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A gluing construction of projective K3 surfaces

Takayuki Koike and Takato Uehara

Abstract. We construct a non-Kummer projective K3 surface X which admits compact Levi-flats
by holomorphically patching two open complex surfaces obtained as the complements of tubular
neighborhoods of elliptic curves embedded in blow-ups of the projective plane at nine general
points.
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1. Introduction

In the paper [KU19], we gave a method, the so-called gluing method, for constructing a family of K3
surfaces, that is, we constructed such a K3 surface by holomorphically gluing two open complex surfaces
obtained as the complements of tubular neighborhoods of elliptic curves embedded in blow-ups of the
projective planes at nine points. The family has complex dimension 19 and each K3 surface of the family
admits compact Levi-flat hypersurfaces. In this paper, we will show that there are projective K3 surfaces
among the family. One of the main results is given as follows:

Theorem 1.1. There exists a deformation π : X → B of projective K3 surfaces over an 18 dimensional complex
manifold B with injective Kodaira-Spencer map such that each fiber Xb := π−1(b) admits a holomorphic immersion
Fb : C→ Xb with the property that the Euclidean closure of the image Fb(C) in Xb is a compact real analytic
hypersurface Cω-diffeomorphic to a real 3-dimensional torus S1 ×S1 ×S1 which is Levi-flat. Especially, Fb(C) is
Zariski dense in Xb whereas it is not Euclidean dense. Moreover, Xb is non-Kummer for almost every b ∈ B in the
sense of the Lebesgue measure.

In the construction of K3 surfaces given in the paper [KU19], we prepare two surfaces S+ and S−

obtained from the blow-ups of the projective plane P2 at nine points {p±1 , . . . ,p
±
9 } with smooth elliptic curves

C± ∈ |K−1S± |. Here we assume that (S±,C±) satisfy the following two conditions:

(a) there exists an isomorphism g : C+→ C− such that g∗N− �N+, where N± :=NC±/S± are the normal
bundles of C± in S±, and

(b) the normal bundles N± ∈ Pic0(C±) satisfy the Diophantine condition (see Definition 2.2).

Then Arnol’d’s theorem [Arn77] guarantees that there exist analytically linearizable neighborhoods W ± ⊂ S± of
C± in S±, namely, W ± are tubular neighborhoods of C± in S± which are biholomorphic to neighborhoods of
the zero sections in N±. In other words, there exist a pair (p,q) ∈R2 that satisfies the Diophantine condition
(see Definition 2.1) and a positive real number R > 1 such that W ± are expressed as

(1.1) W ± �
{
(z±,w±) ∈C2 |

∣∣∣w±∣∣∣ < R} / ∼±,
where ∼± are the equivalence relations generated by

(z±,w±) ∼± (z± +1, exp(±p · 2π
√
−1) ·w±) ∼± (z± + τ, exp(±q · 2π

√
−1) ·w±)

with τ ∈H := {τ ∈C | Imτ > 0} (here note that C+ � C− via g). From now on, we fix (p,q), (S±,C±), g , and
isomorphisms (1.1).
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In the present paper, we take an appropriate ξ ∈C and consider gξ := `ξ ◦ g , where `ξ : C− �C/〈1, τ〉	
is the translation induced from C 3 z 7→ z+ ξ ∈C. Note that g∗ξN− �N+ remains true since N± ∈ Pic0(C±).
For each s ∈ ∆ := {s ∈C | |s| < 1} with s , 0, we define open submanifolds M±s of S± by

M±s := S± \
{
[(z±,w±)] ∈W ± |

∣∣∣w±∣∣∣ ≤√
|s|/R

}
,

which contain
V ±s :=

{
[(z±,w±)] ∈W ± |

√
|s|/R < |w±| <

√
|s|R

}
as neighborhoods of boundaries of M±s , and a biholomorphism fs : V +

s → V −s by

fs ([(z
+,w+)]) =

[
(gξ(z

+), s/w+)
]
.

Then by identifying V +
s and V −s via the biholomorphic map fs, we can patch M+

s and M−s to define a
compact complex surface Xs. In the paper [KU19], we showed that Xs is a K3 surface and that the nowhere
vanishing holomorphic 2-form σs on Xs satisfies

σs|Vs = c ·
dz∧ dw
w

for some c ∈ C∗, where Vs ⊂ Xs is the open submanifold corresponding to V +
s � V −s and (z,w) are the

coordinates induced from (z+,w+).
For each ξ, these K3 surfaces Xs with s ∈ ∆ \ {0} are the fibers of a proper holomorphic map

X → ∆

from a smooth complex manifold X (= X (ξ)) such that

— each fiber over s ∈ ∆ \ {0} coincides with the K3 surface Xs,
— the fiber X0 over 0 ∈ ∆ is a compact complex variety with normal crossing singularities whose

irreducible components are S+ and S− and whose singular part is the one obtained by identifying C+

and C− via gξ , and thus
— X → ∆ is a type II degeneration of K3 surfaces (see Section 4.1).

We notice that Vs ⊂ Xs is biholomorphic to a topologically trivial annulus bundle over the elliptic curve
C := C+ � C−, and hence homotopic to S

1
α ×S1

β ×S
1
γ , where S

1
α and S

1
β are circles in Vs such that S1

α ×S1
β

is a C∞ section of the bundle, and S
1
γ is a circle in a fiber of the bundle which generates the fundamental

group. Then we define the 2-cycles Aαβ , Aβγ , Aγα by

Aαβ = S
1
α ×S1

β , Aβγ = S
1
β ×S

1
γ , and Aγα = S

1
γ ×S1

α .

In addition to the 2-cycles Aαβ , Aβγ , Aγα , each K3 surface Xs admits a marking, which gives 22 generators
of the second homology group H2(Xs,Z) denoted by

(1.2) Aαβ , Aβγ , Aγα , Bα , Bβ , Bγ , C
+
12, C

+
23, . . . ,C

+
78, C

+
678, C

−
12, C

−
23, . . . , C

−
78, C

−
678.

In §5, we will give the definitions of these generators.
Now let L± be holomorphic line bundles on S± with (L+ ·C+) = (L− ·C−). Assume that there exists ξ ∈C

such that g∗ξ (L
−|C−) � L+|C+ . Note that such a ξ always exists when (L+ ·C+) = (L− ·C−) , 0. We fix such a

ξ ∈C, and consider the deformation family X → ∆.

