(7.1) HomX(A1 ⊗F (1),A2 ⊗F (2))→ Ext1X(A0 ⊗F ,A2 ⊗F (2))→ Ext1X(E1,A2 ⊗F (2)).

This is rewritten in the form:

(7.2) Homk(A1,A2) ·λ→Homk(A0,A1)⊗W ·λ3→ Ext1X(E1,A2 ⊗F (2)).

Given a linear map γ : A1→ A2, the leftmost map in the previous diagram sends γ ·λ to γ ⊗ idW ◦ξ1 ·λ3.
The isomorphism class of the sheaf E determines an element of Ext1X(E1,A2 ⊗F (2)) coming from a pair
(ξ1,ξ2), so the previous diagram shows that E determines the isomorphism class of ξ2 up to adding any
map of the form γ ⊗ idW ◦ξ1, for γ ∈Homk(A1,A2).
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This says that an isomorphism E ′→E exists if and only if there exist a linear isomorphism α2 ∈ End(A2)
and a linear map γ : A1 → A2 such that ξ2 is carried to ξ ′2 by α2 + γ ⊗ idW , after composition with ξ1,
that is:

(7.3) α2 ⊗ idW ◦ξ ′2 = ξ2 +γ ⊗ idW ◦ξ1.

The sheaves E and E ′ determine isomorphic extensions and therefore equal elements in the group
Ext1X(E1,A2 ⊗F (2)). This implies that there exist a linear isomorphism α2 ∈ Endk(M) and a linear map
γ : A1→ A2 such that () holds. According to the decomposition A0 =M ⊕M, we rewrite this as:

(0,α2w0 +α2x
′
2w1) = (0, idMw0 + x2w1) + (γw0 +γx1w1,0).

In particular we obtain α2 = idM and x′2 = x2. The modules M and M ′ are thus isomorphic.

Step 7. Prove that, if E = Φ(M) is decomposable, then M is decomposable as k[x1]-module.

We write E = E ′ ⊕ E ′′ . The Harder-Narasimhan filtration of E ′ must be compatible with that of E and
therefore its associated graded object must be F a′0 ⊕ F (1)a

′
1 ⊕ F (2)a

′
2 , and similarly for E ′′ . Then, the

quotient E ′1 = E ′/F (2)a
′
2 has a graded object of the form F (1)a

′
1 ⊕F (2)a

′
2 and therefore, as in the proof of

Theorem, we must have E ′1 ' Eξ ′1 for some ξ ′1 ∈Homk(A′0,A
′
1)⊗W , where A′0 and A′1 are vector spaces

of dimension a0 and a1 appearing in the vector space decompositions A0 = A′0 ⊕A
′′
0 and A1 = A′1 ⊕A

′′
1 .

Likewise we have E ′′1 ' Eξ ′′1 for some ξ ′′1 ∈Homk(A′′0 ,A
′′
1 )⊗W and E1 = E ′1 ⊕E

′′
1 , which implies that ξ1 has

a block-diagonal form in terms of ξ ′1 and ξ ′′1 .
Now we have M = A1 decomposed as vector space as A′1 ⊕A

′′
1 . We put M ′ = A′1, M

′′ = A′′1 and we
write M =M ′ ⊕M ′′ , so we decompose A0 =M ⊕M as A0 =M ′ ⊕M ′′ ⊕M ′ ⊕M ′′ . By definition we have
ξ1 = (idMw0 + x1w1,0) so the expression idMw0 + x1w1 gives a map M ′ ⊕M ′′ → (M ′ ⊕M ′′)⊗W which,
in view of the decomposition of ξ1 in diagonal form in terms of ξ ′1 and ξ ′′1 , takes the form:

idMw0 + x1w1 =
(
idM ′ w0 + x′1w1 0

0 idM ′′ w0 + x′′1w1

)
,

for some linear maps x′1 :M
′→M ′ and x′′1 :M ′′→M ′′ .

Step 8. Prove that, if E = Φ(M) is decomposable, then M is decomposable.

