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Abstract. We show that any infinite algebraic subgroup of the plane Cremona group over a perfect
field is contained in a maximal algebraic subgroup of the plane Cremona group. We classify the
maximal groups, and their subgroups of rational points, up to conjugacy by a birational map.
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Sous-groupes algébriques du groupe de Cremona du plan sur un corps parfait

Résumé. Nous montrons que tout sous-groupe algébrique infini du groupe de Cremona du plan
sur un corps parfait est contenu dans un sous-groupe maximal. Nous classifions les sous-groupes
maximaux ainsi que leurs sous-groupes des points rationnels, & conjugaison par une transformation
birationnelle prés.

Received by the Editors on August 14, 2020, and in final form on July 20, 2021.
Accepted on August 22, 2021

Julia Schneider

Institut de Mathématiques de Toulouse, Université Paul Sabatier, 31062 Toulouse Cedex 9, France
e-mail: julia.schneider@math.univ-toulouse.fr

Susanna Zimmermann

Université d’Angers, CNRS, LAREMA, SFR MATHSTIC, 49000 Angers, France

¢-mail: susanna.zimmermann@univ-angers.fr

J- S. is supported by the Swiss National Science Foundation project P2BSP2_200209 and hosted by the Institut de Mathématiques de
Toulouse.

S. Z. is supported by the ANR Project FIBALGA ANR-18-CE40-0003-01, the Projet PEPS 2019 “JC/JC” and the Project "Etoiles
montantes of the Région Pays de la Loire".

© by the author(s) This work is licensed under http://creativecommons.org/licenses/by-sa/4.0/


https://epiga.episciences.org/
http://creativecommons.org/licenses/by-sa/4.0/

2 J- Schneider and S. Zimmermann

Contents

1. Imtroduction. . . . . . . . . . . . . oL 00000 Lo o o2
2. Surfaces and birational group actions. . . . . . . . . . . . . . .. ..o .. 7
3. Del Pezzo surfaces of degree 8 . . . . . . . . . . . . ... .00 oL 12
4. Del Pezzo surfaces of degree6 . . . . . . . . . . . . . . . ... ... ... 15
5. The conic fibrationcases . . . . . . . . . . . . . . . . . .. .. ... .. 26
6. The proof of Theorem11 . . . . . . . . . . . . . . . . ... ... .... 3
7. Classifying maximal algebraic subgroups up to conjugacy . . . . . . . . . . . . . 33
8. The image by a quotient homomorphism . . . . . . . . . . . . . . . . . . . . 44
References. . . . . . . . . . . . . . . . . . . . ... ... .. .. 46

1. Introduction

We study algebraic groups acting birationally and faithfully on a rational smooth projective surface over a
perfect field k. Any choice of birational map from that surface to the projective plane IP? induces an action of
the algebraic group on IP? by birational transformations. Its subgroup of rational points can thus be viewed as
a subgroup of the plane Cremona group Biry (IP?), which motivates the name algebraic subgroup of Biry (IP?).
The full classification - up to conjugacy - of algebraic subgroups of the plane Cremona group is open over
many fields, because classifying the finite algebraic groups is very hard. Here is a selection of classification
results over various perfect fields: [BBOO, BB04, Bla07, DI09a, BlaO9a, DI09b, Robl6, Yal6, Yasl9]. The full
classification of maximal algebraic subgroups of Birc(IP?) (finite and infinite) can be found in [Bla09b] and
the classification of the real locus of infinite algebraic subgroups of Birg(IP?) can be found in [RZ18]. In
this article, we restrict ourselves to consider infinite algebraic subgroups of Biry (IP?) over a perfect field k
and we classify these groups up to conjugacy by elements of Biry (IP?) and up to inclusion. We also classify
their subgroups of k-rational points up to conjugation by elements of Biry (IP?) and up to inclusion. The
two classifications are different as soon as k has a quadratic extension, see Corollary 1.3(2)-(3).

Let us explain why we work over a perfect field. Given an algebraic subgroup G of Biry (IP?), the strategy
is to find a rational, regular and projective surface on which G acts by automorphisms and then use a
G-equivariant Minimal Model Program to arrive on a conic fibration or a del Pezzo surface. It then remains
to describe the automorphism group of that surface. Over a perfect field k, regular implies smooth, and a
smooth projective surface over k is a smooth projective surface over the algebraic closure k of k equipped
with an action of the Galois group Gal(E/k) of k over k. In particular, the classification of rational smooth
del Pezzo surfaces is simply the classification of Gal(k/k)-actions on smooth del Pezzo surfaces over k with
Gal(k/k)-fixed points. This is straightforward if they have degree > 6, as we will see in §3 and §4. Over an
imperfect field, regular does not imply smooth and a finite field extension may make appear singularities. The
classification of regular del Pezzo surfaces is still open. In characteristic 2, there are regular, geometrically
non-normal del Pezzo surfaces of degree 6 [FFS20, Proposition 14.3, Proposition 14.5] and there are regular del
Pezzo surfaces of degree 2 that are geometrically non-reduced [Mad16, Proposition 3.4.1]. In particular, we
cannot use directly the classification of regular del Pezzo surfaces over a separably closed field to describe
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the automorphism group of regular del Pezzo surfaces over an imperfect field, nor directly the classification
of non-normal del Pezzo surfaces given in [Rei94].

Now, assume again that k is a perfect field. Theorem 1.1, Theorem 1.2, Theorem 1.4 and Corollary 1.3
recover the classification results of [BlaO9b] and [RZ18] over C and IR for infinite algebraic subgroups, and
we will see that these results extend without any surprises over a perfect field with at least three elements.
We leave it up to the reader to decide how surprising they find the results over the field with two elements.

By a theorem of Rosenlicht and Weil, for any algebraic subgroup G of Biry (IP?) there is a birational
map P2 --> X to a smooth projective surface X on which G acts by automorphisms, see Proposition 2.3. It
conjugates G to a subgroup of Aut(X), the group scheme of automorphisms of X, and G(k) is conjugate to
a subgroup of Auty (X). For a conic fibration 7t: X —> IP! we denote by Aut(X, ) c Aut(X) the subgroup
preserving the conic fibration, by Aut(X/m) © Aut(X, ) its subgroup inducing the identity on IP', and by
Auty (X, 1) and Auty (X/7) their k-points. For a Gal(k/k)-invariant collection p1,...,p, € X (k) of points,
we denote by Auty (X, p1,...,p;), resp. Auty (X, {p1,...,pr}), the subgroup of Auty (X) fixing each p;, resp.
preserving the set {p,...,p,}. A splitting field of {py,...,p,} is a finite normal extension L/k of smallest
degree such that py,...,p, € X(L) and such that {p;,...,p,} is a union of Gal(L/k)-orbits.

Suppose that k has a quadratic extension L/k and let ¢ be the generator of Gal(L/k) ~ Z/2. By QF we
denote the k-structure on IP] x IP] given by (x,y)8 = (y%,x8). By SLL" we denote a surface obtained by
blowing up Olina point p of degree 2, where L’ /k is the splitting field of p, whose geometric components
are not on the same ruling of IP% X IPI{. We will show in Lemma 4.12 that its isomorphism class depends only

on the isomorphism classes of L, L’. In Theorem 1.1(6b), we denote by E < SLL jts exceptional divisor.

Theorem 1.1. Let k be a perfect field and G an infinite algebraic subgroup of Biry (P?). Then there is a k-
birational map P? --> X that conjugates G to a subgroup of Aut(X), with X one of the following surfaces, where
no indication of the Gal(k/k)-action means the canonical action.

(1) X = P? and Aut(IP?) ~ PGL;
(2) X =Ty and Aut(Fy) ~ Aut(P')? x Z/2 ~ PGL xZ/2

(3) X = O and Aut(QL) is the k-structure on Aut(IP})* x Z/2 given by the Gal(L/k)-action (A, B, T)$ =
(B8,A8, 1), where L/k is a quadratic extension.

(4) X =T,, n > 2, and the action of Aut(IF,) on P! induces a split exact sequence
1— Vn+1 — Aut(IFn) — GLz/‘lxln —1
where p,, = {aid | a" = 1} and V, .| is a vector space of dimension n+ 1.

(5) X is a del Pezzo surface of degree 6 with NS(XK)A‘“Y(X) = 1. The action of Aut(X) on NS(Xy) induces
the split exact sequence

1 - (k')? — Autg(X) — Sym; xZ/2 — 1.

Moreover, we are in one of the following cases.
(@) tkNS(X) = 1 and there is a quadratic extension L/k and a birational morphism 1c: X; —> P?
blowing up a point p = {p1,p2,p3} of degree 3 with splitting field F over k, and one of the following

cases holds:
(i) Gal(F/k) ~ Z/3 and the action of Auty (X) on NS(X) induces the split exact sequence

1= Auty (%, 1, pa, ps)™ T — Auty(X) — 2/6 — 1
(i) Gal(F/k) ~ Sym, and the action of Auty (X) on NS(X) induces the split exact sequence
L= Auty (P, 1, po, ps) " R — Auty(X) — Z/2 -1,
(b) TkNS(X) = 2, tkNS(X)Au%(X) = 1 and X is one of the following:
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(i) X is the blow-up of P? in the coordinate points, and the action of Auty (X) on NS(X) induces
the split exact sequence

1 — (k*)* — Auty (X) —> Symj; xZ/2 — 1.

(ii) X is the blow-up of Fy in a point p = {(p1,p1), (P2, p2)} of degree 2. The action of Auty (X)
on NS(X) induces the exact sequence,

1 — Auty (P!, py, ps)? — Auty (X) —> Symy xZ/2 — 1
which is split if char (k) # 2.

(iii) X is the blow-up of P? in a point p = {p1,p2,p3} of degree 3 with splitting field L such that
Gal(L/k) ~ Z/3. The action of Auty (X) on NS(X) induces the split exact sequence

1 — Auty (IP%,py, po, p3) — Auty(X) — Z/6 — 1

(iv) X is the blow-up of P? in a point p = {p1,p,, p3} of degree 3 with splitting field L such that
Gal(L/k) ~ Syms. The action of Auty (X) on NS(X) induces the split exact sequence

1 — Auty (P?,py, pa, p3) — Auty (X) — Z/2 - 1
where Z/2 is generated by a rotation.

(c) Tk NS(X)A%(X) = 2 and there is a quadratic extension L/k and a birational morphism v: X — QL

contracting two curves onto rational poinis p1,p, or one curve onto a point {p1,p,} of degree 2 with
splitting field L' /k. The action of Auty (X) on NS(X) induces the split exact sequence

1 — TEY (k) — Auty (X)) — Z/2 x Z/2 — 1

where v Auty (X)v—! = Auty (QF, {p1,p2}) and T is the subgroup of Auty (QL, py, p) preserving
the rulings onIL‘.

(6) t: X — P! is one of the following conic fibrations with
rk NS(XE/]Pl )AUtK(X’n) — l‘kNS(X/IPl )Autk(X,n) -1

(a) X /P is the blow-up of points py,...,p, € F,, n > 2, contained in a section S, = T, with S? = n.
The geometric components of the p; are on pairwise distinct geometric fibres and >;_, deg(p;) = 2n.
There are split exact sequences

(T1/pn) X Z/2 Aut(X)
2 |

1 —— Aut(X/mx) —— Aut(X,mx) — Aut(lP,A) — 1

1 — Auty(X/mx) — Aut(X,mx) — Auti(PLA) — 1
i ]
(K*/pu(k)) @ Z/2 Auty(X)
where A = w({p1,...,p,}) < PL, Ty is the split one-dimensional torus and y,, its subgroup of n't
roots of unity.

(b) There exist quadratic extensions L and L' of k such that X /P is the blow-up of SP*' in points
Pis.-Pr € E, v = 1. The p; are all of even degree, their geometric components are on pairwise distinct
geometric components of smooth fibres and each geometric component of E contains half of the geometric
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components of each p;. There are exact sequences

SOLY xz)2 Aut(X)
i I
1 — Aut(X/ﬂx) — Aut(X,my)

Aut(IP!,A) 1

1 — Aut(X/nx) — Aut(X, 1) — (DEY % 2/2) A Auy (P, A) — 1
I 1
SOLY (k) % Z/2 Auty (X)

with A = t({py,...,p,}) < P! and SOVY = {(a,b) € TX | ab =1}, and
e if L, L' arek-isomorphic, then SOVY (k) ~ {ae L* | aa8 =1}
and DIE’L ~{aek*|a= A8, XL}, whereg is the generator of Gal(L/k),

e if L, L' are not k-isomorphic, then SOV (k) ~ k* and
le’L/ ~ {AA88 e F | A e K,A\8' = 1}, where k © F — LL' is the intermediate extension
such that Gal(F/k) ~ (g¢’) = Gal(L/k) x Gal(L'/k), where g,g' are the generators of
Gal(L/k),Gal(L'/k), respectively.

We consider a family among (3), (5¢), (5a), (5(b)ii), (5(b)iii), (5(b)iv), and (6b) empty if the point of requested
degree or the requested field extension does not exist.

Theorem 11(5) is in fact the classification of rational del Pezzo surfaces of degree 6 over k up to
isomorphism, and for any of the eight classes there is a field over which a surface in the class exists, see §4.

The next theorem lists the conjugacy classes in Biry (IP?) of the groups in Theorem 1. Let G be an affine
algebraic group and X/B a G-Mori fibre space (see Definition 2.11). We call it G-birationally rigid if for
any G-equivariant birational map ¢: X --> X’ to another G-Mori fibre space X’/B’ we have X’ ~ X. In
particular, @ Aut(X)p~! = Aut(X’). We call it G-birationally superrigid if any G-equivariant birational map
X --> X’ to another G-Mori fibre space X’/B’ is an isomorphism. If we replace G by G(k) everywhere, we get
the notion of G(k)-Mori fibre space, G(k)-birationally rigid and G(k)-birationally superrigid. The following
theorem also shows that G-birationally (super)rigid does not imply G(k)-birationally (super)rigid.

The del Pezzo surfaces X and the conic fibrations X/IP! in Theorem 1.1 are Aut(X)-Mori fibre spaces,
and, except for the del Pezzo surfaces from (5c¢), they are also Auty (X)-Mori fibre spaces.

Theorem 1.2. Let k be a perfect field.

(1) Any del Pezzo surface X and any conic fibration X /P! from Theorem 1.7 is Aut(X)-birationally superrigid.

(2) Any del Pezzo surface X in Theorem 1.1(1)-(4), (5(b)ii)-(5(b)iv) and any conic fibration X /P! from (6b) is
Auty (X)-birationally superrigid.

(3) Let X be a del Pezzo surface from Theorem 1.7(0a).
If k| = 3, then X is Auty (X)-birationally superrigid.
If |k| = 2, then there is an Auty (X)-equivariant birational map X --> X', where X' is the del Pezzo
surface from Theorem 1.7(5(b)ii).

(4) Let X be the del Pezzo surface from Theorem 1.7(5(b)i).
If k| = 3, then X is Auty (X)-birationally superrigid.
If |k| = 2, there are Auty (X)-equivariant birational maps X --> Fy and X --> X', where X' is the del
Pezzo surface of degree 6 from Theorem 1.7(5(b)ii).

(3) Any conic fibration X /P! from Theorem 1.1(6a) is Auty (X)-birationally superrigid if kK* /u, (K) is non-
trivial. If K* /p,, (K) is trivial and X --> Y is an Auty (X)-equivariant birational map to a surface Y from
Theorem 1.7, then Y ~ X.
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We say that an algebraic subgroup G of Biry (IP?) is maximal if it is maximal with respect to inclusion
among the algebraic subgroups of Biry (IP?). We say that G(k) is maximal if for any algebraic subgroup G’
of Biry (IP?) containing G(k), we have G(k) = G'(k).

By Theorem 1.2(4), if |k| = 2 and X is a del Pezzo surface from (5(b)i), then Auty (X) is not maximal: It is
conjugate to a subgroup of Auty (IFy) and this inclusion is strict, because Auty(X) ~ Sym; xZ/2 has 12
elements, whereas Auty (IFy) has 72 elements. Similarly, Auty (X) is not maximal if X is a del Pezzo surface
from (5a) and |k| = 2.

Corollary 1.3. Letk be a perfect field and H an infinite algebraic subgroup of Biry (IP?).
(1) Then H is contained in a maximal algebraic subgroup G of Biry (IP?).

(2) Up to conjugation by a birational map, the maximal infinite algebraic subgroups of Biri (IP?) are precisely
the groups Aut(X) in Theorem 1.1. Two maximal infinite subgroups Aut(X) and Aut(X') are conjugate
by a biratonal map if and only if X ~ X'.
(3) H(k) is maximal if and only if it is conjugate to one of the Auty (X) from
o ()-(4). (5(b)ii)-(5(b)iv), (6),
o (5a), (5(b)i) if k| = 3.
Two such groups Auty (X) and Auty (X') are conjugate by a birational map if and only if X ~ X'.

Theorem 1.4. Let k be a perfect field. The conjugacy classes of the maximal subgroups Auty (X) of Biry (IP?)
Jfrom Theorem 1.1 are parametrised by

o (1), (2): one point
o (3): one point for each K-isomorphism class of quadratic extensions of k
o (4): one point for each n > 2

o (O(a)i) one point for any pair (L, F) of k-isomorphism classes of quadratic extensions L and Galois extensions
F/k with Gal(F/k) ~ Z/3 if |k| > 3

o (5(a)ii): one point for any pair (L,F) of k-isomorphism classes of quadratic extensions L and Galois
extensions F /k with Gal(F/k) ~ Symj,

o (5(b)i): one point if |k| > 3

o (5(b)ii): one point for each k-isomorphism class of quadratic extensions of k

o (5(b)iii): one point for each k-isomorphism class of Galois extensions F /k with Gal(F/k) ~ Z/3.
o (5(b)iv): one point for any k-isomorphism class of Galois extensions F /k with Gal(F/k) ~ Symj,.

o (6a): for each n > 2 the set of points {py,...,p,} = P! with >_, deg(p;) = 2n up to the action of
Auty (IP)

o (6b): for each n =1 and for each pair of k-isomorphism classes of quadratic extensions (L,L’), the set of
points {py,...,p,} = P! of even degree with > :_, deg(p;) = 2n up to the action ofle’L (k) xZ/2
We show the following consequence of [Schl9] and [Zim19, Ziml8].

Proposition 1.5. For any perfect field k there is a surjective homomorphism
®: Bir (P?) — (P 2Z/2,
I

where | is the set of points of degree 2 in P? up to Auty (IP?) and I is at least countable. If [k : k] = 2, then
1] = [k].

If k = R (or more generally [k : k] = 2) then the abelianisation map of Birg(IP?) is a homomorphism
as in Proposition 1.5. By [RZ18, Theorem 1.3] any infinite algebraic group acting on Birg(IP?) that has
non-trivial image in the abelianisation is a subgroup of the group in (6b), and this holds also if [k : k] = 2.



Algebraic subgroups of the plane Cremona group 7

We will show a slightly more general statement over perfect fields with [k : k] > 2, for which we need to
introduce equivalence classes of Mori fibre spaces and links of type IL

We call two Mori fibre spaces X; /P! and X,/IP! equivalent if there is a birational map X; --> X, that
preserves the fibration. In particular, if ¢: X; --> X is a link of type II between Mori fibre spaces X; /IP!
and X, /P!, then these two are equivalent. There is only one class of Mori fibre spaces birational to the
Hirzebruch surface IF; [Schl9, Lemma], because all rational points in IP? are equivalent up to Aut(IP?). We
denote by J4 the set of classes of Mori fibre spaces birational to some SLV ) and by J5 the set of classes
birational to a blow-up of IP? in a point of degree 4 whose geometric components are in general position.
We call two Sarkisov links ¢ and ¢’ of type II between conic fibrations equivalent if the conic fibrations are
equivalent and if the base-points of ¢ and ¢’ have the same degree. For a class C of equivalent rational Mori
fibre spaces, we denote by M (C) the set of equivalence classes of links of type II between conic fibrations in
the class C whose base-points have degree > 16.

Theorem 1.6 ([Schl9, Theorem 3, Theorem 4]). For any perfect field with [k : k| > 2 there is a non-trivial
homomorphism
(+) W: Bin(P) — @ Z2+(x P z/2)«(% D Z/2).

XEM(Fy) C€ls xem(c) s yem(c)

In fact, the homomorphism from Proposition 1.5 for [k : k] > 2 is induced by the one in Theorem 1.6.
We show that an infinite algebraic group acting birationally on IP? is killed by the homomorphism W
unless it is conjugate to a group of automorphisms acting on SLL or a Hirzebruch surface.

Proposition 1.7. Let k be a perfect field with [k : k]| > 2 and let \V be the homomorphism (). Let G be an
infinite algebraic subgroup of Biry (P?). Then W (G(K)) is of order at most 2 and the following hold.
(1) If VY (G(Kk)) is non-trivial, it is contained in the factor indexed by IF, or C € ] and there is a G-equivariant
birational map P? --> X that conjugates G to a subgroup of Aut(X), where X is as in Theorem 1(6a) or
(6b), respectively.

(2) Let X/IP' be a conic fibration as in Theorem 1.1(6), which is the blow-up of F,, n = 2, or SLL in

points py,...,p,. If V(Auty (X)) is non-trivial, it is generated by the element whose non-zero entries
are indexed by the x; that have p; as base-point, where i € {1,...,r} is such that deg(p;) = 16 and

[{je{l,....r} | deg(p;) = deg(pi)}| is odd.