Theorem 1.2. Under the above setting, we have the following.

(i) For any s ∈ ∆, the line bundles L+|M+
s
and L−|M−s glue to define a holomorphic line bundle Ls = L

+ ∨L−
on Xs. Moreover there exists a holomorphic line bundle L→X such that L|Xs = Ls for each s ∈ ∆.

(ii) If L± are ample, then there exists ε0 > 0 such that Ls is ample for any s ∈ ∆ with 0 < |s| < ε0.
(iii) Let L be a holomorphic line bundle on Xs for some s ∈ ∆ \ {0}. Then the following are equivalent.

(a) There exist line bundles L± on S± with (L+ ·C+) = (L− ·C−) such that L = L+ ∨L−.
(b) There exists a line bundle L→X such that L = L|Xs .
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(c) (L ·Aβγ ) = (L ·Aγα) = 0.

In our arguments it is important to describe the line bundles on V ±s and on W ±, which is given in
Section 3 after preliminary studies in Section 2. Then we will prove the main theorems in Section 4.
Moreover, we will determine the Chern class c1(Ls) of the line bundle Ls in terms of the marking (1.2) in
Section 5.

Acknowledgments

The authors would like to give special thanks to Prof. Takeo Ohsawa and Prof. Yuji Odaka whose
enormous supports and insightful comments were invaluable during the course of their study.

2. Preliminaries

2.1. Neighborhoods of elliptic curves

First we give the following definition.

Definition 2.1. Let (p,q) ∈R2 be a pair of real numbers.

(1) (p,q) is called a torsion pair if (p,q) ∈Q2. Otherwise, (p,q) is called a non-torsion pair.
(2) (p,q) is said to satisfy the Diophantine condition if there exist α > 0 and A > 0 such that

min
µ,ν∈Z

∣∣∣∣n(p+ q√−1)− (µ+ ν√−1)∣∣∣∣ ≥ A ·n−α
for any n ∈Z>0.

Of course, if (p,q) satisfies the Diophantine condition, then (p,q) is a non-torsion pair.
Let X be a complex manifold. Denote by Pic(X) the Picard group of X, the group of isomorphism classes

of holomorphic line bundles on X, and by Pic0(X) the subgroup of Pic(X) consisting of (isomorphism
classes of) topologically trivial line bundles. Note that L ∈ Pic(X) is topologically trivial if and only if L
satisfies c1(L) = 0 ∈ H2(X,Z), where c1(L) stands for the first Chern class of L ∈ Pic(X). If X = C is a
smooth elliptic curve, then any topologically trivial line bundle L ∈ Pic0(C) admits a structure of unitary flat
line bundle (see [Ued83]). In particular, the monodromy of L ∈ Pic0(C) along any loop in C is expressed as
a complex number with modulus 1.

Definition 2.2. For τ ∈H, let C = C/〈1, τ〉 be a smooth elliptic curve, and let α and β be the loops in C
corresponding to the line segments [0,1] and [0, τ], respectively. Then a topologically trivial line bundle
L ∈ Pic0(C) on C is said to satisfy the Diophantine condition if so does the pair (p,q) ∈R2, where (p,q) is
defined from L, that is, exp(p · 2π

√
−1) and exp(q · 2π

√
−1) are the monodromies of L along the loops α

and β, respectively.

Now, assume C0 = C/〈1, τ〉 ⊂ P
2 is a smooth elliptic curve embedded in the projective plane P

2.
Let Z := {p1, . . . ,p9} ⊂ C0 be nine points on C0, and S := BlZP2 be the blow-up of P2 at Z with the
strict transform C of C0. In this case, the normal bundle NC/S ∈ Pic(C) of C in S is isomorphic to
O
P

2(3)|C0
⊗OC0

(−p1 − · · · − p9) ∈ Pic0(C0) � Pic0(C), and the pair (p,q) ∈ R2 defined from L = NC/S (see
Definition 2.2) is given by

9p0 −
9∑
j=1

pj = q − p · τ mod 〈1, τ〉,

where p0 is an inflection point of C0. Moreover, if NC/S ∈ Pic0(C) satisfies the Diophantine condition, then
Arnol’d’s theorem [Arn77] guarantees that there exists a analytically linearizable neighborhood of C in S,



A gluing construction of projective K3 surfaces 5A gluing construction of projective K3 surfaces 5

namely, a tubular neighborhood of C in S which is biholomorphic to a neighborhood of the zero section in
NC/S . In other words, there exists a neighborhood of C in S biholomorphic to

(2.1) W :=
{
(z,w) ∈C2 | |w| < R

}
/ ∼

for some R > 1, where ∼ is the equivalence relation generated by

(2.2) (z,w) ∼ (z+1, exp(p · 2π
√
−1) ·w) ∼ (z+ τ, exp(q · 2π

√
−1) ·w).

With the neighborhoodW at hand, we can construct a family of K3 surfaces as mentioned in the introduction.

Remark 2.3. For a given w0 ∈ C with 0 < |w0| < R, let F : C→ W ⊂ S be a holomorphic map defined
by F(z) = [(z,w0)]. Since (p,q) satisfies the Diophantine condition, the Euclidean closure of F(C) in S
coincides with {[(z,w)] | |w| = |w0|} ⊂W , which is a real analytic hypersurface Cω-diffeomorphic to a real
3-dimensional torus S1 ×S1 ×S1. The maps Fb in Theorem 1.1 can be constructed in this manner.

2.2. Holomorphic line bundles on toroidal groups

The neighborhood W given in (2.1) is closely related to the toroidal group. For τ ∈H and a non-torsion
pair (p,q) ∈R2, we consider

U =Uτ,(p,q) :=C
2
(z,η)/Λ with Λ =Λτ,(p,q) :=

〈(
0
1

)
,

(
1
p

)
,

(
τ
q

)〉
.

It is seen that U becomes a toroidal group (see e.g. [AK01]). On the toroidal group U , an important class of
line bundles is the theta line bundles, given as follows. Let

H =
(
a b
b c

)
∈M2(C)

be a Hermitian matrix satisfying the condition

(2.3) ImH(λ,µ) ∈Z (λ,µ ∈Λ),

where H(x,y) = txHy for x,y ∈C2, and let ρ :Λ→U (1) be a semi-character of ImH , that is, it satisfies

ρ(λ+µ) = ρ(λ)ρ(µ)exp
(
π
√
−1ImH(λ,µ)

)
(λ,µ ∈Λ).

