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Non-Archimedean volumes of metrized nef line bundles

Sébastien Boucksom, Walter Gubler, and Florent Martin

Abstract. Let L be a line bundle on a proper, geometrically reduced scheme X over a non-trivially valued non-
Archimedean field K . Roughly speaking, the non-Archimedean volume of a continuous metric on the Berkovich analyti-
fication of L measures the asymptotic growth of the space of small sections of tensor powers of L. For a continuous
semipositive metric on L in the sense of Zhang, we show first that the non-Archimedean volume agrees with the energy.
The existence of such a semipositive metric yields that L is nef. A second result is that the non-Archimedean volume is
differentiable at any semipositive continuous metric. These results are known when L is ample, and the purpose of this
paper is to generalize them to the nef case. The method is based on a detailed study of the content and the volume of a
finitely presented torsion module over the (possibly non-Noetherian) valuation ring of K .
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[Français]

Volumes non-archimédiens des fibrés en droites nef métrisés

Résumé. Soit L un fibré en droites sur un schéma propre et géométriquement réduit X défini sur un corps K muni d’une
valuation non-triviale non-archimédienne. Grosso modo, le volume non-archimédien d’une métrique continue sur l’analytifié
de Berkovich de L mesure la croissance asymptotique de l’espace des petites sections des puissances tensorielles de L. Pour
une métrique continue semi-positive sur L au sens de Zhang, nous montrons tout d’abord que le volume non-archimédien
coïncide avec l’énérgie. L’existence d’une telle métrique semi-positive impose le caractère nef de L. La différentiabilité
du volume non-archimédien en toute métrique continue semi-positive constitue un deuxième résultat. Ces résultats sont
connus lorsque L est ample et l’objectif de cet article est de les généraliser au cas nef. La méthode s’appuie sur une
étude détaillée du contenu et du volume d’un module de torsion de présentation finie sur l’anneau (éventuellement non
noethérien) de valuation de K .
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1. Introduction

The volume is an important invariant in algebraic geometry measuring asymptotically the size of the
space of global sections. For a line bundle L on an n-dimensional projective variety Y over an algebraically
closed field k, it is given by

vol(L)B limsup
m→∞

h0(Y ,mL)
mn/n!

.

Here and in the following, we use additive notation for line bundles and metrics. The volume has many nice
properties like continuity and differentiability for which we refer to Lazersfeld’s books [Laz04a] and [Laz04b].
In Arakelov geometry, there is a similar invariant called the arithmetic volume. It measures asymptotically
the size of the number of small sections. For a projective arithmetic variety X of relative dimension n over
the ring of integers OF of a number field F and a line bundle L on X endowed with Hermitian metrics φv
for each Archimedean place v, it is defined by

v̂ol(L)B limsup
m→∞

log#{s ∈H0(X ,mL ) | ‖s‖mφv ≤ 1, ∀v|∞}
mn+1/(n+1)!

where ‖s‖mφv is the supremum norm of s associated to the metric mφv . The arithmetic volume behaves
similarly to the classical volume above, see Chen [Che08], Moriwaki [Mor09] and Yuan [Yua08]. In the
philosophy of Lang, Néron and Weil, arithmetic invariants are always influenced by local invariants depending
only on a single place of the number field F. The main object of study of this paper is a local variant of the
arithmetic volume which we study over any non-Archimedean field. For its relation to the global arithmetic
volume in case of a number field, we refer to [BGJ+20, Remark 4.1.7].

In the following, K is a non-Archimedean field, i.e. a field K endowed with a complete non-Archimedean
absolute value | · |, assumed to be non-trivially valued, here and throughout the paper. The valuation ring
of K is denoted by K◦, and the residue field by K̃ . We consider a line bundle L on an n-dimensional reduced
proper scheme X over K . Then the Berkovich analytification Xan is compact and we consider a metric
φ on L which is continuous with respect to the Berkovich topology. We denote the associated supremum
norm on H0(X,L) by ‖ · ‖φ. Using [BE21, §2.1], we note that ‖ · ‖φ induces a canonical norm det(‖ · ‖φ)
on the one-dimensional K-vector space det(H0(X,L)). Since a norm on a one-dimensional vector space
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is unique up to scaling, for any other continuous metric ψ of L, we get a well-defined positive number
det(‖ · ‖φ)/ det(‖ · ‖ψ). Following [BE21, §2.3, §9.2], we define our local volume by

(1.1) vol(L,φ,ψ)B limsup
m→∞

n!
mn+1

· log
(
det(‖ · ‖mψ)/ det(‖ · ‖mφ)

)
.

We call it here the non-Archimedean volume of L with respect to (φ,ψ). In contrast to the global case, it is
a relative notion which is only well-defined with respect to a pair of metrics (φ,ψ). For more details, we
refer to § 2.6. Non-Archimedean volumes were first introduced by Kontsevich and Tschinkel in [KT02]
and they proposed their differentiability. The main result of this paper will show that this is true over any
non-Archimedean field. Chen and Maclean [CM15] studied a variant of a local volume and their results yield
that the limsup in (1.1) is in fact a limit if X is geometrically reduced (see [BE21, Theorem 9.8]).

To describe our first result, we recall from algebraic geometry that the volume of a nef line bundle
L on the proper scheme Y over k is the degree degL(X). We are looking for a similar result in case of
non-Archimedean volumes of the line bundle L on an n-dimensional geometrically reduced proper scheme
X over any non-Archimedean field K . Let φ1,φ2 be continuous metrics of the line bundle L which are
semipositive in the sense of Zhang [Zha95]. We recall semipositivity in § 2.3 and § 2.4. The analogue of the
degree in the relative setting is the energy

E(L,φ1,φ2)B
1

n+1

n∑
j=0

∫
Xan

(φ1 −φ2)(dd
cφ1)

j ∧ (ddcφ2)
n−j .

On the right-hand side, we use the Monge–Ampère measures (ddcφ1)j ∧ (ddcφ2)n−j on the Berkovich
space Xan introduced by Chambert–Loir [CL06]. We refer to § 2.4 for details about these Radon measures
including a proof of locality principle. The energy was introduced in non-Archimedean geometry in [BFJ15],
we recall the basic properties in § 2.5.

Theorem 1.1. Let L be a line bundle on a reduced proper scheme X over a non-Archimedean field K . If φ1,φ2 are
two continuous semipositive metrics on Lan, then

vol(L,φ1,φ2) = E(L,φ1,φ2).

In the corresponding Archimedean situation and for L (nef and) big, this was shown in [BB10, Theorem A].
For K discretely valued, the theorem was proved in [BGJ+20, Theorem A]. For L ample and K any non-
Archimedean field, this is a result given in [BE21, Theorem A]. We generalize it here in Theorem 4.6 to any
(nef) line bundle in case of an arbitrary non-Archimedean field K .

The main result of our paper is the following differentiability of the non-Archimedean volume.

Theorem 1.2. Let L be a line bundle on the n-dimensional proper, geometrically reduced scheme X over a non-
Archimedean field K . Let φ be a continuous semipositive metric on L and let f : Xan→R be continuous. Then
vol(L,φ+ tf ,φ) is differentiable at t = 0 and

(1.2)
d
dt

∣∣∣∣∣
t=0

vol(L,φ+ tf ,φ) =
∫
Xan

f (ddcφ)n.

This formula is the non-Archimedean analogue of [BB10, Theorem B], and was proposed by Kontsevich and
Tschinkel [KT02, §7.2]. Differentiability of arithmetic volumes was proven by Yuan (see [Yua08] and [Che11,
§4.4]). In the case of a discretely valued field K , Theorem 1.2 was shown in [BGJ+20, Theorem B]. For an
ample line bundle, this was generalized in [BGM20, Theorem A] for any non-Archimedean base field K . We
will deduce from it the more general Theorem 1.2 using the additional tools described below. This will be
done in Theorem 5.3.

The proofs of Theorem 1.1 and Theorem 1.2 are similar, but for the latter additional problems arise from
leaving the nef cone. Our arguments were inspired by the techniques for the proofs of the arithmetic Hilbert–
Samuel theorem by Abbes and Bouche [AB95] and of a general equidistribution result by Yuan [Yua08]. Our



4 S. Boucksom, W. Gubler, and F. Martin4 S. Boucksom, W. Gubler, and F. Martin

proofs follow the overall plan in [BGJ+20] for the same statements in the DVR case, but we have to adapt it
here at several places to deal with the non-Noetherian situation.

A crucial tool in the proofs of Theorem 1.1 and Theorem 1.2 is the volume of a line bundle L over an
n-dimensional finitely presented projective torsion scheme Y over K◦ which we will introduce in Section 3. It
follows from the direct image theorem (see Ullrich [Ull95, Theorem 3.5]) that Hq(Y ,L) is a finitely presented
torsion K◦-module M and we define hq(Y ,L) B c(M). Here, c(M) is the content of a finitely presented
torsion K◦-module M which is a generalization of the length to our non-Noetherian situation and which was
already considered by Scholze [Sch13], Temkin [Tem16] and in [BE21] (see § 2.2 for details). We will see in
§ 3.1 that the invariants hq(Y ,L) share many properties of the usual Hilbert–Samuel theory. Influenced by a
similar construction in algebraic geometry by Küronya [Kür06], we define the q-th asymptotic cohomological
functions by

ĥq(Y ,L)B limsup
m→∞

hq(Y ,mL)
mn/n!

.

For q = 0, we call it the volume of L and we set vol(Y ,L)B ĥ0(Y ,L). In Section 3, we show the asymptotic
cohomological functions are continuous and homogeneous of degree n.

Another basic ingredient is the following Hilbert–Samuel type formula: let X be a projective flat scheme
over K◦ with generic fiber X B X ⊗K◦ K and let n B dim(X). Let L be a nef line bundle on X with
associated model metric φL on LBL |X . Let D be a vertical effective Cartier divisor on X with associated
model function φD B φO(D). Then we have

(1.3) vol(D,L ) =
∫
Xan

φD (ddcφL )n.

Based on crucial results for the Deligne pairing in [BE21], this formula was proven in [BGM20, Theorem 2.4]
for L ample. In Proposition 4.2, the continuity of the volume on the left-hand side allows us to generalize
(1.3) for nef line bundles L . Then both Theorem 1.1 and Theorem 1.2 follow from (1.3) by using a variant of
Yuan’s filtration argument.

In Section 6, we give two applications of the above theorems. We suppose that L is a line bundle on a
proper geometrically reduced scheme X over K . We assume ψ is a continuous metric on L such that the
semipositive envelope

P(ψ) := sup{φ
∣∣∣ φ is a continuous semipositive metric on Lan and φ ≤ ψ}

is a continuous metric on L. This is expected to hold for all normal projective varieties and semiample line
bundles (see [BE21, Conjecture 7.31]). Then we show in Corollary 6.5 that

(1.4) vol(L,φ,ψ) = E(L,P(φ),P(ψ))

where ψ is another continuous metric on L with P(ψ) continuous. The formula (1.4) was shown in [BE21,
Corollary 9.16] for L ample. For φ as above, we will prove in Theorem 6.7 the orthogonality property

(1.5)
∫
Xan

(P(φ)−φ) (ddcP(φ))n = 0.

This is a crucial property in the proof of the existence of solutions of non-Archimedean Monge–Ampère
equations, see [BFJ15].

We repeat here that we assume in the whole paper that the absolute value of the non-Archimedean field
K is non-trivial. The reason is that we want to work with semipositive metrics in the sense of Zhang. Note
that in the trivially valued case, every line bundle on a proper variety has only one model metric and hence
there is also a unique semipositive metric. To get a rich theory in the trivially valued case, one has to use a
different semipositivity notion as for example in [BE21] or [BJ18]. Still, our results can also be applied in the
trivially valued case using that the Monge–Ampère measures, the energy and the non-Archimedean volume
are compatible with base change (see [BE21]).
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Notations and conventions

The set of natural numbers N includes 0. The rings in this paper are usually commutative and with 1. If
A is such a ring and a ∈ A, then (a) denotes the ideal of A generated by a. If P is an abelian group, then
PA B P ⊗

Z
A denotes the A-module obtained by base change.

As a base field, we consider usually a non-Archimedean field K . This means in the whole paper
that K is endowed with a non-Archimedean complete absolute value | · | which is non-trivial. We use
K◦ B {α ∈ K | 1 ≥ |α|} for the valuation ring, K◦◦ B {α ∈ K | 1 > |α|} for the maximal ideal in K◦ and
K̃ B K◦/K◦◦ for the residue field. If M is a finitely presented torsion module over K◦, then we denote by
c(M) the content of M . This is a generalization of the length in our non-Noetherian situation which we will
introduce in § 2.2.

Let X be a scheme. If F is a coherent sheaf on a scheme X and D is a Cartier divisor on X, we write
F (D) for F ⊗OX OX(D). We will use additive notation for line bundles. If L,M are line bundles on X, then
L+M denotes the tensor product of the line bundles L and M . For m ∈Z, we denote the m-th tensor power
of L by mL.

Let X be an n-dimensional proper scheme over the field F. For line bundles L1, . . . ,Ln, we denote the
degree of X with respect to L1, . . . ,Ln by degL1,...,Ln(X). It is given by the intersection number

degL1,...,Ln(X) = c1(L1) · · ·c1(Ln) · [X].