The analogous statement to Proposition 1.7 with the homomorphism from Proposition 1.5 for a perfect

field k such that [k : k] = 2 can be found in [RZ18].
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2. Surfaces and birational group actions

2.1. Birational actions

Throughout the article, k denotes a perfect field and k an algebraic closure. By a surface X (or Xy ) we
mean a smooth projective surface over k such that X := X Xgpec(k) Spec(k) is irreducible. We denote by
X (k) the set of k-rational points of X. The Galois group Gal(k/k) acts on X XSpec(k) Spec(k) through

the second factor. By a point of degree d we mean a Gal(k/k)-orbit p = {p1,...,ps} X (k) of cardinality
d = 1. The points of degree one are precisely the k-rational points of X. Let L/k be an algebraic extension
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of k such that all p; are L-rational points. By the blow up of p we mean the blow up of these d points,
which is a morphism 7: X’ — X defined over k, with exceptional divisor E = E; + --- + E; where the
E; are disjoint (—1)-curves defined over L, and E? = —d. We call E the exceptional divisor of p. More
generally, a birational map f: X --> X is defined over k if and only if the birational map f x id: Xi --> X/E

is Gal(k/k)-equivariant. In particular, X ~ X’ if and only if there is a Gal(k/k)-equivariant isomorphism
Xig— X/E (see also [BS64, §2.4)).

The surface X being projective and geometrically irreducible implies k[X{]* = (k)*, so if X(k) # &
we have Pic(Xy) = Pic(XE)Gal(k/k) [San81, Lemma 6.3(iii)]. This holds in particular if X is k-rational,
because then it has a k-rational point by the Lang-Nishimura theorem. Since numerical equivalence is
Gal(k/k)-stable, also algebraic equivalence is, and hence NS(Xj ) = NS(X;)alk/k) The Gal(k/k)-action
on NS(Xj) factors through a finite group, that is, its action factors through a finite group. Indeed, since
Gal(k/k) has only finite orbits on k, the orbit of any prime divisor of Xy is finite. Then each generator
of the finitely generated Z-module NS(Xj) has a finite Gal(k/k)-orbit, so the action of Gal(k/k) on the
(finite) union of these orbits factors through a finite group.

If not mentioned otherwise, any surface, curve, point and rational map will be defined over the perfect
field k. By a geometric component of a curve C (resp. a point p = {pl,...,pd}), we mean an irreducible
component of Ci (resp. one of py,...,pg).

By Chatelet’s theorem, for 7 > 1 any smooth projective space X over k with X (k) # (J such that Xj ~ IPE

is in fact already isomorphic to IP" over k. This means in particular that IP? is the only rational del Pezzo
surface of degree 9 and that a smooth curve of genus 0 with rational points is isomorphic to IPL.

For a surface X, we denote by Biry (X) its group of birational self-maps and by Auty (X) the group of
k-automorphisms of X, which is the group of k-rational points of a group scheme Aut(X) that is locally of
finite type over k [Bril7b, Theorem 7.1.1] with at most countably many connected components.

An algebraic group G over a perfect field k is a (not necessarily connected) k-group variety. In particular,
G is reduced and hence smooth [Bril7b, Proposition 2.1.12]. We have Gy = G Xgpec(k) SpeC(E), on which

Gal(k/k) acts through the second factor. The definition of rational actions of algebraic groups on algebraic
varieties goes back to Weil and Rosenlicht, see [Wei55, Ros56].

Definition 2.1. We say that an algebraic group G acts birationally on a variety X if

(1) there are open dense subsets U,V < G x X and a birational map
GxX->GxX, (gx)(gp(gx))

restricting to a isomorphism U — V and the projection of U and V to the first factor is surjective
onto G, and

(2) p(e,-) =idx and p(gh,x) = p(g,p(h,x)) for any g,h € G and x € X such that p(h,x), p(gh, x) and
p(g,p(h,x)) are well defined.

The group G(k) of k-points of G is the subgroup of Gy of elements fixed by the Gal(k/k)-action, so we have
a map G(k) — Biry (X). Definition 2.1(2) implies that it is a homomorphism of groups, and Definition 2.1(1)
is equivalent to the induced map G(k) — Biry(X), ¢ — f(g,-) being a so-called morphism, see [BF13,
Definition 2.1, Definition 2.2], usually denoted by G — Bir(X) by abuse of notation. The notion of
morphism from a variety to Biry (X) goes back to M. Demazure [Dem?70] and J.-P. Serre [Serl0].

We say that G is an algebraic subgroup of Biry (X) if G acts birationally on X with trivial schematic kernel.
We say that G acts regularly on X if the birational map in Definition 2.1(1) is an isomorphism. In that case, G
is a subgroup of Aut(X) and we call X a G-surface.

Let G be an algebraic group acting birationally on surfaces X; and X, by birational maps p;: G x X; --> X,
i = 1,2 as in Definition 2.1. A birational map f: X; --» X, is called G-equivariant if the following diagram
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commutes
G x Xl ——p—1—> X1
idgxf i if
Y pz Y
G x X2 —-———> X2
In particular, if 9;: G — Bir(X;) denotes the induced morphism, the following diagram commutes

G(k) =" Birg (X,)

IS

Birk (XZ)

The following proposition is proven in [BF13, §2.6] over an algebraically closed field and its proof can be
generalised over any perfect field.

Proposition 2.2 ([BF13, §2.6]). Any algebraic subgroup of Biry (IP?) is an affine algebraic group.

The following proposition was proven separately by A. Weil and M. Rosenlicht [Wei55, Ros56], but neither
of them needed the new model to be smooth nor projective. Modern proofs can also be found in [LU20] over
any field and in [dCor20, Kral8] over algebraically closed fields.

Proposition 2.3. Let X be a surface and G be an affine algebraic group acting birationally on X. Then there
exists a G-surface Y and a G-equivariant birational map X --> Y. Furthermore, G(K) has finite action on NS(Y).

Proof. By [Wei55, Ros56], there exists a normal not necessarily projective or smooth G-surface Y’ and a
G-equivariant birational map X --> Y. The set Y” of smooth points of Y’ is G-stable, it is contained in a
complete surface, which can be desingularised [Lip78], so Y” is quasi-projective. By [Bril7a, Corollary 2.14],
Y” has a G-equivariant completion Y”. We now G-equivariantly desingularise Y” to obtain the smooth
projective surface Y [Zar39, Lip69] (the sequence of blow-ups and normalisations over k can be done
G-equivariantly).

The second claim is classical and for instance shown in [RZ18, Lemma 2.10] over any perfect field.  [J

2.2. Minimal surfaces
Definition 2.4. Let X be a surface, B a point or a smooth curve and 77: X — B a surjective morphism with
connected fibres such that —Ky is 7t-ample. We call t: X — B a rank r fibration, where r = rkNS(X/B).
e If B = pt is a point, the surface X is called del Pezzo surface. Then Xi is isomorphic to lPlE X IPlE or
to the blow-up of H’% in at most 8 points in general position. We call K} the degree of X. Note that
1 <K% <9.
e If Bis a curve, then 7t: X — B is called conic fibration; the general geometric fibre of 7t is isomorphic
to lPlE and a geometric singular fibre of 7t is the union of two secant (—1)-curves over k. Moreover, if
X is rational, then B = IP!, see for instance [Schl9, Lemma 2.4].
e If r =1, then 7t: X — B is called Mori fibre space.

We may write X/B instead of 7t: X — B. Let X/B and X’/B’ be conic fibrations. We say that a birational
map @: X --> X' preserves the fibration or is a birational map of conic fibrations if the diagram

x -2 x

I

B—— B

commutes.
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For a surface X, we can run the Gal(E/ k)-equivariant Minimal Model program on Xi, because the action

of Gal(k/k) on NS(Xj) is finite. The end result is a Gal(k/k)-Mori fibre space Yic/Bx as in Definition 2.4,
which is equivalent to Y /B being a Mori fibre space.

Example 2.5.
(1) For n > 0, the Hirzebruch surface IF, is the quotient of the action of (G,,)? on (A%\{0})? by

(G)? x (AP\{0})? — (AP\{0})%, (1,0), (o, 91,20,21) = (pp ™" Yo, 191, P20, P21)-
The class of (v,71,20,21) is denoted by [yo : 91520 : z1]. The projection 7, : F, —> P! given by
[Vo: V1520 :21] — [20: z1] is a conic fibration and the special section S_,, < IF, is given by yo = 0.

(2) Let p and p’ be two points of degree 2 in IP? with splitting field L/k and L’/k, respectively, such that
their geometric components are in general position. We denote by SLL a del Pezzo surface obtained
by first blowing up p,p’, and then contracting the line passing through one of the two points. It has a
natural conic fibration structure St — IP!; the fibres are the strict transforms of the conics in P?
passing through the two points.

Lemma 2.6. [Schl9, Lemma 6.11] Let L/k be a finite extension. Let py,...,p4,q1,...,q4 € P>(L) such that
the sets {p1,...,ps} and {q1,...,q4} are Gal(k/Kk)-invariant and no three of the p; and no three of the q; are
collinear. Suppose that for any g € Gal(k/K) there exists ¢ € Sym, such that pig = Do(iy and qlfg = qo(i) Jor
i=1,...,4. Then there exists & € PGL3 (k) such that a(p;) =q; fori =1,...,4.

Remark 2.7. The argument of [Schl9, Lemma 6.11] can be applied to show the following analogue of
Lemma 2.6 on IP!: let F/k be a finite extension and py, p>,P3,91,92,93 € P! (F) such that the sets {p1,p3,p3}
and {q1, 9,93} are Gal(k/k)-invariant. Suppose that for any g € Gal(F/k) there exists o € Sym; such that
p‘ig = Pg(i) and q;g = gy (i) for i = 1,2,3. Then there exists &« € PGL;,(k) such that a(p;) = g; for i = 1,2,3.

Lemma 2.8. [Schl9, Remark 6.1, Lemma 6.13] Let 7t: X —> P! be a Mori fibre space and suppose that X
is rational. Then X is isomorphic to a Hirzebruch surface, to a del Pezzo surface SV or to a del Pezzo surface
obtained by blowing up a point of degree 4 in P2,

Proposition 2.9. Let X/B be a Mori fibre space. If B is a point, then X is rational if and only z'fK}% =5 and
X(k) # .

Proof- Suppose that d := K2 > 5 and that X(k) contains a point 7. If d = 7, then X contains three
(—1)-curves, one of which must be k-rational, contradicting rkNS(X) = 1. If 4 = 8 , the blow-up of r is a
del Pezzo surface of degree 7, which has two disjoint (—1)-curves over k that are either both k-rational or
they make up a Gal(k/k)-orbit of curves. Contracting them induces a birational map over k to a del Pezzo
surface of degree 9 with a rational point, which hence is IP?. This argument also holds if rk NS(X) = 2. Let
d = 6. If r is contained in a curve of negative self-intersection, then that curve is a k-rational (—1)-curve,
contradicting rkNS(X) = 1. If r is not contained in any curve of negative self-intersection, the blow-up of r
contains a curve with three pairwise disjoint geometric components of self-intersection —1. Their contraction
yields a birational map X --> Y, where Y is a del Pezzo surface of degree 8 with a rational point, so Y is
rational by the argument above. If d = 5, then again rkNS(X) = 1 implies that r is not in a (—1)-curve.
After blowing up r we can contract a curve with five pairwise disjoint geometric components and arrive on a
del Pezzo surface of degree 9, which is IP? because it has a rational point.

Let’s prove the converse implication. If X is a rational del Pezzo surface, then X (k) # ¢ by the Lang-
Nishimura theorem. The remaining claim follows from the classification of Sarkisov links (see definition
in Section 7.1) between rational Mori fibre spaces over a perfect field [Isk96, Theorem 2.6]. Indeed, any
birational map between del Pezzo surfaces over k with Picard rank 1 decomposes into Sarkisov links and
automorphisms [Isk96, Theorem 2.5]. The list of Sarkisov links implies the following: for a del Pezzo surface
X with rkNS(X) =1 and K)2< < 4, any Sarkisov link X --> Y that is not an isomorphism is to a del Pezzo
surface Y, either of degree K%, < 4 and rkNS(Y) = 1, or of degree K% = 3 and Y carries moreover the
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structure Y — IP! of a Mori fibre space. From the latter, any Sarkisov link Y --> Z is to a del Pezzo surface
Z of degree < 4, either with tTkNS(Z) =1 or it preserves the fibration and rkNS(Z) = 2. In particular, X
cannot be joined to IP? by a birational map. g

Lemma 2.10. [fX is a del Pezzo surface of degree K3 < 5, then Auty(X) is finite.

Proof. 1t suffices to show the claim for k = k. Then X is the blow-up of py,...,p, € IP? in general position
with 7 = 9 — K2 > 4. It has finitely many (—1)-curves, say 7 of them, and the action of Auty (X) on the set
of the (—1)-curves induces an exact sequence

1 — Auty (P%,py,...,p,) — Auty(X) — Sym,,.

Since py,...,p, are in general position and r > 4, the group Auty (P, py,...,p,) is trivial, which yields the
claim. O

2.3. Relatively minimal surfaces

We now generalise the notion of being a minimal surface to being minimal relative to the action of an
affine algebraic group.

Definition 2.11. Let G be an affine algebraic group, let X be a G-surface and 7t: X — B a rank r fibration.
(1) If 7t is G-equivariant and 7’ := rkNS(XK/Bg)GVGaI(k/k), we call 7@ a G-equivariant rank v’ fibration.
If ¥ = 1 we call it a G-Mori fibre space.

() If 7t is G(k)-equivariant and 1 := rkNS(X/B)¢®), we call 7w a G-equivariant rank 1" fibration. If
" =1 we call it G(k)-Mori fibre space.

If a rank 7 fibration X — B is G-equivariant, we have r > r” > r’. A G-Mori fibre space is not necessarily
a G(k)-Mori fibre space, since G(k)-equivariant does not imply G-equivariant. Examples are, for instance,
the del Pezzo surfaces in Lemma 4.11 and Lemma 4.9 (see also Theorem 1.1(5¢c)), that are Aut(X)-Mori fibre
spaces but not Auty (X)-Mori fibre spaces.

If G is connected, Blanchard’s Lemma [Bril7a, Theorem 7.2.1] implies that a G-Mori fibre space is a Mori
fibre space. However, the affine algebraic groups we are going to work with are not necessarily connected.
All del Pezzo surfaces X of degree 6 in §4 are Aut(X)-Mori fibre spaces, all but two of them are also
Auty (X)-Mori fibre spaces and only two of them are Mori fibre spaces.

Let G be an affine algebraic group and X a G-surface. The action p: G x X — X from Definition 2.1
being defined over k is equivalent to p := p x id: G x Xz — Xi being Gal(k/k)-equivariant, i.e.
p(g,x)" = p(g",x") for any h e Gal(k/k), g € Gi» x € X We can therefore see the G-action on X as the
(Gal(k/k) x Gyo)-action on Xi

(Gal(E/k) x Gp) x X — X (hgx)— p(gh,xh)
satisfying p(g", x") = (g, x)" for any h e Gal(k/k), g € Gio x € Xi.

Remark 2.12. Let G be an affine algebraic group and X a G-surface such that Xy is rational. By Proposi-
tion 2.3, the group Gi and hence also the group Gal(k/k) x G has finite action on NS(Xj). We can run

the (Gal(k/k) x Gi)-equivariant Minimal Model program on Xj, and by [KM98, Example 2.18] the end
result is a G-Mori fibre space Y /B. We then restrict to the G(k)-action on Y and recall that G(k) has finite
action on NS(Y') by Proposition 2.3. Since Y/B is G-equivariant, it is also G(k)-equivariant, and we can
run the G(k)-equivariant Minimal Model Program on Y, whose end result is then a G(k)-Mori fibre space.

Let us tidy up the direction for classifying the infinite algebraic subgroups of Biry (IP?).

Proposition 2.13. Let G be an infinite algebraic subgroup of Biry (IP?). Then there exists a G -equivariant
birational map P? --> X to a G-Mori fibre space X /B that is one of the following:

(1) B is a point and X ~P? or X is a del Pezzo surface of degree 6 or 8.



12 J. Schneider and S. Zimmermann

2) B =TP! and there exists a birational morphism of conic fibrations X — SYL or X — T, for some
n=0.

Proof. By Proposition 2.2, G is an affine algebraic group. By Proposition 2.3, there is a G-surface X’ and a
G-equivariant birational map ¢ : IP? --> X’. We now apply the (Gi x Gal(k/k))-equivariant Minimal Model
Program and obtain a G-equivariant birational morphism X’ — X to a G-Mori fibre space 7t: X — B,
see Remark 2.12.

If B is a point, then X is a del Pezzo surface. Since G is infinite, Lemma 2.10 implies that K3 > 6. If
K? =7, then Xy contains exactly three (—1)-curves, one of which is G x Gal(k/k)-invariant, so X is not
a G-Mori fibre space. It follows that K)% €{6,8,9}, and if K)% =9, then X ~ IP? by Chatelet’s Theorem.

Suppose that B = IP!. Then there is a birational morphism X — Y of conic fibrations onto a Mori fibre
space Y/P!. By Lemma 2.8, Y is a Hirzebruch surface, Y ~ S or Y is the blow-up of IP? in a point of
degree 4 whose geometric components are in general position. The latter is a del Pezzo surface of degree 5,
so by Lemma 2.10 the group Auti(Y) is finite, which does not occur under our hypothesis. It follows that
Y~F, n>0,orY~S&bl O

Lemma 2.14.
(1) If X is a del Pezzo surface, then Aut(X) is an affine algebraic group.
2) Let : X — P! be a conic fibration such that Xi is rational. Then Aut(X, 1) is an affine algebraic group.

Proof: (1) Let N := h%(—Kx). Then Aut(X) preserves the ample divisor —Ky, thus it is conjugate via the
embedding | — Kx|: X <> PN~! to a closed subgroup of Aut(IPN~!) ~ PGLy and is hence affine.

(2) Let G be the schematic kernel of Aut(X, ) — Aut(NS(X)). If D is an ample divisor on X, it is
fixed by G and hence (as above) G is an affine algebraic group. Since X is rational and has the structure
of a conic fibration, we have NS(X) ~ Z" for some 1 > 2, and it is generated by —Ky, the general fibre
and components of the singular fibres. The (abstract) group H := Aut(X,71)/G acts faithfully on NS(X),
fixes —Kx and the general fibre and permutes the components of the singular fibres. It follows that H is
isomorphic (as abstract group) to a subgroup of GL,(Z) whose elements have entries in {0, +1}. Therefore,
H is finite and hence Aut(X, ) is an affine algebraic group. O

In particular, if X is a del Pezzo surface, the Gal(k/k)-action on Aut(X) is a k-structure with fixed locus
Auty (X). Similarly, if 77: X — P! is a conic fibration such that Xi is rational, then the Gal(k/k)-action on
Aut(X, 1) is a k-structure with fixed locus Auty (X, 7).

Our goal is to classify algebraic subgroups of Biry (IP?) up to conjugacy and inclusion. Proposition 2.13
and Lemma 2.14 imply that it suffices to classify up to conjugacy and inclusion the automorphism groups of
del Pezzo surfaces of degree 6 and 8 and the automorphism groups of certain conic fibrations.

3. Del Pezzo surfaces of degree 8

We now classify the rational del Pezzo surfaces of degree 8. Over an algebraically closed field, any such
surface is isomorphic to the blow-up of P? in a point or to P! x PL. Over R, there are exactly two rational
models of the latter, namely the quadric surfaces given by w? + x> —y? —z2 = 0 or w? + x> + 92 —2z°> =0 in
IP3. The first is isomorphic to IPL, x IPf, and the second is the R-form of IPGl: X IP}E given by (x,v) — (9$,x8),
where (g) = Gal(C/IR). We now show that the classification is similar over an arbitrary perfect field k.

Definition 3.1. Suppose that k has a quadratic extension L/k. We denote by Q' the k-structure on IP} x P}

given by ([ug : uq],[vg:v1]) — ([vg : v‘lg], [ug : u‘lg]), where g is the generator of Gal(L/k).

The surface QF is a del Pezzo surface of degree 8 and it is rational by Proposition 2.9 because the point

([1:1],[1:1]) e QF(k).
Lemma 3.2. Let X be a rational del Pezzo surface of degree 8.
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(1) We have tkNS(X) = 2 if and only if X ~ Ty or X ~ IF), and tkNS(X) = 1 if and only if X ~ QL for
some quadratic extension L/K.

) X ~ QL ifand only if for any p € X (k) there is a birational map X --> P? that is the composition of the
blow-up of p and the contraction of a curve onto a point of degree 2 in P> whose splitting field is L.

(3) We have Q' ~ QY if and only if L and L' are k-isomorphic.

Proof. (1-2) The surface XE is a del Pezzo surface of degree 8 over k and is hence isomorphic to IP% X IP%
or to (IF; ). In the latter case, the unique (—1)-curve is Gal(k/k)-invariant, hence X ~ IF,. Suppose that
X is isomorphic to IPlE X IP% and consider the blow-up 711: Y — X of X in a rational point p € X (k)
(such a point exists by Proposition 2.9). Then Y is a del Pezzo surface of degree 7 and Yi has three
(—1)-curves, one of which is the exceptional divisor over the rational point p. The union of the other two
(—1)-curves Cy,C, = Y is preserved by Gal(k/k), and hence their contraction yields a birational morphism
7,: Y —> P2, If each of C; and C, is preserved by Gal(k/k), then Q= 7'(17'(2_1 : P2 --> X has two rational
base-points. The pencil of lines through each base-point is sent onto a fibration of X, and Lemma 2.8
implies that X is a Hirzebruch surface, so X ~ IFy. If C; U C, is a Gal(k/k)-orbit of curves, then ¢ has a
base-point g of degree 2. By Remark 2.6 we can assume that g is of the form g = {[a; : 1:0],[a,:1: 0]},
a;,a, € k. We consider the projection t): IP% --> IP% X IP% away from g

pilriyide (k—ay 2 [xr—ap:2)

Pt ([uo s ] [vo s v1]) > [—aguguy + ayvouy = —ugvy +vouy = (ay —az)uyv,]
whose inverse ! has base-point ([1:1],[1 : 1]). There exists an isomorphism a: Xi —> IPlK X IPlK such
that @ = 1. Let p be the canonical action of Gal(k/k) on IP%. Then the action @p¢~! on Xi corresponds
to the k-structure X. It follows that the action of ¥pyp~! = a(ppp~1)a~! on ]PlE X ]PlE corresponds to a
k-structure isomorphic to X. For any g € Gal(k/k), we have
(v :v§] [u - uf]), ifaf =ay
([ug : uf), [v§ :vf]), ifaf =ay.