Then we define the holomorphic function αλ = α
(H,ρ)
λ :C2

(z,η)→C by

αλ(x) := ρ(λ)exp(πH(x,λ) + (π/2)H(λ,λ)) , λ ∈Λ, x = t(z,η) ∈C2.

From (2.3), the function αλ(x) satisfies the cocycle condition

αλ+µ(x) = αλ(x+µ)αµ(x), λ,µ ∈Λ, x ∈C2,

and hence

L = LH,ρ := (Cζ ×C2)/Λ

with

λ · (ζ,x) := (αλ(x) · ζ,x+λ), λ ∈Λ, ζ ∈Cζ , x ∈C2

defines a line bundle on U , which is called a theta line bundle on U . In our setting, note that λ2 ∈R for any
t(λ1,λ2) ∈Λ. Hence a nowhere vanishing holomorphic function β :C2→C

∗, given by

β(z,η) = exp(−πcη2/2),

satisfies

α
(H0,ρ)
λ (x) = β(x+λ)α

(H,ρ)
λ (x)β(x)−1 (λ ∈Λ,x ∈C2) with H0 =

(
a b
b 0

)
,
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which means that LH,ρ is holomorphically isomorphic to LH0,ρ. Hereafter, we assume c = 0 and put

(2.4) H =
(
a b
b 0

)
∈M2(C).

On the line bundle LH,ρ, there is a natural metric h = hH , given by

|ζ|2h,x := exp(−πH(x,x))|ζ|2,

which is well-defined because

|αλ(x) · ζ|2h,x+λ = |αλ(x)|
2 · exp(−πH(x+λ,x+λ))|ζ|2

= exp(Re(2πH(x,λ) +πH(λ,λ))) · exp(−πH(x+λ,x+λ))|ζ|2

= exp(πH(x,λ) +πH(λ,x) +πH(λ,λ))

· exp(−πH(x,x)−πH(x,λ)−πH(λ,x)−πH(λ,λ))|ζ|2

= exp(−πH(x,x))|ζ|2 = |ζ|2h,x.

In particular, the curvature form of hH is given by

ΘhH := −∂∂ loghH = π · (adz∧ dz+ bdz∧ dη + bdη ∧ dz)

with x = t(z,η) ∈C2, and c1(LH,ρ) = [
√
−1ΘhH /2π]. Moreover the following result holds (see [AK01]).

Proposition 2.4. Assume that (p,q) satisfies the Diophantine condition. Then any line bundle L on Uτ,(p,q) is
holomorphically isomorphic to LH,ρ for some (H,ρ).

2.3. Deformations of K3 surfaces and Picard numbers

The following results are taught by Dr. Takeru Fukuoka.

Proposition 2.5. Let P : X → T be a deformation family of K3 surfaces. Assume that the Kodaira–Spencer map
ρKS,P : TT → R1P∗TX /T is injective. Then, for almost every t ∈ T , it holds that ρ(Xt) ≤ 20 − dim(T ), where
Xt := P −1(t) and ρ(Xt) is the Picard number of Xt .

Proof. Take a base point 0 ∈ T and denote by L := Π3,19 the K3 lattice H2(X0,Z). Fix a marking
R2P∗CX � (L

C
)T , where LC := L⊗C. Consider the map V• : T → P(L

C
) defined by t 7→ Vt :=H0(Xt ,KXt )

⊥

for each t ∈ T , where we are regarding P(L
C
) as the set of hyperplanes of L

C
. It follows from Torelli’s

theorem that the map V• is a locally closed embedding of T into P(L
C
). Therefore ImageV• is a locally

closed subvariety of P(L
C
) of dimension dim(T ). Define r : P(L

C
)→ Z by r(V ) := rank(L∩ V ). Note

that r(Vt) = rank(H2(Xt ,Z)∩ (H1,1(Xt ,C)⊕H0,2(Xt ,C))) = ρ(Xt) + 1 holds for each t ∈ T . Therefore the
set

{
t ∈ T | ρ(Xt) < 21−dim(T )

}
can be rewritten as V −1• ((ImageV•) \ {V ∈ P(LC) | r(V ) ≥ 22−dim(T )}).

By Lemma 2.6 below, {V ∈ P(L
C
) | r(V ) ≥ 22−dim(T )} is a countable union of (dim(T )− 1)-dimensional

linear subspaces of P(L
C
). �

Lemma 2.6. Let r : P(L
C
)→Z be as in the proof of Proposition 2.5. Then Fn := {V ∈ P(LC) | r(V ) ≥ n} is a

countable union of (21−n)-dimensional linear subspaces of P(L
C
) for each n = 0,1,2, . . . ,21.

Proof. Set Λ := {M ⊂ L |M : sub module, rankM = n}. For M ∈ Λ and W ∈ P(L
C
/M

C
), it clearly holds

that p−1M (W ) ∈ Fn, where MC
:=M ⊗C and pM : L

C
→ L

C
/M

C
is the natural projection. Conversely, for

each V ∈ Fn and a sublattice M ⊂ V of rank n, we have V = p−1M (W ) by defining W := V /M
C
∈ P(L

C
/M

C
).

Therefore we obtain the description

Fn =
⋃
M∈Λ

{
p−1M (W ) |W ∈ P(L

C
/M

C
)
}
.

As Λ is countable and the map p−1M (−) : P(L
C
/M

C
) 3W 7→ p−1M (W ) ∈ Fn ⊂ P(L

C
) is a linear embedding for

each M, the lemma follows. �
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3. Line bundles on W and V

For τ ∈H, let C =Cz/〈1, τ〉 be a complex torus, and for a non-torsion pair (p,q) ∈R2 and 0 ≤ r < R ≤∞,
let W =W R

τ,(p,q) be defined in (2.1) and V = V r,Rτ,(p,q) be defined by

V = V r,Rτ,(p,q) :=
{
(z,w) ∈C2 | r < |w| < R

}
/ ∼,

where ∼ is given by (2.2). We notice that V is isomorphic to an open submanifold of the toroidal group
U =Uτ,(p,q) = (Cz ×Cη)/Λ, namely,

U ⊃ (Cz ×
{
− logR < 2πImη < − logr

}
) /Λ 3 [(z,η)] �7−→

[(
z,exp(2π

√
−1η)

)]
∈ V

with Uτ,(p,q) � V
0,∞
τ,(p,q), and W is obtained from V 0,R

τ,(p,q) by adding the complex torus C. Let π :W → C be
the natural projection, given by π([(z,w)]) = [z], and denote π|V : V → C by π : V → C for simplicity.