We proved that M = M ′ ⊕M ′′ as k[x1]-module. Now we have to use ξ2 to prove that the splitting
E = E ′ ⊕E ′ provides a second pair of endomorphisms x′2 :M

′ →M ′ and x′′2 :M ′′ →M ′′ compatible with
the decompositionM =M ′⊕M ′′ induced by E1 = E ′1⊕E

′′
1 . Again the Harder-Narasimhan filtration induces

a decomposition A2 = A′2⊕A
′′
2 . The exact sequence defining E as an extension of F1 by A2⊗F (2) together

with the direct sum decompositions of E1 and A2 provides elements ζ′ and ζ′′ of the Ext groups:

ζ′ ∈ Ext1X(E
′
1,A
′
2 ⊗F (2)), ζ′′ ∈ Ext1X(E

′′
1 ,A

′′
2 ⊗F (2)),

and the extension providing E is the block-diagonal sum of ζ′ and ζ′′ . This means that, denoting by
ι : E ′1→E1 the obvious injection, the map

ι∗ : Ext1X(E1, (A
′
2 ⊕A

′′
2 )⊗F (2))→ Ext1X(E

′
1, (A

′
2 ⊕A

′′
2 )⊗F (2))

must map the class ζ of E to (ζ′ ,0), and similarly the map induced by the injection E ′′1 → E1 must map ζ
to (0,ζ′′).

In view of the description of the Ext groups we have given in () and (), and because ι corresponds
to the inclusion of M ′ into M, this implies that, up to adding γ ⊗ idW ◦ξ1 for some γ :M ′→ A′2⊕A

′′
2 , the

map
ξ2 ◦ ι :M ′ ⊕M ′→ (A′2 ⊕A

′′
2 )⊗W

must have a vanishing component in A′′2 ⊗ W . Write γ as the transpose of (γ ′ ,γ ′′), where γ ′ ∈
Homk(M ′ ,A′2) and γ

′′ ∈Homk(M ′ ,A′′2 ).
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Denote by π′ : M → A′2 and π′′ : M → A′′2 the obvious projections and recall that, by definition, we
have ξ2 = (0, idMw0 + x2w1) and ξ1 = (idMw0 + x1w1,0). Evaluating at (w0,w1) = (1,0), we get maps
M ′ ⊕M ′→ A′′2 satisfying the following equality:

(γ ′′ ◦ idM ′ ,0) = (0,π′′ ◦ ι).

In particularM ′ = Im(ι) ⊂ ker(π′′) = A′2. Similarly we getM ′′ ⊂ ker(π′) = A′′2 and in view of the equalities
M ′ ⊕M ′′ =M = A′2 ⊕A

′′
2 , we obtain M ′ = A′2 and M ′′ = A′′2 .

Evaluating at (w0,w1) = (0,1) we get π′′2 ◦x2 ◦ ι = 0, meaning that x2 maps M ′ = Im(ι) to M ′ = ker(π′′),
namely M ′ is stable for x2. One proves similarly the same statement for M ′′ . Therefore x2 :M→M is the
block-diagonal sum of x′2 :M ′ →M ′ and x′′2 :M ′′ →M ′′ so that M is the direct sum of M ′ and M ′′ as
Σ-modules.

Note that, if the decomposition of E is non-trivial (that is to say, if E ′ , 0 , E ′′) then at least one of the
decompositions of A0, A1 and A2 is non-trivial, and therefore all of them are by what we have just seen, so
the decomposition of M as Σ-module is non-trivial too. �

7.3. Proof of Theorem

The variety X is a cone over a base X0 which is a smooth irreducible variety of minimal degree. We adopt
the convention of § and write R = k[X] and R0 = k[X0] so R ' R0⊗k[Λ]. We always put a 0 superscript
to sheaves on X0 and modules on R0, remove the superscript to indicate the corresponding object on X,
and put a calligraphic letter for the coherent sheaf associated with a module denoted by that letter.

We have three cases to check according to whether X0 is a quadric, or a Veronese surface in P
5, or a

scroll. These are treated in a conceptually unified way by Lemma, Lemma and Theorem: only the
choice of the basic sheaves on X0 obliges us to separate them. Note that, once the ACM (or Ulrich) sheaves
E0 and F 0 are stable on X0, their lifts E and F are ACM (or Ulrich) and stable on X. Indeed, the ACM
and Ulrich conditions are obvious as they can be read on the minimal graded free resolutions of E0 and
E or of F0 and F, which are unchanged on S or S0. Stability is also clear, as any destabilizing subsheaf,
restricted to a generic linear space of dimension n0, would destabilize E0 or F 0.

7.3.1. Quadric cones. Here, X0 is a quadric of corank greater than one, in other words dim(Λ) ≥ 1.
We take S0 to be a spinor bundle on X0, see [,,]. Then, E0 = S0(1) is an Ulrich bundle
and it sits in a short exact sequence

0→F 0→O2rkS0
X0 →E0→ 0,

where F 0 is again a spinor bundle (isomorphic to S0 if and only if the dimension of X0 is odd). Both are
stable sheaves on X0. We have, by Lemma:⊕

t∈N
Ext1X0(E0,F 0(t)) ' Ext1R0(E0,F0) ' k,

where E0 = Γ∗(E0) and F0 = Γ∗(F 0). Therefore, defining E and F as sheafifications of E = E0 ⊗k k[Λ] and
F = F0 ⊗k k[Λ], by Lemma, we obtain an isomorphism of R-modules:⊕

t∈N
Ext1X(E ,F (t)) ' k[Λ].