If L =k(ay,a,), which is a quadratic extension of k, then the generator ¢ of Gal(L/k) exchanges the
geometric components of g, so X ~ oL,

oot s ([ug : w1, [vg : v1]) — {

(3) The surfaces QF and Ol are isomorphic if and only if there exist birational maps ¢: QF --> P? and
@': QY -5 P? as in (2) and a € Auty (IP?) such that ¢ ‘¢’ is an isomorphism. This is the case if and
only if the base-points of ¢! and (¢’)~! have the same splitting field. This is equivalent to L and L’ being
k-isomorphic. O

In order to be complete, we now show an isomorphism from Oltoa quadratic surface REL in IP3. Later
on, we will choose to use or announce claims using coordinates in Q or in R according to practicality.

Lemma 3.3. Let L = k(a;) be a quadratic extensions of k and let t> +at +d = (t —a,)(t — ay) € k[t] be the
minimal polynomial of a,. The following hold:

(1) Let Rt < IP?NXYZ be the quadric surface given by WZ = X? + aXY + aY?. Then
P2 > RE, [x:y:z]e [x2 +axy +ay? i xz:yz: 2%
is birational, and RL is isomorphic to oL,
(2) The map Qb — RL given by
([uo = 1], [vo : v1]) = [uovo(ar — az) : —axugvy + ayuyvg : —ugvy +uyvg : (a1 — az)uyvq]
W:X:Y: Z]|—>([X—a1Y: Z],[X—a,Y : Z]) = ([W: X —a,Y],[W: X —a,Y])

is an isomorphism over k.
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(3) Let p € QL be a point of degree 2 with splitting field L' =k(by) whose components are not on the same
ruling of QF. Let t* + bt + b = (t — by)(t — by) € K[t] be the minimal polynomial of by over k.
(a) Then there is an automorphism of QL (resp. RL) that sends p respectively onto

{([by < 10,00y 100, (b2 10,052 s 1)}, {103 2By 2 0: 1 [B3: b, 0: 1])

(b) The pencil of (1,1)-curves in OL through p is given in XL by the pencil of hyperplanes whose equations
are \(W +bX +bZ) +uY =0 for[A: u] e PL.

Proof- (1) The given birational map has a single base-point of degree 2, namely g = {[a; : 1:0],[a; :1: 0]},
and it contracts the line z = 0. Its image is the quadric surface RE given by WZ = X? +aXY +4Y?, and
the inverse map R’ --> IP? is given by the projection from [1:0:0: 0]. So Rt ~ Ol by Lemma 3.2(2).

(2) We compose the birational map from (1) and the birational map : IP? --> QL from the proof of
Lemma 3.2(2) whose base-point is {[a; : 1 : 0], [a,:1:0]}.

(3a) We see from the description of Auty (Q') in Lemma 3.5 that we can assume that p is not in the ruling
of QF passing through ([1:1],[1 : 1]). The birational map ¢: Q' --> P? from the proof of Lemma 3.2(1)
sends p onto a point 1 (p) in IP? that is not collinear with {[a; : 1:0],[a, : 1 : 0]}. By Lemma 2.6, there
exists an element « € Auty (IP?) that sends ¢(p) onto {[b; : 0:1],[b: 0:1]}. Then p~la € Auty (QF)
and sends p onto {([by : 1],[by : 1]),([bs : 1],[b; : 1])}. We use the isomorphism from (2) to compute its
coordinates in RL.

(3b) The pencil of (1,1)-curves through p is sent by 1: QF --> IP? onto the pencil of conics through
through [a; : 1:0],[ay:1:0],[by : 0:1],[by: 0: 1]. Tt is given by A(x? + axy + bxz + ay? + bz?) + uyz,
and corresponds via 1 to the pencil in the claim. g

Remark 3.4. Let L = k(a;) be a quadratic extension of k and let t? +at +d = (t —a, )(t —a,) € k[t] be the

minimal polynomial of a;. Depending on the characteristic of k, we can assume the values of a to be 0 or 1:

e If the characteristic of k is not 2, then we can assume that 4 = 0, namely via the k-isomorphism
t—t—a/2.

e If the characteristic of k equals 2, then we can assume that a = 1. Indeed, as we assume that k is a
perfect field, all elements of k are squares, and so a = 0 does not give an irreducible polynomial over
k. The k-isomorphism t — t/a reduces a # 0 to a = 1.

Lemma 3.5. Let L/k be an extension of degree 2 and let g be the generator of Gal(L/K). The group Aut(QF) ~
Aut(RY) is isomorphic to the k-structure on Aut(IP} x P}) ~ Aut(IP})? x {(u,v) v> (v,u)) given by the
Gal(L/k)-action
(A, B, T)g - (Bg;Ag; T)r
where A — A is the canonical Gal(L/K)-action on Aut(IP}). Furthermore,
Auty (RY) ~ Auty (QF) ~ {(A,A%) | A€ PGLy(L)} x (7).
Proof. Since OF is the k-structure on QF ~ P} x IP}, the Gal(L/k)-action on the algebraic group
Aut; (Q1) = Aut(P} x P}) ~ Aut(IP})? x (1)
is a k-structure with fixed points Auty (QF). The automorphism T commutes with g, and we have
(A, B)¥(q%,p%) = (A, B)¥(p,q)* = (A, B)(p,q))* = (Ap,Bq)* = (B2q*, Afp*)
for any (A, B) € Aut(IP})? and any (p,q) € QL. It follows that (A, B)¢ = (Bf, Af). The group Auty (QF)

is isomorphic to the subgroup of elements of Aut(IP] x IP}) commuting with Gal(L/k), which yields the
remaining claim. O

By the following lemma, whenever we contract a curve onto a point of degree 2 in QF with splitting field
L, we can choose the point conveniently.
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Lemma 3.6.

(1) Let p € QL be a point of degree 2 whose geometric components are not on the same ruling of Qﬁ ~ IPIE X ]PlE
and whose splitting field is L. Then there exists a € Auty (QL) such that a(p) = {([1: 0],[0 : 1]),
([0:1],[1: O])}.

) Let 1,5 € QF(k) be two rational points not contained in the same ruling of Qﬁ. Then there exists
a € Auty (QF) such that a(r) = ([1:0],[1:0]) and a(s) = ([0:1],[0: 1]).

Proof. Let g be the generator of Gal(L/k).

(2) We have r = ([a : b],[a8 : b€]) and s = ([c : d],[c8 : d¥]) for some a,b,c,d € L, and ad —cd # 0
because r and s are not on the same ruling of Q;. It follows that the map A: [u:v] — [du —cv: —bu +av]
is contained in PGL,(L). Then (A, A%) € Aut,(Q) and it sends respectively  and s onto ([1:0],[1:0])
and ([0:1],[0:1]).

(1) The point p is of the form {([a: b],[c: d]), ([c® : 48], [a8 : b8])} for some a,b,c,d € L, and ad® —bc8 #
0 because its components are not on the same ruling of Q%. It follows that the map A defined by
[t :v] > [d8u — c8v : —bu + av] is contained in PGL,(L). Then (A, A%) € Auty (Q) and it sends p onto

{([1:0],[0:1]),([0:1],[1:0])}. O

Lemma 3.7. Let p = {py,p2, p3} and q = {q1,q2,q3} be points in Q of degree 3 such that for any h € Gal(k/k)
there exists o € Symgy such that p? = Do(i) and q? = qo(i)- Suppose that the geometric components of p (resp. of
q) are in pairwise distinct rulings of QF. Then there exists a € Auty (QF) such that a(p;) = q; fori =1,2,3.

Proof. Let g be the generator of Gal(L/k). Since p and g are of degree 3, we have p‘l-g = p; and q‘ig =q;
for i = 1,2,3, and therefore p; = (ai,a‘ig) and ¢g; = (bi,b‘zg), a;,b; €k, for i = 1,2,3. By hypothesis, for any
he Gal(k/L) there exists o € Sym, such that (afl, algh) = pf‘ = qo(iy = (bo(i) bi(i)). We apply Remark 2.7 to
the Gal(L/L)-invariant sets {a;,a,a3} and {by,b,,b3} in IP] and to the Gal(L/L)-invariant sets {af, ag, a‘g

and {bg, b‘g, bg} in IP%. There exist A, B € PGL,(L) such that Aa; = b; and Ba‘ig = blg for i =1,2,3. Then

Agalg = (Aa;)® = blg = Ba‘;g for i = 1,2,3, and therefore B = AS. It follows that & € Auty (QF). O

4. Del Pezzo surfaces of degree 6

In this section, we classify the rational del Pezzo surfaces of degree 6 over a perfect field k and describe
their automorphism groups.

4.1. Options for rational del Pezzo surfaces of degree 6

Let X be a rational del Pezzo surface of degree 6. Then X is the blow up of three points in IP%, its
(—1)-curves are the three exceptional divisors and strict transforms of the lines passing through two of
the three points, and they form a hexagon. The hexagon of Xg is Gal(k/k)-invariant. The Galois group

Gal(k/k) acts on the hexagon by symmetries, so we have a homomorphism of groups
Gal(k/k) > Sym, xZ/2 = Aut(NS(Xg)).

By hexagon of X we mean the hexagon of Xi- endowed with it canonical Gal(k/k)-action. The options for

the non-trivial action of p(Gal(k/k)) on the hexagon of X are visualised in Figure 1.
The groups Aut(X) and Auty(X) act by symmetries on the hexagon of Xj- and X, respectively, which
induces homomorphisms

Aut(X) — Symy xZ/2,  Auti(X) - Sym, xZ/2.

We now go through the cases in Figure 1. We will see that (1), (6), and (8) admit a birational morphism to IP?
and that (2), (3), (4), and (5) admit a birational morphism to oL or IF,.
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| (&R

Figure 1. The Gal(k/k)-actions on the hexagon of a rational del Pezzo surface of degree 6.

4.2. The del Pezzo surfaces in Figures 1(1), 1(6), and 1(8)

The following statement is classical over algebraically closed fields and is proven analogously over a
perfect field k.

Lemma 4.1. Let X be a del Pezzo surface of degree 6 such that p(Gal(k/k)) = {1} as indicated in Figure (1)
(1) Then X is rational and isomorphic to
{([x0 %1 : x2), [90: 91 : 92]) € P x PR | X090 = X191 = %295}
(2) The action of Auty (X) on the hexagon of X induces the split exact sequences

| - Ty — Aut(X) — Syms xZ/2 -1, 1 — Tr(k) — Auty(X) > Syms xZ/2 — 1
where T, is a 2-dimensional split torus, Z/2 is generated by the image of

([x0 2 %1t x2] w0 : 91 :92]) = ([v0 : ¥1 : 92] [%0 2 %1 2 x2])
and Sym is generated by the image of

([x0 1 x1 1 x2], [0 : 91 2 92]) = ([x1 1 x0 1 X2, [91 1 90 1 92])
([x0 2 x1 2 x2], [0 1 91 : 92]) = ([x0 : %2 2 %1 ], [¥0 2 92 2 91])-
(3) X —> * is a Auty (X)-Mori fibre space.

Proof. Contracting three disjoint curves in the hexagon of X yields a birational morphism onto a del
Pezzo surface Z of degree 9, and since the images of the three contracted curves are rational points, we
have Z ~ IP?. Choosing the three points to be the coordinate points yields (1). Any element of ker(p) is
conjugate via the contraction to an element of Auty (IP?) fixing the coordinate points and vice-versa, so
ker(p) ~ T, (k). The generators given in (2) can be verified with straightforward calculations. It follows that
Auty (X) acts transitively on the sides of the hexagon, hence X is an Auty (X)-Mori fibre space. O

Over k, all rational del Pezzo surfaces of degree 6 are isomorphic. Therefore, by Lemma 4.1, for any del
Pezzo surface X of degree 6, we have rk NS(X )Autk( ) = 1 and hence X is an Aut(X)-Mori fibre space.

Moreover, Aut(X) is a k-structure on (k*) X (Syms xZ/2). We will however encounter two rational del
Pezzo surfaces of degree 6 that are not Auty (X)-Mori fibre spaces, see Lemma 4.11 and Lemma 4.9.

Lemma 4.2. Let X be a rational del Pezzo surface of degree 6 such that p(Gal(k/k)) = Z/3 as indicated in
Figure 1(6)

(1) There exists a point p = {p1,p, p3} in P? of degree 3 with splitting field L such that Gal(L/k) ~ Z/3
and such that X is isomorphic to the blow-up of P? in p.

(2) X is isomorphic to the graph of a quadratic involution ¢, € Biry (P?) with base-point p, and any two such
surfaces are isomorphic if and only if the corresponding field extensions are K -isomorphic.
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(3) The action of Auty (X) on the hexagon of X induces a split exact sequence

1= Auty (P2, py, pa,ps) — Auti(X) & Z/6 = (p(a), p(B)) — 1
where « is the lift of an element of Auti (P2, {p1,p2,p3}) of order 3 and B is the lift of ¢p-
(4) X —> = is an Auty (X)-Mori fibre space.

Proof. (1) The hexagon of X is the union of two curves C; and C,, each of whose three geometric
components are disjoint. For i = 1,2, the contraction of C; yields a birational morphism 7;: X — IP?
which contracts the curve onto a point of degree 3. By Lemma 2.6 we can assume it is the same point for
i = 1,2, which we call p = {p1,py,p3}. It remains to see that Gal(L/k) ~ Z/3, where L is any splitting
field of p. Since p(Gal(k/k)) ~ Z/3, the action of Gal(L/k) on {p;,p,,p3} induces an exact sequence
1—H—Gal(L/k) — Z/3 —> 1. The field L' :={ae€ L | h(a) =a V he H} is an intermediate field
between L and k, over which py,p,, p3 are rational. The minimality of L implies that L’ = L and hence
H = {1} [Mor96, Corollary 2.10].

(2) The fact that any two such surfaces X are isomorphic if and only if the respective field extensions
are k-isomorphic follows from Remark 2.6. The map ¢, := 7'(27'(1_1 € Biry (IP?) is of degree 2 and p is the
base-point of ¢, and ¢, L By Lemma 2.6 we can assume that ¢, has a rational fixed point r and that it
contracts the line through p;, p; onto py, where {i, ], k} = {1,2,3}. These conditions imply that @, is an
involution, and by construction of Pp> the surface X is isomorphic to the graph of Pp-

(3) The kernel ker(p) is conjugate via 7t; to the subgroup of Auty (IP?) fixing py,ps, p3. The only non-
trivial elements of Sym, xZ/2 commuting with p(Gal(k/k)) are rotations, so p(Auty (X)) € Z/6. The
involution @, € Biry (IP?) lifts to an automorphism f inducing a rotation of order 2. If {0) = Z/3, there
exists @ € Auty (IP?) such that @(p;) = py(i), i = 1,2,3, and @(r) = r, where r is the fixed point of Pp, see
Lemma 2.6. Then @3 and dgopdflgop are linear and fix 7, p1,p;, p3, and hence & is of order 3 and & and
¢p commute. The lift @ of & is an automorphism commuting with  and inducing a rotation of order 3.

(4) Since Auty(X) contains an element inducing a rotation of order 6 on the hexagon, we have

rk NS(X)Autc(X) — 1, O

Lemma 4.3. Let X be a rational del Pezzo surface of degree 6 such that p(Gal(k/k)) = Sym; as indicated in
Figure 1(6)
(1) There exists a point p = {p1,py, p3} in IP? of degree 3 with splitting field L such that Gal(L/k) ~ Sym,
and such that X is isomorphic to the blow-up of P? in p.
(2) X is isomorphic to the graph of a quadratic involution ¢, € Biry (IP?) with base-point p, and any two such
surfaces are isomorphic if and only if the corresponding field extensions are k-isomorphic.

(3) The action of Auty (X) on the hexagon of X induces a split exact sequence

1= Auti(P?,py, 2, p3) — Auti(X) 5 Z/2 = (p(a)) — 1
where a is the lift of ¢, onto X.
(4) X —> = is an Auty (X)-Mori fibre space.

Proof- (1) and (2) are proven analogously to Lemma 4.2(1) and 4.2(2).

(3) The kernel of ¢ is conjugate to Auty (IP?,p;,ps,p3) via the birational morphism X — P? that
contracts one curve in the hexagon of X onto p. Any element of Auty(X) induces a symmetry of the
hexagon that commutes with the Gal(k/k)-action on the hexagon, hence p(Auty (X)) is contained in the
factor Z/2 generated by a rotation of order 2. The quadratic involution ¢, lifts to an automorphism a of X
and p(a) is a rotation of order 2.

(4) Since p(a) exchanges the two curves in the hexagon, we have rk NS(X)Aut(X) = 1, O

Example 4.4. A del Pezzo surface as in Lemma 4.2 exists: let |k| = 2 and L/k be the splitting field of
p(X)=X3+X+1, ie |L| = 8. Then 0: a+> a® generates Gal(L/k) [Mor96, Theorem 6.5]. If C a root of
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P, then ¢(C*) = C and hence the point {[1:C:C*],[1:C2:C],[1:C*: %]} is of degree 3, its components
are not collinear and they are cyclically permuted by o.

Example 4.5. A del Pezzo surface as in Lemma 4.3 exists: let k = Q, C := 25 and @ = e’3. Then
L:=Q((, w) is a Galois extension of Q of degree 6 and Gal(L/k) ~ Symy; is the group of k-isomorphisms
of L sending (T, w) respectively to (¢, w), (wC, w), (T, w?), (wC,w?), (w?C, w), (0*C,w?) [Mor96, Example
2.21]. The point {[C: C?: 1], [wC : @?C?: 1], [w?C : @T?: 1]} is of degree 3, its components are not collinear
and any non-trivial element of Gal(L/k) permutes them non-trivially.

A del Pezzo surfaces as in Lemma 4.3 cannot exist over a finite field, because Galois groups of finite
extensions of finite fields are always cyclic.

4.3. The del Pezzo surface in Figures 1(7) and 1(9)

Recall that the two del Pezzo surfaces of degree 6 in Lemma 4.2 and Lemma 4.3 are the blow-up of a
point p € P? of degree 3.

Lemma 4.6. Let X be a rational del Pezzo surface with p(Gal(k/K)) = Z/6 as in Figure 1(7). Then X — = is
a Mori fibre space and

(1) there exists a quadratic extension L/k such that X is isomorphic to the del Pezzo surface of degree 6 from
Lemma 4.2 (see Figure 1(5)), which is the blow-up 10: X; —> P? of a point p = {py,pa,p3} of degree 3
with splitting field F such that Gal(F/k) ~ Z/3.

2) nGal(L/k)r~! acts rationally on IP%; it is not defined at p, sends a general line onto a conic through p
and acts on Auty (IP%,{p,,p,,p3}) by conjugation.

(3) Any two such surfaces are isomorphic if and only if the corresponding field extensions of degree two and
three are k-isomorphic.

(4) The action of Auty (X) on the hexagon of X induces a split exact sequence
-1 A A —
1 — Auty (P, py, pa, p3)" T — Auty (X) — Z/6 = (p(a), p(r " ppm)) — 1

where o is the lift of an element in Aut; (IP?, {pl,pz,m})”Gal(L/k)’f1 of order 3 and @, € Bir; (IP?) a
quadratic involution with base-point p.

Proof. All (—1)-curves of Xy are in the same Gal(k/k)-orbit and hence X — # is a Mori fibre space.

(1) Since X is rational, it contains a rational point r € X (k), see Proposition 2.9, which is in particular
not contained in the hexagon of X. Let #;: Y — X be its blow-up and E, its exceptional divisor. Then
Yic contains an orbit of three (—1)-curves C;, C,, C3 intersecting E,, each intersecting two opposite sides
of the hexagon. The contraction of C := C; U C, U Cj3 yields a birational morphism 77,: Y — Z onto
a rational del Pezzo surface of degree 8. The birational map 77,77, ! conjugates the Gal(k/k)-action on
Z to an action that exchanges the fibrations of Zi- and hence Z ~ QL for some quadratic extension L/Kk,
by Lemma 3.2(1). Figure 2 shows the action of p(Gal(k/k)) on the image by 172111_1 of the hexagon of X.
Then 17211f1 conjugates the Gal(k/L)-action on QF to an action on the hexagon with p(Gal(k/L)) = Z/3.

(A C 1 <\ /,’
7]2771* /

b . \>
X // Z~QL

Figure 2. The Gal(k/k)-action on Zy ~ Qﬁ.

/Er

Lemma 4.2 implies (1).
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(3) By Lemma 3.7, Auty (QF) acts transitively on the set of points of degree 3 in Q' with k-isomorphic
splitting fields and whose geometric components are in general position. This yields the claim.

(2) Write Gal(L/k) = (g). Then g exchanges opposite edges of the hexagon and thus p, := ngn ! acts
rationally on IP?; it is not defined at p, contracts the lines through any two of py,p,,p3 onto the third of
these three and it sends a general line onto a conic through p. It follows that for g € Aut; (P2, {p,ps, p3})
the map p,fp, is contained in Aut; (IP?) and preserves {p;,p2,p3}.