Lemma 3.1. Assume that (p,q) satisfies the Diophantine condition. Then for any L ∈ Pic0(W ), the equality
L = π∗(L|C) holds.

Proof. As the topologically trivial bundle L satisfies c1(L) = 0, L can be represented by some α ∈H1(W,OW )

from the exact sequence H1(W,OW )→ Pic(W )
c1−→H2(W,Z). Hence it is enough to show that π∗(α|C) = α.

Put α = {(Wjk , fjk)}, where Wjk =Wj ∩Wk and Wj = π−1(Uj ) �Uj ×∆ with a Stein open covering {Uj}
of C. Moreover fjk can be expressed on Wj as a convergent power series

fjk(zj ,wj ) =
∞∑
n=0

fjk,n(zj ) ·wnj ,

where (zj ,wj ) are coordinates on Wj which come from (z,w). Then it is enough to show that there are
holomorphic functions gj : Wj →C such that{

(Wjk , f̂jk)
}
= δ

{
(Wj , gj )

}
:=

{
(Wjk ,−gj + gk)

}
,

where

f̂jk(zj ,wj ) := f (zj ,wj )− f (zj ,0) =
∞∑
n=1

fjk,n(zj ) ·wnj .

Note that there exists a multiplicative 1-cocycle {tjk} with tjk ∈U (1) representing NC/W such that wk = tkj ·wj
for any j,k. Since

{
(Ujk , fjk,n)

}
∈H1

(
{Uj},N−nC/W

)
and NC/W is non-torsion, the δ-equation

−gj,n + t−njk · gk,n = fjk,n
has a unique solution gj,n : Uj →C for each n > 0. Furthermore the power series

(3.1) gj(zj ,wj ) =
∞∑
n=1

gj,n(zj ) ·wnj

converges. Indeed, Ueda’s lemma (see [Ued83, Lemma 4]) says that there exists a constant K > 0 depending
only on C and

{
Uj

}
such that for any flat line bundle E over C and for any 0-cochain

{
hj

}
∈ C0

({
Uj

}
,O(E)

)
,

the inequality

d(IC ,E) ·
∥∥∥∥{hj}∥∥∥∥ ≤ K · ∥∥∥∥δ {hj}∥∥∥∥

holds, where IC is the holomorphically trivial line bundle on C, d(IC ,E) is the Euclidean distance of
Pic0(C) �C/〈1, τ〉, which clearly is an invariant distance, and∥∥∥∥{hj}∥∥∥∥ := max

j
sup
z∈Uj

∣∣∣hj(z)∣∣∣ and
∥∥∥∥δ {hj}∥∥∥∥ := max

j,k
sup

z∈Uj∩Uk

∣∣∣hjk(z)∣∣∣ with
{
hjk

}
:= δ

{
hj

}
.
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In our setting, since NC/W satisfies the Diophantine condition, there exist A > 0 and α > 0 such that
d(IC ,N

n
C/W ) ≥ A · n−α holds for any n ≥ 1. Cauchy’s inequality shows that for any ` ∈ (0,R), there exists

M > 0 such that
∣∣∣fjk,n(zj )∣∣∣ ≤M/`n for any n ≥ 1 and zj ∈Uj ∩Uk . Hence we have∣∣∣gj,n(zj )∣∣∣ ≤ K

d(IC ,N
n
C/W )

·max
j,k

sup
zj∈Uj∩Uk

∣∣∣fjk(zj )∣∣∣ ≤ K
A ·n−α

·M
`n

=
KM
A
· n

α

`n
,

which means that the power series (3.1) indeed converges because ` ∈ (0,R) is chosen arbitrarily. Therefore
we have π∗(α|C) = α in H1(W,OW ). �

Remark 3.2. The following can be proved in a similar manner by replacing a Taylor power series with a
Laurent power one: for any L ∈ Pic0(V ), there exists an F ∈ Pic0(C) such that L = π∗F, which is proved in
[AK01] for the case where V =U is a toroidal group. Conversely, [AK01] also proves the statement that if a
pair (p,q) does not satisfy the Diophantine condition, then there exists an L ∈ Pic0(U ) such that L , π∗F for
any F ∈ Pic0(C).

Proposition 3.3. Assume that (p,q) satisfies the Diophantine condition. Then L = π∗(L|C) holds for any
L ∈ Pic(W ). In particular, the restriction map Pic(W )→ Pic(C) is an isomorphism.

Proof. As C is a deformation retract of W , the restriction map H2(W,Z)→H2(C,Z) is an isomorphism.
Hence we have c1(L⊗π∗(L−1|C)) = 0 and L⊗π∗(L−1|C) is topologically trivial. Since (L⊗π∗(L−1|C))|C is a
trivial bundle on C, one has L = π∗(L|C) by Lemma 3.1. �

Now let us recall the three 2-cycles

Aαβ = S
1
α ×S1

β , Aβγ = S
1
β ×S

1
γ , and Aγα = S

1
α ×S1

γ

on V , where, for a base point [(0,w0)] ∈ V , S1
α ,S

1
β ,S

1
γ are circles given by the images of

• iα : [0,1] 3 α 7→
[
(α,exp(αp · 2π

√
−1)w0)

]
∈ V ,

• iβ : [0,1] 3 β 7→
[
(βτ,exp(βq · 2π

√
−1)w0)

]
∈ V ,

• iγ : [0,1] 3 γ 7→
[
(0,exp(γ · 2π

√
−1)w0)

]
∈ V ,

respectively. Here, the orientations of Aαβ ,Aβγ ,Aγα are defined by dα∧dβ, dβ∧dγ , dα∧dγ , respectively.

Lemma 3.4. For a Hermitian matrix H given in (2.4) satisfying condition (2.3) and a semi-character ρ of ImH ,
we have

(1) (LH,ρ ·Aαβ) = ImH(xβ ,xα) = a · Imτ + p · Im(bτ)− q · Imb,

(2) (LH,ρ ·Aβγ ) = ImH(xγ ,xβ) = −Im(bτ),

(3) (LH,ρ ·Aγα) = ImH(xγ ,xα) = −Imb,

where xα := t(1,p), xβ := t(τ,q), and xγ := t(0,1).