If all line bundles agree with L, then we use degL(X)B degL1,...,Ln(X) as a shorthand. We set

hq(X,L)B dimHq(X,L).

If X is a proper scheme over the non-Archimedean field K , then we denote by Xan its Berkovich
analytification. A continuous metric φ on L means that φ is continuous with respect to the Berkovich
topology. Again, we use additive notation for metrics which means that the tensor metric of metrics φ and
ψ is denoted by φ+ψ (see 2.10 for more). The associated norm on fibers of L is denoted by | · |φ and ‖ · ‖φ
denotes the supremum seminorm on the space H0(X,L) of global sections. Usually, we consider ‖ · ‖φ if X is
reduced, and it is then a norm.

2. Preliminaries

In this section, we fix an arbitrary non-Archimedean field K . We collect here some background results on
the content of a module, models, Monge–Ampère measures, energy and non-Archimedean volumes.

2.1. Q-line bundles and positivity in the real Picard group

In this subsection, we consider a proper, finitely presented scheme Y over K◦. We will recall and fix
notations about line bundles. The special fiber of Y is Ys B Y ⊗K◦ K̃ .

A Q-line bundle on Y is a pair (M,m) with M a line bundle on Y and m ∈N>0. The set of morphisms
between Q-line bundles (M,m) and (N,n) is given as the inductive limit

lim−−→
k∈N>0

Hom(knM,kmN ).
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The tensor product of line bundles induces a tensor product of Q-line bundles. As usual, we denote the
Q-line bundle (M,m) by L and we will say that mL is (induced by) an honest line bundle M . Note that
L = (M,m) induces a canonical element

L⊗ 1BM ⊗ 1
m
∈ Pic(Y )

Q
B Pic(Y )⊗

Z
Q.

We call L nef (resp. ample) if M is a nef (resp. ample) line bundle on Y . These notions are well-defined for
elements of Pic(Y )

Q
B Pic(Y )⊗

Z
Q.

Definition 2.1. By multilinearity, we extend the intersection pairing to define an intersection number
M ·C ∈R for any M ∈ Pic(Y )

R
and any closed curve C in Ys. Then M ∈ Pic(Y )R B Pic(Y )⊗

Z
R is called

nef if M ·C ≥ 0 for any closed curve C in Ys.
We call M ∈ Pic(Y )

R
ample if there are ample L1, . . . ,Lr ∈ Pic(Y ) and λ1, . . . ,λr > 0 with M =

∑r
i=1λiLi

for some non-zero r ∈N.

The definition of ample is consistent for Q-line bundles, by the Nakai–Moishezon criterion applied to Ys.
Obviously, ample implies nef.

Proposition 2.2. Let A ∈ Pic(Y )
R
be ample and M ∈ Pic(Y )

R
be nef. Then A+M is ample.

Proof. The important observation is that L ∈ Pic(Y ) is nef (resp. ample) if and only if the restriction L|Ys
to the special fiber is nef (resp. ample). This is by definition in the nef case, and it follows from [Gro66,
Corollaire 9.6.5] in the ample case.

Assume first that A ∈ Pic(Y ) is ample and M ∈ Pic(Y ) is nef. Then it is well-known that A|Ys +M |Ys is
ample and hence A+M is ample. This implies the claim for Q-line bundles.

To show the first claim in general, it is enough to show that A+M is ample for A ∈ Pic(Y ) ample and
M ∈ Pic(Y )

R
nef. The existence of the ample line bundle A yields that Y is projective. We conclude that any

element in Pic(Y ) is the difference of two ample classes [Gro61, Corollaire 4.5.8] and hence we may assume
that M =

∑r
i=1λiHi for Hi ∈ Pic(Y ) ample and λi ∈R. For δ > 0 sufficiently small, we choose ρi ∈Q with

λi < ρi < λi + δ. Since all Hi are ample and M is nef, we deduce that N =
∑
i ρiHi is nef. Since the ample

cone on Ys is open, we can choose δ ∈Q>0 so small that the restriction of A− δ
∑
iHi to Ys is ample. By

the observation at the beginning, we get that A− δ
∑
iHi is ample and hence A− δ

∑
iHi +N is ample by

the claim for Q-line bundles which we already have shown. Note that

A+M = A+
r∑
i=1

λiHi = A− δ
r∑
i=1

Hi +N +
r∑
i=1

(λi + δ − ρi)Hi

and hence A+M is ample as λi + δ − ρi > 0. �

Remark 2.3. Let Y be a finitely presented projective scheme over K◦ and let M be a nef element in Pic(Y )
R
.

Then there is a finite dimensional subspace W of Pic(Y )
Q
such that M is the limit of a sequence of ample

elements in W . Indeed, the above proof shows that M is the limit of nef elements Nk ∈ 〈H1, . . . ,Hr〉Q and
hence M is the limit of the ample classes Nk +

1
kA.

Remark 2.4. For M ∈ Pic(Y )
R
, it is clear that M is nef if and only if the restriction of M to the special fiber

Ys is nef. The arguments in the proof of Proposition 2.2 show that M is ample if and only if M |Ys is ample.

2.2. Lattices and content

We will introduce the content of a finitely presented K◦-module as a generalization of the length in our
non-Noetherian situation. At the end, we will extend the content to the virtual quotient of two lattices in the
same finite dimensional K-vector space.
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2.5. By [Sch13, Proposition 2.10 (i)], if M is a finitely presented torsion module over K◦, then there is an
integer m and some a1, . . . am ∈ K◦◦ \ {0} such that

M ' K◦/(a1)⊕ · · · ⊕K◦/(am)

and the quantities m and v(ai) are independent of any choice up to reordering.

Definition 2.6. Let M be a finitely presented torsion K◦-module and use the above decomposition. We
define as in [BE21, §2.4] the content of M to be

c(M) =
m∑
i=1

v(ai) ∈R≥0.

In [Sch13], the content c(M) is called the length of M .

Remark 2.7. Recall from [BE21, Ex 2.19]) that c(M) agrees with the usual length in case of a discrete valuation
with v(π) = 1 for an uniformizing element π of K◦.

Proposition 2.8. Let 0→M1→ ·· · →Mm→ 0 be an exact sequence of finitely presented torsion K◦-modules.
Then we have ∑

i

(−1)i c(Mi) = 0.

Proof. This is a consequence of [Sch13, Proposition 2.10]. �

2.9. A finitely generated K◦-submodule V of a finite dimensional K-vector space V is called a lattice in V if
V generates V as a K-vector space. If V1,V2 are lattices in V , then there is a lattice V of V contained in
V1∩V2. Note that any finitely generated K◦-submodule V of V is contained in a free K◦-submodule of finite
rank and hence V is finitely presented over K◦ by using that K◦ is a coherent ring [Ull95, Proposition 1.6].
For i = 1,2, it follows that Vi/V is a finitely presented torsion module over K◦ and we define the content of
the virtual K◦-module V1/V2 as

c(V1/V2)B c(V1/V )− c(V2/V )
by using the content of finitely presented torsion modules over K◦ from Definition 2.6. Additivity of the
content shows that this is a well-defined real number which might be negative.

2.3. Models and metrics

In this subsection, we consider a line bundle L on a proper scheme X over K . We will introduce models
of X and L defined over the valuation ring K◦. We will see that a model of L induces a metric on Lan. Such
metrics are called model metrics. They were introduced by Zhang [Zha95] in Arakelov theory and they play
a similar role in non-Archimedean geometry as smooth metrics in the Archimedean case.

2.10. As in [BE21, §5], we use the logarithmic notation for a metric on a line bundle L on X : a metric on L is
a function φ : Lan→R such that | · |φ B e−φ induces a norm on the H (x)-vector space L⊗XH (x) for every
x ∈ Xan. Here, H (x) is the completed residue field of x endowed with its canonical absolute value [Ber90,
Remark 1.2.2]. The metric is called continuous if φ is continuous with respect to the Berkovich topology. If φ
is a (continuous) metric on OX , then we identify φ with the (continuous) function − log |1|φ on Xan.

Definition 2.11. A model X of X is a flat, proper scheme X over K◦ together with an identification of its
generic fiber Xη B X ⊗K◦ K with X. There is a canonical reduction map redX : Xan→ Xs to the special
fiber Xs of X (see [GM19, Remark 2.3] and [GRW17, §2] for details). On closed points of X, the reduction is
induced by the valuative criterion of properness, and hence coincides with the usual reduction modulo the
maximal ideal of K◦.

We say that a model X is integrally closed in X if for every affine open subset U of X , the ring O(U ) is
integrally closed in O(Uη), see [Gro61, §6.3] for the integral closure of a scheme.
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A model (X ,L ) of (X,L) is a model X of X and a line bundle L on X together with an identification
L |Xη ' L compatible with the identification Xη ' X. We call L a model of L determined on X .

Remark 2.12. We say that the model X is dominated by a model X ′ of X if the identity on X extends to a
(unique) morphism X ′ → X over K◦. This induces a partial order on the set of isomorphism classes of
models of X. It is easy to show that the isomorphism classes of models of X form a directed system with
respect to this partial order.

If X is projective, then it follows as in [Gub03, Proposition 10.5] that the projective models of X are cofinal
among all models of X.

Remark 2.13. We will frequently use in this paper that if (X ,L ) is a model of (X,L), then H0(X ,L ) is
a lattice in H0(X,L). Indeed, it follows from the direct image theorem given in [Ull95, Theorem 3.5] that
H0(X ,L ) is a finitely presented K◦-module. Using that K is a flat K◦-module, we deduce that H0(X ,L )
is a lattice in H0(X,L).

2.14. Let (X ,L ) be a model of (X,L). Then there is an associated metric φL of L determined as follows: for
x ∈ Xan, pick an open subset U of X which contains redX (x) and which trivializes L . Then L (U ) � O(U )
mapping s to γ and the metric is given in x by |s(x)|φL = |γ(x)|. This does not depend on the choice of the
trivialization. It is clear that such metrics are continuous on Lan. We refer to [BE21, 5.3] and [GM19, §2] for
more details.

2.15. A metric φ on L is called a model metric if there is a non-zero k ∈N and a model L of kL such that
kφ = φL . We can say that the model metric φ is given by the Q-model M B 1

kL of L and we will denote
it by φM . A model metric is called semipositive if M is nef. Then L is nef by [GM19, 4.8]. Note that the
model L and hence M is not unique, but nefness of M is independent of the choice. For this and more
details about model metrics, we refer to [GM19].

If L = OX , then we identify a model metric φ with the model function − log |1|φ. It follows from [Gub98,
Theorem 7.12] that model functions form a dense Q-subspace of the space of continuous real functions on
Xan and hence the set of model metrics of L is dense in the space of continuous metrics on Lan with respect
to uniform convergence (see [GM19, Theorem 1.2] for a generalization).

Example 2.16. A Cartier divisor D on a model X of X is called vertical if D |X is trivial. Then O(D) is a
model of OX and we define the model function associated to D by

φD B − log |1|O(D).

Conversely, for any model (X ,L ) of (X,OX), the trivial section 1 of OX extends uniquely to a meromor-
phic section s of L and then D B div(s) is a vertical Cartier divisor on X .

2.17. We say that a metric φ on L is bounded if for any open subset U which trivializes L and any trivializing
section s ∈H0(U,L), the function − log |s|φ is locally bounded on Uan. Clearly, any continuous metric ψ of
L is bounded and hence boundedness of φ is equivalent to φ−ψ bounded on Xan, by compactness of the
latter. Bounded metrics are stable under tensor product, inverse and pull-back.

For a bounded metric φ on L, we define the sup-seminorm

‖s‖φ B sup
x∈Xan

|s(x)|φ

of s ∈H0(X,L). If X is reduced, it is a norm on H0(X,L) (see [BE21, Lemma 4.1]).
For bounded metrics φ1,φ2 on L, we define the distance

d(φ1,φ2)B sup
x∈Xan

|(φ1 −φ2)(x)| <∞.

Recall that we view φ1 −φ2 as the (bounded) function on Xan given as − log |1|φ1−φ2
. Clearly, d is a metric

on the space of bounded metrics of L inducing the topology of uniform convergence.
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2.18. For a bounded metric φ on L, we will use the notation

Ĥ0(X,L,φ)B {s ∈H0(X,L) | ‖s‖φ ≤ 1}.

If the absolute value on K is discrete and X is reduced, then Ĥ0(X,L,φ) is automatically a lattice in
H0(X,L), cf. [BE21, Lemma 1.29 (ii)]. In the case of a non-discrete valuation, this is not always true. However,
it is true in case of a model metric φL associated to a model (X ,L ) of (X,L) with X integrally closed in
X. Indeed, Lemma 2.19 below yields

Ĥ0(X,L,φL ) =H0(X ,L )

and hence the claim follows from Remark 2.13.