(4) The automorphisms of X are the automorphisms of X commuting with the Gal(k/k)-action, hence
p(Auty (X)) = Z/6. Since X is rational, Gal(L/k) has a fixed point r € X(k). Let ¢, € Bir (IP?) be the
quadratic involution from Lemma 4.2(3) such that @, := 7‘(_1(ppT( € Auty (X) induces a rotation of order 2
on the hexagon of X;. By Lemma 2.6, we can assume that ¢, fixes 7(r) € IP?(L). Then ©,8P, ¢ € Autr(X),
preserves the edges of the hexagon and fixes 7. It therefore descends to an element of Aut; (IP?,p;,p,,p3)
fixing r and is hence equal to the identity. It follows that ®, € Auty (X). By Lemma 4.2(3), there is an
element of @ € Aut; (P2, {p;,p»,p3}) of order 3 inducing a rotation of order 3 on the hexagon of X;, and
again we can assume that it fixes 77(r) € IP>(L). We argue as above that a := 7w~ 'd@n € Auty(X), and it
follows that the sequence is split. Finally, any element of ker(p) preserves each edge of the hexagon and
is therefore conjugate by 7 to an element of Aut; (IP?,p;,p,, p3) commuting with Pg»> and any element of
Aut; (P2, py, ps, p3)Pe lifts to an element of ker(p). O

Lemma 4.7. Let X be a rational del Pezzo surface with p(Gal(k/k)) = Sym; xZ/2 as in Figure 1(9). Then
X — = is a Mori fibre space and
(1) there exists a quadratic extension L/k such that X is isomorphic to the del Pezzo surface of degree 6 from
Lemma 4.3 (see Figure 17)), which is the blow-up 1: X; —> P? of a point p = {py,p2,p3} of degree 3
with splitting field F such that Gal(F /k) ~ Sym.
2) nGal(L/k)~! acts rationally on P?; it is not defined at p, sends a general line onto a conic through p
and acts on Aut; (IP%,{p,,p,,p3}) by conjugation.

(3) Any two such surfaces are isomorphic if and only if the corresponding field extensions of degree two and six
are K-isomorphic.

(4) The action of Auty (X) on the hexagon of X induces a split exact sequence
1 — Aut (IP?, py, p, p3)" ™ — Auty (X) — Z/2 = (p(n ppm)) — 1,
where @, € Bir (IP?) is a quadratic involution with base-point p.
Proof. This is proven analogously to Lemma 4.6. 0

Example 4.8. Rational del Pezzo surfaces of degree 6 over k as in Lemma 4.6 and Lemma 3.2 exist: in
Example 4.4 and Example 4.5, there is a point p € IP? of degree 3 with a splitting field F/k that is Galois
over k such that Gal(F/k) ~ Z/3 or Gal(F/k) ~ Sym;,, and the blow-up 7t: Y — IP? of p is a rational
del Pezzo surface of degree 6 as in Figure 1(6) or (8). The point p is also a point of degree 3 in IP% with
splitting field FL/L because Gal(FL/L) ~ Gal(F/k) [Mor96, Theorem 5.5].

By Lemma 4.2(2) and Lemma 4.3(2) there exists a quadratic involution ¢, € Biry (IP?) such that ® :=
ﬂ_l(pprc € Auty(Y) induces a rotation of order 2. By Lemma 2.6, we can assume that @, has a rational
fixed point 7 € IP?(k). Let g be the generator of Gal(L/k) and define g :=DPog=god. The group (¢,)
acts on Y, with fixed point 7~!(r) € Y;(L) and it induces a rotation of order 2 on the hexagon of Y. It
follows that Gal(L/k) =~ (1, ) defines a k-structure X on Yj, which is rational by Proposition 2.9. It follows

that the group Gal(k/k) acts on the hexagon of Y; by Z/6 or by Sym, xZ/2.
4.4. The del Pezzo surfaces in Figures 1(3) and 1(4)

Lemma 4.9. Let X be a del Pezzo surface of degree 6 such that p(Gal(k/K)) is generated by a reflection as
indicated in Figure 1(3). Then X is rational and



20 J. Schneider and S. Zimmermann

(1) there is a quadratic extension L/k and a birational morphism 11: X —> QU contracting the two k-rational
curves in the hexagon onto py = ([1:0],[1:0]) and p, = ([0:1],[0: 1]).

(2) Any two such surfaces are isomorphic if and only if the respective quadratic extensions are K -isomorphic.

(3) The action of Auty (X) on the hexagon of X induces a split exact sequence

1= T () — Auti(X) =5 (p(a)) x (p(B) = 1,
where nTH (k)1 < Auty (QL, p1, p2) is the subgroup preserving the ruling of O, and the automorphisms
a: (uv)— (L,4)and B: (u,v) — (1, 1).
) rkNS(X)AuX) = 2 gnd nAut, (X)n~! = Auty(QL, {p1,p2}). In particular, X —> * is not an
Auty (X)-Mori fibre space.

Proof- (1) The hexagon of X has exactly two k-rational curves C;, C,, which are moreover disjoint. Their
contraction yields a birational morphism #: X — Z onto a del Pezzo surface Z of degree 8 with two
rational points. By Proposition 2.9, Z is rational and by Lemma 3.2(1) we have Z ~ QL. We can assume that
C,C, are contracted onto p; = ([1:0],[1:0]) and pp = ([0:1],[0:1]) by Lemma 3.6(2).

(2) Any two rational points on OL that are not on the same ruling of Q% can be sent onto each other by an
element of Auty (Q) by Lemma 3.6(2). It follows that any two del Pezzo surfaces satisfying our hypothesis
are isomorphic if and only if they have a birational contraction to isomorphic del Pezzo surfaces QF and or
of degree 8. This is the case if and only if L and L’ are k-isomorphic by Lemma 3.2(3).

(3) The kernel of p is the subgroup of Auty (X) of elements preserving Cy,C, and hence its conjugate
nker(p)n—! < Auty (QF, py,p,) is the subgroup preserving the rulings of QF. The only non-trivial automor-
phisms of Xj- commuting with the Gal(k/k)-action induce a rotation of order 2 or a reflection that preserves
C; U Cy. Let L/k be an extension of degree 2 such that QF ~ IP] x IP;. The involution @ € Aut (QF)
exchanges pi,p, and the rulings of Q%, it thus lifts to an automorphism of X inducing a reflection. The
involution f € Auty (QF) exchanges p;,p, and preserves the rulings of Q%, it thus lifts to an involution of X
inducing a rotation of order 2 on the hexagon. The involutions a, f € Auty (QF) commute, hence their lifts
commute, which yields the splitness of the sequence.

(4) 1t follows from (3) that any automorphism of X preserves C; U C,, and since 1~ 'a#n € Auty (X)
exchanges C;, C,, we have rk NS(X)A%(X) — 2, O

The R-version of Lemma 4.9(3) in [RZ18, Proposition 3.4] states that the kernel is SO(RR), but it should be

Lemma 4.10. Let X be a rational del Pezzo surface of degree 6 such that p(Gal(k/K)) is generated by a rotation
of order 2 as indicated in Figure 1(4). Then there exists a quadratic extension L = k(a,) of k such that
(1) X is isomorphic to the blow-up of IFy in the point {[a; : 1;a1 : 1],[ay : 1;a, : 1]} of degree 2 and
X = {([uo: m1], [vo : v1], [wo s wi]) € (P1)* | wod(ugvg + auy v + duyvy) = wy (ugvy — x1v0)}
where t* +at +d = (t —ay)(t — ay) € k[t] is the minimal polynomial of a; over k.
(2) Any two such surfaces are isomorphic if and only if the respective quadratic extensions are K -isomorphic.

(3) The action of Auty (X) on the hexagon induces an exact sequence,

1 — Auty (P, py, p2)? — Auty (X) LA Syms xZ/2 — 1,
which is split if char(k) # 2, Z/2 = {p(@)) and Sym, = {p(B), 0(P)), where &, B, are the lifts of
the involutions of IF
a: [yo: 1520 1 21] —[yo +ay1 : —y1;20 +az1 1 —z1],
B: [vo 91520 : 21] =20 : 21590 : 1],
¥ [vo:v1520 < 2] > [vo + ay1 - —v13a(9120 — V021) : Yo2o + aYoz1 + AY121 ]
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(4) X — = is an Auty (X)-Mori fibre space.

Proof. (1) Let Cy,C;,C3 be the curves in the hexagon of X. By Lemma 3.2(1), for i = 1,2,3, there is a
birational morphism 7t;: X — IF) contracting C; onto a point of degree 2. Let L/k be a quadratic extension
such that Gal(L/k) acts by the rotation of order 2. Then Gal(k/L) preserves each C;, hence L is the splitting
field of each C;. So, L is also the splitting field of each 7t;(C;). Let L = k(ay) for some a; € L. Fori =1,2,3
we write 71;(C;) = {[bj1 : 1;b;5 : 1],[b;3 : 1;b;4 : 1]} for some bjq,...,b;4 € L. Since the two components of
7t;(C;) are not contained in the same fibre of IFy, Remark 2.7 implies that there is A; € PGL;(k) that sends
[bi1 : 1],[bj3 : 1] onto [ay : 1],[a, : 1]. Similarly, there is B; € PGL, (k) that sends [b;, : 1],[bj4 : 1] onto
[a1 : 1],[a5 : 1]. Up to changing the rulings on [y, we can assume that ¢ := 1,7, ' : IFy > I preserves the
ruling given by the first projection, as indicated in the following commutative diagram.

X 7 \
{ N
—_— e } *—
pl plw | IFO
® l |
L e e T T > I I
: | !
Fo p2: ! ‘P2

Up to an isomorphism of the first factor, we can assume that ¢ induces the identity map on IP!. It then
sends a general fibre f of the second projection onto a curve of bidegree (1,1) passing through g, which is
given by M(vgz; — v120) + p(vo20 + ay1 2o + Gy 21 ) = 0 for some [\ : u] € IPL. So, up to left-composition by
an automorphism of the second factor, ¢ is the involution given by

¢ [vo: 91520 21] > [Y0 1 9158(v021 — 9120)  YoZo + ay120 + ay121]
By construction of @, X is isomorphic to its graph inside (IP!)%. The projection forgetting the third factor
induces the isomorphism in (1).

(2) As indicated in (1), any two points of degree 2 in Iy whose geometric components are not in the same
ruling can be sent onto each other by an element of Auty (IFy). It follows that two del Pezzo surfaces X and
X' satisfying the hypothesis of our lemma are isomorphic if and only if there are contractions X — IF,
and X’ —> TF; that contract a curve in each hexagon onto points with k-isomorphic splitting fields. This is
equivalent to contracted curves having k-isomorphic splitting fields.

(3) The group 1, ker(ﬁ)Tcl_1 is the subgroup of Auty (IFy) fixing [a; : 1;4; : 1] for i = 1,2 and preserving
the fibration given by the first projection, hence 77 ker(ﬁ)nfl ~ Auty (P!, [a; : 1],[a; : 1])%. The involution
a € Auty (IFy) (it is not the identity map by Remark 3.4) preserves the fibrations of Iy and exchanges
[a; : 1;a1 : 1] and [a; : 1;a, @ 1]. Thus it lifts to an involution @ € Auty(X) inducing a rotation of order
2 on the hexagon. The involution € Auty (IF)) exchanges the fibrations of IFy and fixes [a; : 1;a; : 1] for
i = 1,2, thus lifts to an involution 3 € Aut;(X) inducing the reflection at the axis through C;. We check
that 1 := @ o a. Since ¢ induces the reflection on the hexagon that exchanges the components of Cs, 1
induces the reflection preserving each component of Cj. It follows that the sequence is exact. If char(k) # 2,
we have a = 0, and then 1 is an involution, @ commutes with  and 1, and o ) has order 3. It follows
that the sequence is split.

(4) Since Auty(X) acts transitively on the edges of the hexagon, X — # is an Auty(X)-Mori fibre
space. g

4.5. The del Pezzo surfaces in Figures 1(2) and 1(5)

Here, we consider the remaining two del Pezzo surfaces of degree 6 from Figure 1. We will see that none
of them is a Auty(X)-Mori fibre space. However, they carry a conic fibration, and we will describe the
automorphism group preserving the fibration in this section, which will be used in the Section 5.
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Lemma 4.11. Let X be a rational del Pezzo surface of degree 6 such that p(Gal(k/k)) is generated by a reflection
as indicated in Figure 12). There exists a quadratic extension L = k(ay)/k such that the following holds:

(1) There is a birational morphism 1: X —> RY ~ QL contracting an irreducible E curve onto the point
n(E)={[a}:a;:1:0],[a3:a2:1:0]} = {p1,pa} of degree 2.

2 X>~{([w:x:p:2),[u:v]) | v(w+ax+dz) =uy} c Rt x P!

(3) The action of Auty (X) on the hexagon of X induces a split exact sequence

1 T (k) —> Auty (X) > (p(a)y x (p(B)) — 1

where TVE(K) < Auty (RE, p1,py) is the subgroup preserving the rulings of RY, and p(a) is the reflection
exchanging the singular fibres and p(B) is a rotation of order 2 with

nan tiwix:y:izle [wixtay:—p:z]

g~
where t* +at +d = (t —ay)(t — ay) € k[t] is the minimal polynomial of a; over k.

(4) We have rk NS(X)A"%X) = 2 and 1 Aut (X))~ = Auty(RL, {p1,p2}). In particular, X — * is not
an Auty (X)-Mori fibre space.

twix:yizl— [w+a(2x+az+ay): —(x+az): —y:z]

Proof- (1) By Lemma 3.2(1), contracting E yields a birational morphism v: X — OL. The splitting field of
the image of E is L, so we can choose v(E) = {([1:0],[0:1]),([0:1],[1:0])} by Lemma 3.6(1). Changing
the model of QF with the isomorphism from Lemma 3.3(2), we get the birational morphism 7: X — R’
and 1(E) = {[a}:a;:1:0],[a:a,:1:0]}.

(4) Any element of Auty (X) preserves E. It follows that rk NS(X)A"(X) — 2 and that v Auty (X)v~! =
Auty (QF, {p1,p2}).

(3) The conjugate vker(p)v—! < Auty (QL, ([1:0],[0: 1]),([0:1],[1:0])) is the subgroup preserving
the rulings of QF. The only non-trivial symmetries in Sym; x Z/2 commuting with the p(Gal(k/k))-action
are the two reflections preserving E and the rotation of order 2. By Remark 3.4, 110(11_1,17[311_1 are
involutions and they commute. Moreover, they respectively fix and exchange [a% tap:1:0], [a% tap:1:0].
Their conjugates by the isomorphism Rl — Q! from Lemma 3.3(2) respectively exchange and preserve
the rulings of Qi. In particular, they induce the claimed action on the hexagon of X, thus the sequence is

split. O

Lemma 4.12. Let X be a rational del Pezzo surface of degree 6 such that p(Gal(k/K)) ~ Z/2 x Z/2 is generated
by a reflection and a rotation of order 2 as in Figure 1(5). Then there exist quadratic extensions L = k(a;) and
L' =k(by) of k that are not k-isomorphic, with

t> vat+a=(t—a)(t—ay), t>+bt+b=(t—Dby)(t—by)ekt]
the minimal polynomials of a, by such that the following hold:

(N X ~ SLL and there exists a birational contraction n: X — oL ~ RE contracting an irreducible curve
onto the point {py,ps} = {[b? 1 by : 0:1],[b3: by : 0: 1]} of degree 2.

2 X~{([w:x:v:2],[u:v]) | v(w+bx + bz) = uy} c RE x P!
(3) Two surfaces SV and SLL are isomorphic if and only if L, L’ are respectively k -isomorphic to L, L.
(4) The action of Auty (X) on the hexagon of X induces a split exact sequence

1 — TEY — Auty (X) 2 (pla)) x (p(B)) — 1
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where TVY < Auty (RY, p1,p,) is the subgroup preserving the rulings of R, and p(a) is the reflection
exchanging the singular fibres and p(B) is a rotation of order 2, where

nan i wix:iyizl—[wix+ay: —y:z]

npn~!

(5) tkNS(X)A%(X) = 2 and n Auty (X)n~' = Aut(RE, {p1,p2}). In particular, X —> % is not an
Auty (X)-Mori fibre space.

twix:yizl— [w+b(2x+bz+ay): —(x+bz): —y : 2]

Proof. (1) The hexagon of X contains a unique curve E whose geometric components are disjoint. The
contraction of E yields a birational morphism 7: X — Y to a del Pezzo surface Y of degree 8, and the
figure below shows the induced Gal(k/k)-action on the image of the hexagon, so Y ~ Q! for some quadratic

extension L/k by Lemma 3.2(l).
QL
" /X

X/

We have p(Gal(k/k)) = {1,7,s,7s}, where r is the rotation of order 2 and s is the reflection preserving the
components of E. Then s or sr is the image of the generator g of Gal(L/k). It follows that the splitting field
of p is a quadratic extension L' /k not k-isomorphic to L such that the generator ¢’ of Gal(L'/k) induces
the rotation r on the hexagon. We set L = k(a;) and L’ = k(b;) for some a; € L, b; € L'. We can choose the
form of p according to Lemma 3.3(3a).

(2) follows from (1) and Lemma 3.3(3b).

(3) Consider the birational morphism #’: SLL — RL with exceptional curve E’. Suppose that we have

X

SLL' ~ SLL' Then E and E’ are the unique curves in the hexagon with only two components. Thus they
are defined over the same splitting field over k, and hence L' ~ L’ over k. It follows that RY ~ RL, which
implies that L ~ L over k by Lemma 3.2(3).

(4-5) The group ker(p) ~ nker(p)n~! = Auty (QF, p1,p,) is the subgroup preserving the rulings of QL.
Every element of Auty (X) preserves E because it is the only curve in the hexagon with only two geometric
components, so the elements of Aut(X) act by symmetries of order 2, and we have 1 Auty (X)n~! =
Auty (QF, {p1,p2}). The only symmetries of the hexagon that commute with p(Gal(k/k)) are the two
reflections preserving E and the rotation of order 2. By Remark 3.4, nan~!,npn~! are involutions and
they commute. Moreover, they respectively fix and exchange [b7 : by : 1:0],[b3 : by : 1: 0]. We see that the
conjugates of nan~!, 7817 ~! by the isomorphism R --> QL from Lemma 3.3(2) respectively exchange and
preserve the rulings of Q%. In particular, they induce the claimed action on the hexagon, thus the sequence

is split. O

4.6. The fibration on a rational del Pezzo surface of degree 6 from Figures 1(2) and 1(5)

Let L/k, L'/k be two extensions of degree 2. We can obtain the Mori fibre space 7t: SLY — P! from
Example 2.5(2) as follows: we first blow up the point p, then contract the line passing through it, which
yields a birational map P2 --> QL. Since p,p’ are not collinear, the image of p’ in Olisa proper point and
blowing it up yields S In particular, SLL" is one of the del Pezzo surfaces in Figure 1(2) and (5), which
are described in Lemma 4.11 and Lemma 4.12.

Remark 4.13.

(1) Let L =k(a;) and L’ = k(b;) be two quadratic extensions of k, not necessarily non-isomorphic over

k, and let
t?tat+a=(t—a))(t—ay), t>+bt+b=(t—0by)(t—Db,)eck|t]
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be the minimal polynomials of a; and b; over k. Lemma 4.11(2) and Lemma 4.12(2) imply that
S~ {([wix:y:z),[u:v]) e PP x P | wz = x* + axy + ay?, (w+ bx + bz)v = uy}
and the fibration 71: SV — P! is given by the projection
([w:x:p:z],[u:v]) v [u:v] =[w+bx+bz:y].
(2) The group Aut(S™, 1) preserves a unique irreducible curve E in the hexagon of X that has disjoint
geometric components. It induces a morphism
Aut(SYY, n) — 72,
and we denote by SOM « Aut(SEL, ) its kernel.
(3) Via the contraction 17: X —> QF ~ RE of E onto a point {p1,p,} of degree 2, the group SOLY s
conjugate to a subgroup of TLL  the subgroup of Aut(QL, p;,p,) preserving the rulings of Qli (see
Lemma 4.11(3) and Lemma 4.12(4)).

(4) The image t,s € IP!(L) of the singular fibres make up two points of degree 1 if L, L’ are k-isomorphic,
and one point of degree 2 if L, L are not k-isomorphic.

Lemma 4.14. Keep the notation of Remark 4.13 and let g be the generator of Gal(L/K). Then the action of
Aut(SPY /1) on the geometric components of E induces the split exact sequences

1 —SOMY — Aut(SM /) — Z/2 — 1
1 — SO (k) — Auty (SYY /) — Z/2 — 1
where Z/2 is generated by the image of the involution
([w:x:y:z][u:v])— ([w+b(2x+ay +bz): —(x+ay+bz):y:z],[u:v]),
and SOV ~ {(a, p) e TV | aB = 1}, whose k-rational points are given by

(1) either SOV (k) ~ {a € L* | wad = 1},
2) or SOV (k) ~ k* if L, L’ are not k-isomorphic.

Proof- The indicated map is the composition of the two commuting involutions «, f from Lemma 4.11(3) and
Lemma 4.12(4). In particular, it is an involution (it is not the identity by Remark 3.4) that induces a reflection
on the hexagon exchanging the geometric components of the singular fibres.