Proof. We will only prove the assertion (1) as the other cases can be treated in the same manner. Note that
the class c1(LH,ρ) can be represented as

√
−1
2
· (adz∧ dz+ bdz∧ dη + bdη ∧ dz),

where w = exp(η · 2π
√
−1). By the definition of Aαβ , put z = α + τβ and η = pα + qβ. Since p,q,α,β ∈R,

we have
j∗αβdz∧ dz = d(α + τβ)∧ d(α + τβ) = (τ − τ)dα ∧ dβ = −2

√
−1Imτdα ∧ dβ,
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where jαβ : Aαβ → V is the embedding induced by iα and iβ . In a similar manner, one has

j∗αβdz∧ dη = −(pτ − q)dα ∧ dβ, j∗αβdη ∧ dz = (pτ − q)dα ∧ dβ,

and hence
j∗αβ(bdz∧ dη + bdη ∧ dz) = −2

√
−1Im(b(pτ − q))dα ∧ dβ.

Therefore we have

(LH,ρ ·Aαβ) =
∫
[0,1]×[0,1]

(aImτ + Im(b(pτ − q)))dα ∧ dβ = aImτ + Im(b(pτ − q)).

�

Proposition 3.5. Let L ∈ Pic(V ) be a holomorphic line bundle on V . Assume that (p,q) satisfies the Diophantine
condition. Then the following are equivalent.

(1) There exists a holomorphic line bundle G ∈ Pic(W ) on W such that L = G|V .
(2) (L ·Aβγ ) = (L ·Aγα) = 0.
(3) The equality b = 0 holds, where b is the (1,2)-element of the Hermitian matrix H ∈ M2(C) as (2.4)

satisfying the condition (2.3) and L = LH,ρ for a semi-character ρ of ImH , whose existence is assured by
Proposition 2.4.

Note that the Diophantine assumption on the pair (p,q) in this proposition can be dropped if one assumes
that L = LH,ρ for some Hermitian matrix H ∈M2(C) satisfying condition (2.3) and ρ is a semi-character of
ImH .

Proof. The equivalence (2) ⇐⇒ (3) follows from Lemma 3.4 and (1) =⇒ (2) holds since the circle S
1
γ is

contractible in W . The implication (3) =⇒ (1) follows since the factor α
(H,ρ)
λ (z,η) depends only on z and

thus L is expressed as L = π∗(L0) for some L0 ∈ Pic(C). �

4. Proofs of main theorems

4.1. Proof of Theorem 1.2 (i)

It follows from Proposition 3.3 and the assumption g∗ξ (L
−|C−) � L+|C+ that the restrictions L±|V ±s of L±|W ±

are isomorphic via the biholomorphic map fs : V +
s → V −s . Thus,

(
M+
s ,L

+|M+
s

)
and

(
M−s ,L

−|M−s
)
are glued

together to yield a holomorphic line bundle Ls = L+ ∨L− on Xs.
In order to describe the holomorphic line bundle L → X on X via the isomorphisms (1.1), we define

manifoldsM± and V by

M± := (S± ×∆) \
{
(
[
(z±,w±)

]
, s) ∈W ± ×∆ |

∣∣∣w±∣∣∣ ≤√
|s|R

}
and

V :=
{
(z+,w+,w−) ∈C3 |

∣∣∣w+
∣∣∣ < R, |w−| < R, ∣∣∣w+w−

∣∣∣ < 1
}
/ ∼,

where ∼ is the equivalence relation generated by

(z+,w+,w−) ∼ (z+ +1, ep·2π
√
−1 ·w+, e−p·2π

√
−1 ·w−) ∼ (z+ + τ, eq·2π

√
−1 ·w+, e−q·2π

√
−1 ·w−).

Then M± and V are glued together to yield the deformation family X via injective holomorphic maps
f± :M± ⊃ V±→V , where

V± :=
{
([(z±,w±)], s) ∈W ± ×∆ |

√
|s|R <

∣∣∣w±∣∣∣ < R} ⊂M±
and

f+ (([(z
+,w+)], s)) = [(z+,w+, s/w+)], f− (([(z

−,w−)], s)) = [(g−1ξ (z−), s/w−,w−)].
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The restriction of X → ∆ on M± is the natural projection M± → ∆, while that on V is given by
[(z+,w+,w−)] 7→ w+ ·w−. Moreover, it should be noted that there are natural projections ϕ± :M±→ S±

and ϕ : V → C+ given by ϕ([(z+,w+,w−)]) = [z+]. Then a holomorphic line bundle L→ X is defined by
the pullbacks ϕ∗±(L

±) onM± and ϕ∗(L+|C+) on V . We notice that the line bundle L→ X is well-defined
since the line bundles f ∗+ϕ

∗(L+|C+) and f ∗−ϕ
∗(g∗ξ(L

−|C−)) are the same as the restrictions L|V+ and L|V−
respectively, by virtue of Proposition 3.3 and the assumption g∗ξ(L

−|C−) � L+|C+ . �

4.2. Idea of proof of Theorem 1.2 (ii)

Let X = Xs be a K3 surface obtained by gluingM+ =M+
s andM− =M−s , and L

± be an ample line bundle
on S±. In order to show Theorem 1.2 (ii), we will construct a C∞-Hermitian metric on L := Ls = L+ ∨L−
with positive curvature in the following manner for fixed 0 < R1 < R2 < R:

Step 1: Construct a C∞-Hermitian metric h± on L
± such that:

— h± can be glued to define a C∞-Hermitian metric h on L (if 0 < |s| < ε0),
— the Chern curvature of h± is semi-positive:

√
−1Θh± ≥ 0,

—
√
−1Θh± > 0 holds on S± \ {|w±| ≤ R1}, and

—
√
−1Θh±(∂/∂z

±,∂/∂z±) > 0 holds on S±.
Step 2: Construct a C∞ function ψ± on S± \C± such that:

— ψ± can be glued to define a C∞ function ψ on X,
— ψ± is psh on M± \ {R2 ≤ |w±| ≤ R}:

√
−1∂∂̄ψ±|M±\{R2≤|w±|≤R} ≥ 0,

— ψ±|W ± depends only on |w±|, and
—
√
−1∂∂̄ψ±(∂/∂w±,∂/∂w±) > 0 holds on {|w±| < R2}.