Lemma 2.19. Assume that X is a model of X which is integrally closed in X and that L is a model of L
determined on X , then

H0(X ,L ) = Ĥ0(X,L,φL )

Proof. It is clear that ⊂ holds in the claim. To prove the converse, we pick s ∈ Ĥ0(X,L,φL ). Locally
on an affine open subset U = Spec(A) which trivializes L , it is given by γ ∈ A. It follows from [CM18,
Theorem 2.1] or [BE21, Theorem 4.15] that A integrally closed in A ⊗K◦ K yields that A is the unit ball
of A⊗K◦ K with respect to the sup-seminorm on red−1(Us). Now by definition of a model metric and as

s ∈ Ĥ0(X,L,φL ), we know that γ is in this unit ball and hence in A. This proves s ∈ Ĥ0(X ,L ). �

Lemma 2.20. Assume that the model X of X is integrally closed in X. Let D be a vertical Cartier divisor of X .
Then D is effective if and only if φD ≥ 0.

Proof. We note that D is effective if and only if the canonical meromorphic section sD of O(D) is a global
section. Since D is a vertical Cartier divisor, the restriction of sD to X is a (nowhere vanishing) global section
of OX and hence the claim is a special case of Lemma 2.19. �

Lemma 2.21. Assume that K is algebraically closed and that X is reduced (resp. reduced and projective). Then
models (resp. projective models) of X which are integrally closed in X are cofinal among models of X.

Proof. This follows from Remark 2.12 and the scheme-theoretic version of the reduced fiber theorem of
Bosch–Lütkebohmert–Raynaud given in [BE21, Theorem 4.20]. �

2.4. Continuous semipositive metrics and Monge–Ampère measures

Let X be a proper scheme over the non-Archimedean field K . Recall from 2.15 the definition of a
semipositive model metric on a line bundle L over X. To describe canonical metrics of arithmetic dynamical
systems, Zhang [Zha95] introduced the following generalization.

Definition 2.22. A continuous metric φ on Lan is called semipositive if φ is a uniform limit of semipositive
model metrics of L with respect to the distance of uniform convergence from 2.17.

If L has a continuous semipositive metric, then L is nef by 2.15. The converse is not known. Note
that continuous semipositive metrics are closed under sum, pull-back with respect to morphisms of proper
schemes over K , and uniform limits. This is easily seen from the fact that the first two properties also hold
for model metrics. Recall that we use additive notation for metrics, so sum means the tensor metric.

The following Monge–Ampère measures were introduced by Chambert-Loir.

Proposition 2.23. There is a unique way to associate to a tuple of continuous semipositive metrics φ1, . . . ,φn on
line bundles L1, . . . ,Ln on a proper scheme X over a non-Archimedean field K and to an effective n-dimensional
cycle Z on X a positive Radon measure µ on Xan, formally denoted by ddcφ1 ∧ · · · ∧ ddcφn ∧ δZ , such that the
following holds:
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(a) the measure µ is multilinear and symmetric in φ1, . . . ,φn;

(b) the measure µ is additive in Z;

(c) if f : X ′→ X is a morphism of proper schemes and if Z ′ is an n-dimensional cycle on X ′ , then we have the
projection formula

f∗
(
ddc(f ∗φ1)∧ · · · ∧ ddc(f ∗φn)∧ δZ ′

)
= ddcφ1 ∧ · · · ∧ ddcφn ∧ δf∗Z ′ ;

(d) µ depends continuously on the φi with respect to uniform convergence (and weak convergence of Radon
measures);

(e) µ(Xan) = degL1,...,Ln(Z);

(f ) the Radon measure µ is compatible with base change of non-Archimedean fields;

(g) assume that K is algebraically closed, and that φ1, . . . ,φn are model metrics determined by line bundles
L1, . . . ,Ln on a model X of X with reduced special fiber Xs. Then

ddcφ1 ∧ · · · ∧ ddcφn := ddcφ1 ∧ · · · ∧ ddcφn ∧ δX =
∑
Y

degL1,...,Ln
(Y ) δξY ,

where Y ranges over all irreducible components of Xs and where δξY is the Dirac measure at the unique
point ξY ∈ Xan with reduction equal to the generic point of Y .

Properties (b), (c), (d), (f ) and (g) characterize the positive Radon measures µ uniquely.

Chambert–Loir [CL06] obtained this in the case of a non-Archimedean field with a countable dense
subset. In the case of any algebraically closed non-Archimedean field, this follows from [Gub10, Proposition
3.8]. The general case is easily deduced by base change. Alternatively, this follows from the local approach
in [CD12], see [BE21, §8.1] for details.

Remark 2.24. Note that the wedge product and the ddc in the notation ddcφ1 ∧ · · · ∧ ddcφn ∧ δZ are
a priori purely formal. It is used to stress the analogy to the complex Monge–Ampère measures where
ddcφ = c1(L,φ) is the first Chern form. It was shown later in [CD12, §6] and in [GK17, Theorem 10.5] that
the measures could really be understood as a product of (1,1)-currents similarly to the complex case.

Remark 2.25. A continuous metric φ on a line bundle L over X is called a DSP metric if there are continuous
semipositive metrics φ1,φ2 on line bundles L1,L2 over X such that L = L1 − L2 and φ = φ1 −φ2. By
multilinearity, we can uniquely extend the construction of µ = ddcφ1 ∧ · · · ∧ ddcφn ∧ δZ to DSP metrics
φ1, . . . ,φn. The resulting Radon measure is no longer positive, but still satisfies (a)–(g).

If X is projective, every model metric on a line bundle over X is a DSP metric. Indeed, we have seen in
Remark 2.12 that every model metric is determined on a projective model X , and every line bundle on X is
a difference of two ample line bundles on X [Gro61, Corollaire 4.5.8].

We recall the following result of Yuan and Zhang.

Proposition 2.26. Let φ2, . . . ,φn be continuous semipositive metrics of line bundles on the projective scheme X
over K . Then

(f ,g) 7→
∫
Xan

f ddcg ∧ ddcφ2 ∧ · · · ∧ ddcφn

defines a negative semidefinite symmetric bilinear form on the Q-vector space of model functions on X.

Proof. By base change, we may assume that K is algebraically closed. Note that the form is given as a limit
of intersection numbers on models and then the claim from the local Hodge index theorem from [YZ17,
Theorem 2.1]. We refer to [BFJ15, Propositions 2.20, 2.21] for the argument. �
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It follows from Remark 2.24 that the construction of Monge–Ampère measures is local in the Berkovich
topology. All results in [BFJ15, §5] still hold. For convenience of the reader, we state and prove the comparison
principle. The complex analogue is due to Bedford and Taylor and, in the discretely valued case of residue
characteristic 0, it is given in [BFJ15, Corollary 5.3].

Proposition 2.27. Let φ,ψ be continuous semipositive metrics on Lan. Then we have∫
{φ<ψ}

(ddcφ)n ≥
∫
{φ<ψ}

(ddcψ)n

where {φ < ψ}B {x ∈ Xan | φ(x) < ψ(x)}.

Proof. We will follow closely the arguments from the complex case given in [BB10, Corollary 2.4]. Let
ε > 0, then ψε Bmax(φ,ψ − ε) is a continuous semipositive metric by [GM19, Propositions 3.11, 3.12]. By
Proposition 2.23(e), we have

(2.1)
∫
Xan

(ddcφ)n = degL(X) =
∫
Xan

(ddcψε)
n.

Note that ψε = φ on the open subset {φ > ψ − ε} of Xan and that ψε = ψ − ε on the open subset {φ < ψ − ε}
of Xan. Since these open subsets are disjoint and since formation of the Monge–Ampère measure is local in
the Berkovich topology (i.e. compatible with restriction to open subsets), we get

(2.2)
∫
Xan

(ddcψε)
n ≥

∫
{φ>ψ−ε}

(ddcφ)n +
∫
{φ<ψ−ε}

(ddcψ)n.

The right-hand side is bounded below by

(2.3)
∫
Xan

(ddcφ)n −
∫
{φ>ψ}

(ddcφ)n +
∫
{φ<ψ−ε}

(ddcψ)n.

Combining (2.1), (2.2) and (2.3) and using monotone convergence for ε→ 0, we get the claim. �

2.5. Energy

We recall here the definition of the energy relative to two semipositive continuous metrics on a line bundle.
We will see that all relevant properties of the energy from [BFJ15, §6] hold over any non-Archimedean field
K .

In this subsection, we consider a line bundle L on a proper scheme X over K of dimension n.

Definition 2.28. The energy of two continuous semipositive metrics φ1,φ2 of L is

E(L,φ1,φ2)B
1

n+1

n∑
j=0

∫
Xan

(φ1 −φ2)(dd
cφ1)

j ∧ (ddcφ2)
n−j ∈R.

Note that in [BJ18, §3.8], the energy was normalized by dividing through degL(X) which makes perfect
sense in the case of an ample line bundle. Here, we will be also interested in nef line bundles and so we
omit this normalization.

Proposition 2.29. Let φ1,φ2,φ
′
1,φ
′
2,φ3 be continuous semipositive metrics of L. Let d be the distance on the

space of bounded metrics of L introduced in 2.17. Then the following holds.

(a) E(L,φ2,φ1) = −E(L,φ1,φ2) and E(L,φ1,φ1) = 0.

(b) If φ1 ≤ φ2, then E(L,φ1,φ3) ≤ E(L,φ2,φ3).

(c) The cocycle rule E(L,φ1,φ2) + E(L,φ2,φ3) + E(L,φ3,φ1) = 0 holds.

(d) For a ∈N, we have the homogenity E(aL,aφ1, aφ2) = an+1E(L,φ1,φ2).

(e) E(L,φ1 + c,φ2) = E(L,φ1,φ2) + cdegL(X) for c ∈R.
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(f ) E(L,φ1,φ2) is concave in φ1.

(g) The function t 7→ E(L, (1− t)φ1 + tφ2,φ3) is a polynomial in t ∈ [0,1] of degree ≤ n+1.

(h) d
dt |t=0E(L, (1− t)φ1 + tφ2,φ1) =

∫
Xan(φ2 −φ1) (ddcφ1)n.

(i) d2

dt2 |t=0E(L, (1− t)φ1 + tφ2,φ1) = n
∫
Xan(φ2 −φ1)ddc(φ2 −φ1)∧ (ddcφ1)n−1.

(j)
∫
Xan(φ1 −φ2) (ddcφ1)n ≤ E(L,φ1,φ2) ≤

∫
Xan(φ1 −φ2) (ddcφ2)n.

(k) |E(L,φ1,φ2)−E(L,φ′1,φ
′
2)| ≤

(
d(φ1,φ

′
1) + d(φ2,φ

′
2)
)
degL(X).

(l) The energy is compatible with base extensions of non-Archimedean fields.

(m) If f : X ′→ X is a birational proper morphism, then E(f ∗L,f ∗φ1, f
∗φ2) = E(L,φ1,φ2).

Proof. All these properties follow rather formally from the definition of the energy and the properties of the
Monge–Ampère measures given in the previous subsection. For the arguments, we refer to [BFJ15, §6], [BJ18,
§3.8] and [BE21, Proposition 9.14]. Note that for (f) and (j), we need the Hodge index result of Yuan and
Zhang recalled in Proposition 2.26. �

2.6. Non-Archimedean volumes

In this subsection, we denote by X a reduced proper scheme over K . We consider a line bundle L on X
and set Nm B h0(X,mL) for any m ∈N.

2.30. Let V be an N -dimensional K-vector space. Then a norm ‖ · ‖ on V induces a determinant norm
det(‖ · ‖) on the determinant line det(V ) =ΛN (V ) by

det(‖τ‖)B inf
τ=v1∧···∧vN

‖v1‖ · · · ‖vN ‖

for any τ ∈ det(V ) (see [BE21, §2.1] for details). We define the relative volume of norms ‖ · ‖1,‖ · ‖2 on V by

vol(‖ · ‖1,‖ · ‖2)B log
(
det(‖ · ‖2)
det(‖ · ‖1)

)
.

Note here that det(‖ · ‖2)/ det(‖ · ‖1) is a well-defined positive number since det(V ) is a one-dimensional
K-vector space. For more details on relative volumes, we refer to [BE21, §2.3].

Remark 2.31. Recall from [BE21, §1.7] that a lattice V in V has an associated lattice norm ‖ · ‖V on V given by

‖v‖V B inf
α∈K,v∈αV

|α|

for any v ∈ V . It follows from 2.5 that a finitely presented torsion K◦-module M is given by M = V1/V2 for
two lattices V1 ⊃ V2 of a finite dimensional K-vector space V . Conversely, any such quotient is evidently a
finitely presented torsion K◦-module. Then [BE21, Lemma 2.20] yields

c(M) = vol(‖ · ‖V1 ,‖ · ‖V2).

For any lattices V1,V2 in V , additivity of the relative volume [BE21, Proposition 2.14(i)] yields

c(V1/V2) = vol(‖ · ‖V1 ,‖ · ‖V2)

where the content of the virtual K◦-module V1/V2 was defined in 2.9.

Definition 2.32. Let φ,ψ be bounded metrics on Lan. Then we define the non-Archimedean volume of L
with respect to φ and ψ by

(2.4) vol(L,φ,ψ)B limsup
m→∞

n!
mn+1

vol(‖ · ‖mφ,‖ · ‖mψ) = vol(L) · limsup
m→∞

1
mNm

vol(‖ · ‖mφ,‖ · ‖mψ).

using the relative volume of the sup-norms ‖ · ‖mφ,‖ · ‖mψ on H0(X,mL) from 2.17.
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It follows from homogeneity and monotonicity of the relative volume of norms in [BE21, Proposition 2.14]
that both limsup’s are finite. By the right-hand equality, non-Archimedean volumes are thus interesting only
when the line bundle L is big.