In particular the component of degree t, for t ≥ 2, of this extension space has dimension at least 3.
Applying item of Theorem to B = E and A = F (2) gives the result.
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7.3.2. Cones over the Veronese surface. If X0 is the Veronese image of P2 in P
5, we take E0 to be

the tangent bundle T
P

2 . This is a stable Ulrich bundle with respect to OX0(1) ' O
P

2(2). Write W for the
3-dimensional space H0(P2,O

P
2(1)). Letting Ω

P
2 be the cotangent bundle on P

2 and tensoring the Euler
sequence with Ω

P
2(t) we get, for t = 0:

H1(P2,Ω
P

2 ⊗ T
P

2(−2)) 'H2(P2,Ω
P

2(−2)) 'W.

In general for t ∈Z, we obtain:

Ext1X0(E0(1),E0(t)) '

W if t = 0,

0 otherwise.

Therefore we have isomorphisms of graded R-modules:⊕
t∈N

Ext1X(E(1),E(t)) ' Ext1X0(E0(1),E0)⊗k k[Λ] 'W ⊗k k[Λ].

Applying item of Theorem to the pair of sheaves B = E(1) and A = E(2) gives the result.

7.3.3. Cones over scrolls. Finally, assume that X0 is a scroll of degree d. By Theorem we may
suppose d ≥ 4 or m ≥ 3. If m = 2 (and hence X0 ' P

1) we work like in Theorem and take F to be the
ideal sheaf of a ray of the cone X. We have F 0 ' O

P
1(−1). The vector space

W = Ext1X0(F 0(1),F 0) 'H1(P1,O
P

1(−d))

has dimension d − 1 ≥ 3. Moreover, by Lemma, Case, we get that Ext1R0(F0(1),F)0 'W . Then, we
are in position to apply Theorem because, for all q ∈N, the following space has dimension at least 3:

Ext1X(F (1),F (q)) ' Ext1R(F(1),F)q 'W ·λ
q
0.

If m ≥ 3, either dim(Λ) ≥ 1 or dim(X0) ≥ 2. In the former case, we may assume dim(X0) = 1 so again
X0 ' P

1 and we choose F 0 as before. The space W = Ext1X0(F 0(1),F 0) has positive dimension and we
get, for q ≥ 0:

Ext1X(F (1),F (q)) ' Ext1R(F(1),F)q 'W ·k[Λ]q,

and this space has unbounded dimension for q � 0 as dim(Λ) ≥ 1. In the latter case, we may assume
dim(Λ) = 0, and choose F 0 to be the ideal of a fibre of the scroll, twisted by OX0(1), and E0 to be the
line bundle associated with the divisor of d −1 fibres. These are both (obviously stable) Ulrich line bundles.
Also, W−1 := Ext1X0(E0(1),F 0) 'H1(O

P
1(−d)) ' kd−1, while W0 := Ext1X0(E0,F 0) has dimension at least 1,

see [, Lemma 3.1]. Therefore, we get:

Ext1X(E ,F ) ' Ext1X(E,F)0 ' Ext1X0(E0,F0)−1 ·λ0 ⊕Ext1X0(E0,F0)0 'W−1 ·λ0 ⊕W0.

So dimkExt
1
X(E ,F ) ≥ 3 and Theorem allows us to conclude.

Remark 7.6. If the base field k is algebraically closed and char(k) = 2, all the statements of Theorem7.2 and hence of Theorem remain true, except perhaps the fact that quadric cones of corank one are
CM-countable.

All the proofs remain the same except when X is a quadric hypersurface. If the quadric X is smooth,
then X is CM-finite by []. If X is not smooth, then X is a cone over a smooth quadric X0, the vertex
of the cone being a linear subspace Λ ⊂ P

n (recall that k is algebraically closed). If dim(Λ) ≥ 1, again
[] provides the sheaves E0 and F 0 as is §, and these sheaves are Ulrich, hence semistable, as we
shall see in Lemma. Since any destabilizing subsheaf should be Ulrich, CM- finiteness of X0 implies that
E0 and F 0 can be chosen to be stable and hence simple. So X is CM-wild in this case as in §.