Step 3: For 0 < c� 1, h·e−cψ is a desired metric on L with positive Chern curvature
√
−1Θh+c

√
−1∂∂̄ψ > 0.

In our construction, h± · e−cψ
±
is a C∞-Hermitian metric on L±|S±\C± with positive Chern curvature such

that h± · e−cψ
± ∼ (log |w±|)2 as w± → 0. Moreover, ω± :=

√
−1Θh± + c

√
−1∂∂ψ± ∈ c1

(
L±|S±\C±

)
gives a

complete Kähler metric on S± \C±, and on a neighborhood
{
|w±| < √ε0R

}
of C±, the form ω± is expressed

as

ω±|{|w±|<√ε0R} =
π(L± ·C±)

Imτ
·
√
−1dz± ∧ dz± +2c ·

√
−1dw± ∧ dw±

|w±|2
.

4.3. Proof of Theorem 1.2 (ii)

Let S be the blow-up of P2 at nine points, and C ⊂ S be an elliptic curve in |K−1S | such that NC/S ∈ Pic0(C)
satisfies the Diophantine condition. Then Arnol’d’s theorem says that there is an analytically linearizable
neighborhood W ⊂ S of C. By shrinking W if necessary, we may assume that W is isomorphic to W R

τ,(p,q)

for some R > 0, τ ∈H and (p,q) ∈ R2 satisfying the Diophantine condition, and let π :W → C be the
projection given in Section 3.

Let L ∈ Pic(S) be an ample line bundle, which implies that there exists n ∈N such that Ln ⊗ [−C] is very
ample, and let g1, g2, . . . , gN be a basis of H0(S,Ln ⊗ [−C]), which are regarded as sections of Ln with zeros
along C. Then the singular Hermitian metric hL on L is defined by

〈ξ,η〉hL,x :=
ξ · η(

|g1(x)|2 + |g2(x)|2 + · · ·+ |gN (x)|2
) 1
n

, where ξ,η ∈ L|x.

The metric hL has a pole along C and its restriction hL|S\C induces a C∞-metric on S \C with positive
curvature form

√
−1ΘhL |S\C > 0. Moreover let hC be a C∞-metric on L|W satisfying

√
−1ΘhC = b

√
−1dz∧dz

for b := π(L ·C)/Imτ > 0.



A gluing construction of projective K3 surfaces 11A gluing construction of projective K3 surfaces 11

Fix 0 < R1 < R2 < R. Then we define a metric h on L by

h−1 :=

RegularizedMax(h−1L , ε ·π
∗h−1C ) on W

h−1L on S \W

where ε > 0 and RegularizedMax: R2→R is the regularized maximum function (see [Dem12, Chapter I,
Lemma 5.18]). Note that, by choosing ε > 0 sufficiently small, one may assume that h = hL holds on
{[(z,w)] ∈W | R1 < |w|}, which ensures the smoothness of h. Then

√
−1Θh ≥ 0, since the local weight

function ϕ of h satisfies

ϕ = RegularizedMax(ϕL,ϕC − logε),

where ϕL and ϕC are the local weight functions of hL and hC , respectively. By the construction of h, there
exists a positive constant ε0 such that h = ε−1 ·π∗hC holds on

{
|w| < √ε0R

}
. By shrinking ε0 if necessary,

we may assume
√
ε0R < R1. For s ∈ ∆ with |s| < ε0, let λ = λs : R>0→ R be a C∞-function satisfying the

conditions λ(t) =
(
log(t2/ |s|)

)2
if 0 < t < R2,

λ(t) ≡ constant if t ≥ R,

and ψ = ψs : S \C→R be the C∞-function defined by

ψ(p) :=

λ(|w|) ∀p = (z,w) ∈W \C
λ(R) ∀p <W.

It is easy to see that ∂∂ψ = 0 outside {|w| ≤ R} and ∂∂ψ = 2 · dw∧ dw/ |w|2 on {0 < |w| < R2}. Finally, we
choose c > 0 so that √

−1ΘhL + c
√
−1∂∂ψ > 0

on the compact subset {R2 ≤ |w| ≤ R}. Here note that such a c > 0 exists since
√
−1ΘhL is strictly positive

on {R2 ≤ |w| ≤ R} ⊂ S \C.
We consider the metric h · e−cψ on S \C. Our assumption on c > 0 says that

√
−1Θh·e−cψ =

√
−1ΘhL + c

√
−1∂∂ψ > 0

outside {|w| < R2}. Moreover, h · e−cψ has positive curvature also on {0 < |w| < R2}, since it holds

√
−1ΘhL·e−cψ >

√
−1ΘhL > 0,

√
−1Θε−1·π∗hC ·e−cψ = b

√
−1dz∧ z+ c

√
−1dw∧ dw
|w|2

> 0

and

(h · e−cψ)−1 = RegularizedMax
(
(hL · e−cψ)−1, (ε−1 ·π∗hC · e−cψ)−1

)
on {0 < |w| < R2} (see [Dem12, Chapter I, Lemma 5.18(e)]). Therefore the curvature of h · e−cψ is positive on
S \C.

Now we consider two pairs (S±,C±) of surfaces S± and curves C± ⊂ S± given in the introduction,
which admit analytically linearizable neighborhoods W ± ⊂ S± of C±, and assume that W ± are regarded as
subspaces {[(z±,w±)] | |w±| < R} of toroidal groups. Moreover let L± be ample line bundles with (L+ ·C+) =
(L− ·C−) and gξ : C+ → C− be an isomorphism with g∗ξ (L

−|C−) = L+|C+ . In what follows we abuse the

notation to denote gξ simply by g . Then the above argument shows that there exist C∞-metrics h± · e−cψ
±

on S± \C± such that
√
−1Θh±·e−cψ± > 0 on S± \C± and

h± = ε
−1 ·π∗±hC± , ψ±(z±,w±) =

(
log
|w±|2

|s|

)2
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on
{
0 < |w±| <

√
|s|R (<

√
ε0R < R1)

}
. As our K3 surface Xs is given by gluing two surfaces

M±s = S± \
{∣∣∣w±∣∣∣ ≤√

|s|/R
}

via the map (z+,w+) 7→ (z−,w−) = (g(z+), s/w+), it follows from Proposition 3.3 that h± can be glued together
and become a global C∞-Hermitian metric on Ls = L+ ∨L−. Moreover, on