Let us compute the image of SOLY in TLY | Since this means computing the k-points of these groups,
it suffices to assume that L and L’ are k-isomorphic. We consider Q' as k-structure on P} x IP;. By
Lemma 3.6(1), we can assume that p; = ([0:1],[1:0]), po = ([1:0],[0: 1]). Then SO¥* is conjugate to a
subgroup of the group of diagonal maps Aut(QF, py, p,). In these coordinates, the fibration 77: S&'F — P!
is mapped by 7 to the pencil of curves given by cu;v; —dugvg = 0, [c: d] € PL. A diagonal element (a, ) €
Aut(QL, p1,p,) preserves each fibre if and only if af = 1. It follows that SOLt = {(a, ) € T | ap = 1}.

(1) The k-rational points SOYL(k) form the subgroup of elements in SO’ (k) that are fixed by the
Gal(L/k)-action, see Lemma 3.5. The generator g € Gal(L/k) acts by (o, )8 = (B¢, af), see Lemma 3.5. It
follows that SOML = {(a, f) e TV | ap = 1}.

(2) Suppose that L,L' are not k-isomorphic. Let K := LL". Then Gal(K/k) ~ Gal(L/k) x Gal(L'/k).
Lemma 3.3(3a) tells us that we can assume that p; = ([by : 1],[by : 1]),p2 = ([by : 1],[by : 1]). We now
compute the form of the elements in SOV (K): the element

y = <<b12 bf) , (bll bf)) € PGL,(K) x PGL,(K).
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induces a change of coordinates y: Q% — QF sending ([0 : 1],[1 : 0]),([1 : 0],[0 : 1]) onto py,py,
respectively. Then SO (K) © PGL,(K)? is the subgroup of elements of the form
(AB)  (AB):=yo(ap)oy ' = <(be Tpetne )),<blﬁﬁ o) blbl’f(_lb;ﬁm)).
The group SOY (k) is the Gal(K /k)-invariant subgroup of SOV (K). If g is the generator of Gal(L/k),
and ¢’ is the one of Gal(L'/g), then
(A,B)S = (B$,A%), (A,B)E = (A% ,BY)

It follows that

SOMY (k) = {(A,B) € PGLy(L')? | (A, B) of the form (AB), apf =1 = ap}
We obtain that g € k*, and hence that SOV (k) ~ k*. O

Lemma 4.15. Keep the notation of Remark 4.13 and let g be the generator of Gal(L/k). Then the action of
Aut(SPY, 70) on P! induces the exact sequences

1 — Aut(SYY /) — Aut(SYY, 1) — Aut(P!, {t,s}) ~ Ty x Z/2 — 1
1 — Auty (8P /1) — Aut (S¥Y, 1) — DEY % z/2 -1
where T is the 1 -dimensional split torus, Z/2 is generated by the image of
([w:x:p:z],[u:v])— ([w+b(2x+ay+bz): —(x+bz): —y:z],[u+abv:—v])
and Dli’y c Ty (k) is the subgroup

() Dﬁ’L ={0eTi(k)| 0= A8, Ae L*}, where g is the generator of Gal(L/k),

2) DIE’L/ ~ {A$8 € F| A € K,AA8 =1} if L and L' are not k-isomorphic, where k — F — LL' is
the intermediate extension such that Gal(F/k) ~ (g¢'y < Gal(L/k) x Gal(L'/k), where g, ¢’ are the
generators of Gal(L/k),Gal(L' /K), respectively.

Proof. The birational contraction #: SLL OL induces a rational map 7: OL -5 P! such that %t o N =T.
We define

Aut(QF, 7t) = {a € Aut(Ql) | 3f € Aut(IP!) such that #oa = f o1t}
Then Aut(QL, 1) = n Aut(SYY, 7). Let us compute AutE(Qﬁ,ﬁ). For this, we can assume that p; =
([0:1],[1:0]), po =([1:0],[0:1]) (in the notation of Remark 4.13), and the fibres of 7 are of the form
cuv; —dugvg = 0, [c: d] € PL. It follows that

Au‘cK(JPlE X ]PlE) ) AutK(Q%ﬁ) = {(A/\,By) | A pe E*} x{(T: (x,9) — (9,%))

(Y3 3) w wan ne( )

The automorphism (A, Bﬂ) of type (I) induces the scaling [c : d] — [c : Aud] on P!, the one of type (II)
induces [c : d] — [d : Auc], and 7 induces idp1. Hence, the image of Aut(SYY, 1) in Aut(IP!,{t,s}) is
T, x Z/)27Z.

Let us compute Auty (QF,7t), its image in Auty (P!, {t,s}) separately for each of the two cases L = L'
and L,L’ not k-isomorphic. We will use that Q% ~ P} x IP} for K = LL’, hence (A, B,) € Autg (Qk, 7)
exactly if A, pe K.

(1) Suppose that L = L’. Then 7 € Auty (QL, 7). An element (A, B,) € Auty (QF, 7t) is defined over k if
and only A,peLand A) = Bf,, which is equivalent to y = A$. In that case, Ay = A\, which is contained

in k. Therefore, the image Auty (SL’LI,T() in Auty (P!, {¢t,s}) is isomorphic to DIE’L X Z/2.

where
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(2) Suppose that L and L’ are not k-isomorphic. Let K = LL’ and Gal(K/k) ~ Gal(L/k) x Gal(L'/k) =
(g) x {g'). Let us compute Autg (Qk, 7). Observe that we have p; = ([b; : 1],[b; : 1]) for i = 1,2 and that
we can no longer assume that they are equal to ([1:0],[0:1]),([0:1],[1:0]). However, the coordinate

change given by
y = <<l’12 bf) , <bll bf)) e PGL,(K) x PGL,(K)

sends ([1:0],[0:1]),([0:1],[1:0]) onto pq,p», respectively. One can compute that the Galois action on
Ol (see the proof of Lemma 3.2) induced by y, namely G’ = y~! 0 Gal(K/k) o y, is given by

(F o8] [ )
([ug cul [ g :vg]).

Note that 7 is G'-invariant and so it remains to study which (A, A,,) are G'-invariant. So (A),A,,) is defined
over k for A,y € K if and only if

(AvAy) = (ALAL)E = (Ap-1s A1)

(A)\’Ay) = (A/bAy)g = (A(,\—l)g’lA(,,—l)g’)'

Hence, the elements of Auty (QF,7) are exactly those of the form y o (A Ay)oy™
A= = (D A= (AT = E

Instead of computing the image of Auty (QF, ) in Auty (IP!), we compute the image of ! Auty (QF, %)y
(i.e. (Ay,Ay)) on Autg (IP!) with the induced Galois action on P!, which is given by ([c : d])& = [d8 : ¢8]
and ([c: d])§ = [d€ : c8']. Again, (A, A,) induces [c: d] — [c: Apd] or [c:d] — [d: Auc], and 7’
induces idp1. We compute the possible 6 = Ap: On one hand we find

_1.\8/,+1-1\8 ’ ’ ’
A= () (AT = () (AS)E = (Ap)e,
implying 6 € F, where k c F c K with Gal(F/k) = (gg’). On the other hand, we also have
Ap= A =208

Hence, DIE’L/ is conjugated to {AA88 e F| A1 e K, AA8 =1} O

([ug s ur] [vo:v1]) '—’{

I3

Uwith A, y € K satisfying

In the lemma above, if L, L’ are not k-isomorphic, then le’L/ ~ {Npx(A) | A€ K, Nk (A) =1}, where
Ng /i and N are the field norms of F/k and K/L, respectively.

5. The conic fibration cases

In this section, we classify the rational conic fibrations 7t: X — P! that are Aut(X,7t)-Mori fibre spaces.
Recall that 7t induces a homomorphism Aut(X,7t) — Aut(IP') whose kernel we denote by Aut(X /) and
its k-points by Auty (X /7).

Recall from Lemma 2.8 that, for any Mori fibre space 71: X —> IP! such that X is rational, we have either
X ~F, for some 1> 0 or X ~ SL or X is isomorphic to a del Pezzo surface obtained by blowing up IP?
in a point of degree 4. In the latter case, Aut(X, ) is finite by Lemma 2.10, so we do not look at it.

5.1. Conic fibrations obtained by blowing up a Hirzebruch surface

We study the rational conic fibrations 7t: X — P! that are Aut(X,7t)-Mori fibre spaces and for which
there is a birational morphism X — IF,, of conic fibrations for some #n > 0.

Remark 5.1. Let n > 1 and denote by k[zg,z; |, < k[zg, 2] the vector space of homogeneous polynomials
of degree n. In the coordinates from Example 2.5(1) the special section S_,, < [F, is given by yy = 0. We
denote by S, < F, the section given by y; = 0. Since S,,-S_,, = 0, we have S, ~ S_,, + nf and S2 =n,
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where f is the class of a fibre. The automorphism group of [F, is
Aut(an) = AUt(IFnJ nn) = Vn+1 % GL, /ﬂn' Autk(IFn) = k[ZO! Zl]n A GLZ(k)//‘n (k),

where V. ; is the canonical k-structure on k[zg, z |, and p,, = {1-id € GL, | A" = 1}. The group Aut(F,,)
acts on [F,, by

[vo: v1520 1 21] = [0 : P(20,21)v0 + Y1420 + bz1 1 czp + dz1],
and it has two orbits on [F,, namely S_,, and F,\S_,,.

Lemma 5.2. Let n > 0 and 1: X — F, be a birational morphism of conic fibrations that is not an isomorphism,
and suppose that Auty (X, ) contains an element permuting the components of at least one singular geometric
fibre. Let Gz = Auty (X /1) be the subgroup of elements acting trivially on NS(Xy).

(1) If Gy is non-trivial, there exists N = 1 and a birational morphism X — IFy of conic fibrations blowing up
r =1 points py,...,p, contained in Sy such that >;_, deg(p;) = 2N.

2) If Gy = {1}, then Auty(X/m) ~ (Z/2)" forr € {0,1,2}.

Proof. The claim is proven in [Bla09b, Lemme 4.3.5] over C and its proof can be repeated word by word
over any algebraically closed field. Over a perfect field k it suffices to show that curves contracted by
the birational morphism v: Xi — (IFy )i in (1) are already defined over k. Since N > 1, the surface Xy
contains exactly two sections of negative self-intersection, namely the strict transforms S_y and Sy of S_y
and Sy, respectively, and $2 N= S%, = —N, and every singular geometric fibre has two components, each
intersecting either S_xn or Sy. We now show that S_y and Sy are both defined over k, which will then
imply that the curves contracted by # are defined over k and we are finished. The birational morphism
n: X — [E, contracts exactly one component in each singular fibre. This implies that the strict transform

S_, of S_,, — TF, has self-intersection < —n. If n > 1, then S_,, is one of Sy or S_p and hence both Sy or
S_n are defined over k. If 1 = 0, then 77(S_y/) and 77(Sy) are sections in Iy of ruling induced by 7. If they
are permuted by an element of Gal(k/k), each fibre contains two points blown-up by 1, which contradicts
X — IP! being a conic fibration. It follows that 17(S_y) and 77(Sy) are both defined over k and hence

S_n, Sy are defined over k as well. O

Let us construct a special birational involution of IF,, n > 1.

Example 5.3. Let n > 1. Let py,...,p, € S, € IE, be points such that their geometric components are in
pairwise distinct geometric fibres and Y.'_, deg(p;) = 21, and assume that 7t,,(p;) # [0: 1],[1: 0] for i =
L,...,r. Let P; € K[20, 21 |qeg(p,) De the polynomial defining 7t(p;) € P! and define P:= P; --- P, € K[zg, 21 ] 2.
Then the map

Q: an --> IFn, (yl,Zl) F-> (P(Zl)/yl,zl)

is an involution preserving the fibration, whose base-points are py,...,p,, that exchanges S,, and S_,, and
contracts the fibres through p4,...,p,.

We call y,, = T} the subgroup of n'™ roots of unity of the 1-dimensional standard torus Tj.

Lemma 5.4. Let n > 1 and let n: X — I, be a birational morphism blowing up points py,...,p, € S,
whose geometric components are on pairwise distinct geometric fibres and such that >;_, deg(p;) = 2n. Then
70 :=1,1: X —> P! is a conic fibration that has exactly two (—n)-sections and the following properties hold.

(1) There are split exact sequences
1 — Aut(X/m) — Aut(X,7) — Aut(PL,A) — 1
1 — Auty (X /1) — Auty (X, 1) — Auty (P, A) - 1
where A = P! is the image of the singular fibres of X /IPL.
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(2) The action of Aut(X/7) on the two (—n)-sections induces split exact sequences
1->H—Aut(X/n) —Z/2 -1,
1 - H(k) —Auty(X/n) — Z/2 -1

where nHn~! = Aut(F,/r,,S,) ~ Ty/p, and nH(K)n~' ~ k*/pu,(kK), and Z/2 = {n~ on) with
@: F, --> T, the involution from Example 5.3.

(3) Any element of Auty (X /7 )\H (K) is an involution fixing an irreducible double cover of P! branched over
A not intersecting S_,,.

4) 1t: X —> P! is an Aut(X, 1) -Mori fibre space and an Auty (X, 1t)-Mori fibre space.

Proof. We denote by S, and S_,, the strict transforms of the sections S,, and S_,, of IF, in X, which satisfy
§2 =82 = —n and which are the only (geometric) sections of negative self-intersection. The anti-canonical
divisor of X is 7t-ample because the geometric components of the p; are on pairwise distinct geometric
fibres, thus 77: X — IP! is a conic fibration with r singular fibres, each of whose geometric components
intersects exactly one of the sections S, and S_,,.

(1) For any element a € Aut(IP!,A) there exists & € Aut(F,) preserving {pi,...,p,}, and we have
n~1an € Aut(X, 7). The same argument holds for the k-points of these groups.

(2) Up to an element of Auty (IF,), we can assume that 77, (p;) # [1:0],[0: 1] for i = 1,...,7. Then the
birational involution ¢: T, --> IF, from Example 5.3 lifts to an element of Auty (X /7) and exchanges S,
and S_,,. It follows that the action of Aut(X/m) on {S,,S_,} induces split exact sequences

1—H— Aut(X/n) — Z/2 > 1, and 1— H(k) — Auty(X/r) —> Z/2 — 1.

Any element of H fixes S, and S_,, pointwise, so 7Hn ! and r7H (k)5 ! are the subgroups of Aut (I, /r,,) ~
Vi1 @ Ty /py, and Auty (I, /1t,,) ~ k[zg, 21 ], @ k*/p,(k), respectively, fixing S, pointwise. It follows that
nHn~" = Ti/py and nH (k)" =k*/p, (k).

(4) The fact that the element 17! 1 € Auty (X /) exchanges the components of every singular geometric
fibre implies that rk NS(X)A"«(X7) — 1 Tt follows that X/IP! is an Auty (X, 7t)-Mori fibre space and in
particular an Aut(X, 7t)-Mori fibre space.

(3) For any A € k* the map

(L @): (91,21) +-> (VPEDfp, 21)
is a birational involution of [F, and fixes the curve y? — A"P (ZO,Zl)yg = 0, which is a double cover of P!
branched over A and does not intersect the section S_,,. O

Lemma 5.5. Let n > 1 and n: X — IE, be a birational morphism blowing up points p,,...,p, € S,, whose
geometric components are on pairwise distinct geometric fibres and such that Y;_, deg(p;) = 2n. Let @ =
70, X —> P be the induced conic fibration on X.

(1) If n =1, then X is a del Pezzo surface of degree 6 as in 1(1) or 1(3) and Aut(X, 1) & Aut(X). Moreover,
Auty (X, 1) € Auty (X) if X is as in 1(7) and Auty (X, 1) = Auty (X) if X is as in 13).

@) Ifn =2, then Aut(X, ) = Aut(X).

Proof. (1) For n = 1, the conic fibration X /IP! has two (—1)-sections and X is a del Pezzo surface of degree 6
as in Figure 1(1) or Figure 1(3). Lemma 4.1(2) applied to Xj implies that Aut(X) contains an element inducing
a rotation of order 6 on the hexagon of X, which is not contained in Aut(X, 7). The same argument
implies that Auty (X, 1) < Auty (X) if X is a del Pezzo surface of degree 6 as in 1(1). However, in the case of
Figure 1(3), any element of Auty (X) preserves the fibration by Lemma 4.9(4).

(2) If n > 2, X contains exactly two (—#)-sections S, and S_,,, which are the strict transforms of S,,
and S_,,. Thus the class S, + S_, in NS(Xj) is Auti(X)-invariant, hence Ky + (S, + S_,) = —2f is
Auty(X)-invariant as well. It follows that Aut(X) = Aut(X, ). O

If two conic fibrations as in Lemma 5.4 are isomorphic, they both have a birational morphism to the same
Hirzebruch surface [F,,.
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Lemma 5.6. For any fixed n > 1, two conic fibrations as in Lemma 5.4 are isomorphic if and only if the points
on P! are the same, up to an element of Auty (IP1).

Proof. Any element of Auty (IP!) lifts to an element of Auty (TF,), so two such conic fibrations are isomorphic,
if and only if the points on the section S,, are the same, up to an element of Auty(IF,). This means that
their images on IP! are the same, up to an element of Auty (IP!). O

5.2. Conic fibrations obtained by blowing up a del Pezzo surface

Let L =k(a;) and L’ = k(b;) be quadratic extensions of k. In this section, we consider rational conic
fibrations 7t: X —> IP! for which there is a birational morphism #: X /P! — SLY /P! of conic fibrations,
where Ttgr1/: SLL — P! is the Mori fibre space from Example 2.5(2). We have described the fibration
SLY — P! in Section 4.6.

Recall from Lemma 4.11(1) and Lemma 4.12(1) that there is a birational morphism v: St ot
contracting a curve E onto a point p’ of degree 2 with splitting field L’.

Remark 5.7. Let pe E S be a point whose geometric components are in distinct smooth geometric
fibres of S/ /P!, Any element of Gal(k/k) exchanges or preserves the geometric components of the point

17(E) and hence of the curve E, and this implies that deg(p) is even and each geometric component of E

contains degT(m geometric components of p.

We now show an analogue of Lemma 5.2, that we prove similarly to [BlaO9b, Lemme 4.3.5].

Lemma 58. Letr: X — SYY be a birational morphism of conic fibrations that is not an isomorphism, and
suppose that Auti (X, 1) contains an element exchanging the components of at least one singular geometric fibre.
Let Gz < Auty(X/m) be the subgroup acting trivially on NS(Xg).
(1) If Gy is non-trivial, then 1 is the blow-up of r = 1 points contained in E SLY whose geometric
components are on pairwise distinct smooth geometric fibres, and each geometric component of E contains
half of the geometric components of each point.

2) If Gy = {1}, then Auty (X /1) ~ (Z/2)" forr € {0,1,2}.
Proof. (1) Suppose that Gy is nontrivial. It preserves the geometric components of the singular fibres, so 7 is
Gi-equivariant and R := 11G§17_1 c Autﬁ(SEL’L/ /TtgLir). The group R fixes the geometric components of
E pointwise. Since R  PGL,(k(x)) and since it is non-trivial, it fixes no other sections of Sé’L /P!, So,

Gy fixes the geometric components of the strict transform E c X of E and no other sections of XK/IP%.
Moreover, Auti(X, ) contains an element exchanging the components of at least one singular geometric
fibre, so it follows that each geometric component of E intersects exactly one component of each geometric
singular fibre. In particular, the points blown-up by 7 are contained in E. The hypothesis that —Kx is
1t-ample implies that the geometric components of the blown-up points are on distinct geometric components
of smooth fibres. The remaining claim follows from Remark 5.7.

(2) If Gi is trivial, then every non-trivial element of Auty(X/m) is an involution and the claim follows

from the fact that Auti(X/m) « PGL,(k(x)). O

Example 5.9. Let us construct a special birational involution of ¢y 1/ of SLY that preserves the fibration
SLY — P! and induces the identity on P!,

Let E}, E; be the geometric components of E. If ¢’ is the generator of Gal(L'/k), then E5 = E;. Let
pP1,--pr€EC SLL be points whose geometric components are on pairwise distinct smooth geometric
fibres. We now construct an involution ¢ of S whose base-points are p1,...,p, and which exchanges E;
and E,. For i = 1,2, let P, € L[x, y] be homogeneous polynomials defining the set of components of the
P1,--.,pr contained in E;. Consider a birational morphism SLL OL that contracts E, and consider the
model of QF that is a k-structure on ]Pi X IP%.



30 J- Schneider and S. Zimmermann

e If L and L’ are k-isomorphic, we can assume that the images of E; and E, are respectively
([1:0],[0:1]) and ([0:1],[1:0]), by Lemma 3.6(1). We define
P ([uo: ] [vo:v1]) —
([voPy (ugvo, urvy) : v1 Py (uguo, uyvy)], [uo Pa(ugvo, urvr) = 1ty Py (v, uy 1))

e If L and L’ are not k-isomorphic, we write L = k(b;). By Lemma 3.3(3a), we can assume that the
images of E1,E; are ([by : 1],[by : 1]),([b; : 1],[by : 1]). To compute ¢y 1/, we simply conjugate ¢y |

y = ba by (b1 b2} PGL, (k) x PGL,(k)
1 1 1 1
This yields the following form of ¢ 1/

@L,L’: ([l/lo : Ml], [VO . Ul]) — ([VOU+U1V . Vow—le], [MOU+ ulV . uOW—ulU])

over k with

where
U:=byP(t,s) — b1 Py(t,s), V:=b2P,(t,5) — b3P(t,5), W := Py (t,s) — Py(t,5)
with
t:= (ug — byuy ) (vo — bovy), s := (g — bpvy)(vo — byvy).
In both cases, ¢ 1/ commutes with Gal(L/k) and Gal(L’/k) and it is an involution. Moreover, it preserves
the image of the fibration S — P! in QL and induces the identity map on IP!. The base-locus of @y |/

in Q! is the image of E, and @ contracts the image of the fibres of SLY . p! given by PP, = 0. It
follows that @y ;- lifts to a birational involution ¢y 1/ not defined in py,...,p,.