We do not know if a quadric cone X of corank 1 is CM-countable when char(k) = 2. Indeed, our
construction provides countably many ACM sheaves on X also in this case, but Knörrer periodicity does
not apply directly to show that these are the only indecomposable ACM sheaves on X up to isomorphism.
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8. Varieties of almost minimal degree

From now on the field k is algebraically closed of arbitrary characteristic. Let us take a further step in the
proof of our main result. In view of Theorem, we will assume from now on that the subscheme X ⊂ P

n

is reduced, and keep the usual assumption that X is closed, non-degenerate and ACM of dimension m ≥ 1.
In this section we pay attention to varieties of almost minimal degree, namely the degree of X is d = n−m+2.
If X is irreducible and normal then X is usually called a del Pezzo variety (terminology may differ slightly
in the literature). Our goal in this section is to prove the following result.

Theorem 8.1. Any reduced, non-degenerate ACM scheme X ⊂ P
n of dimension m ≥ 2 and almost minimal degree

is of wild CM-type. For m = 2, X is strictly Ulrich wild.

Let us first look briefly at reducible (and reduced) ACM subschemes of almost minimal degree and then
focus on the irreducible ones, normal or not.

8.1. Reducible subschemes of almost minimal degree

Let us start by assuming that X is reducible, namely X = X1∪X2 where X1 and X2 are closed subschemes
of Pn of degree d1 and d2. We claim that not both of them have degree di ≥ ni −m+ 2 at the same time,
where ni denotes the dimension of the linear span 〈Xi〉 of Xi inside P

n. Otherwise,

n−m+2 = d = d1 + d2 ≥ n1 +n2 − 2m+4.

On the other hand n = n1+n2− l, with l = dim(〈X1〉∩〈X2〉). From here we would obtain that l ≤m−2, in
contradiction with the fact that, since the subscheme X is ACM, it must be connected in codimension one
(again, see [] for the de finition and the result) and therefore X1 and X2, both of dimension m should
meet along a Weil divisor.

By induction on the number of components of X, we deduce that we can find two irreducible components
X1 and X2 of X, of dimension m, such that either both of them are of minimal degree in their linear span
or one of them, say X1, is of minimal degree on its linear span and X2 is of quasi-minimal degree.

In both cases, the subscheme X1, being of minimal degree, is ACM in its linear span, while X2 is either
ACM or the image of a (finite) projection of a variety X̄2 of minimal degree (see [, Theorem 1.2]). Since
X̄2 supports an ACM sheaf (see §), so does X2, because taking the direct image via a finite map preserves
the ACM property. In all these circumstances, Theorem applies to show that X1 ∪X1 is CM-wild, and
by Lemma, X is CM-wild as well.

8.2. Reduction to surfaces

In view of the previous discussion, we may assume from now on that X is irreducible and of almost minimal
degree. In other words, X has ∆-genus one. This condition amounts to asking that the sectional pX of X
is one, see [, page 45]. Essentially, these varieties are completely classi fied: see [] for the case
of normal varieties, and [,] for the non-normal case. For surfaces of degree 3 and 4 we refer
to [,]. For the roots of this classi fication, originated from work of Schläfli and Cayley, see for
instance [,].

Since we are assuming that X is ACM, it turns out that X is arithmetically Gorenstein (AG), which is to
say, R = k[X] is a graded Gorenstein ring (see [, Remark 4.5]). Therefore the canonical sheaf satis fies
ωX ' OX(m−1): indeed, by [, Corollary 4.1.5], ωX must be of the form OX(t) for some t ∈Z; on the
other hand restricting to a generic one-dimensional linear section Y gives ωY ' OY (t+m−1) by adjunction
because pY = 1. Therefore χ(ωY ) = 0 so t = 1−m.

Let us quickly rule out the case m = 1. We have that X is of tame CM-type if it smooth (namely X is
an elliptic curve), by classical work of Atiyah, see []. If X is singular, we know by [] that X is
CM-tame if X a cycle of rational curves with ordinary double points, and that X is CM-wild otherwise.
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The goal of this section is to deal with higher dimensions. Namely we want to prove that, if X is ACM
of almost minimal degree, then X is CM-wild as soon as m ≥ 2.

The idea is to use our reduction to linear sections. Let Y ⊂ P
d be a linear section of X with dim(Y ) = 2.

By Bertini’s theorem, we may assume that Y is also an irreducible ACM subscheme of almost minimal
degree, with ωY ' OY (−1). Note that the codimension c of Y in X is m − 2 so ωY (m − c − 1) ' OY .
Therefore, Theorem applies to prove that X is CM-wild, as soon as we show that Y supports two simple
Ulrich sheaves A and B such that:

HomY (A,B) = 0 = HomY (B,A), and dimkExt
1
Y (B,A) ≥ 3.