We will see in Theorem 2.38 that the limsup in (2.4) is a limit if X is geometrically reduced.
The non-Archimedean volume has the following basic properties holding for any proper reduced X.

Recall that d denotes the distance on the space of bounded metrics of a given line bundle (see 2.17).

Proposition 2.33. Let φ,ψ,φ′ ,ψ′ be bounded metrics on Lan. Then we have:

(a) vol(L,φ,φ) = 0.

(b) The non-Archimedean volume vol(L,φ,ψ) is increasing in φ and decreasing in ψ.

(c) For any c ∈R, we have vol(L,φ+ c,ψ) = vol(L,φ,ψ) + cvol(L).

(d) vol(L,φ,ψ) ≤ d(φ,ψ)vol(L).
(e) |vol(L,φ,ψ)− vol(L,φ′ ,ψ′)| ≤ (d(φ,φ′) + d(ψ,ψ′))vol(L).

Proof. Properties (a), (b) are obvious and (c), (e) follow from [BE21, Proposition 2.14(ii),(iv)]. Finally (d) is a
consequence of (a) and (e). �

Lemma 2.34. Let φ,ψ be bounded metrics on Lan. We suppose that either the valuation on K is discrete or that
φ,ψ are model metrics induced by line bundles on models which are integrally closed in X. Then

(2.5) c

 Ĥ0(X,mL,mφ)

Ĥ0(X,mL,mψ)

 = vol(‖ · ‖mφ,‖ · ‖mψ) +O(Nm).

Proof. By 2.18, we have that Bm B Ĥ0(X,L⊗m,mφ) and B′m B Ĥ0(X,L⊗m,mψ) are lattices in H0(X,mL).
Let ‖ · ‖Bm and ‖ · ‖B′m be the associated lattice norms. Then we have

(2.6) vol(‖ · ‖Bm ,‖ · ‖B′m) = vol(‖ · ‖mφ,‖ · ‖mψ) +O(Nm).

When K is densely valued, (2.6) is actually an equality as then obviously ‖ · ‖Bm = ‖ · ‖mφ and ‖ · ‖B′m = ‖ · ‖mψ .
When K is discretely valued, (2.6) holds by [BE21, Proposition 2.21]. Now the claim follows from (2.6) and
Remark 2.31. �

Remark 2.35. If the valuation on K is discrete or if φ,ψ are model metrics induced by line bundles on
models which are integrally closed in X, then Lemma 2.34 implies

(2.7) vol(L,φ,ψ) = limsup
m→∞

n!
mn+1

c

 Ĥ0(X,mL,mφ)

Ĥ0(X,mL,mψ)

 .
In the case of a discretely valued field with v(π) = 1 for an uniformizer π, we conclude that vol(L,φ,ψ)
agrees with the non-Archimedean volume considered in [BGJ+20].

By Chow’s lemma, the following result can be used to reduce to the case of projective schemes.

Lemma 2.36. Let f : X ′→ X be a birational map of proper reduced schemes over X. For bounded metrics φ,ψ
of the line bundle L over X, we have

vol(‖ · ‖mf ∗φ,‖ · ‖mf ∗ψ) = vol(‖ · ‖mφ,‖ · ‖mψ) + o(mn+1)

for m→∞ and hence
vol(f ∗L,f ∗φ,f ∗ψ) = vol(L,φ,ψ).

Proof. This follows from [BE21, Lemma 9.11(v)] and its proof. Note that the projectivity assumption there can
be replaced by properness. �
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Next, we give the behaviour of the relative volumes in Definition 2.32 with respect to a base extension F/K
of non-Archimedean fields. We recall from [BE21, Definition 1.24, Proposition 1.25] that the base change of
an ultrametric norm ‖ · ‖ on a K-vector space V is the ultrametric norm on the F-vector space VF B V ⊗K F
given for w ∈ VF by

‖w‖F B inf∑
αivi=w

max
i
|αi |‖vi‖

where the infimum runs over all finite decompositions
∑
αivi = w with αi ∈ F and vi ∈ V . We will use

similar notation to denote base changes of schemes and line bundles.

Proposition 2.37. We assume that X is geometrically reduced. Let φ,ψ be continuous metrics on Lan and let
F/K be a non-Archimedean field extension. Then

vol(‖ · ‖mφ,‖ · ‖mψ) = vol(‖ · ‖mφF ,‖ · ‖mψF ) + o(mNm)

for m→∞ and hence vol(LF ,φF ,ψF) = vol(L,φ,ψ).

Proof. This follows from [BE21, Lemma 9.4]. Again, projectivity is not used there. �

The next result is a consequence of the limit theorem of Chen and Maclean [CM15, Theorem 4.3] as
shown in [BE21, §9.2].

Theorem 2.38. Let L be a line bundle on a geometrically reduced proper scheme X over K and let φ,ψ be bounded
metrics on Lan. Then the limsup in the definition of the non-Archimedean volume vol(L,φ,ψ) is a limit, i.e.

vol(L,φ,ψ) = lim
m

n!
mn+1

vol(‖ · ‖mφ,‖ · ‖mψ).

The same holds in (2.7).

Proof. We reduce to X projective by Lemma 2.36. Then the first claim follows from [BE21, Theorem 9.8].
The second claim follows from the first claim and (2.5). �

The existence of the limit has the following obvious consequences. They simplify the proofs of the main
results in this paper quite a lot, however one could also prove them without Theorem 2.38 and without
Corollary 2.39 similarly as in [BGJ+20].

Corollary 2.39. Let L be a line bundle on an n-dimensional geometrically reduced proper scheme X over K and
let φ,ψ,φ1,φ2,φ3 be bounded metrics on L

an. Then we have:

(i) vol(L,φ,ψ) = −vol(L,ψ,φ)
(ii) vol(L,φ1,φ2) + vol(L,φ2,φ3) + vol(L,φ3,φ1) = 0.

(iii) vol(aL,aφ,aψ) = an+1vol(L,φ,ψ) for all a ∈N.

3. Volumes on torsion schemes

Let K be any non-Archimedean field, with valuation v. In this section, we consider schemes over K◦

which have non-trivial K◦-torsion. We call them torsion schemes over K◦. Our main examples are closed
subschemes of a scheme over K◦ with support in the special fiber. We will see that the space of global
sections of a line bundle L over a finitely presented projective torsion scheme over K◦ is a finitely presented
torsion K◦-module and hence we can define the volume of L by mimicking the classical construction from
algebraic geometry by using the content from §2.2 instead of the dimension. We will prove some basic
properties of the volume analogously to [BGJ+20, Section 3]. The main difficulty here is that our torsion
schemes are not Noetherian unless the valuation is discrete.
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3.1. Hilbert–Samuel theory

We introduce torsion schemes over K◦, define the numbers hq(Y ,F ) for a coherent sheaf F over such a
torsion scheme Y , and show that they fit in the usual Hilbert–Samuel theory.

Definition 3.1. We say that a K◦-scheme Y is a torsion scheme over K◦ if A is a torsion K◦-module for any
open affine subset Spec(A) of Y .

Remark 3.2. Now assume that Y is a torsion scheme of finite type over K◦. Then for any open affine subset
Spec(A) of Y there is a non-zero element a ∈ K◦ such that a ·A = 0. Moreover, Y is a torsion scheme
over K◦ if and only if there exists some non zero b ∈ K◦, some scheme Y ′ over SpecK◦/(b) such that Y ′

is isomorphic to the Y as a scheme over SpecK◦. If Y is projective (resp. proper), then Y ′ is projective
(resp. proper) as well.

3.3. Let α ∈ K◦ and let AB K◦/(α). We pick an n ∈N and set S B A[x0, . . . ,xn]. We consider the standard
N-grading on S .

Definition 3.4. Let n ∈N and M be an S-graded module of finite presentation. We denote by Mj the
elements of M of degree j ∈N. Note that Mj is a finitely presented torsion K◦-module and hence we may
use the content from §2.2 to define the Hilbert function of M by

PM(j)B c(Mj ).

Lemma 3.5. Let 0→M ′ →M →M ′′ → 0 be a short exact sequence of finitely presented graded S-modules.
Then we have PM ′ + PM ′′ = PM .

Proof. This follows easily from Proposition 2.8. �

Lemma 3.6. Let ψ :M→N be a morphism of finitely presented S-modules. Then Ker(ψ) and Coker(ψ) are
finitely presented S-modules.

Proof. It follows from [Ull95, Example 3.3] that the ring A is stably (universally) coherent and hence the
lemma follows from standard properties of modules over coherent rings (see for instance [Stacks, Tags 05CX
and 05CW]). �

Remark 3.7. Ullrich’s results [Ull95, Example 3.3] show that every finitely presented K◦-algebra is coherent,
and hence that the structure sheaf of any finitely presented scheme Y over K◦ is coherent. As a result, an
OY -module is coherent if and only if it is finitely presented. This yields that the pull-back of a coherent
module with respect to a morphism of finitely presented (torsion) schemes over K◦ is again coherent (see
[Gro60, §0.5.3]). The direct image theorem [Ull95, Theorem 3.5] with respect to a proper morphism of
finitely presented schemes over K◦ holds. In particular, for a coherent sheaf F on a finitely presented proper
scheme Y over K◦, all cohomology groups H i(Y ,F ) are finitely presented K◦-torsion modules.

Definition 3.8. Let F be a coherent sheaf on a finitely presented proper torsion scheme over K◦. Then we
define

hq(Y ,F )B c(Hq(Y ,F ))

for any q ∈N and the Euler characteristic

χ(Y ,F )B
dim(Y )∑
q=0

(−1)qhq(Y ,F ).

Proposition 3.9. Let Y be a finitely presented projective torsion scheme over K◦ and let L1, . . . ,Lr be line bundles
on Y . Then for any coherent sheaf F on Y , the Euler characteristic χ(Y ,F (m1L1 + · · ·+mrLr )) is a polynomial
function of (m1, . . . ,mr ) ∈Zr .
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Proof. In a first step, we assume that L1, . . . ,Lr are very ample, and follow the lines of the classical proof.
We have a closed embedding i : Y → P

n1
K◦ × · · · ×P

nr
K◦ with Li � i

∗O(ei) and using that cohomology does not
change after passing to the push-forward i∗, we may assume that Y = P

n1
K◦ × · · · ×P

nr
K◦ and Li = O(ei) for

i = 1, . . . , r where e1, . . . , er is the standard basis of Zr . The homogeneous coordinates on P
ni
K◦ are denoted

by yi0, . . . , yini . We proceed by induction on N B
∑r
i=1ni .

If N = 0, then Y = P
0
K◦ and all line bundles Li are trivial, hence χ(Y ,F (m1L1+ · · ·+mrLr )) is a constant

function. So we may assume N > 0 and that the claim holds for N − 1. We may assume that ni > 0 for all
i = 0, . . . , r . Then we consider the morphism ψ : F (−ei)→F induced by multiplication with yini and the
induced short exact sequence

0→ Ker(ψ)→F (−ei)→F → Coker(ψ)→ 0.

It is clear that Ker(ψ) and Coker(ψ) are coherent sheaves on Y = P
n1
K◦ × · · · ×P

nr
K◦ . In fact, the definition

of ψ as multiplication by yini yields easily that they are defined on the closed subscheme yini = 0 which is

isomorphic to P
n1
K◦ × · · · ×P

ni−1
K◦ × · · · ×P

nr
K◦ . By induction hypothesis, we now get the claim for the coherent

sheaves Ker(ψ) and Coker(ψ). We twist the above exact sequence with m1L1+ · · ·+mrLr and then we apply
additivity of the Euler characteristic to the resulting exact sequence to deduce that

χ(Y ,F (m1L1 + · · ·+mrLr ))−χ(Y ,F (m1L1 + · · ·+mrLr −Li))

is equal to
χ(Y ,Coker(ψ)(m1L1 + · · ·+mrLr ))−χ(Y ,Ker(ψ)(m1L1 + · · ·+mrLr ))

and hence it is a polynomial function. Now we use the following fact for any function f :Zr → R. If we
know that f (x)− f (x − ei) is a polynomial function for all i = 1, . . . , r , then it is quite easy to see that f (x) is
a polynomial function. This implies that χ(Y ,F (m1L1+ · · ·+mrLr )) is a polynomial function in (m1, . . . ,mr ),
proving the first step.

We now consider the general case. By [GW10, Theorem 13.59], we can find very ample line bundles Ai ,Bi
such that Li = Ai −Bi . The first step shows that

χ(Y ,F (p1A1 + q1B1 + · · ·+ prAr + qrBr ))

is a polynomial function in (p1,q1, . . . ,pr ,qr ) ∈ Z
2r . Applying this with pi = mi and qi = −mi for all

i = 1, . . . , r, we get the claim. �

Lemma 3.10. Let Y be a finitely presented projective torsion scheme over K◦ and let L1, . . . ,Lr be ample line
bundles on Y . Then for any coherent sheaf F on Y , we have

Hq(Y ,F (m1L1 + · · ·+mrLr )) = 0

for all m1, . . . ,mr ∈N with m1 + · · ·+mr sufficiently large and all q > 0.