{√
|s|/R < |w+| <

√
|s|R

}
, we have

ψ+(z+,w+) =
(
log |w+|2 / |s|

)2
and

ψ−
(
g(z+),

s
w+

)
=

(
log
|s/w+|2

|s|

)2
=

(
− log |w

+|2

|s|

)2
= ψ+(z+,w+),

which means that ψ± can be glued together and become a global C∞-function ψ on Xs. Therefore h± · e−cψ
±

yield a C∞-metric on Xs with positive definite curvature form. �

4.4. Proof of Theorem 1.2 (iii)

The equivalence (a) ⇐⇒ (c) follows from Proposition 3.5, and the implications (a) =⇒ (b) follows from
Theorem 1.2 (i). In what follows we show (b) =⇒ (c). Take a line bundle L→X as in (b) and consider the
function h : ∆→Z defined by

h(t) :=
(
L|M+

t
· Aβγ

)
,

where we are regarding Aβγ as a cycle of M+
t . AsM+→ ∆ is a submersion, h is continuous. Thus h is a

constant function. Therefore, in order to show that (L ·Aβγ )(= h(s)) is equal to zero, it is sufficient to show
that h(0) = 0, which follows from Proposition 3.5 since L|M+

0
coincides with the restriction of the line bundle

(L|X0
)|S+ to M+

0 . The equation (L ·Aγα) = 0 can be shown in the same manner. �

4.5. Proof of Theorem 1.1

Our construction of K3 surfaces has 19 complex dimensional degrees of freedom if we allow the variation
of ξ [KU19]. Indeed, for a fixed pair (p,q) ∈R2 satisfying the Diophantine condition, we have the following
parameters:

(I) 1 parameter τ ∈H determining the elliptic curve C+ � C−,
(II) 16 parameters {p±1 , . . . ,p

±
8 } determining the centers of the blow-ups π± (here p+9 and p−9 are fixed

from the conditions (a) and (b) in the introduction),
(III) 1 parameter ξ ∈C determining the isomorphism gξ : C+→ C−, and
(IV) 1 parameter s ∈ ∆ \ {0} determining the gluing function fs : V +

s → V −s .

Note that there always exist ample line bundles L±→ S± with (L+ ·C+) = (L− ·C−). If such ample line bundles
L± are fixed, then ξ is determined uniquely up to modulo 〈1, τ〉 from the condition g∗ξ (L

−|C−) � L+|C+ , and
depends holomorphically on the parameters given in (I) and (II) (see also the relation (5.5)). Moreover, for
any s ∈ ∆\ {0} with sufficiently small |s| � 1, the K3 surface Xs admits an ample line bundle Ls = L+∨L− by
Theorem 1.2 (ii). Hence we have an 18 dimensional family of projective K3 surfaces, whose Kodaira-Spencer
map is injective by [KU19, Theorem 1.1]. Moreover it follows from [KU19] that there exists a holomorphic
immersion Fb : C→ Xb mentioned in Theorem 1.1 (see also Remark 2.3). Finally among the family, almost
every fiber is a non-Kummer K3 surface since if follows from Proposition 2.5 that almost every fiber Xs has
the Picard number ρ(Xs) ≤ 2. �

5. Calculation of the Chern class c1(L)

Let S± be surfaces obtained from the blow-ups π± : S±→ P
2 of the projective plane P

2 at nine points
{p±1 , . . . ,p

±
9 } with smooth elliptic curves C± ∈

∣∣∣K−1S± ∣∣∣. In our assumption (S±,C±) satisfy Conditions (a) and (b)
given in the introduction. Moreover let L± be holomorphic line bundles on S±. In this section, we compute
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the Chern class c1(L) in the lattice H2(X,Z) � H2(X,Z), where X is a K3 surface given by the gluing
construction and L = L+ ∨L− is the line bundle on X (see the introduction).

First we notice that the second homology group of S± is expressed as

H2(S
±,Z) �H2(S±,Z) � Pic(S±) = 〈H±,E±1 , . . . ,E

±
9 〉,

where E±ν is (the class of) the exceptional divisor in S± which is the preimage of p±ν for ν = 1,2, . . . ,9, and
H± is (the class of) the preimage of a line in P

2 by the blow-up π± : S± → P
2. In the homology group

H2(S±,Z), the elliptic curve C± is expressed as

C± = 3H± −
9∑
j=1

E±j .

We also notice that the points p±1 , . . . ,p
±
9 lie in the elliptic curve C±0 := π±(C±). Then fix isomorphisms

C+
0 � C

−
0 �C/〈1, τ〉

and also fix an inflection point p±0 so that

9p±0 −
9∑
j=1

p±j = ±µ mod 〈1, τ〉,

where µ := q−p ·τ and the points p±j ∈C (j = 0, . . . ,9) are regarded as complex numbers (see Subsection 2.1).

By choosing the complex number corresponding to the point p±0 appropriately, we may assume that

(5.1) 9p±0 −
9∑
j=1

p±j = ±µ,

actually holds. In what follows we assume that g(p+0 ) = p
−
0 by changing g if necessary. For j , k ∈ {0,1, . . . ,9},

let Γ ±jk ⊂ C
± be the lift of an arc in C±0 connecting p±j and p±k .

Now we give the definitions of the generators (1.2) (see also [KU19]). The 2-cycles Aαβ , Aβγ , Aγα are
already defined in the introduction. In order to define the 2-cycle B• for • ∈ {α,β,γ}, we first notice that
M±s are simply connected. Thus, there exist topological discs D±• ⊂M±s such that ∂D±• = ±S1

• hold, where
S
1
• ⊂ Vs, which are given in the introduction, are regarded as 1-cycles of V ±s ⊂M±s . Then B• is defined by
B• = D+

• ∪S1
•
(−D−• ), that is, the patch of D+

• and −D−• through S
1
•. In order to define the 2-cycles C±• , we

prepare the tube T ±jk given by T ±jk := pr−1± (Γ ±jk) ⊂
{
|w±| =

√
|s|
}
, where

pr± :
{
[(z±,w±)] ∈W ± |

∣∣∣w±∣∣∣ =√
|s|
}
3 [(z±,w±)] 7−→ [z±] ∈ C±

is a natural projection. Then for ν = 1, . . . ,7, the 2-cycle C±ν,ν+1 is defined by the connected sum
(±E±ν )#(∓E±ν+1) of ±E±ν and ∓E±ν+1 given by connecting them through the tube T ±ν,ν+1. In a similar
manner, the 2-cycle C±678 is defined by the connected sum