Finding A and B as above will be our task. It is natural to look for A and B among sheaves of low rank.
However, in general it will not be possible to obtain sheaves of rank one. Indeed, Ulrich sheaves of rank one
may not exist for certain del Pezzo surfaces, for example cubic surfaces with an E6 singularity (see [,
Theorem 9.3.6]).

Therefore we move forward to construct rank two sheaves using the Hartshorne-Serre correspondence.
Of course this idea is not new, as for instance it is widely used in [] precisely to construct families
of Ulrich bundles on smooth cubic surfaces, a special case of surfaces of almost minimal degree. The
construction can be performed in quite a general setup; for instance, for cubic surfaces one knows, even if
k is not algebraically closed, the degree of the field extension needed to construct EZ , see []. However,
in our setting we have to be a bit more careful since the surfaces under consideration may be badly singular.

8.3. Surface cones

Let us quickly rule out the case of cones, namely assume that Y ⊂ P
d is a cone over an integral curve

Y 0 ⊂ P
d−1 with trivial canonical sheaf, the vertex of the cone being a single point. In this case, using

[, Proposition 3.5], we may choose non-isomorphic Ulrich line bundles F 0 and E0 on the curve Y 0,
putM = E0 ⊗ (F 0)∨ and observe:

Ext1Y 0(E0,F 0(−1))∗ 'H0(Y 0,M(1)) ' kd .

becauseM(1) is a line bundle of degree d, and clearly d ≥ 3. We also have Ext1Y 0(E0,F 0)∗ 'H0(Y 0,M) = 0
because E0 and F 0 are not isomorphic. By the same reason we have HomY 0(E0,F 0) = HomY 0(F 0,E0) = 0.

We use the approach of §. The coordinate ring R = k[X] takes the form R0 ⊗k k[λ], with R0 = k[X0]
and the modules E0 = Γ∗(E0) and F0 = Γ∗(F 0) give rise, by tensoring with k[λ], to Ulrich R-modules F and
E (as their S-resolutions are still linear) and thus to Ulrich sheaves E and F over X. By Lemma and
Lemma, we have:

Ext1Y (E ,F ) ' Ext1Y 0(E0,F 0(−1)) ·λ,
so this space has dimension at least 3. The same argument shows HomY (E ,F ) = HomY (F ,E) = 0. Then
A = E and B = F are the desired sheaves to apply Theorem.

8.4. Hartshorne-Serre correspondence

At this point we may assume that the surface Y ⊂ P
d is not a cone. Let us consider a set Z ⊂ Y ⊂ P

d of
d +2 distinct points points in general linear position and disjoint from Sing(Y ). We have:

Ext1Y (IZ |Y (2),OY ) ' Ext1Y (OY ,IZ |Y (1))
∗ 'H1(Y ,IZ |Y (1))∗ ' k,

where we used that ωY ' OY (−1) and that Z spans the whole Pd . A non-zero element λ ∈H1(Y ,IZ |Y (1))∗
provides a coherent sheaf FZ of rank 2 that fits into the short exact sequence:

(8.1) 0→OY →FZ →IZ |Y (2)→ 0.

Given a set of points Z of d +2 points of Y , write [Z] for the corresponding element of the Hilbert scheme
Hilbd+2(Y ) of subschemes of length d +2 of Y . In the next lines, stability is always with respect to OY (1).
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Lemma 8.2. The sheaf FZ is Ulrich and locally free of rank 2.

Proof. Let us prove that FZ is locally free. We need only prove this around any point z of Z, as IZ |Y is
already free of rank 1 away from Z . First of all, taking the dual of the short exact sequence

0→IZ |Y (2)→OY (2)→OZ(2)→ 0,

we deduce, since Z is smooth and zero-dimensional, that

Ext1OY (IZ |Y (2),OY ) ' Ext
2
OY (OZ ,OY ) 'ωZ .

Next, note that HomOY (IZ |Y (2),OY )) ' OY (−2). In view of the vanishing H1(Y ,OY (−2)) = 0, by the
local-to-global spectral sequence we get an exact sequence:

0→ Ext1Y (IZ |Y (2),OY )→H0(Y ,Ext1OY (IZ |Y (2),OY ))→H2(Y ,OY (−2))→ 0.

Using Serre duality and the above isomorphisms we rewrite this as

0→ Ext1Y (IZ |Y (2),OY )→H0(Y ,ωZ )
∗→H0(Y ,OY (1))∗→ 0.