Proof. For r = 1, this is Serre’s vanishing theorem, cf. [Ull95, Proposition 3.6]. We prove now the claim for
r ≥ 2. We note that there is k ∈N \ {0} such that Hj B kLj is very ample for every j = 1, . . . , r . Writing
mj =m′jk + dj for m

′
j ∈N and dj ∈ {0, . . . , k − 1}, we see that it is enough to prove the claim for the finitely

many coherent sheaves F (d1L1 + · · ·+ drLr ) and the very ample line bundles Hj . We conclude that we may
assume all Lj very ample.

There is a suitable closed immersion into a multiprojective space P = P
n1
K◦ × · · · ×P

nr
K◦ over K

◦ such that
Lj = OP

(ej )|Y for j = 1, . . . , r, where O
P
(ej ) is the pull-back of O

P

nj
K◦
(1) with respect to the j-th projection.

We choose such an embedding with P of minimal dimension. The proof will run by induction over dim(P).
If dim(P) = 0, then dim(Y ) = 0 and the claim is obvious.

Now we assume dim(P) ≥ 1. For every i ∈ {1, . . . , r}, we pick a homogeneous coordinate xi on the factor
P
ni
K◦ and set Pi B {x ∈ P | xi = 0} for the associated multiprojective space with dim(P′) = dim(P)−1. Then

Yi B Y ×
P
Pi is a finitely presented torsion scheme over K◦ which is a closed subscheme of Y and of Pi .
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The restriction Fi of F to Y ′ is a coherent sheaf on Y ′ and the restriction of Lj to Yi is a very ample line
bundle Lij for j = 1, . . . , r . By induction and using that the `1-norm of (mi) and its `∞-norm are equivalent,
there is ` ∈N such that

(3.1) Hq(Yi ,Fi(m1Li1 + · · ·+mrLir )) = 0

for all m1, . . . ,mr ∈N with max{m1, . . . ,mr} ≥ ` and all i ∈ {1, . . . , r}. Using the case r = 1, we may choose `
so large such that Hq(Y ,F (mjLj )) = 0 for all mj ≥ ` and all j = 1, . . . , r . We claim that for all m1, . . . ,mr ∈N
with max{m1, . . . ,mr} ≥ ` we have

(3.2) Hq(Y ,F (m1L1 + · · ·+mrLr )) = 0

which implies the lemma. We argue by contradiction. We choose m1, . . . ,mr minimal with respect to the
product (partial) order on N

r such that (3.2) is wrong. Let mj be the maximal m1, . . . ,mr . There is i , j such
that mi > 0, otherwise (3.2) would be true by the choice of ` using the case r = 1. Since xi is a regular global
section of O

P
(ei) (see the paragraph before Proposition 3.18 for the definition of regular), the sequence

0 −→O
P
(−ei)

⊗xi−→O
P
−→O

Pi
−→ 0

on P is exact. Then the associated long exact cohomology sequence is

· · · −→Hq(P,F (me − ei))︸                ︷︷                ︸
Hq(Y ,F (mL−Li ))

−→Hq(P,F (me))︸           ︷︷           ︸
Hq(Y ,F (mL))

−→Hq(Pi ,F (me))︸            ︷︷            ︸
Hq(Yi ,Fi (mLi ))

−→ ·· ·

where me B m1e1 + · · ·+mrer , mLB m1L1 + · · ·+mrLr and mLi = m1Li1 + · · ·+mrLir . By (3.1), we have
Hq(Yi ,Fi(mLi)) = 0. Using that max{m1, . . . ,mr} does not change if we replace mi by mi − 1, minimality
yields that Hq(Y ,F (mL− Li)) = 0 and hence Hq(Y ,F (mL)) = 0. This is a contradiction and the lemma
follows. �

Corollary 3.11. Let L1, . . . ,Lr be ample line bundles on a finitely presented projective torsion scheme Y over K
◦.

Then for any coherent sheaf F on Y , we have that h0(Y ,F (m1L1 + · · · +mrLr )) is a polynomial function of
(m1, . . . ,mr ) ∈Nr for m1 + · · ·+mr large enough.

Proof. This follows from Proposition 3.9 and Lemma 3.10. �

3.2. Global sections in the non-Noetherian case

The goal of this subsection is to prove that a line bundle on a finitely presented projective torsion
K◦-scheme can be written as a difference of effective line bundles which have global sections not vanishing
on a given finite set of points of Y . This fact is established in Corollary 3.17.

3.12. Let Y be a finitely presented torsion K◦-scheme. We denote by

Ys B Y ×SpecK◦ Spec K̃

the special fiber of Y . We remark that the induced closed immersion Ys→ Y induces a homeomorphism of
the underlying topological spaces |Ys| ' |Y |.

Lemma 3.13. Let Y be a torsion scheme of finite type over K◦. Let F be a sheaf on Y and let s ∈ H0(Ys,F ).
Then there is some r ∈ R with 0 < r < 1 such that for any β ∈ K◦ with r ≤ |β| < 1 the section s can be lifted to
H0(YK◦/(β),F ) via the canonical morphism H0(YK◦/(β),F )→H0(Ys,F ).

Proof. The isomorphism K̃ ' lim−−→β
K◦/(β), where β ∈ K◦◦, induces an isomorphism

OYs ' lim−−→
β∈K◦◦

OYK◦/(β)
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of abelian sheaves on the topological space |Y |. Let us denote by FYK◦/(β) (resp. FYs ) the pull-back of F to
YK◦/(β) (resp. Ys). Then we get similarly

FYs ' lim−−→
β∈K◦◦

FYK◦/(β) .

By [Har77, Chapter II, Exercise 1.11], we get that

H0(Y ,FYs ) ' lim−−→
β

H0(YK◦/(β),FYK◦/(β))

which proves the above result. �

Lemma 3.14. Let Y be a projective torsion scheme over K◦ with a coherent OY -module F and an ample line
bundle A. Then there is some r ∈R with 0 < r < 1 such that for any β ∈ K◦ with r ≤ |β| < 1 and for any m ∈N,
the morphism

H0(YK◦/(β),F (mA))→H0(Ys,F (mA))

is surjective.

Proof. We consider the ring

RB
⊕
m∈N

H0(Ys,mA)

and the R-module
M B

⊕
m∈N

H0(Ys,F (mA)).

Since A is ample on the projective scheme Ys over the residue field K̃ , it follows that R is a K̃-algebra of
finite type and that M is a finitely generated R-module [Laz04a, Example 1.2.22].

Then we first pick a finite set {ri}i∈I of generators of the K̃-algebra R. For β ∈ K◦◦ with |β| < 1 close
enough to 1, Lemma 3.13 shows that we can lift all the ri to

Rβ B
⊕
m∈N

H0(YK◦/(β),mA).

Similarly we pick a finite set {mj}j∈J of generators of the finite R-module M . For β ∈ K◦◦ with |β| < 1 close
enough to 1, Lemma 3.13 again shows that all the mj lift to

Mβ B
⊕
m∈N

H0(YK◦/(β),F (mA)).

This proves that for β ∈ K◦◦ with |β| < 1 close enough to 1 such that the above liftings are possible, the
morphism Mβ →M is surjective. Clearly, this proves the claim. �

Lemma 3.15. Let Y be a finitely presented projective torsion scheme over K◦. Let F be a coherent OY -module
and let A be an ample line bundle on Y . Then there exists some M ∈N such that for any integer m ≥M, the
morphism H0(Y ,F (mA))→H0(Ys,F (mA)) is surjective.

Proof. First choose some non-zero α ∈ K◦◦ such that Y is defined over K◦/(α). By Lemma 3.14, there is
some r ∈R with |α| < r < 1 such that for any β ∈ K◦ with r ≤ |β| < 1 and for any m ∈N, the morphism

(3.3) H0(YK◦/(β),F (mA))→H0(Ys,F (mA))

is surjective. If we tensor the surjective homomorphism OY →OYK◦/(β) of coherent OY -modules with F , then
we get an exact sequence

0→M →F →OYK◦/(β) ⊗F → 0

of coherent OY -modules. Since A is ample, it follows from [Ull95, Proposition 3.6] that

(3.4) 0→H0(Y ,M (mA))→H0(Y ,F (mA))→H0(Y ,OYK◦/(β) ⊗F (mA))→ 0.
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is exact for m� 0. Since

H0(Y ,OYK◦/(β) ⊗F (mA)) 'H0(YK◦/(β),F (mA))

we get the result by combining (3.3) and (3.4). �

Lemma 3.16. Let T be a finite subset of a finitely presented projective torsion scheme Y over K◦. Let F be a line
bundle on Y and let A be an ample line bundle on Y . Then there is M ≥ 0 such that for any integer m ≥M there
exists a section s ∈H0(Y ,F (mA)) such that s(t) ∈ Ft/mtFt is non-zero for any t ∈ T where mt is the maximal
ideal in OY ,t .

Proof. Using that Ys is a projective scheme over the residue field K̃ , [BGJ+20, Lemma 3.1.1] yields that there
is M ≥ 0 such that for any integer m ≥M there is s ∈H0(Ys,F (mA)) which does not vanish at any point of
T . Then the claim follows from Lemma 3.15. �

Corollary 3.17. Let Y be a finitely presented projective torsion scheme over K◦. Let T ⊂ Y be finite and let L
be a line bundle on Y . Then there are very ample line bundles A1,A2 on Y with L ' A1 −A2 such that the line
bundles Ai have global sections si with si(t) , 0 for any t ∈ T .

Proof. We pick an ample line bundle A on Y . We apply Lemma 3.16 first with F = L. For m� 0, we get that
mA+L has a global section s1 not vanishing at any point of T . Then we apply Lemma 3.16 with F = OY .
For m� 0, we get that mA has a global section s2 not vanishing at any point of T . Hence for m� 0,
A1 BmA+L and A2 BmA, we get the result. Note that for m� 0 these line bundles are very ample by
[GW10, Theorem 13.59]. �

Any global section s of a line bundle L over a scheme X defines a closed subscheme D of X. We call s
regular if D is a Cartier divisor of X. We will use the following relative version in case of a flat morphism
π : X→ Y of schemes. Then s is called relatively regular if D is a Cartier divisor of X and if D is flat over
Y . We recall the following result from [BE21, Proposition A.15].

Proposition 3.18 (Boucksom–Eriksson). Let π : X → Y be a flat (finitely presented) projective morphism of
schemes of finite presentation over K◦ and let L be a π-ample line bundle on X. Then mL has a relatively regular
section locally over Y for all m� 0.

3.3. Asymptotics

In this subsection, we will study the asymptotics of cohomology groups to introduce the volume of a line
bundle over a finitely presented projective torsion scheme Y over K◦. We will use the previous subsection to
prove that the volume increases after adding an effective line bundle. We will explain why the non-Noetherian
situation makes this surprisingly hard to prove. We start with a crucial continuity result.

Lemma 3.19. Let F be a coherent sheaf and let L0, . . . ,Lr be line bundles on Y . We set nB dim(supp(F )).
Then for all m1, . . . ,mr ∈N \ {0} and mB

∑
imi , we have:

(3.5) hq(Y ,F (m1L1 + · · ·+mrLr )) =O(mn)

(3.6) |hq(Y ,F (L0 +m1L1 + · · ·+mrLr ))− hq(Y ,F (m1L1 + · · ·+mrLr ))| =O(mn−1)

Proof. We note that the support of a coherent sheaf is closed. We use the shorthand notation

mB (m1, . . . ,mr ), F (m)B F (m1L1 + · · ·+mrLr ) and F (m,L0)B F (m)⊗L0.

We prove both claims simultaneously by induction on nB dim(supp(F )). If the support is empty, then
F = 0 and the claims are obvious as the left hand sides are zero.

Now we suppose that n ≥ 0 and that the claims are known for all coherent sheaves whose support have
dimension < n.
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By Corollary 3.17, there are line bundles A,B with global sections sA, sB such that L0 = A−B and the
supports of sA and sB both do not contain any generic point of supp(F ). Let E (resp. F) be the closed
subscheme of X defined by sA (resp. sB). We conclude that the supports of F (m)|E and of F (m,A)|E have
dimension at most n− 1 and the same also holds for the restrictions to F. We get an exact sequence

(3.7) 0 −→ G −→ F
⊗sA−→ F (A) −→ F (A)|E −→ 0

of coherent sheaves on Y . We twist by m1L1 + · · ·+mrLr and get the exact sequence

(3.8) 0 −→ G(m) −→ F (m)
⊗sA−→ F (m,A) −→ F (m,A)|E −→ 0.

By the choice of the global section sA, the dimension of supp(G) is at most n− 1. By induction on n, we
have

(3.9) hq(Y ,G(m)) =O(mn−1) and hq(E,F (m,A)|E) =O(mn−1).

We split the exact sequence (3.7) into two short exact sequences

(3.10) 0 −→ G −→ F −→H −→ 0 and 0 −→H −→ F (A) −→ F (A)|E −→ 0.