Lemma 5.10. Letr: X — SLL be the blow-up up of points py,...,p, € E, r > 1, whose geometric components
are on pairwise distinct smooth geometric fibres. Then 1 := 1t51: X —> P! is a conic fibration and deg(p;)

. . . d i
is even and each geometric component of E contains %

Jollowing hold.

(1) The action of Aut(X, 1) on P! induces the exact sequence
1 — Aut(X/n) — Aut(X, 1) — Aut(PP},A) - 1

geometric components fori =1,...,r. Moreover, the

1 — Auty (X/11) — Auty (X, 1) — (DEY % Z/2) n Auty (P, A) — 1
where DIE’L/ x Z,)2 is the image of Auti (SYY, 1) in Auty (PY), see Lemma 4.5, and A < P! is the
image of the singular fibres of X.
(2) The Aut(X/m)-action on the components of the strict transform of E induces the split exact sequences
1>H—Aut(X/n) —2Z/2—1,
1 - H(k) —Auty(X/nt) — Z/2 -1
with nHy=1 = sobl from Lemma 4.4 and Z/2 is generated by the involution @y | : SLL' ., Ll
Jfrom Example 5.9.

(3) Any element of Auty (X /7)\H (K) is an involution fixing an irreducible double cover of P' branched over
A.

4) 1t: X — P! is an Aut(X, 0)-Mori fibre space and an Auty (X, 10)-Mori fibre space.

Proof. The first claim follows from Remark 5.7 and the sequences in (1) are exact by Lemma 4.14.

(2) Consider the involution ¢y j: SLL 5 SLL from Example 5.9 whose base-points are py,...,p, and
that exchanges the geometric components of E. Then ¢ 1/ := "L /7 is contained in Auty (X/7) and
exchanges the geometric components of the strict transform E of E. In particular, the Aut(X/7)-action
on the set of geometric components of E induces split exact sequences as claimed. The groups H and
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H (k) are respectively conjugate by 7 to the subgroups of Aut(SY /rtg) and Auty (S /1) preserving
the geometric components of E, which are SOL and SOL’L/(k) by Lemma 4.14.

(3) It is enough to show that this is already the case for any element in Auti(X/m)\H (k). Indeed, we
have Auty(X/m) ~ H(k) x Z/2, and any element of AutE(X/n)\H(K) is of the form (= 'an, ¢r 1/), where
a:= (a,a') e SOMY (k). Using Example 5.9, we compute that (17 Yan, ¢rr/) is an involution. Its fixed
k-curve in Q% is given by

augvy Py (ugvo, uyvy) — uyvoPy (uovg, u1vi) =0

which lifts to the desired curve on Xﬂ'

(4) The involution ¢ exchanges the geometric components of all singular fibres and hence X — P! is a
Aut(X,P!)-Mori fibre space and an Auty (X, IP!)-Mori fibre space. O

Lemma 5.11. Let ij: X — SYY be the blow-up up of points py,...,p, € E, r = 1, whose geometric components
are on pairwise distinct smooth geometric fibres. Then Aut(X, ) = Aut(X).

Proof. By Remark 5.7, each of the components of E contains half the geometric components of each p;.
It follows that n:= £ >, deg(p;) € Z and n > 1. For i = 1,...,r, let E; be the exceptional divisor of
p; and let f be a general fibre of X and E the strict transform of E. We have K5 = —2f — E and hence
Kx=—2f —w*E+E; +---+E, = —2f — E. The curve E is the unique curve in X with self-intersection
E? = —2(1 +n) < —4 and hence it is Aut(X)-invariant. In particular, Ky + E = —2f is Aut(X)-invariant.
It follows that Aut(X) = Aut(X, n). O

Lemma 5.12. Two conic fibrations as in Lemma 5.10 are isomorphic as conic fibrations if and only if the points
on P! are the same, up to an element ofDII(“’L x Z,/2, which is the image of Auty, (SY, 70) in Auty (IP) (see
Lemma 4.75).

Proof. Let X — SY and X’ — SPL be such conic fibrations obtained by blowing up py,...,p,  E and
p',...,ps  E, respectively, and suppose that they are isomorphic as conic fibrations. Then this isomorphism
sends the singular fibres of X onto the ones of X', and hence descends to an automorphism of IP! that sends
the images of the p; onto the images of the p’.

On the other hand, given an automorphism a of IP! contained in DII(“’LI X Z/2, we know by Lemma 5.10
there exists an automorphism 1 of X that induces a on IP!. If a sends the p; onto the p’, then either ¢ or

o @ sends the p; onto the p’, where ¢ is the generator of Z/2 — Auty(X/7) in Lemma 5.10(2) exchanging
the components of the singular fibres. 0

6. The proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Lemma 6.1. Consider a birational morphism of conic fibrations X — ¥, for some n > 0, and suppose that
X/P has at most two singular geometric fibres. If there is an element of Auti-(X, 1) that permutes the components
of at least one singular geometric fibre, then it has exactly two singular geometric fibres and X is a del Pezzo surface

of degree 6.

Proof. Denote by 77: X —> [, the birational morphism. Let S_, c X be the strict transform of the
section S_, = IF,. Then S2, € {—n,—n —1,—n — 2}. Let a € Auti(X, ) be an element that permutes the
components of at least one singular geometric fibre fy. Then S := a(S_,,) is a section of 7 x id: Xg— IP%

of self-intersection $? = §2,, and it intersects the other component of fy. It follows that S := 7(S) c F, is a
section of self-intersection S € {—n + 2,—n + 1, —n}, depending on how many of the points blown up by 7
are contained in S_,,. Since S2 >0, we have n < 2. If n = 2, we have S? = 0 and hence S ~ S_,+ f, which
means that S-S_; = —1, which is impossible. It follows that 7 = 0 or n = 1, and so X is a del Pezzo surface
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of degree 6 or 7. In the latter case, no element of Auty(X,7r) permutes the components of the singular fibre,
hence X is a del Pezzo surface of degree 6. O

Lemma 6.2. Let 7t: X — P! be a Aut(X, 70)-Mori fibre space with at least three singular geometric fibres
and suppose that there is a birational morphism of conic fibrations X — Y, where Y = IF, for some n > 0 or
= SLY ) and that Auty (X, ) is infinite. Then the pair (X, Aut(X)) is as in Theorem 1.7(6).

Proof. The hypothesis that X is an Aut(X, 7r)-Mori fibre space implies that Auty(X,7) contains an element
permuting the components of a singular geometric fibre. Moreover, X/IP! has at least three singular
geometric fibres, the image of the homomorphism Aut(X, ) —> Aut(IP') is finite and hence the kernel
Aut(X/m) is infinite.

First, suppose that Y = [F,. Since X/IP! has singular fibres, # is not an isomorphism. Lemma 5.2 and
the fact that Auti(X/7) is infinite imply that there exists N > 1 and a birational morphism X — Fy
that blows up p1,...,p, € Sy < [Fy whose geometric components are in distinct geometric fibres and such
that >/_, deg(p;) = 2N. Because 7t has at least three singular geometric fibres, Lemma 5.5(1) implies that
N > 2, and now Lemma 5.5(2) implies that Aut(X,7t) = Aut(X). Lemma 5.4(1-2) implies that (X, Aut(X))
is as in Theorem 1.1(6a).

Now, suppose that Y = SEL', Since X/IP! has at least three singular fibres, 1 is not an isomorphism.
Since Auti(X/m) is infinite, Lemma 5.8 implies that 77 blows up points py,...,p, € E whose geometric
components are on distinct smooth geometric fibres, and Remark 5.7 implies that they are all of even degree
and each geometric component of E contains half the geometric components of each p;. Lemma 5.11 implies
that Aut(X, ) = Aut(X). Lemma 5.10 and the description of DIE’L/ in Lemma 4.15 imply that the pair
(X,Aut(X)) is as in Theorem 1.1(6b). g

Proof of Theorem 1.1. By Proposition 2.13, there is a G-equivariant birational map IP? --> X to a G-Mori fibre
space 7t: X — B that is one of the following:

e Bis a point and X ~IP? or X is a del Pezzo surface of degree 6 or 8,

e B=TP! and there is a (perhaps non-equivariant) birational morphism of conic fibrations X — Y
with Y = IF, for some 7> 0 or Y = SLL,
By Lemma 2.14, it suffices to look at the case G = Aut(X) or G = Aut(X, n), respectively. The pair
(P2, Aut(IP?)) is the one in Theorem 1.1(1).

If X is a del Pezzo surface of degree 8, then X is isomorphic to [y, to IF; or to QF for some quadratic
extension L/k by Lemma 3.2(1). However, [F; has a unique (—1)-curve, which is hence Aut(IF; )-invariant
and its contraction conjugates Aut(IF;) to a subgroup of Aut(IP?). It follows that X = QF or X = IF, i.. the
pair (X, Aut(X)) is as in Theorem 1.1(2)-(3).

If X is a del Pezzo surface of degree 6, the Gal(k/k)-action on the hexagon of X is one of the actions
in Figure 1(1)-(9). Lemma 4.1(2-3) applied to X yields that rk NS(X )Autk(Xk) =1 and that the action of
Aut(X) on NS(Xy) induces a split exact sequence

1— (k)? — Aut(X) — Sym; xZ/2 —> 1.

If the Gal(k/k)-action is as in Figure 1(7)and (9), Lemma 4.6 and Lemma 4.7 imply that the pair
(X, Auty (X)) is as in Theorem L1(5a).

If the Gal(k/k)-action is as in Figure 1(2)-3) and (5), then Lemma 4.11 and Lemma 4.9 and Lemma 4.12
imply that the pair (X, Aut(X)) is as in Theorem 1.1(5¢c).

If the Gal(k/k)-action is as in Figure (1), Lemma 4.1 implies that (X, Aut(X)) is as in Theorem 11(5(b)i).

If the Gal(k/k)-action is as in Figure 1(4), Lemma 4.10 implies that (X, Aut(X)) is as in Theorem 11(5(b)ii).

If the Gal (E/k)—action is as in Figure 1(6), Lemma 4.2 implies that (X, Aut(X)) is as in Theorem 1L1(5(b)iii).

If the Gal(k/k)-action is as in Figure 1(8), Lemma 4.3 implies that (X, Aut(X)) is as in Theorem L1(5(b)iv)

Suppose that X admits a conic fibration 7t: X — IP! that is an Aut(X,7)-Mori fibre space and there is
a birational morphism 77: X —> Y where Y =T, for some n >0 or Y = Sb L
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First, suppose that # is an isomorphism. If X ly- IF,,, recall that IFy and IF} have already been discussed

above, and that the family Aut(IF,), n > 2 is the family in Theorem 1.1(4), see Remark 5.1. If X ly-= Sbt,
then Aut(SYY, 1) € Aut(SYY), and the pair (SF, Aut(S™L)) is as in Theorem 1.1(5¢) by Lemma 4.11.
Now, suppose that 7 is not an isomorphism. Since 7t: X — P! is an Aut(X, 7t)-Mori fibre space, there is
an element of Auty(X,7r) that permutes the components of at least one singular geometric fibre. If X/ P! has
at most two singular fibres, then the fact that 7 is not an isomorphism implies that ¥ = IF,, and Lemma 6.1
implies that X is a del Pezzo surface of degree 6. Then Aut(X, ) € Aut(X) and we have already discussed
the pair (X, Aut(X)) above. If X/IP! has at least three singular fibres, recall that Auti(X, 7t) is infinite by
hypothesis, and now Lemma 6.2 implies that the pair (X, Aut(X)) is as in Theorem 1.1(6). O

7. Classifying maximal algebraic subgroups up to conjugacy

In this section we classify up to conjugacy and up to inclusion the maximal infinite algebraic subgroups of
Biry (IP?). For this, we first need to introduce the so-called Sarkisov program. As before, k is a perfect field
throughout the section.

7.1. The equivariant Sarkisov program

The Sarkisov program is an algorithmic way to decompose birational maps between Mori fibre spaces
into nice elementary birational maps between Mori fibre spaces. In dimension 2, it is classical and treated
exhaustively in [Isk96], and from a more modern point of view in [LZ20]. In dimension 3, it is developed
in [Cor95] over algebraically closed fields of characteristic zero. A non-algorithmic generalisation to any
dimension > 2 is given in [HM13] over C.

For surfaces, the Sarkisov program over Kk is the Gal(E/k)—equivariant classical Sarkisov program over k.
For an affine algebraic group G, we can consider two equivariant Sarkisov programs:

e The G(k)-equivariant Sarkisov program over k; the links are G(k)-equivariant birational maps
between G(k)-Mori fibre spaces. If G = Aut(X) is one of the groups from Theorem L1, it is the tool
to give us the conjugacy class of G(k) inside Biry (IP?).

e The G-equivariant Sarkisov program is the G x Gal (K/ k)-equivariant Sarkisov program over k; the
links are G-equivariant birational maps between G-Mori fibre spaces. If G = Aut(X) is one of the
groups from Theorem L1, it is the tool to give us the morphisms G — Biry (IP?) up to conjugation
by an element of Biry (IP?).

As part of Theorem 1.2, we will prove that these two classifications are not the same if k has an extension of
degree 2 or 3.

Over C and for connected algebraic groups G, the G-equivariant Sarkisov program in dimension > 2 is
developed in [Flo20].

Definition 7.1. Let G be an affine algebraic group. We now define G(k)-equivariant Sarkisov links. The
notion of G-equivariant Sarkisov links is defined analogously by replacing G(k) with G, bearing that by
G-orbit we mean a G- x Gal(k/k)-orbit.

A G(K)-equivariant Sarkisov link (or simply G(k)-equivariant link) is a G(k)-equivariant birational map
@: X --> X’ between G(k)-Mori fibre spaces 7t: X —> B and 7’: X’ — B’ that is one of the following:

X/ Y X X = X'

@ - X / X % X‘ ln [ l /

. T

x’ D QRS = . XX B B B
B B=8 B *
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(type I) B is a point, B is a curve, ¢ !: X’ — X is the contraction of the G(k)-orbit of a curve in X’ and
n@~!: X' — B is a G(k)-equivariant rank 2 fibration (see Definition 2.11). We call ¢ a link of type I

(type II) Either B = B’ is a curve or a point, both 7 and #’ are contractions of the G(k)-orbit of a curve and
n1: Y — B is a G(k)-equivariant rank 2 fibration. We call ¢ a link of type II

(type III) B is a curve, B’ is a point, ¢ is the contraction of the G(k)-orbit of a curve and W'¢: X — Bisa
G(k)-equivariant rank 2 fibration. We call ¢ a link of type IIL Its inverse is a link of type L

(type IV) B’ and B’ are curves, ¢ is an G(k)-equivariant isomorphism not preserving the conic fibrations X /B
and X’/B’, and X/ is a G(k)-equivariant rank 2 fibration. We call ¢ a link of type IV.

For G = {1} we recover the classical definition of a Sarkisov link over k.
The statement of Theorem 7.2 for G = {1} is [Isk96, Theorem 2.5]. Its proof can be made G(k)-equivariant
and G-equivariant because for a geometrically rational variety X, the G x Gal(k/k) has finite action on

NS(Xj) and G(k) has finite action on NS(X).

Theorem 7.2 (Equivariant version of [[sk96, Theorem 2.5]). Let G be an affine algebraic group. Any G(Kk)-
equivariant birational map between two geometrically rational surfaces that are G(k)-Mori fibre spaces is the
composition of G(k)-equivariant Sarkisov links and isomorphisms.

The same statement holds if we replace G(k) by G.

To study conjugacy classes of the automorphism groups of the surfaces in Theorem 1.1, it therefore suffices
to study equivariant Sarkisov links between them.

Remark 7.3. Definition 7.1 implies the following properties. Let ¢: X /B --> X’/B’ be an equivariant link.

(1) If ¢ is a link of type I, then B is a point, X/B is an equivariant rank 1 fibration above a point and
X'/B is an equivariant rank 2 fibration above a point. Equivariant rank s fibrations above a point
are in particular (non-equivariant) rank r fibrations above a point for some r > s, see Definition 2.11,
and so they are del Pezzo surfaces, see Definition 2.4. So both X and X’ are del Pezzo surfaces. By
symmetry, the same holds for a link of type IIL

(2) If ¢ is a link of type Il and B = B’ a point, then X/B and X'/B are equivariant rank 1 fibrations
above a point, and Y /B is an equivariant rank 2 fibration above a point. Again, in particular, X, X’
and Y are all del Pezzo surfaces.

Many of the surfaces in Theorem 1.1 are equivariant Mori fibre spaces with respect to their automorphism
group, as well as to the group of k-points of their automorphism group, and the restrictions for the possible
Auty (X)-links are also restrictions on the possibilities of Aut(X)-links.

We now classify the Auty (X)-equivariant links starting from a surface X from Theorem 1.1 in the order

(1-3), (5a), (5(b)ii-5(b)iv), (5(b)i), (4) and (6).

7.2. Auty(X)-equivariant links of del Pezzo surfaces of degree 8 and 9

We show that there are no Auty(X)-equivariant links starting from a Auty (X)-Mori fibre space X that is
a rational del Pezzo surface of degree 8 or 9.

Lemma 7.4. (1) Auty (IP?) does not have any orbits in P> with d € {1,...,8} geometric components that are
in general position.
(2) For X = TFy and X = QF, Auty (X) does not have any orbits in X withd € {1,...,7} geometric components
that are in general position.

Proof. (1) Lemma 2.6 implies the claim for 1 < d < 4. If k is infinite and if Auty (IP?) had an orbit with
5 < d < 8 geometric components, then a?' = id for any a € Auty (IP?), which is false. Suppose that k is
finite and let g := |k| > 2. Let p = {py,...,p.} be a point in IP? of degree ¢ > 5 and L/k be the smallest
field extension such that py,...,p, € P?(L). We view Auty (IP?) as an abstract subgroup of Aut; (IP?), which
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gives us

Auty (IP?
1=y St ()] = Staby o (p1)] = e el
Moreover, we have | Auty (P?)| = g3(¢> — 1)(q> — 1) > ¢° = 8, and hence the Aut; (IP?)-orbit of p in P
has > 9 geometric components.

(2) For X = IFy and d = 1,2, the claim follows from Remark 2.7. For X = QF, the claim follows from
Remark 2.7 for d = 1, from Lemma 3.6 for d = 2. Let L/k be a quadratic extension such that QF ~ P} x P},
and by Lemma 3.5 we have Auty (QF) ~PGL,(L) x Z/2. For 3 < d < 7, we can repeat the argument of (1)
for IFy and Q' by using that for a finite field k with g := |k| > 2 we have

| Auty (Fp)| = 2|PGL, (k)|* = 29°(¢° = 1)* > 8
| Aut (QF)| = 2| PGL,(L)| = 24°%(g* — 1) > 8.

Lemma 7.5. There is no Auty (X )-equivariant link starting from X = P2, X = QL or X = IF.

Proof. Since tkNS(X)Au(X) = 1 the only Auty (X)-equivariant links starting from X are of type I or IL
Moreover, Auty (IFy)-equivariant links starting from IF, can be treated like the ones starting from Q because
NS(IFy) A (o) — Z(f, + f,) = NS(QL), where fi, f, are the fibres of the two projections of IF.

By Remark 7.3, an Auty (IP?)-equivariant link of type I or II starting from IP? blows up an orbit with
< 8 geometric components that are in general position, and by Lemma 7.4(1), there is no such orbit. An
Auty (X)-equivariant link of type I or II starting from X = QF or X = IF, blows up an orbit with < 7
geometric components that are in general position, and by Lemma 7.4(2), there is no such orbit. O

7.3. Auty(X)-equivariant links of del Pezzo surfaces of degree 6 (5a)

These del Pezzo surfaces are Mori fibre spaces. We will show that there are no Auty (X)-equivariant links
starting from X.

Recall from Lemma 4.6 and Lemma 4.7 that there is a quadratic extension L/k such that X; is obtained
by blowing up a point p = {p,ps,p3} in IP? of degree 3. We denote by 7: X; —> IP% the blow-up of p.
Recall that 77 Gal(L/k)rc~! acts rationally on IP?; its generator g is not defined at p and sends a general
line onto a conic through p. Recall that if X is rational, it has a rational point by Proposition 2.9.

Lemma 7.6. Let X be a del Pezzo surface of degree 6 from Theorem 1.7(5a) and fix s € X (k). The map
Auty (P?,p1,p, p3) V9 — X(k), a1 (a(n(s) = (n" am)(s)
is bijective.

Proof. The map is injective, because these automorphisms already fix p1, p,, p3. For any t € X(k), we have
7t(t) € P#(L), and by Lemma 2.6 there exists a unique element of @; € Auty (P, p;,py,p3) such that
a;(1(s)) = t. Then 7' a7t € Auty(X) and its conjugate by the generator of Gal(L/k) is still contained in
Auty (X) and preserves each edge of the hexagon, hence l,l)gatl,bgafl € Aut; (IP?, py,py, p3). The automor-

phism z,bgatl,bgat_l fixes py,pa, p3,7(1), so it is the identity, and therefore a; € AutL(IPz,pl,pz,p3)<‘/’g>. O

Lemma 7.7. Let X be a del Pezzo surface of degree 6 from Theorem 1.7(5a). Then |X (k)| = 7 if |k| > 3 and
|X (k)| = 3 if |k| = 2. Moreover, in the latter case the blow-up of X (K) is a del Pezzo surface.