We may choose coordinates so that Z is the union of d +2 points of a projective coordinate system, so that
λ is the vector (1, . . . ,1,−1) in H0(Y ,ωZ )∗, which shows that λ is non-zero at any point of Z .

Therefore, λ corresponds to a global section:

OY →Ext1OY (IZ |Y (2),OY ) 'ωZ ,

which is non-zero at any point z of Z . Since z is locally defined by two equations, the sheaf
Ext1OY (Iz|Y (2),OY ) is one-dimensional at z, generated by the extension given by the Koszul complex
of these equations; so the middle term of such extension is FZ . Hence FZ is locally free around any point
z of Z .

The fact that the sheaf FZ is Ulrich follows from [, Proposition 2.1]. Indeed, we need to prove that
Hi(Y ,FZ(−1)) = Hi(Y ,FZ(−2)) = 0 for all i. Since FZ is locally free of rank 2 and clearly ∧2FZ ' OY (2),
we have:

H2−i(Y ,FZ(−2))∗ 'Hi(Y ,F ∨Z (2)⊗ωY ) 'Hi(Y ,FZ(−1)),
so it will be enough to prove one set of vanishing conditions. This amounts to checking that the map
H1(Y ,IZ |Y (1))→ H2(Y ,OY (−1)) is an isomorphism. We observe that this map is Serre-dual of the map
H0(Y ,OY )→ Ext1Y (IZ |Y (2),OY ) that sends the identity to λ, and therefore it is an isomorphism.

Otherwise, one may deduce that FZ is Ulrich by the form of the minimal graded free resolution of the
ideal of Z, which can be extracted from []. �

Lemma 8.3. Let F be an Ulrich sheaf on an m-dimensional closed subscheme X ⊂ P
n. Then F is semistable

and any destabilizing subsheaf of F is Ulrich.

Proof. This follows again from [, Proposition 2.1]. Indeed, first note that, since F is Ulrich, it is also
locally Cohen-Macaulay and therefore pure. Next, choosing a finite linear projection π : X→ P

m, we have
π∗(F ) ' Ou

P
m for some integer u. Put χm = p(O

P
m) and d = deg(X).

Suppose that F ′ is a proper subsheaf of F with p(F ′) � p(F ). Since π is finite, we have:

P (F ′ , t) rk(F )
u rk(F ′)

� χm(t),

and, because Ou
P
m is semistable, P (F ′ , t)/ rk(π∗(F ′)) � χm(t). But this contradicts the equality

d =
rk(π∗(F ′))
rk(F ′)

=
u

rk(F )
.

This shows that F is semistable. Moreover, if p(F ′) = p(F ), then p(π∗(F ′)) = χm(t) so π∗(F ′) ' Ou
′

P
m for

some integer u′ because Ou
P
m is polystable, which implies that F ′ is Ulrich. �
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Proposition 8.4. The set Z can be chosen so that FZ is stable.

Proof. We know that FZ is Ulrich so either FZ is stable or there exist A and B Ulrich sheaves of rank 1
such that FZ fits into:

0→A→FZ →B → 0.

Note that A is reflexive as B is torsion-free and FZ is locally free. Therefore, a global section of A
vanishes along a subscheme of Y which is Cohen-Macaulay of dimension one (see [, Proposition 2.8
and 2.9]).

By construction, the global section s ∈H0(Y ,FZ ) associated with Z vanishes precisely on Z . Therefore s
cannot lie in H0(Y ,A) ⊂H0(Y ,FZ ), as s would then vanish in codimension 1. Hence we can construct the
following commutative diagram:

OY
s
��

OY
��

0 // A // FZ //

��

B //

��

0

0 // A // IZ |Y (2) // T // 0

where T is a torsion sheaf defined by the diagram. This tells us that:

H0(Y ,IZ |Y ⊗A∨(2)) , 0,

namely Z lies on a divisor D from the linear system |A∨(2)|. Our goal is to prove that Z can be chosen so
that it lies on no such divisor. Notice that, by [, Lemma 2.4], A∨(2) is also an Ulrich sheaf of rank
one.

Assume first that Y is normal. For each fixed Ulrich sheaf L of rank one, we know that dimkH0(Y ,L) = d,
and each non-zero global section of L vanishes along a Weil divisor D ⊂ Y . We view isomorphism classes
of such sheaves as elements of the divisor class group of Y , which is identified with the group APic(Y ) of
generalized divisors on Y , see [, §2].