We twist again these two short exact sequences by m1L1 + · · ·+mrLr and then we use the associated long
exact cohomology sequences to deduce

−hq−1(E,F (m,A)|E) ≤ hq(Y ,F (m,A))− hq(Y ,H(m)) ≤ hq(E,F (m,A)|E)

and
−hq(Y ,G(m)) ≤ hq(Y ,H(m))− hq(Y ,F (m)) ≤ hq+1(Y ,G(m)).

Using these inequalities and (3.9), we get

(3.11) hq(Y ,F (m,A))− hq(Y ,F (m)) =O(mn−1).

We apply (3.11) to F ′ B F (A−B) instead of F and B instead of A to get

(3.12) hq(Y ,F ′(m,B))− hq(Y ,F ′(m)) =O(mn−1).

Using that F ′(m) ' F (m,L0) and that F ′(m,B) ' F (m,A), the inequality (3.6) for n follows easily from
(3.11) and (3.12). It is clear that (3.5) follows from a repeated application of (3.6) by choosing L0 from
L1, . . . ,Lr . �

3.4. Asymptotic cohomological functions on the real Picard group

This subsection is inspired by the results about R-divisors on reduced projective schemes over a field
from [BGJ+20, §3].

Theorem 3.20. Let Y be a finitely presented projective torsion scheme over K◦, of dimension n. For each
q = 0, . . . ,n, there exists a unique function ĥq(Y , ·) : Pic(Y )

R
→R≥0 such that:

(i) for any L ∈ Pic(Y ), we have

ĥq(Y ,L) = limsup
m→∞

n!
mn

hq(Y ,mL);

(ii) for all t ∈R≥0 and M ∈ Pic(Y )R, we have ĥq(Y ,tM) = tnĥq(Y ,M);

(iii) the function ĥq(Y , ·) is continuous on any finite dimensional real subspace of Pic(Y )
R
.

For any presentation of M ∈ Pic(Y )
R
as M =

∑
i xiLi with Li ∈ Pic(Y ) and xi ∈R, we further have

(3.13) ĥq(Y ,M) = limsup
m→+∞

n!
mn

hq
Y ,∑

i

bmxicLi

 .
If M is nef, then this limsup is a limit, and ĥq(Y ,M) = 0 for q > 0.
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As in the Appendix, we slightly abusively denote by L ∈ Pic(Y )
R
the image of L ∈ Pic(Y ).

Proof. Set P := Pic(Y ). By § 3.3, the function h : P → R≥0 defined by h(L) := n!hq(Y ,L) satisfies the
assumptions of Theorem A.1 with s = n. The existence and uniqueness of ĥq are thus direct consequences of
Theorem A.1, while (3.13) follows from Proposition A.5.

To prove the final point, we may enlarge the set L1, . . . ,Lr ∈ Pic(Y ) and assume that L1 is ample. Then

σ :=

x ∈Rr |M(x) :=
∑
i

xiLi ample


is a non-empty open convex cone, and M(x) is nef if and only if x ∈ σ (since M(x) nef implies that
(x1 + ε)L1 +

∑
i>1 xiLi is ample for all ε > 0). For any x ∈Zr ∩σ , Lemma 3.10 implies hq(Y ,mM(x)) = 0 for

m� 1 if q > 0, while Corollary 3.11 and Lemma 3.19 yield

ĥ0(Y ,M(x)) = lim
m→∞

n!
mn

h0(Y ,mM(x)).

The final assertion of the theorem is now a consequence of Proposition A.5. �

In the special case q = 0, we define the volume of M ∈ Pic(Y )
R
as

vol(M)B vol(Y ,M)B ĥ0(Y ,M).

Lemma 3.21. Let M ∈ Pic(Y )
R
and let E be a line bundle associated to an effective Cartier divisor. Then

(3.14) vol(M) ≤ vol(M +E).

Proof. By continuity and homogeneity of the volume on Pic(Y )
R
shown in Theorem 3.20(ii) and (iii), we may

assume that M = L is a line bundle on Y . By assumption on E, there is a regular global section s ∈H0(Y ,E).
For any m ∈N, multiplication by sm yields an injection of sheaves

OY (mL) ↪→OY (m(L+E)),

inducing an injection of K◦-modules

H0(Y ,mL) ↪→H0 (Y ,m(L+E)) .

Thus
c
(
H0(Y ,mL)

)
≤ c

(
H0 (Y ,m(L+E))

)
,

which implies the claim. �

Remark 3.22. We were not able to prove that (3.14) holds in case of M ∈ Pic(Y )
R
and an ample line bundle

E. It would be quite plausible that this holds and in the Noetherian case it is true. In general, the problem is
to construct a regular global section of mE for some non-zero m ∈N. Then homogeneity of the volume (see
Theorem 3.20(ii)) would give (3.14). In Lemma 4.1, we will solve the problem in a special case which will be
enough for our application.

4. Volume formulas for nef models and semipositive metrics

Let X be a projective scheme of dimension n over a non-Archimedean field K . We denote the valuation
of K by v. In the first subsection, we will first prove an asymptotic volume formula for an effective vertical
Cartier divisor D on a model of X in terms of an integral of the model function φD against a Monge–Ampère
measure.

In [BGJ+20] and [BE21], it was shown that the non-Archimedean volume vol(L,φ,φ′) agrees with the
energy for semipositive metrics φ,φ′ of the line bundle L under certain assumptions. In fact, the ad-
ditional assumptions in [BGJ+20] were that the underlying scheme X is a normal variety and that the
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non-Archimedean base field K is discretely valued while in [BE21], the result holds for any non-Archimedean
field, but the line bundle L was assumed to be ample and X was assumed to be smooth. The goal of the
second subsection is to generalize both results allowing any non-Archimedean field and not requiring L to
be ample. Our proof uses the asymptotic volume formula and our previous results on torsion schemes.

4.1. An asymptotic volume formula

Let K be any non-Archimedean field. In this subsection, we generalize a crucial volume formula on an
effective vertical Cartier divisor D of a given projective K◦-model X from the ample to the nef case. Such
a formula was obtained in [BGM20] by using a change of metric formula in terms of the Deligne pairing
from [BE21]. We extend the volume formula here to nef line bundles by using a continuity argument for
the volumes on D introduced in Section 3 as the effective vertical Cartier divisor D is obviously a finitely
presented projective torsion scheme over K◦.

In this special situation, we can really prove the desired volume inequality mentioned in Remark 3.22:

Lemma 4.1. Let X be a flat projective and finitely presented scheme over K◦. Let L,E ∈ Pic(X )
R
with E nef.

Then for any effective vertical Cartier divisor D on X , we have

vol(D,L) ≤ vol(D,L+E).

Proof. By continuity and homogeneity of the volume (cf. Theorem 3.20), we may assume that E ∈ Pic(X ) is
ample and that L ∈ Pic(X ). From Proposition 3.18, we deduce that for m� 0 the line bundle mE has a
relatively regular section s. Hence, replacing E by mE and L by mL and using homogeneity of the volume
again, we can assume that E has a relatively regular section s. It follows from [BGM20, Lemma 1.3] that
s|D is a regular section of E|D . We recall that a regular section has an associated effective Cartier divisor
div(s|D ) and E|D is isomorphic to O(div(s|D )). Then the claim follows from Lemma 3.21. �

In the following, we consider a flat projective K◦-model X of the n-dimensional projective scheme X
over K . Let D be an effective vertical Cartier divisor on X . For any continuous function f : Xan→R, the
integral ∫

Xan
f ddcφL1

∧ · · · ∧ ddcφLn

is multilinear in L1, . . . ,Ln ∈ Pic(X ) and hence extends canonically to a multilinear function on Pic(X )
R
.

Proposition 4.2. Let L ∈ Pic(X )
R
be nef and let φD be the model function associated to the effective vertical

Cartier divisor D . Then we have

vol(D,L ) =
∫
Xan

φD (ddcφL )n.

Proof. If L ∈ Pic(X ) is ample, then this is proven in [BGM20, Theorem 2.4]. By homogeneity, we conclude
that the claim holds for ample line bundles in Pic(X )

Q
. In general, Remark 2.3 yields a finite dimensional

subspace W of Pic(X )
Q
such that the nef L is a limit of ample line bundles in W and hence the claim

follows from the previous case by continuity. �

Proposition 4.3. Let X be a flat projective K◦-model of the n-dimensional projective scheme X over K . Let D be
an effective vertical Cartier divisor on X , let L0, . . . ,Lr be in Pic(X ) and assume that L1, . . . ,Lr are nef. Then
we have

h0(D,L0 +m1L1 + · · ·+mrLr ) =
1
n!

∫
Xan

φD
(
ddcφm1L1+···+mrLr

)n
+ o(mn)

for m1, . . . ,mr ∈N and mBm1+ · · ·+mr →∞. If all L1, . . . ,Lr are ample, then the above asymptotic formula
holds even with o(mn) replaced by O(mn−1).
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Proof. By Lemma 3.19, it is enough to consider the case L0 = OX . Then we deal first with the case where
L1, . . . ,Lr are nef. We argue by contradiction. If the claim is not true, then there is ε > 0 such that for any

i ∈ {1, . . . , r} there is a sequence (m(k)
i )k∈N in N with m(k) =m(k)

1 + · · ·+m(k)
r →∞ and

(4.1)
∣∣∣∣∣h0(D,m(k)

1 L1 + · · ·+m
(k)
r Lr )−

1
n!

∫
Xan

φD

(
ddcφ

m
(k)
1 L1+···+m

(k)
r Lr

)n∣∣∣∣∣ ≥ ε · (m(k))n

for all k ∈N. Passing to a subsequence, we may assume that m
(k)
i /m

(k) converges to a non-negative xi ∈R.
We deduce from Theorem 3.20 that

(4.2) vol(D,x1L1 + · · ·+ xrLr ) = lim
m→∞

h0
(
D,

∑r
i=1bmxicLi

)
mn/n!

.

We pick any δ > 0. Then we have |m(k)
i − xim

(k)| ≤ δm(k) for k� 0 and Lemma A.4 yields

h0
(
D,m

(k)
1 L1 + · · ·+m

(k)
r Lr

)
− h0

(
D,bm(k)x1cL1 + · · ·+ bm(k)xrcLr

)
= δ ·O

(
(m(k))n

)
and hence (4.2) leads to(

m(k)
)−n

h0
(
D,m

(k)
1 L1 + · · ·+m

(k)
r Lr

)
− 1
n!

vol(D,x1L1 + · · ·+ xrLr ) = O(δ)

for k sufficiently large. By Proposition 4.2, we may replace vol(D,x1L1 + · · ·+ xrLr ) by∫
Xan

φD
(
ddcφx1L1+···+xrLr

)n
.

If we choose δ sufficiently small, we get a contradiction to (4.1).
If L1, . . . ,Lr are ample, then Corollary 3.11 and Lemma 3.19 show that h0 (D,L0 +m1L1 + · · ·+mrLr )

is a polynomial function of degree at most n in m1, . . . ,mr for m� 0. Since∫
Xan

φD

(
ddcφ

m
(k)
1 L1+···+m

(k)
r Lr

)n
is also a polynomial function of degree at most n, the difference of the two functions is not only of order
o(mn), but even of order O(mn−1). �

4.2. Comparison between energy and non-Archimedean volume

The following easy filtration argument will be applied several times.

Lemma 4.4. Let X be a flat proper scheme over K◦ with a line bundle M and an effective vertical Cartier
divisor E. Then we have

c
(
H0(X ,M +mO(E))

H0(X ,M )

)
≤

m∑
i=1

c
(
H0(E,M +iO(E))

)
for any m ∈N.

Let X be the generic fiber of X and let M =M |X . Recall from Remark 2.13 that on the left hand side we
have a quotient of two lattices in H0(X,M) with content ` defined by 2.9.

Proof. We may assume m > 0. Then for every i ∈ {1, . . .m}, multiplication with the canonical global section
sE leads to a short exact sequence

0 −→OX
·sE−→O(E) −→O(E)|E → 0

inducing a short exact sequence

0 −→M +(i − 1)O(E) −→M +iO(E) −→ (M +iO(E))|E → 0.
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The start of the corresponding long exact cohomology sequence is

0 −→H0(X ,M +(i − 1)O(E)) −→H0(X ,M +iO(E)) −→H0(E,M +iO(E)) −→ . . .

and hence we get

c
(

H0(X ,M +iO(E))
H0(X ,M +(i − 1)O(E))

)
≤ c(H0(E,M +iO(E))),

leading to

c
(
H0(X ,M +mO(E))

H0(X ,M )

)
≤

m∑
i=1

c(H0(E,M +iO(E)))

and proving the claim. �

In the following result, we will use the content c(V1/V2) of the virtual quotient of two lattices V1,V2 in the
same K-vector space. We refer to 2.9 for the definition.

We first deal with the model case.

Proposition 4.5. Let L be a line bundle on the projective scheme X and let X be a projective model of X. We
consider nef models L 1 and L 2 of L on X and we write L 1−L 2 = O(D) for some vertical Cartier divisor D
on X . In addition, letM be a line bundle on X with generic fibre M BM|X . Then we have

E(L,φL 1
,φL 2

) = lim
m→0

n!
mn+1

c
(
H0(X ,M +mL 1)
H0(X ,M +mL 2)

)
.