Proof. If k is infinite, then P2(k) is dense in IP?(k), and hence X (k) is infinite. If k is finite, pick a rational
point 7 € X (k). There exists a link of type II ¢p: X --> Q that is not defined at r and contracts a curve with
three geometric components passing through 7, see Figure 2. If Z — X is the blow-up of r and L/k a
quadratic extension such that Q) = IPI{ X IP%, we have

> +1=[P'(L)] = |Q" (k)| = |Z(k)| = |X (k)| = 1 + [IP! (k)| = [X (k)| +q
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because the exceptional divisor of r is isomorphic to IP. It follows that |X (k)| =g>—q+1=¢g(q—1) + 1.

Suppose now that |k| = 2 and so |X (k)| = 3. Then X (k) is the image of the five points Q' (k) by ¢, and
it suffices to show that the blow-up of Q% (k) is a del Pezzo surface. We write L = k(a), where a> +a+1 = 0.
The set QL (k) consists of

([1:0],[1:01), ([0 1],[0 = 11), ([1: 1], [1 = 1]), ([1 ], [1 = ?]), ([1 2 %], [1 : a])
and we check that they are not contained in any fibre of Q% nor in any bidegree (1,1)-curve. This yields the
claim. O

Lemma 7.8. Let X be a rational del Pezzo surface as in Theorem 1.7(5a).

(1) If |k| = 3, then X does not contain any Auty (X)-orbits with < 5 geometric components.
(2) If |k| = 2, there is exactly one Auty (X)-orbit of X with <5 geometric components, namely X (k).

Proof. Since Gal(k/k) acts transitively on the edges of the hexagon, any orbit with < 5 geometric components
is outside of it. Let D < IP% be the image of the hexagon by 7.

Suppose that |k| > 3. By Lemma 7.7, we have |X(k)| > 7, so Lemma 7.6 implies that the group
Auty (P2, p1,py, p3)¥e has > 7 elements. It acts faithfully on IP?\D, hence any Aut; (P2, py,p,, p3)¥s’-
orbit in P?\D has > 7 geometric components. It follows that Aut; (X) has no orbits with < 5 geometric
components on X.

Suppose now that |k| = 2 and let L/k be the extension of degree 2. We show that 7t Auty (X)n~!-orbit
of any point in IP?\D has either 3 or > 6 elements, and that 7t(X(k)) is the only orbit with 3 elements. Let
Pp€ Bir (IP?) be the quadratic involution from Lemma 4.6(4) and Lemma 4.7(4) that lifts to an automorphism
Pp = n’l(ppn on X over k inducing a rotation of order 2 on the hexagon of X. By Lemma 4.6(4) (resp.
Lemma 4.7(4)) the group

Auty (P2, py, pa, p3) e x {pp)
is isomorphic to a subgroup of Auty(X). Lemma 7.7 and Lemma 7.6 imply that AutL(IPZ,pl,pz,p3)<ll’g>
has 3 elements, and it acts faithfully on IP%\D. Over K, the involution @p is conjugate to the involution
[x:p:z]-->[yz:xz:xp], which has a unique fixed point in ]P%, namely [1:1:1], because |k| = 2. Thus
¢p has a unique fixed point r € IP%. Then 7 := 7t(r) is the unique fixed point of @p on X, and it is
k-rational. We have shown that every Auty (X)-orbit in X(L)\X (k) has > 6 elements. The set X (k) is an
Auty (X)-orbit with 3 elements. O

Lemma 7.9. Let |k| = 2 and let X be a del Pezzo surface from Theorem 1.1(5(a)i). Any Auty (X)-invariant link
@: X --> Y is a link of type II not defined at X(K), and Y is a del Pezzo surface as in Theorem 1.7(5(b)ii).

Proof. We have X (k) = {ry,1,,73}, see Lemma 7.7, which is an Auty(X)-orbit by Lemma 7.8. For a point
s€ S = {n(r),n(ry), n(r3),p1,p2 p3} < P, we denote by C; the strict transform of the conic in IP?
passing through the five points in S\{s}, and let Ly, be the strict transform of the line in IP% through
7e(r;),7(r;), i # j. The curves
Cpi=Cp, v, uC,
and L;:=L,, UL, UL, ,,i=1,23, are irreducible over k. The curve C, is Auty (X)-invariant, while
Dy,D;y,D3 and Ly, Ly, L3 make up an Auty (X)-orbit, see Lemma 4.6(4) for the generators of Auty (X).
Let 7: Z — X be the blow-up of X(k), which is Auty(X)-equivariant by Lemma 7.8. The surface
Z is a del Pezzo surface of degree 3 by Lemma 7.7. There is at most one way to complete 7 into an
Auty (X)-equivariant link, because Z is an Auty(X)-equivariant rank 2 fibration, and hence there are at
most two extremal Auty (X)-equivariant contractions from Z. However, any conic fibration Z — P! is

given by the fibres of the strict transforms of conics through four fixed points in S or the strict transform of
lines through one point in IP%, but none of them are Auty (X)-equivariant. So the link ¢ has to be of type IIL

D1 = Crl U errs, D2 = Crz U Lr1r3; D3 = CT3 V Lrlrz

3)
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The only Auty(X) x Gal(k/k)-orbits of (—1)-curves on Zi with < 6 geometric components which
are pairwise disjoint are the exceptional divisors of # and the strict transform of C,. The contraction
"1 Z — Y of the latter induces an Auty (X)-equivariant link X --> Y to a del Pezzo surface Y of degree 6.

Since the strict transforms of Cp,- and er on Zi are disjoint for i,j = 1, 2, 3, the hexagon of Y consists
in the curve 1'(D;) U 1'(D;) U i’ (D3). Each component #/(D;) of this union is k-rational, so Gal(k/k)
acts as rotation of order 2 on the hexagon of Y, i.e. as in Figure 1(4). By Lemma 4.10, Y is described in
Theorem 1.1(5(b)ii). O

Proposition 7.10. Let X be a del Pezzo surface from Theorem 1.7(5a). Then, if |k| = 3, there are no Auty (X)-
equivariant links starting from X. If |K| = 2, the only Auty (X)-equivariant link is the one from Lemma 7.9.

Proof- Since rkNS(X) = 1, only Auty (X)-equivariant links of type I or II can start from X. By Remark 7.3,
they are not defined at an orbit with < 5 geometric components. By Lemma 7.8, such an orbit only exists
for surfaces X as in Theorem 1.1(5a) if |k| = 2. The claim now follows from Lemma 7.9. i

7.4. Auty(X)-equivariant links of del Pezzo surfaces of degree 6 (5(b)ii)-(5(b)iv)

Any del Pezzo surface X of degree 6 from Theorem 11(5(b)ii)-(5(b)iv) is a Auty (X)-Mori fibre space, and
we show that there are no Auty (X)-equivariant links starting from X.

Lemma 7.11. Let X be a del Pezzo surface of degree 6 from Theorem 1.1(5(b)ii). Then any Auty (X)-orbit on X has
at least 6 geometric components.

Proof. Let t: X —> TF be the contraction of a curve in the hexagon onto the point p = {(p1,p1), (P2, p2)}
of degree 2 with p; = [a; : 1], i = 1, 2. Since Auty (X) acts by Sym; xZ/2 on the hexagon of X, any orbit
with < 5 geometric components is outside of the hexagon. Let D — IF be the image by 7 of the hexagon,
which contains p, and consider the action of 7t Auty(X)nw~! on Iy\D. The elements of Auty (P',p;,p)
are exactly those of the form

[u:v]— [(b(aj +ap) + ¢)u —bajav : bu +cv], [b:c]eP(k)

and thus

| Auty (P, p1,p2)” = [P (k)|? > 3% = 9.
Any non-trivial element of Auty (IP, p;,p,) has precisely two fixed points in P!, It follows that the stabiliser
in Auty (P!, p1,p2)? of any point p3 € (IFy);\Dy is trivial and hence

|Auty (P!, py, p2)*-orbit of ps in (Fp\D)| = | Auty (P!, py, p2)*| = 9.

We have shown that Auty (P!, py,p,)? has no orbits on IFy\D with < 5 geometric components, and hence
that 7t Aut (X)7c~! has not orbits on IFy\D with < 5 geometric components. O

Remark 7.12. Let p = {p;,p,,p3} be a point of degree 3 in P?. Fix a point r € IP?>(k). In particular,
the point r is not collinear with any two components of p, and so Lemma 2.6 implies that the map
Auty (P, p1,pa,p3) — P?(k), @ — a(r) is a bijection.

Lemma 7.13. Let X be a del Pezzo surface of degree 6 from Theorem 1.7(5(b)iii). Then any Auty (X)-orbit on X
has > 6 geometric components.

Proof. Since Auty(X) contains an element inducing a rotation of order 6 on the hexagon of X, the hexagon
does not contain Auty (X )-orbits with < 5 geometric components. Consider the contraction 7: X — P2
of a curve in the hexagon of X onto the point p = {p;, ps,p3} of degree 3, let D — IP? be the image of the
hexagon and consider the action of Auty (IP?,p1,p,,p3) © wAuty (X)r~! on P?\D. Remark 7.12 implies
that | Auty (IP%, py,p2, p3)| = [P?(k)| > 7. The stabiliser of Auty(IP?,p1,p,,p3) of any point in (IP?\D)y-
is trivial, so in particular all the Auty (IP?,p;, py, p3)-orbits in IP?\D have > 7 geometric components. It
follows that 7t Auty (X)7e~! has no orbits in IP?\D with < 5 geometric components. O
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Lemma 7.14. Let X be a del Pezzo surface of degree 6 from Theorem 1.7(5(b)iv). The blow-up of X in any finite
Auty (X)-orbit is not a del Pezzo surface.

Proof: Let 71: X —> IP? be the contraction of a curve C in the hexagon of X onto the point p = {p;,ps, p3}
of degree 3. By hypothesis, the splitting field L/k of p satisfies Gal(L/k) ~ Symj, so k is not finite [Mor96,
Theorem 6.5]. Remark 7.12 implies that Auty (IP?,py, py, p3) is infinite. Let D < IP? be the image by 7t of
the hexagon and consider the action of Auty (IP?,p;,ps,p3) © mAuty(X)m~! on IP?\D. The stabiliser of
Auty (IP?,p1,py, p3) of any point in (IP?\D)y is trivial, and hence any Auty (IP?, py, p,, p3)-orbit on P?\D
has infinitely many geometric components. It follows that any Auty (X)-orbit with finitely many geometric
components is contained in the hexagon of X, and so its blow-up is not a del Pezzo surface. il

Proposition 7.15. There is no Auty (X)-equivariant link starting from a del Pezzo surface X of degree 6 as in
Theorem 1.1(5(b)ii) — (5(b)iv).

Proof. Since rtkNS(X)Au(X) — 1 the only Auty (X)-equivariant links starting from X are of type I or II,
and by Remark 7.3, they are not defined in an Auty(X)-orbit with < 5 geometric components and its
blow-up is a del Pezzo surface. If X is as in Theorem 1.1(5(b)ii)-(5(b)iii) no such orbit exists respectively by
Lemma 7.11 and Lemma 7.13. If X is as in Theorem 1.1(5(b)iv), then the blow-up of any such orbit is not a del
Pezzo surface by Lemma 7.14. U

7.5. Auty(X)-equivariant links of del Pezzo surfaces of degree 6 (5(b)i)

Studying Auty (X)-equivariant links for such a del Pezzo surface is a bit more involved. We will show that
there are equivariant links starting from X only if |k| = 2 and provide examples. Recall Lemma 4.1 for a
description of X.

Lemma 7.16. Fix homogeneous coordinates in P?> and consider the subgroup H — PGL3 (k) of permutation
matrices. If the H-orbit O of a point in {xyz # 0} = IP? has < 5 geometric components, it is one of the following:

M O={[1:1:1]},

2) O={[1:a:a%],[1:a°:a]} witha’ =1,

(3) O={[l:a:a],[a:a:1],[a:1:a]} for someack*.
Proof- The H-orbit Oy of a point p := [1:a:b] € {xyz # O} is contained in the set

{[1:a:b],[1:b:a],[a:b:1],[b:a:1],[a:1:b],[b:1:a]}
—{[1:a:b),[1:b:a],[1:a b:a ] [1:ab ib7 ), [1:a  rab),[1: 07 sab™ ]}

If p is an H-fixed point, we have O = O = {[1 : 1 : 1]}. We check that if |Of| = 2, then we have
Og = {[1:a: az], [1 ca?: al} with ad=1.1f ‘Oﬂ = 3, then Of = {[1:1:¢],[1:c:1],[1: c 1 cil]} for
some ¢ € k*. We also check that 4 < |Of| < 5 is not possible. O
Lemma 7.17. Let X be the del Pezzo surface of degree 6 from Theorem 1.7(5(b)i).

() If |k| = 4, then X contains no Auty (X)-orbits with < 5 geometric components.

2) If |k| = 3, then Auty(X) has exactly one orbit on X with <5 geometric components, namely the orbit
{(J1: £1:F1],[1: £1:F1])} with 4 elements. Iis blow-up is not a del Pezzo surface.

(3) If |k| = 2, then Auty(X) has exactly two orbits on X with <5 geometric components, namely the fixed
point ([1:1:1],[1:1:1]) and the point {([1:C:C?],[1:C*:C]), ([1:C?:C),[1:C:C?])} of degree
2, whereC ¢k, {3 =1.

Proof: By Lemma 4.1(2), the group Auty(X) acts transitively on the edges of the hexagon, so the hexagon
does not contain Auty (X)-orbits with < 5 geometric components. We pick three disjoint edges of the
hexagon and consider their contraction 7t: X — IP? onto the coordinate points, which maps the hexagon
onto the curve {xyz = 0}. It remains to study the 7t Auty (X)7t~!-action on {xyz # 0}. The stabiliser
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subgroup of the subgroup (k*)? < 7t Auty (X))t ~! of diagonal elements of any point in {xyz # 0} is trivial.
It follows that the (k*)2-orbit of any point in IP? has > 9 geometric components if [k*| > 3, proving (1).
Let 2 < |k| < 3 and recall from Lemma 4.1(2) that 7t Auty (X)w~! ~ (k*)? x (H x Z/2), where H =
7Symy 7!
(x,9) > (4, 1)
If a 7 Auty (X) 7! -orbit in {xyz # 0} has < 5 geometric components, then this holds in particular for

is the group of permutation matrices in Auty (IP?) and Z/2 is generated by the involution

an H-orbit O, which is one of the following by Lemma 7.16

@) O={[1:1:1]}
(i) O={[1:a:a%],[1:a%:a]} witha® =1,
(i) O={[1:a:a],[1:1:a"1],[1:a!:1]} for some a e k*.

(3) If |k| = 2, then 7t Auty (X)n~! ~ (H x Z/2) and the point [1: 1 : 1] is a fixed point and is equal to (iii)
and (ii) for a = 1. If a ¢ k and a® = 1, the point {[1 : a: a%],[1:a?: a]} of degree 2 is a 7w Auty (X )7~ ! -fixed
point.

(2) If |k| = 3, then the 7 Auty (X)7c~!-orbit of [1:1:1] is the set O = {[1: £1 : +1]}, which has 4
elements. The 7w Auty (X)7t~!-orbit of a point in (ii) or (iii) is either the orbit of [1 : 1 : 1] or has > 6
geometric components. The line {y = z} = P? contains [1:0:0],[1: —1:—1],[1:1:1], so the blow-up of
X in 7=1(O) is not a del Pezzo surface. O

Lemma 7.18. Let |k| = 2 and let X be the del Pezzo surface of degree 6 from Theorem 1.7(5(b)i). The blow-up of X
in any Auty (X)-orbit with < 5 geometric components does not admit a Auty (X)-equivariant fibration over P,

Proof. Let t: X —> IP? be the blow-up of the coordinate points p;,p;,p3. By Lemma 7.17(3), the only
Auty (X)-orbits on X with < 5 geometric components are a fixed-point r € X(k) and a point g € X of
degree 2, both not on the hexagon.

Let Y — X be the blow-up of 7 and let Y /P! be a conic fibration. Its fibres are either the strict transform
of the lines through one of py,p,,ps3,7, or the strict transform of the conics through py,p,, ps,r. Since
Auty (X) ~ Sym, xZ/2 acts transitively on the edges of the hexagon of X by Lemma 4.1 and the quadratic
involution in 7t Auty (X)7t~! sends a general line through r onto a conic through py,p,, 3,7, it follows that
Y /P! is not Auty (X)-equivariant.

Let Y —> X be the blow-up of ¢ and Y/IP! a conic fibration. Its fibres are the strict transforms of
the conics through g and two of py,p;, p3 or of a line through one of py,p,, p3. Again, as Auty (X) acts
transitively on the edges of the hexagon of X, it follows that Y /P! is not Auty (X)-equivariant. g

Example 7.19. Let 71: X —> IP? be the blow-up of the coordinate points p;,p,,p3 of IP?. If |k| = 2, then
by Lemma 4.1(2) the group 7w Auty (X)rt~! ~ Sym, xZ/2 is generated by
a:[x:y:z]l—[x:z:y], Bilx:y:izl—[ziy:x], o:(xy)>(=,—)

’

R |

Q| =

(1) If char(k) = 2, the birational map ¥, : IP? --> IF,
Profxcyiz]e ([x—z:y—z] [p(x —2) 1 x(y — 2)]),
Ebfl t ([uo : ur], [vo : v1]) > [uo(uo +uy)vy = g (ug + 1y )vo : uguy (vo +v1)]

is not defined at p;, s, p3,[1:1: 1] and contracts the 7t Auty (X )7~ !-orbit {(y—2z)(x—z)(x—p) = 0}.
If |k| = 2, it lifts to an Auty(X)-birational map

Q1= lplT(Z X --> IFO
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not defined at 7=!([1:1:1]), because
prag;r s ([ug: uy], [vo: va]) = ([wo + 1 s 1], [vo + vy 1)),
Ppyr s (Do ], [vo: va]) = ([mo s o + wr], [vo s v +v1]),
prow; ([uo:w ], [vo : v1]) = ([vo s 1], [uo 2 1))

are automorphisms of IFy. So ¢7: X --> [ is an Auty(X)-equivariant link of type IL

(2) Let char(k) = 2 and ¢ € k\k, 3 =1 and g := {[1:C: C?],[1 : % : C]}. The birational map
l,bz: 1P2 == IPO

Py: [x:yiz]es ([xp+xz+vz:9(x+y+2)] [xp +xz2+vz:2(x + 9+ 2)],
‘/’2_1 t ([uo : ur ], [vo 2 v1]) > [uovo(u1vo + uovy + uyvy) 1 ugvg(uyvo + tovy + gvy) :
uovy (U170 + vy + tovo)]

is not defined at pq,p;, p3,q and contracts the rational curves {(x + v + z)(xy + xz + yz) = 0}, and
the conic {y? + vz + 2% = 0} onto ¢’ := {([1:C],[1:C%]),([1:C%],[1:C])}. Let 51: X’ —> TFy be
the blow-up of ¢’, which is a del Pezzo surface of degree 6 as in Lemma 4.10 (Figure 1(4)). If |k| = 2,
the contracted curves are Auty (X)-invariant and ¢, lifts to an Auty (X)-equivariant birational map

@ri=1" " X > X
not defined at 7t~ (q). Consider the conjugates
poapy ' : (g ], [vo:
P2y s ([ug : url, [vg v
a0ty s ([ug 2 ug] [vg : v1]) = ([uy < o), [vy : wg)).

Then ybzaz,bz_l,gbzagbz_l € Auty(IFy) exchange the geometric components of g’ and exchange or

11

)
[vo:vi]) = ([vo: v1], [uo : u1]),
| 1]) = ([uo = ur], [ugvo + (u1vo + ugvy) : uy vy + (uovy + u1vg)]),

preserve the rulings of IFy, hence lift to elements of Auty (X’). The birational involution 1,1, !
preserves the first ruling of IFy and exchanges its sections through the components of g4’, and
it contracts the fibre above {[1 : C],[1 : C?]} onto ¢’, so it lifts to an automorphism of X’. So
@y: X --> X' is an Auty(X)-equivariant link of type II.

Lemma 7.20. Let |k| = 2 and let X be the del Pezzo surface of degree 6 from Theorem 1.7(5(b)i). Any Auty (X)-
equivariant link of type II starting from X is one of the links @1, @, in Example 7.19, up to automorphisms of the
target surface.

Proof. Let @ be an Auty (X)-equivariant link of type II starting from X and let #7: Y — X be the blow-up
of its base-locus. Then Y — # is an Auty(X)-equivariant rank 2 fibration, and by Remark 7.3 the orbit
blown-up by 7 has < 5 components. Since rk NS(Y)A"%(X) = 2 there are exactly two extremal Auty (X)-
equivariant contractions starting from Y, namely the birational morphisms 7 and #’. It follows that the orbit
blown up by # determines ¢ up to automorphisms of X’. By Lemma 7.17(3), the only Auty (X)-orbits on X
arep:= ([1:1:1],[1:1:1])and q:= {([1:C:C?,[1:C>:C]),([1:C%>:C),[1:C:C*])}, Cek, 3 =1.
The birational maps ¢;: X --> [Fy and ¢;: X --> X’ in Example 7.19 are Auty (X)-equivariant links of type
II with base-points p and g, respectively. O

Proposition 7.21. Let X be the del Pezzo surface of degree 6 from Theorem 1.15(D)i).
(1) If k| = 3, there is no Auty (X)-equivariant link starting from X.
2) If |k| = 2, any Auty (X)-equivariant link starting from X is one of the Auty (X)-equivariant links of type
Il in Example 7.19, up to automorphisms of the target surface.

Proof. Since Tk NS(X)Auk(X) = 1 the only Auty (X)-equivariant links starting from X are of type I or II,
and by Remark 7.3, they are not defined in an Auty(X)-orbit with < 5 geometric components and the
blow-up of this orbit is a del Pezzo surface.
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If |k| > 4, no such orbits exist by Lemma 7.17(1). If |k| = 3, the blow-up of any Auty(X)-orbit X with
< 5 geometric components is not a del Pezzo surface by Lemma 7.17(2).