Each linear system |L| has dimension d − 1. For each D in |L|, taking all non-degenerate smooth
subschemes Z ⊂ Y lying in D we obtain a non-empty open subset of the Hilbert scheme Hilbd+2(D)
which is (d + 2)-dimensional. The union of these such Z for all choices of D in |L| forms a subscheme of
Hilbd+2(Y ) which is of dimension at most (d+2)+dim |L| = 2d+1. But the main component of Hilbd+2(Y )
(that is, the component containing smooth subschemes) has dimension 2d + 4, so we may choose Z not
lying in any D ∈ |L|. Finally, since the divisor class group of a normal del Pezzo surface is discrete, we may
choose Z away from the union, over all divisor classes arising from Ulrich sheaves L, of the subschemes of
Hilbd+2(Y ) associated with D lying in |L|. So FZ is stable if Z is general enough.

Now let us assume that Y is not normal. We know by [] that Y is normalized by a surface
Ȳ ⊂ P

d+1 of minimal degree d, the normalization map Ȳ → Y being induced by a projection P
d+1→ P

d .
The normalization is an isomorphism away from a conic in Ȳ which is mapped onto the singular locus of
Y , which in turn is a line L. Moreover, the surface Ȳ is smooth as otherwise, being of minimal degree, it
would have to be a cone, but then Y would be a cone too, which we excluded.

Given an Ulrich sheaf L of rank one, again we have dimkH0(Y ,L) = d, and we choose a non-zero
global section of L. This vanishes along a Weil divisor D ⊂ Y of degree d, which contains a structure of
multiplicity e ≤ d over L. Removing this structure from D we obtain an effective generalized divisor D0,
whose class lies in APic(Y ), see [, Proposition 2.12]. Since Z is disjoint from L, it will be enough to
prove that we may choose Z away from any divisor D0 of degree d − e, and obviously it suffices to show
that this holds for D0 of degree d.
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To do this we use the explicit description of APic(Ȳ ) given by [, Theorem 4.1 and Proposition 4.2].
Indeed, Ȳ is either a Veronese surface in P

5 (and thus d = 4) or a rational normal scroll of degree d ≥ 3,
and D0 is the image of an effective divisor D ′0 of degree d in Ȳ . Also, taking a hyperplane section C ' P

1

of Ȳ , we get:
0→OȲ (D ′ −H)→OȲ (D ′)→OC(D ′)→ 0,

so dimkH0(Ȳ ,OȲ (D ′)) ≤ d +2, as deg(D ′ −H) ≤ 0 and OC(D ′) ' OP
1(deg(D ′)), with deg(D ′) ≤ d.

Therefore, since there are finitely many effective divisor classes of degree at most d in Ȳ , if we choose
Z ′ ⊂ Ȳ to be a non-degenerate set of d + 2 distinct points lying away from all divisors D ′ in those classes,
the image Z of Z ′ in Y will be contained in no generalized divisor D0 of degree at most d. We conclude
that FZ is stable. �

Lemma 8.5. We may choose Z and Z ′ sets of d +2 points of Y such that E = FZ , F = FZ ′ are non-isomorphic
stable Ulrich bundles of rank 2 on Y . In this case:

HomY (E ,F ) = HomY (F ,E) = 0,

dimkExt
1
Y (E ,F ) = 4.

Proof. We have proved so far that, for Z general enough in the main component of Hilbd+2(Y ), the sheaf
FZ is a stable locally free Ulrich sheaf of rank 2. Given such Z, choosing a non-zero global section of FZ
gives a map from an open dense subset of P(H0(Y ,FZ )) ' P

2d−1 to the main component of Hilbd+2(Y )
associating with the section its vanishing locus. This map cannot be surjective by dimension reasons, so
we can take Z ′ general enough, lying away from the image of this map and such that FZ ′ is also a stable
locally free Ulrich sheaf of rank 2. Because Z ′ is not the vanishing locus of a global section of FZ , we have
that FZ and FZ ′ are not isomorphic.

The first two statements concerning morphisms are clear since E and F are stable with the same slope
and not isomorphic. For the last statement, since E is locally free, we have Ext1Y (E ,F ) ' H1(Y ,E∨ ⊗ F ).
Tensoring the short exact sequence by E∨ and considering the associated long exact sequence of global
sections, since H1(Y ,E∨) = H2(Y ,E∨) = 0, we get an isomorphism

(8.2) Ext1Y (E ,F ) 'H1(Y ,E∨ ⊗IZ |Y (2)).

On the other hand, the exact sequence defining Z ⊂ Y twisted by OY (2) reads:

(8.3) 0→IZ |Y (2)→OY (2)→OZ(2)→ 0.