Proof. We first study what happens if we replace D by D ′ BD +div(π) for any non-zero π ∈ K . Then we
replace the model L 1 by the model L ′1 BL 1(div(π)) 'L 1 of L which is also nef. By construction, we
have O(D ′) =L ′1−L 2. Note φL ′1 = v(π) +φL 1

. Using Proposition 2.29(e), we get

E(L,φL ′1 ,φL 2
) = v(π)degL(X) +E(L,φL 1

,φL 2
).

We have

c
(
H0(X ,M +mL ′1)
H0(X ,M +mL 1)

)
= v(π)mh0(X,M +mL)

and hence

c
(
H0(X ,M +mL ′1)
H0(X ,M +mL 2)

)
= c

(
H0(X ,M +mL 1)
H0(X ,M +mL 2)

)
+Cn(m)

with Cn(m) defined as

v(π)mh0(X,M ⊗L⊗m) = v(π)mh0(X,L⊗m) + o(mn+1) = v(π)vol(L)m
n+1

n!
+ o(mn+1)

where we used the analogue of (3.6) in Lemma 3.19 for projective schemes over a field (see [BGJ+20,
Proposition 3.1.2]). Since L is a nef line bundle on X, we know that vol(L) = degL(X) and hence the claim
for D ′ implies the claim for D . This proves that we can replace D by D ′ .

First, we will prove the inequality

(4.3) limsup
m→0

n!
mn+1

c
(
H0(X ,M +mL 1)
H0(X ,M +mL 2)

)
≤ E(L,φL1

,φL2
).

There is a non-zero π in K◦ such that D +div(π) is an effective Cartier divisor. Replacing D by D +div(π),
the above shows that it is enough to prove (4.3) if D is effective.

For non-zero m, Lemma 4.4 applied with M +mL 2 instead of M and with D instead of E shows that

c
(
H0(X ,M +mL 1)
H0(X ,M +mL 2)

)
≤

m∑
i=1

c(H0(D,M +mL2 + iO(D))).
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Using L 1−L 2 = O(D), we get

c
(
H0(X ,M +mL 1)
H0(X ,M +mL 2)

)
≤

m∑
i=1

c(H0(D,M + iL 1+(m− i)L 2)).

Since L1 and L2 are nef, Proposition 4.3 shows that the right hand side is

m∑
i=1

∑
j1+j2=n

ij1(m− i)j2
j1!j2!

∫
Xan

φD (ddcφL1
)j1 ∧ (ddcφL2

)j2 + o(mn+1).

We note that the following limit for m→∞ exists and is given by the sum of Riemann integrals

lim
m→∞

m−(n+1)
m∑
i=1

ij1(m− i)j2 = lim
m→∞

1
m

m∑
i=1

( i
m

)j1 (
1− i

m

)j2
=

∫ 1

0
tj1(1− t)j2 dt.

Using the identity
∫ 1
0 t

j1(1− t)j2 dt = j1!j2!
(n+1)! , we get

m∑
i=1

ij1(m− i)j2
j1!j2!

=
mn+1

(n+1)!
+ o(mn+1).

Using our previous considerations, we get

limsup
m→0

n!
mn+1

c
(
H0(X ,M +mL 1)
H0(X ,M +mL 2)

)
≤ 1
n+1

∑
j1+j2=n

∫
Xan

φD(dd
cφL1

)j1 ∧ (ddcφL2
)j2 .

By definition, the right hand side is E(L,φL1
,φL2

). This proves (4.3).
If we multiply (4.3) by −1 and if we exchange L1 with L2, then we get the reverse inequality

(4.4) liminf
m→0

n!
mn+1

c
(
H0(X ,M +mL 1)
H0(X ,M +mL 2)

)
≥ E(L,φL1

,φL2
).

Combining (4.3) and (4.4), we get the claim in the proposition. �

Theorem 4.6. Let L be a line bundle on a geometrically reduced proper scheme X over K and let φ1 and φ2 be
continuous semipositive metrics on Lan. Then we have

(4.5) vol(L,φ1,φ2) = E(L,φ1,φ2).

Proof. By base change and using Proposition 2.37 and Proposition 2.29, we may assume that K is algebraically
closed. By Chow’s lemma and birational invariance of non-Archimedean volumes and energy (see Lemma
2.36 and Proposition 2.29), we may assume X to be projective.

We first prove the claim for semipositive model metrics. Since the projective models of X which are
integrally closed in X are cofinal by Lemma 2.21, we may assume that φi = φLi for some nef Q-line
bundle Li on some common projective model X which is integrally closed in X. Homogeneity of the
non-Archimedean volume in Corollary 2.39 and the energy in Proposition 2.29 show that we may assume
that the Li are nef line bundles on X . Then the claim follows from Proposition 4.5, Lemma 2.19 and
Remark 2.35.

Arbitrary continuous semipositive metrics on Lan are uniform limits of semipositive model metrics on
Lan. Then the claim follows from the first case as both the non-Archimedean volume and the energy are
continuous in (φ1,φ2) (see Propositions 2.29 and 2.33). �
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5. Differentiability of non-Archimedean volumes

We will prove our main result about differentiation of non-Archimedean volumes. It generalizes [BGJ+20,
Theorem B] from the case of discrete valuations to arbitrary non-Archimedean complete absolute values and
[BGM20, Theorem A] from the ample to the nef case.

5.1. Intermediate result for models

We consider an n-dimensional projective scheme X over K with a projective model X over K◦. Let D be
a vertical Cartier divisor on X . Since X is projective, we can write O(D) =M 1−M 2 for nef line bundles
M 1,M 2 on X . We consider a nef line bundle L and an arbitrary line bundle N on X .

Lemma 5.1. Unter the above assumptions, let φD be the model function associated to the vertical Cartier divisor
D and let Fj,m BN +mL + j(M 1−M 2). If D is effective, then we have

(5.1)
n!
mn

c

H0(X ,Fj+1,m)
H0(X ,Fj,m)

 ≤ ∫
Xan

φD (ddcφL + ddcφM 1
)n + o(1)

for integers m→∞ and all j ∈ {0, . . . ,m− 1}. If −D is effective, then ≥ holds in (5.1).

Proof. We prove first the claim in the case E B −D effective. The canonical section sE of O(E) =M 2−M 1
determines a short exact sequence of coherent sheaves on X :

0 −→ Fj+1,m
⊗sE−→ Fj,m −→ Fj,m|E −→ 0

The start of the associated long exact sequence in cohomology is

0 −→H0(X ,Fj+1,m)
⊗sE−→H0(X ,Fj,m)−→H0(E,Fj,m) −→ ·· ·

and hence

(5.2) c
(
H0(X ,Fj,m)/H0(X ,Fj+1,m)

)
≤ c

(
H0(E,Fj,m)

)
= h0(E,Fj,m).

Using that M 1 and M 2 are nef, we deduce from Lemma 4.1 that

vol(E,Fj,m) ≤ vol(E,N +mL + jM 1) ≤ vol(E,N +m(L +M 1)).

These inequalities and Proposition 4.3 give

(5.3) h0(E,Fj,m) ≤
mn

n!

∫
Xan

φE (dd
cφL + ddcφM 1

)n + o(mn).

By (5.2), we get

n!
mn

c
(
H0(X ,Fj,m)/H0(X ,Fj+1,m)

)
≤

∫
Xan

φE (dd
cφL + ddcφM 1

)n + o(1).

Using that φD = −φE , we get the desired reverse inequality in (5.1).
Now we deal with the case E BD effective. The proof is quite similar as in the first case. The canonical

global section sE induces a short exact sequence

0 −→ Fj,m
⊗sE−→ Fj+1,m −→ Fj+1,m|E −→ 0

of coherent sheaves on X . The same argument with the long exact cohomology sequence gives

(5.4) c
(
H0(X ,Fj+1,m)/H0(X ,Fj,m)

)
≤ h0(E,Fj+1,m).

The asymptotic formula (5.3) holds still for j +1 instead of j and so we get (5.1) by using (5.4). �
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5.2. Main result

In this subsection, we assume that X is an n-dimensional geometrically reduced proper scheme over K .
We apply first the previous result to model functions.

Lemma 5.2. Let L be a line bundle on X, f a model function on Xan and φ a continuous semipositive metric
on L. Let M be a line bundle on X and φ1,φ2 continuous semipositive metrics of M such that f = φ1 −φ2. If
f ≥ 0, then

(5.5) vol(L,φ+ f ,φ) ≤
∫
Xan

f (ddcφ+ ddcφ1)
n.

If f ≤ 0, then ≥ holds in (5.5).

Proof. By Corollary 2.37, the left hand side is invariant under base change. By Proposition 2.23(f), the
right hand side is invariant under base change. Hence we can assume that K is algebraically closed. By
Chow’s lemma and birational invariance of non-Archimedean volumes and energy (see Lemma 2.36 and
Proposition 2.29), we may assume X projective. By continuity of the non-Archimedean volume and of
the non-Archimedean Monge–Ampère measures, we may assume that φ,φ1,φ2 are induced by nef Q-line
bundles L ,M1,M2. Using Lemma 2.21, we may assume that the Q-line bundles are determined on a
common projective model X which is integrally closed in X. By the homogenity of the non-Archimedean
volume, we may assume that L ,M1,M2 are honest line bundles on X .

Let us assume first that f ≥ 0. By our above assumptions, we have a vertical Cartier divisor D on X with
φD = f . Since X is integrally closed, Lemma 2.20 shows that D is an effective Cartier divisor. We have to
prove that

(5.6) limsup
m→∞

1
mn+1/n!

vol
(
‖ · ‖m(φL +φD ),‖ · ‖mφL

)
≤

∫
Xan

φD (ddcφL + ddcφM1
)n.

By Remark 2.35 and Lemma 2.19, it is enough to prove that

limsup
m→∞

1
mn+1/n!

c
(
H0(X ,m(L +M 1−M 2))

H0(X ,mL )

)
≤

∫
Xan

φD (ddcφL + ddcφM 1
)n.

We apply now Lemma 5.1 with N = OX ,L and O(D) =M 1−M 2 for the summands in

c
(
H0(X ,m(L +M 1−M 2))

H0(X ,mL )

)
=
m−1∑
j=0

c

H0(X ,Fj+1,m)
H0(X ,Fj,m)

 .
This gives (5.6) and proves the case f ≥ 0. Now assume that f ≤ 0. Then the reverse inequality in (5.5)
follows by applying the first case for −f switching the role of L1,L2. �

Theorem 5.3. Let X be an n-dimensional geometrically reduced proper scheme over K . Let L be a line bundle on
X, f a continuous real function on Xan and φ a continuous semipositive metric on L. Then

d
dt

∣∣∣∣∣
t=0

vol(L,φ+ tf ,φ) =
∫
Xan

f (ddcφ)n.

Proof. We have seen in 2.15 that model functions are dense in the space of continuous functions on Xan.
By continuity and monoticity of non-Archimedean volumes in Proposition 2.33, we may assume that f is a
model function (see the proofs of [BGJ+20, Theorem 5.4.3] or [BGM20, Theorem 3.1] for details). It follows
from 2.15 that L is nef and hence vol(L) = degL(X). If f ≤ 0, then Lemma 5.2 implies

(5.7) liminf
t→0+

vol(L,φ+ tf ,φ)
t

≥
∫
Xan

f (ddcφ)n.
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Using that for c ∈ R, we have vol(L,φ+ c,φ) = vol(L) + cdegL(X) (see Proposition 2.33), we deduce from
Proposition 2.23(e) that (5.7) holds for any continuous function f . Using Lemma 5.2 in the case f ≥ 0, a
similar trick shows that

limsup
t→0+

vol(L,φ+ tf ,φ)
t

≤
∫
Xan

f (ddcφ)n.

holds for any continuous function f and hence we get

lim
t→0+

vol(L,φ+ f t,φ)
t

=
∫
Xan

f (ddcφ)n.

Finally replacing f by −f , we get the same for t→ 0− proving the claim. �

6. Orthogonality property

In this section, we prove the orthogonality property of a continuous semipositive metric φ assuming that
the semipositive envelope P(φ) is continuous.

6.1. Semipositive envelope

Let L be a line bundle on a proper scheme X over K . We will introduce the semipositive envelope P(ψ)
of a bounded metric ψ on Lan. We always assume that L has at least one semipositive model metric. This
implies that L is nef (see 2.15) and holds at least for semiample line bundles.

Recall from 2.10 that we use additive notation for metrics and hence φ ≤ ψ for metrics on Lan means
| · |φ ≥ | · |ψ for the corresponding norms on fibers.

Definition 6.1. The semipositive envelope P(ψ) of a bounded metric ψ on Lan is defined by

P(ψ) := sup{φ
∣∣∣ φ is a continuous semipositive metric on Lan and φ ≤ ψ}.

Remark 6.2. Note that in the above definition, we may restrict our attention to semipositive model metrics of
L using that every semipositive continuous metric is a uniform limit of continuous semipositive metrics. It
follows from the assumed existence of a semipositive model metric that P(ψ) is a bounded metric on L.

If P(ψ) is a continuous metric on Lan, then it follows from Dini’s theorem that P(ψ) is a continuous
semipositive metric on Lan. If ψ is a continuous metric, continuity of P(ψ) is not clear. This property is
expected in case of semiample line bundles on a normal projective variety (see [BE21, Conjecture 7.31]).