C±678 := (∓H±)#(±E±6 )#(±E
±
7 )#(±E

±
8 )

of ∓H±, ±E±6 , ±E
±
7 , ±E

±
8 given by connecting them through the tubes T ±06, T

±
07, T

±
08. In particular, C±• is

represented as

C±12 = ±(E
±
1 −E

±
2 ), . . . , C

±
78 = ±(E

±
7 −E

±
8 ), C

±
678 = ±(−H

± +E±6 +E±7 +E±8 )

in H2(S±,Z). It should be noted that C±• lies in M±s . Moreover, H2(S±,Z) admits an orthogonal decomposi-
tion

H2(S
±,C) = 〈C±,E±9 〉 ⊕ C

±



14 T. Koike and T. Uehara14 T. Koike and T. Uehara

with respect to the intersection product, where C± is given by C± := 〈C±12,C
±
23, . . . ,C

±
78,C

±
678〉, and any

element q± ∈H2(S±,C) =H2(S±,Z)⊗C admits an expression

(5.2) q± = q±0H
± −

9∑
j=1

q±j E
±
j =

(
3q±0 −

8∑
j=1

q±j

)
C± +

(
3q±0 −

9∑
j=1

q±j

)
E±9 + q±|C± .

Next let us consider a K3 surface X = Xs given by the gluing construction. It is seen (cf. [KU19]) that the
second homology group of X is given by the orthogonal decomposition

H2(X,Z) =Π3,19 � 〈Aαβ ,Bγ〉 ⊕ 〈Aβγ ,Bα〉 ⊕ 〈Aγα ,Bβ〉 ⊕ C+ ⊕C−.

with respect to the intersection product. Here note that

(Aαβ ·Aαβ) = (Aβγ ·Aβγ ) = (Aγα ·Aγα) = 0,

(Bγ ·Bγ ) = (Bα ·Bα) = (Bβ ·Bβ) = −2,
(Aαβ ·Bγ ) = (Aβγ ·Bα) = (Aγα ·Bβ) = 1.

The K3 surface X admits a nowhere vanishing holomorphic 2-form σ , which is expressed as

σ = (2µ+ c−9 )Aαβ +µBγ + xAβγ + τBα + yAγα +Bβ +
∑

c+•C
+
• +

∑
c−•C

−
•

in H2(X,C) by multiplying a constant to σ if necessary, where x = x(s) and y = y(s) are constants and c±• is
given by

c±• =
∫
Γ ±•

dz±

with Γ −9 ⊂ C− being the lift of an arc in C−0 connecting p−9 and gξ(p
+
9 ). Hence, one has

(5.3) c±12 = ±(p
±
1 − p

±
2 ), . . . , c

±
78 = ±(p

±
7 − p

±
8 ), c

±
678 = ±(−3p

±
0 + p

±
6 + p

±
7 + p

±
8 ), and c−9 = gξ(p

+
9 )− p

−
9

if one selects the arcs appropriately.

Proposition 5.1. The Chern class c1(L) in H2(X,Z) �H2(X,Z) is expressed as

c1(L) = (2b+n+9 +n
−
9)Aαβ + bBγ +L

+|C+ +L−|C− ,

where b := (L+ ·C+) = (L− ·C−) and n±9 := (L± ·E±9 ).

Proof. We put

c1(L) = âαβAαβ + b̂γBγ + âβγAβγ + b̂αBα + âγαAγα + b̂βBβ +
∑

ĉ+•C
+
• +

∑
ĉ−•C

−
• .

First the coefficients ĉ±• are determined from L±|C± since the cycles C±• in Xs are also regarded as the ones in
M±s ⊂ S±. Next it follows from Theorem 1.2 (iii) that (L·Aβγ ) = (L·Aγα) = 0, which implies that b̂α = b̂β = 0.
Moreover, the cycle Aαβ may be regarded as C± in S±, which means that (L ·Aαβ) = (L± ·C±) = b and thus

b̂γ = b.
Finally we will determine the coefficients â•. To this end, we put

p± := 3p±0H
± −

9∑
j=1

p±j E
±
j ∈H2(S

±,C).

Then Condition (5.1) shows that (p± ·C±) = ±µ and the relation (5.3) means that σ |C± = ±p±|C± . Thus it
follows from Equation (5.2) that

(5.4) p± =

9p±0 − 8∑
j=1

p±j

C± +
9p±0 − 9∑

j=1

p±j

E±9 + p±|C± = (±µ+ p±9 )C
± ±µE±9 ± σ |C± .
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Moreover, by the condition g∗ξ (L
−|C−) = L+|C+ , we may assume that ξ ∈C is given by

(5.5) ξ =
1
b
((p− ·L−)− (p+ ·L+)) .

Thus we have

(5.6) c−9 = gξ(p
+
9 )− p

−
9 = (p+9 + ξ)− p

−
9 =

1
b
((p− ·L−)− (p+ ·L+)) + (p+9 − p

−
9 ).

Equation (5.4) shows that

(5.7) (σ |C± ·L±) = ±(p± ·L±)− (µ±p±9 )(C
± ·L±)−µ(E±9 ·L

±) = ±(p± ·L±)∓bp±9 − bµ−n
±
9µ,

and Equations (5.6) and (5.7) show that

0 = (σ. ·L) =
(
((2µ+ c−9 )Aαβ +µBγ ) · (âαβAαβ + bBγ )

)
+
(
(xAβγ + τBα) · âβγAβγ

)
+
(
(yAγα +Bβ) · âγαAγα

)
+ (σ |C+ ·L+) + (σ |C− ·L−)

=
(
µâαβ + τâβγ + âγα

)
+ bc−9 + (σ |C+ ·L+) + (σ |C− ·L−) =

(
µâαβ + τâβγ + âγα

)
− (2b+n+9 +n

−
9)µ.

Since âαβ , âβγ , âγα ,b,n
+
9 ,n
−
9 ∈Z and (1, τ,µ) are independent over Q by the Diophantine condition for the

pair (p,q), we have âαβ = 2b+n+9 +n
−
9 and âβγ = âγα = 0. �
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