Taking into account that E∨ ' E(−2) we obtain H0(Y ,E∨⊗IZ |Y (2)) = 0. Then, tensoring () by E∨, taking
global sections and combining with () we get:

0→H0(Y ,E∨(2))→H0(Y ,E∨ ⊗OZ(2))→ Ext1Y (E ,F )→ 0.

Now we know that E∨(2) ' E has 2d independent global sections, as E is Ulrich. On the other hand, since
Z has length d +2, so that E∨ ⊗OZ(2) is just a vector space of rank 2 concentrated at d +2 points, hence
dimkH0(Y ,E∨ ⊗OZ(2)) = 2d +4. We conclude that dimkExt

1
Y (E ,F ) = 4. �

Theorem combined with the results of this section yields the proof of Theorem.

9. Varieties of higher degree

In this final section we prove our main theorem for subschemes of degree higher than almost minimal, that
is, in the range ∆(X) > 1. Let again X ⊂ P

n be a reduced ACM subscheme of dimension m ≥ 1 and degree
d > n−m+2, or in other words ∆(X) > 1. Thus p ≥ 2 (see [, (6.4.5)]).

We take a linear section Y of dimension 1, which we may assume to be reduced, so Y is an ACM curve
of arithmetic genus p ≥ 2. We note that the proof of [, Proposition 3.5] applies to Y as it only uses
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the fact that the projective curve Y is reduced and connected. Then, we may find a line bundle L1 on Y
satisfying:

H0(Y ,L1) = H1(Y ,L1) = 0.

Therefore, L1(1) is an Ulrich line bundle by [, Theorem 4.3] Clearly, HomY (L1,L1) 'H0(Y ,OY ) ' k
because L1 is invertible, so L1 is simple. Moreover the space Ext1Y (L1,L1) ' H1(Y ,OY ) has dimension
p ≥ 2 and Ext2Y (L1,L1) = 0. So we may take general flat deformations of L1 to get sheaves L2, L3,
L4, not isomorphic to one another nor to L1, which will also be invertible (hence simple) and satisfy
H0(Y ,Li) = H1(Y ,Li) = 0 for all i by semicontinuity.

We claim that we may assume HomY (Li ,Lj ) = 0 for i , j . Indeed, first note that the degree of the line
bundle L1 on each irreducible component of Y is constant along small deformations so we may assume
that all the sheaves Li have the same degree along each component. Put M = L∨i ⊗Lj , take a non-zero
morphism Li → Lj and rewrite it as a nonzero global section ϕ : OY →M. The restriction of M to any
irreducible component of Y is a line bundle of degree 0, so ϕ is an isomorphism as soon as its restriction
to all such components is non-zero. Set Y ′ for the union in Y of the irreducible components of Y where
ϕ is non-zero (and hence an isomorphism) and put Y ′′ for the closure in Y of Y \ Y ′ , M′′ =M|Y ′′ . By
assumption Y ′ , ∅ , Y ′′ . Then we have the commutative exact diagram:

0 // IY ′ |Y //

ϕ′
��

OY
ϕ
��

// OY ′′ //

ϕ′′
��

0

0 // IY ′ |Y ⊗M //M //M′′ // 0

Here, ϕ′′ = ϕ|O′′Y is zero, while ϕ′ is the restriction of ϕ to Y ′ , tensored with the identity over IY ′ |Y ,
and therefore is an isomorphism. Hence the snake lemma gives a splitting OY ′′ → OY of the surjection
OY →OY ′′ , so Y cannot be connected unless Y ′ or Y ′′ are empty, a contradiction.

As a consequence, we get that the space Ext1(Li ,Lj ) ' H1(Y ,L∨i ⊗Lj ) has dimension p − 1 for i , j .
Now we may choose A and B as two sheaves given by non-trivial extensions:

0→L1(1)→A→L2(1)→ 0,

0→L3(1)→B →L4(1)→ 0.

It is clear that A and B are locally free Ulrich sheaves of rank 2. Also, the sheaves A and B are simple and
satisfy (see for instance [, Proposition 5.1.3]:

HomY (A,B) = HomY (B,A) = 0.

χ(A,B) = χ(B,A) = 4(1− p).

We obtain the following:

dimkExt
1
Y (A,B) = dimkExt

1
Y (B,A) = 4(p − 1) ≥ 4.

Note that the non-vanishing condition of Theorem reduces to H0(Y ,ωY ) , 0, which is true because p ≥ 2.
Now Theorem implies that X is of wild CM representation type.
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