We refer to [BJ18, §5.3, 5.4] and [BE21, §7.5] for the study of the psh-envelope which agrees with the
semipositive envelope at least in the case of a continuous metric on an ample line bundle. For a continuous
metric ψ of L, the definition of P(ψ) agrees with [BGJ+20, Definition 2.5.1] where multiplicative notation for
metrics was used.

Proposition 6.3. Let ψ,ψ1,ψ2 be bounded metrics on L
an. Then we have:

(a) P(ψ) ≤ ψ with equality if ψ is a continuous semipositive metric.
(b) If a ∈N, then P(aψ) = aP(ψ).

(c) If ψ1 ≤ ψ2, then P(ψ1) ≤ P(ψ2).

(d) If c ∈R, then P(ψ + c) = P(ψ) + c.

(e) supXan |P(ψ1)−P(ψ2)| ≤ supXan |ψ1 −ψ2|.

Proof. Properties (a)–(d) are obvious from the definition and (e) follows from (b)–(d). �

We generalize now [BGJ+20, Proposition 6.2.1] and [BE21, Proposition 9.11(vi)].

Proposition 6.4. Let ψ be bounded metric on Lan.
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(a) We have ‖ · ‖P(ψ) = ‖ · ‖ψ for the corresponding supremum seminorms on H0(X,L).

(b) If X is reduced, then we get vol(L,φ,ψ) = vol(L,P(φ),P(ψ)) for any bounded metric φ on Lan.

Proof. By Proposition 6.3(a), we deduce ‖ · ‖P(ψ) ≥ ‖ · ‖ψ . We prove the converse inequality by contradiction.
Assume that there is s ∈ H0(X,L) and x ∈ Xan with |s(x)|P(ψ) > ||s||ψ . Rescaling the metric ψ and using
Proposition 6.3(d), we may assume

(6.1) |s(x)|P(ψ) > 1 = ||s||ψ .

This yields g B ψ◦s ≥ 0 and hence we get a singular metric ψs B ψ−g ≤ ψ on Lan. We note that the results
of [BGJ+20, §6.1] hold over any (non-trivially valued) non-Archimedean field, as the crucial reference [GM19]
works in this setting. For a continuous semipositive metric ψ1 ≤ ψ on Lan, it follows from [BGJ+20, Lemma
6.1.3] that ψ′ Bmax(ψ1,ψs) is a continuous semipositive metric on Lan with ψ1 ≤ ψ′ ≤ ψ and hence

(6.2) ψ′ ≤ P(ψ)

by definition of the semipositive envelope. By construction, we have ψs ◦ s ≡ 0 and hence (6.2) yields

P(ψ) ◦ s ≥ ψ′ ◦ s =max(ψ1 ◦ s,ψs ◦ s) ≥ 0

which contradicts the strict inequality in (6.1). This proves ‖ · ‖P(ψ) = ‖ · ‖ψ .
Finally, (b) follows from the definition of the non-Archimedean volume and by applying (a) to the bounded

metrics mψ and to mφ for any m ∈N. �

The following generalizes [BGJ+20, Corollary 6.2.2] and [BE21, Corollary 9.16].

Corollary 6.5. Let L be a line bundle over a geometrically reduced proper scheme X over K . Assume that ψ,φ are
continuous metrics on Lan and assume that P (ψ), P (φ) are also continuous metrics on Lan. Then we have

vol(L,φ,ψ) = E(L,P(φ),P(ψ)).

Proof. This follows by combining Proposition 6.4 and Theorem 4.6. �

6.2. Orthogonality

In this subsection, we consider a line bundle L on a proper scheme X of dimension n over K .

Definition 6.6. Let φ be a continuous metric on Lan with P(φ) a continuous metric on Lan as well. We say
the φ satisfies the orthogonality property if

(6.3)
∫
Xan

(P(φ)−φ) (ddcP(φ))n = 0.

Theorem 6.7. We assume that X is geometrically reduced. Let φ be a continuous metric on Lan such that P(φ) is
also a continuous metric. Then φ satisfies the orthogonality property.

Proof. This follows from Theorem 5.3 and Proposition 6.4 by the same arguments as in the proof of [BGJ+20,
Theorem 6.3.2]. �

Remark 6.8. Assume that the semipositive envelope of any continuous metric φ on L is continuous. Fixing
a continuous reference metric ψ of L, orthogonality for all continuous metrics φ of L is equivalent to
differentiability of φ 7→ E(L,P(φ),P(ψ)) for all continuous metrics φ of L, see [BGM20, Lemma 3.5] for
the argument. This differentiability is a crucial property in the proof of the existence of solutions of
non-Archimedean Monge–Ampère equations, see [BFJ15].
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Appendix A. Asymptotical functions

In what follows, P denotes an arbitrary abelian group, and we set as usual P
R
B P ⊗

Z
R. We use the

norm |x|B
∑
i |xi | for x ∈Rr .

The goal of this appendix is to establish the following elementary result.

Theorem A.1. Let h : P → R, s ∈ R>0, and assume that for all L0, . . . ,Lr ∈ P and m = (m1, . . . ,mr ) ∈Zr we
have

(A.1) h(m1L1 + · · ·+mrLr ) =O(|m|s)

and

(A.2) h(L0 +m1L1 + · · ·+mrLr )− h(m1L1 + · · ·+mrLr ) =O(|m|s−1).

Then there is a unique function ĥ : P
R
→R such that:

(i) for any L ∈ P we have

(A.3) ĥ(L) = limsup
m→+∞

m−sh(mL);

(ii) ĥ is homogeneous of degree s, i.e. ĥ(tM) = tsĥ(M) for t ∈R+ and M ∈ PR;
(iii) ĥ is continuous on any finite dimensional real subspace of P

R
.

To simplify the notation, we slightly abusively denote by L ∈ P
R
the image of L ∈ P . The above abstract

setting is inspired by the following example.

Example A.2. Let Y be a projective scheme over a field k of dimension n. For q ∈ {0, . . . ,n}, the function
L 7→ hq(Y ,L) on Pic(Y ) satisfies (A.1) and (A.2) with s = n. Up to a factor n!, the induced function ĥ is
then Küronya’s higher cohomological function ĥq : Pic(Y )

R
→R≥0, which coincides with the volume of line

bundles for q = 0. We refer to [BGJ+20, §3.4] for details.

In this paper, we will apply the appendix to the following setting.

Example A.3. Let Y be an n-dimensional finitely presented projective torsion scheme over K◦ for a non-
Archimedean field K . For q ∈ {0, . . . ,n}, we define hq(Y ,L) ∈ R≥0 as the content of the torsion module
Hq(Y ,L), cf. Definition 3.8. It is shown in Lemma 3.19 that this function satisfies (A.1) and (A.2) with s = n,
and therefore induces asymptotic cohomological functions ĥq : Pic(Y )

R
→R≥0. As in Example A.2, we will

normalize ĥq in this case with a factor n!.

Lemma A.4. For any L1, . . . ,Lr ∈ P , there exists C > 0 such that∣∣∣h(m1L1 + · · ·+mrLr )− h(m′1L1 + · · ·+m
′
rLr )

∣∣∣ ≤ C|m−m′ |max{|m|, |m′ |}s−1

for all m,m′ ∈Zr .

Proof. By (A.2) we can find C > 0 such that

|h(m1L1 + · · ·+mrLr ±Li)− h(m1L1 + · · ·+mrLr )| ≤ C|m|s−1.

for all m ∈Zr and i = 1, . . . , r . An iterated application of this estimate yields the result. �

Proof of Theorem A.1. Without loss of generality, we may assume that P is finitely generated. Uniqueness is
then clear, since (i) and (ii) uniquely determine ĥ on P

Q
, which is dense in the finite dimensional vector space

P
R
.
In a first step we show that h̃ : P →R defined by

h̃(L)B limsup
m→+∞

m−sh(mL)
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is N-homogeneous of degree s, i.e.

(A.4) h̃(aL) = ash̃(L)

for a ∈N and L ∈ P . Note first that h̃(L) is real-valued by (A.1). The case a = 0 follows from s > 0, and so
we may assume a ≥ 1. We obviously have

h̃(L) ≥ limsup
m→+∞

(am)−sh(amL) = a−sh̃(aL)

Conversely, pick a sequence mj → +∞ such that m−sj h(mjL)→ h̃(L), and write mj = aqj + rj with qj ∈N
and rj ∈ {0, . . . , a− 1}. Since rj takes only finitely many values, Lemma A.4 yields

h(mjL) = h(aqjL) +O(ms−1j ),

and hence
ash̃(L) = as lim

j
m−sj h(mjL) = lim

j
q−sj h(aqjL) ≤ h̃(aL),

which proves (A.4).
This first step yields that there is a unique function ĥ : P

Q
→ R which is Q+-homogeneous of degree

s and which satisfies (A.3). It remains to show that ĥ extends continuously to P
R
. Pick L1, . . . ,Lr ∈ P . By

Lemma A.4, we have∣∣∣h(m1L1 + · · ·+mrLr )− h(m′1L1 + · · ·+m
′
rLr )

∣∣∣ ≤ C|m−m′ |max{|m|, |m′ |}s−1,

for all m,m′ ∈Zr . By homogeneity, this yields∣∣∣ĥ(x1L1 + · · ·+ xrLr )− ĥ(x′1L1 + · · ·+ x′rLr )∣∣∣ ≤ C|x − x′ |max{|x|, |x′ |}s−1

for x,x′ ∈Qr . As a result, ĥ : P
Q
→ R is uniformly continuous on each bounded subset of P

Q
, and hence

admits a unique continuous extension to P
R
. �

Proposition A.5. In the setting of Theorem A.1, pick L1, . . . ,Lr ∈ P , and set for x ∈Rr and m ∈N

fm(x) :=m
−sh

∑
i

bmxicLi

 .
(i) For all x ∈Rr , we have ĥ(

∑
i xiLi) = limsupm→+∞ fm(x).

(ii) Assume given an open convex cone σ ⊂ R
r such that limm→+∞ fm(x) = ĥ(x) for all x ∈ σ ∩Zr . Then

limm→+∞ fm(x) = ĥ(x) for all x ∈ σ .

Proof. To prove (i), we set ĥ(x) := ĥ(
∑
i xiLi) and f (x) := limsupm→→+∞ fm(x) for x ∈ Rr . We note that

f (x) = ĥ(x) for x ∈Zr , by (A.3).
By Lemma A.4, for all m ∈Z>0 and x,x′ ∈Rr with |x|, |x′ | ≤ R we have a uniform estimate

(A.5)
∣∣∣fm(x)− fm(x′)∣∣∣ ≤ C|x − x′ |max{|x|, |x′ |}s−1 +OR(m−1).

This yields |f (x)− f (x′)| ≤ C|x − x′ |max{|x|, |x′ |}s−1, which shows that f is continuous on R
r . Arguing just

as for (A.4), we further have f (ax) = asf (x) for all a ∈ Z>0 and x ∈ Rr . It follows that f = ĥ on Q
r , and

hence also on R
r , by continuity. This proves (i).

To prove (ii), we show in a first step that

A := {x ∈Rr | lim
m→∞

fm(x) = ĥ(x)}

is a closed subset of Rr . Let us pick a sequence (xn)n∈N in A converging to x ∈Rr . For ε > 0, continuity of
ĥ yields that |ĥ(xn)− ĥ(x)| < ε/3 for n� 0. We choose such an n which also satisfies

C|x − xn|max{|x|, |xn|}s−1 < ε/6.
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There is m0 ∈N such that the term OR(m−1) for x′ = xn in (A.5) is bounded by ε/6 for all m ≥m0 and all
n ∈N. It follows from (A.5) that |fm(xn) − fm(x)| < ε/3 for m ≥ m0. Since xn ∈ A, there is m(n) ∈N≥m0

depending on n such that |fm(xn) − ĥ(xn)| < ε/3 for all m ≥ m(n). Overall, the triangle inequality gives
|fm(x)− ĥ(x)| < ε for all m ≥m(n). This proves limm→∞ fm(x) = ĥ(x) and hence x ∈ A. We conclude that A
is closed.

By assumption, A contains σ ∩Zr . By the first step, to prove (ii) it will thus be enough to show that A
contains σ ∩Qr , which is dense in the closed convex cone σ . Let x ∈ σ ∩Qr , and pick a ∈Z>0 such that
ax ∈Zr . For m ∈Z>0, write m = aqm + rm with qm ∈N and rm ∈ {0, . . . a−1}. Then bmxic−qmaxi = brmxic
remains bounded, and Lemma A.4 thus yields a constant C′ > 0 depending on |x| such that

(A.6)

∣∣∣∣∣∣∣h(∑i bmxicLi)− h(qm
∑
i

axiLi)

∣∣∣∣∣∣∣ ≤ C′ms−1
for all m ∈Z>0. Since ax ∈ σ ∩Zr , we have by assumption q−sm h(qm

∑
i axiLi)→ ĥ(ax) = asĥ(x). Using (A.6),

we get m−sfm(x)→ ĥ(x), i.e. x ∈ A, which concludes the proof of (ii). �
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