If k| = 2, Lemma 7.18 implies that the blow-up of any Auty(X)-orbit on X with < 5 geometric
components does not admit an Auty (X)-equivariant conic fibration. In particular, there is no Auty (X)-
equivariant link of type I starting from X. By Lemma 7.20, any Auty (X)-equivariant link of type II starting
from X is one of the birational maps in Example 7.19. U

7.6. Auty (X, m)-equivariant links of conic fibrations
We compute all Auty (X, 71)-equivariant links starting from the conic fibrations listed in Theorem 1.1.

Lemma 7.22. Let t: X —> P! be a conic fibration from Theorem 1.1(6a) such that k* /p, (k) is trivial. Let
7': Y —> P! be a conic fibration such that Aut(Y /1) is infinite. Suppose that there is a Auty (X, 70) -equivariant
link ¥: X -->Y of type II. Then Y ~ X.

Proof. The link 1) preserves the set of singular fibres, of which there are at least 4, and it commutes with
the Gal(E/k)—action on the set of geometric components of the singular fibres. It follows from Lemma 2.8
that Y is obtained by blowing up a Hirzebruch surface. Since Y is an Auty (X, r)-Mori fibre space by
definition of an equivariant link, the subgroup Auty (X, ) € Auty (Y, ') contains an element exchanging
the components of a singular geometric fibre. Moreover, since Aut(Y /7) is infinite by hypothesis, Lemma 5.2
implies that there is a birational morphism #’: Y — IF,, blowing up points qy,...,g5 € S,, such that
>i_1deg(q;) = 2m. By Lemma 5.4(2) and since k*/u, (k) is trivial, we have Auty (X /n) = (@) ~ Z/2
for some involution ¢. By Lemma 5.4(3) it has a fixed curve in X, which is the strict transform C of a
hyperelliptic curve C’ in TF, (the irreducible double cover of IP') ramified at p,...,p, and disjoint from
S_,. It follows that C' ~ 2S_, + 2nf = 2S,, and hence C> = —4n since the strict transform of S, is a
(—n)-curve on X. An Auty (X, 7)-orbit contains either 1 or 2 points in the same fibre. The base-points
of the Auty (X, 7v)-equivariant link i are therefore necessarily contained in the Auty (X, 7t)-fixed curve C.
Since C is a double cover of P!, it follows that C?> = 1)(C)2. The map p1p~! € Auty (Y /n’) exchanges the
components of each singular fibre, so it also exchanges the two special sections of Y. By Lemma 5.4(3) it fixes
a curve D c Y, which satisfies D?> = —4m with the same argument as above. It follows that C = »)~1(D),
and now —4n = C2 = D? = —4m implies n = m. Since 1 induces the identity on P!, we conclude that

{91,--,as} = {p1,--- pr}- O

Lemma 7.23. Suppose that t: X —> P is a conic fibration as in Theorem 1.74) or (6). Then there are no
Auty (X, 70) -equivariant links of type I, I11 and IV starting from X. Moreover,

(1) if X =1, n > 2, there are no Auty (IF,,, 1t,,) -equivariant links of type II starting from .

(2) If X is as in Theorem 1.71(6a) and k*/pu,(K) is non-trivial, there are no Auty (X, 1) -equivariant links of
type II starting from X.

(3) If X is as in Theorem 1.16D), there are no Auty (X, 1) -equivariant links of type II starting from X.

Proof. Since NS(X)Au(Xm) ~ 72 no Auty (X, 7)-equivariant links of type I can start from X. An
Auty (X, )-link of type III can only start from a del Pezzo surface (see Remark 7.3), so not from X.
Since Auty (X, ) = Auty(X), any automorphism of X preserves the conic bundle structure, so there are no
Auty (X, 17)-equivariant links of type IV starting from X.

(1) Suppose that there is a Auty (IF,)-equivariant link ¢: IF, --> Y of type I, and let B = [, be the orbit
of base-points and d > 1 its number of geometric components. We have | Auty (I, /7t,)| = |k"*!| = 23 by
Remark 5.1, so the Auty(IF,/7t,,)-orbit of any point outside the special section has at least two geometric
components in the same geometric fibre. If follows that B < S_,, and hence 1 is a birational map from I, to
IF,; 4 and sends S_,, onto S_(;,14). Let P € k[zp,2;]4 be a homogeneous polynomial defining B. Then 1 is
of the form

Y: B, > g, [¥o:v1520: 21] = [Q(20,21)v0 : R(20,21)v0 + P(20,21)¥1520 = 21]
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for some homogeneous Q,R € k[z(,z;] of degree d. For any a € Auty(F,/n,) ~ k[zp,z], we have
pap~! e Auty (F,,4/7,14), and we compute that it implies A := g € k* and hence da € k[zg, 21 ], (see
Remark 5.1), contradicting d > 1.

(2) If 7: X —> P! is a conic fibration as in Theorem 11(6a) and the torus subgroup k*/u,(k) =
Auty (X/m) is non-trivial, then the Auty (X /7)-orbit of a point on a smooth fibre outside the two (—n)-
sections has at least two geometric components in the same smooth fibre. Since Z/2 < Aut (X /)
exchanges the two (—n)-sections, the same holds for any point contained in them. It follows that there are
no Auty (X, 71)-equivariant links of type II starting from X.

(3) Let 7t: X —> IP! be a conic fibration as in Theorem 11(6b). Consider the subgroup SO (k) of
Auty (X /m) fixing the geometric components of the special double section E from Lemma 5.10(2). Let us
show that |SO™ (k)| > 2. From Lemma 4.14 we obtain:

e If L, L are not k-isomorphic, then k is infinite, and so SO (k) ~ k* is infinite.

o If L = L', then SOVt (k) ~ {@ € L* | @a$ = 1}, where g is the generator of Gal(L/k). If |k| > 3,
then +1 € SOV (k), and if |k| = 2, then |[SOVE (k)| = |L*| = 3.

In any case, it follows that the Auty (X /7)-orbit of a point on a smooth fibre outside E has at least two

geometric components in the same smooth fibre. Since Auty (X /7) contains an involution exchanging the

geometric components of E by Lemma 5.10(2), the same holds for any point in E. It follows that there are no

Auty (X, v)-equivariant links of type II starting from X. O

7.7. Proof of Theorem 1.2, Corollary 1.3 and Theorem 1.4

Let G be an affine algebraic group and let X/B be a G-Mori fibre space that is also a G(k)-Mori fibre
space. A G-equivariant birational map is in particular G(k)-equivariant, hence if X is G(k)-birationally
(super)rigid it is also G-birationally (super)rigid.

On the other hand, G-birationally (super)rigid does not imply G(k)-birationally (super)rigid: the next
lemma shows that the del Pezzo surface X of degree 6 obtained by blowing up IP? in three rational points
is Aut(X)-birationally superrigid and Example 7.19 shows that X is not even Aut; (X)-birationally rigid if
k| = 2.

Lemma 7.24. Any del Pezzo surface X of degree 6 is Aut(X)-birationally superrigid.

Proof. The surface Xj is isomorphic to the del Pezzo surface obtained by blowing up three rational points
in IP%. In particular, rk NS(Xg)AutE(X) =1 by Lemma 4.1(3), hence X is an Aut(X)-Mori fibre space and
there are no Aut(X)-equivariant links of type III or IV starting from X. The base-locus of an Aut(X)-
equivariant link of type I or IT is an Autg(X) x Gal(k/k)-orbit on X, and by Remark 7.3 it has < 5 elements.
Lemma 7.17(1) implies that Auti(X) = Aut(Xj) has no such orbits. By Theorem 7.2, any Aut(X)-equivariant
birational map starting from X decomposes into isomorphisms and Aut(X)-equivariant links. As there are
no Aut(X)-equivariant links starting from X, it follows that X is Aut(X)-birationally superrigid. O

Proof of Theorem 1.2. (2)-(5) Any surface X as in Theorem L1(1)-(3), (5a), and (5b) is a del Pezzo surface
that is at the same time a Auty (X)-Mori fibre space and an Aut(X)-Mori fibre space. Any conic fibration
7: X —> P! as in Theorem 11(4) and (6) has Aut(X) = Aut(X, ) and Auty(X) = Auty (X, ), and it
is at the same time a Auty(X)-Mori fibre space and an Aut(X)-Mori fibre space. By Theorem 7.2, any
equivariant birational map between equivariant Mori fibre spaces decomposes into equivariant Sarkisov links,
hence in order to show that an equivariant Mori fibre space X/B is equivariantly birationally superrigid, it
suffices to show that there are no equivariant links starting from X.

(2) For X = P2, X =OF and X = IFy the claim follows from Lemma 7.5 and for X = [F,, n > 2,
from Lemma 7.23(1). For X a del Pezzo surface of degree 6 as in (5(b)ii)-(5(b)iv) the claim follows from
Proposition 7.15, and for a conic fibration X/IP! as in (6b) from Lemma 7.23.

(3) For X a del Pezzo surface of degree 6 as in (5a) the claim is Proposition 7.10.

(4) The claim follows from Proposition 7.21.
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(5) The claim follows from Lemma 7.22 and Lemma 7.23(2).
(1) It follows from (2)-(5) that for any surface X in Theorem 1.1 there is an algebraic extension L/k such
that X; is Auty (X)-birationally superrigid. Therefore, X is also Aut(X)-birationally superrigid. O

Proof of Corollary 1.3. Theorem 1.1 implies (1). By Theorem 1.2(1), the surfaces X in Theorem 1.1 are Aut(X)-
birationally superrigid, so the groups Aut(X) are maximal and they are conjugate if and only if their surfaces
are isomorphic. Theorem 1.1 now implies (2).

By Theorem 1.2(2)-(5), the surfaces X from Theorem L1(1)-(4) and (5(b)ii)-(5(b)iv), (6b) are Auty (X)-
birationally superrigid. The surface X from (6a) are Auty (X)-birationally rigid within the set of classes
of surfaces from Theorem 11. The del Pezzo surfaces X from (5a) and (5(b)i) are Auty (X)-birationally
superrigid if |k| > 3. Hence the listed groups Auty (X) are maximal and they are conjugate by a birational
map if and only if their surfaces are isomorphic. Theorem 1.1 now implies (3). O

Lemma 7.25. Let k be a perfect field and let F /K be a field extension. The following are equivalent:
(1) There exists a point p of degree 3 in P2, not all irreducible components collinear, such that F is the splitting

Sield of p.
(2) F is the splitting field of an irreducible polynomial of degree 3 over k.

(3) The field extension F /k is Galois and Gal(F /K) is isomorphic to a transitive subgroup of Syms (that is to
Z/3Z or Symy).

Proof. (1) implies (2): Since the irreducible components p; of p are not collinear, there is an irreducible conic
defined over k that contains p. With a linear transformation defined over k this conic can be assumed to be
given by x> —yz = 0, and so p; = [a; : a? : 1] for some a; € F for i = 1,2,3, and {a;,ay, a3} is a Galois orbit.
Hence g(t) = (t —ay)(t — ay)(t — a3) € k[¢] is irreducible. The splitting field L of g(t) is k(ay,a,,a3) = F.

(2) implies (1): Similar to above.

(2) implies (3): By assumption F is the splitting field of an irreducible and hence separable polynomial f.
Therefore, F/k is normal and hence Galois. So Gal(F/k) acts transitively on the three roots of f, hence
Gal(F/k) is isomorphic to a transitive subgroup of Symj.

(3) implies (2): Note that by the Primitive element Theorem, there exists a € F such that F = k(a). Let f
be the minimal polynomial of a over k, hence deg(f) = [F : k] = |Gal(F/k)| € {3,6}. Let L be the splitting
field of f, which is a normal extension of k. In particular, F = k(a) = L. Hence, if deg(f) = 3 we are done.

In the other case we have Gal(F/k) ~ Symj, so deg(f) = 6. The roots of f form one Galois-orbit. After
fixing an isomorphism Gal(F/k) ~ Symj, we write 0;; = (i), and we write T = (123). So we can write the
six roots of f as a; = 7' (a) for i = 1,2,3 (so a3 = a), and a4 = 013(a), as = 03(a), ag = 01,(a). Set

by = ajay, by = ayas, bz = azag

and note that the o;; act as transposition of b;,b;, and that that 7 is the translation by — by — b3. So
{b1,b,,bs} is a Gal(F/k)-orbit of size 3 with minimal polynomial g = (t — by)(t — by)(t — b3) € k[¢]. So
the splitting field L’ of g is contained in F and its Galois group is isomorphic to Sym,. Hence

6 =|Gal(L'/k)|=[L": k] < [F:k] =6,
which implies F = L' is the splitting field of an irreducible polynomial of degree 3. O

Proof of Theorem 14. By Corollary 1.3(3) it suffices to list the isomorphism classes of the surfaces in Theo-
rem L1(1)-(4), (5(b)ii)-(5(b)iv), (6), and for (5a) and (5(b)i) if |k| = 3.

The plane IP? is unique up to isomorphism by Chatelet’s Theorem, I, is unique up to isomorphism by
Lemma 3.2(1), and for any k-isomorphism class of quadratic extensions L/k we have a unique isomorphism
class of QF, also by Lemma 3.2(1). Hirzebruch surfaces are determined by their special section. The
parametrisation of the classes of del Pezzo surfaces from (5a) follows from Lemma 4.6(3), Lemma 4.7(3) and
Lemma 7.25. The parametrisation of the classes of del Pezzo surfaces from (5b) follows from Lemma 4.1(1),
Lemma 4.2(2), Lemma 4.3(2), Lemma 4.10(2) and Lemma 7.25. The parametrisations for the conic fibrations
from (6a) and (6b) follow from Lemma 5.6 and Lemma 5.12. U



44 J. Schneider and S. Zimmermann

8. The image by a quotient homomorphism

We call two Mori fibre spaces X; /P! and X,/IP! equivalent if there is a birational map X; --> X, that
preserves the fibrations. In particular, if ¢: X; --> X; is a link of type II between Mori fibre spaces X /P!
and X,/IP!, then these two are equivalent. There is only one class of Mori fibre spaces birational to IF;
[Sch19, Lemma], because all rational points in IP? are equivalent up to Aut(IP?). We denote by J, the set of
classes of Mori fibre spaces birational to some SLY and by J5 the set of classes birational to a blow-up of
IP? in a point of degree 4 whose geometric components are in general position. We call two Sarkisov links ¢
and ¢’ of type II between conic fibrations equivalent if the conic fibrations are equivalent and and if the
base-points of ¢ and ¢’ have the same degree. For a class C of equivalent rational Mori fibre spaces, we
denote by M(C) the set of equivalence classes of links of type II between conic fibrations in the class C
whose base-points have degree > 16.

Proof of Proposition 1.5. First, suppose that [k : k] = 2. Then every non-trivial algebraic extension of k is k by
[AS27, Satz 4] and k is of characteristic zero [AS27, p.231]. In particular, IP? contains no points of degree > 3,
and so the only rational Mori fibre spaces are Hirzebruch surfaces and Skk P, Moreover, M(TF) is
empty. By [Zim19, Theorem 1.3], there is a surjective homomorphism Birg (IP?) — (P, Z/2, where |I| = |R|.

In fact, by construction of the homomorphism, there is a natural bijection I — {L,z'i‘bz |a,beR,b +#0}.
The whole article [Zim18] can be translated word-by-word over a field k with [k:k] =2, and consequently
we have a surjective homomorphism Biry (P?) — @), Z/2, where I = {a?i_Qb? |a,bek,b# 0} (we replace

|a| by a?), and I has the cardinality of k. If [k : k] > 2, the result is [Sch19, Theorem 3, Theorem 4.]. [

Definition 8.1. Let BirMori(IP?) be the groupoid of birational maps between Mori fibre spaces birational
to IP2. It is generated by Sarkisov links by Theorem 7.2. The homomorphism W of groupoids from [Sch19,
Theorem 3, Theorem 4]

BirMori(IP2) < (D, cp(r,) Z/2) % ety (B yemc) Z/2) * (¥ ey, Byemt(c) Z/2)

u“o

Biry (IP?)

sends any Sarkisov link of type II between conic fibrations and whose base-point has degree > 16 onto the
generator indexed by its class, and it sends all other Sarkisov links and all isomorphisms between Mori fibre
spaces to zero.

Remark 8.2. The homomorphism W is non-trivial. Indeed, the surjective homomorphism Biry (IP?) —
(D1, Z/2) * (1,1 Z/2) = (], Z/2) from [Schl9, Theorem 4] is obtained by composing W with
suitable projections within each abelian factor of the free product, see [Schl9, Proof of Theorem 4 in §6].

We now compute the images by W of k-points of the maximal algebraic subgroups of Biry (IP?) listed in
Theorem 1.1

Remark 8.3. By definition of the groupoid homomorphism W (Definition 8.1), it maps automorphism groups
of Mori fibre spaces onto zero, so the groups W(Auty (IP?)), W(Auty(QF)), W(Auty(F,)), n # 1, and
\i/(Aut(SL’L/, 7)) are trivial. A del Pezzo surface X of degree 6 as in Theorem 1.1(5a) is a Mori fibre space
by Lemma 4.6 and Lemma 4.7, so W (Auty (X)) is trivial as well.

If X is a del Pezzo surface from Theorem I(5c), there exists a birational morphism #: X — QL such that
1 Auty (X)n ™ < Auty (Q), so in particular W (17 Auty (X)5 1) is trivial as well.

Lemma 8.4. Let X be a del Pezzo surface of degree 6 from Theorem 1.75b), which is equipped with a birational
morphism 17: X —> Y to Y = P? or Y = Ify. Then V(1 Auty (X)n 1) is trivial.

Proof. Let X be a del Pezzo surface of degree 6 from Theorem 1.1(5(b)i), (5(b)iii), and (5(b)iv), which is the
blow-up #: X — IP? in three rational points or in a point of degree 3. By Lemma 4.1(2), Lemma 4.2(3) and
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Lemma 4.3(3), the group 1 Aut, (X)n~! is generated by subgroups of Auty (IP?) and a quadratic involution
of IP? that has either three rational base-points or is a Sarkisov link of type II with a base-point of degree 3.
It follows from the definition of W (Definition 8.1) that W (1 Auty (X)) is trivial,

The del Pezzo surface X of degree 6 from Theorem 1.1(5(b)ii) is the blow-up of 77: X — IF; in a point
of degree 2. By Lemma 4.10(3), the group 7 Auty (X)n~! is generated by subgroups of Auty (IF,) and a
birational involution of [, that is a link of type II of conic fibrations with a base-point of degree 2. Again it
follows that W (17 Auty (X)n~!) is trivial. O

Lemma 8.5. Let n > 2 and let @: IF, --> IF,, be the involution from Example 5.3 with base-points py,...,p, € IF,.
Then there exist links @1,..., @, of type II between Hirzebruch surfaces such that @; has a base-point of degree
deg(p;) and ¢ = ;- 1.
Proof. Recall from Example 5.3 that py,...,p, are contained in the section S, € IF, and that the homogeneous
polynomials P; € k[zg, 21 |geg(p,) define 7t(p;). The involution ¢ is given by

¢: (y1,21) > (P, 21)
We define dy := 0 and d; := Z;zl deg(p;j). For i = 1,...,r, the birational maps

@it Byg, > Fyg, (y1,21) +> (W/PR(=),21) di<n,

it By g > Fyp (v1,21) > (B@)fy,21) dig <ndi>n

it By _y > By, W1,210) > (Bi(z1)y1,21), diog>n
are links of type II with a base-point of degree deg(p;), and we compute that ¢ = @, --- @;. O
Lemma 8.6. Let t: X —> P! be a conic fibration from Theorem 1.1(6a) and let : X —> T, n = 2, be the

birational morphism blowing up py,...,p,. Let @: F, --> I, be the involution from Example 5.3 and ¢ = @, --- ¢,
the decomposition into links of type Il from Lemma 8.5. Then \V (1 Auty (X, 70)n~") is generated by the element

() =P(pr) + -+ + (1),
Proof. Let A = P! be the image of the singular fibres of X. By Lemma 5.4(1-2), we have
Auty (X, 1) ~ Auty (X /7)) x Auty (P1,A) and  Auty(X/n) ~ H x (1  on)

where 7H7n~! = Auty (FF,). Moreover, any a € Auty (P!, A) lifts to an element @ € Auty(FF,,p1,...,p,),
which lifts via 77 to an element of Auty (X, 7t). It follows from the definition of W that W (1 Auty (P!, A)y~1)
and W (1 Hn~"') are trivial, and that W (1 Auty (X, 70)n~!) is generated by W (¢) = W (¢, )+ +W (). O

Lemma 8.7. Let @: SPL > SUL' be the involution from Example 5.9 with base-points p.,...,p, € SV, Then
there exist links @y,...,@,: SV > SV of type IT over P! and a € Auty (SYY /1) such that @; has base-point
pi and such that o = a@,--- @y.

Proof. Tt suffices to construct the ¢; for the involution ¢ in the case that L = L', since the involution

for the other case is obtained by conjugating ¢ with a suitable element of ¥ € PGL,(k) x PGL,(k),
see Example 5.9. Let E1,E, be the geometric components of the unique irreducible curve contracted
by any birational contraction 7#: SLL OL Fori= L,...,r,let T;1, T € Lx, y] be the homogeneous
polynomials defining the fibres through the geometric components of the p; contained in E1, E,, respectively.
Let P, :=Tyy--- T,y and P, := Ty, - -+ T};. Recall from Example 5.9 that i := 11(;[)17_1 is of the form

W ([uo : url, [vo : v1]) +-> ([voPr (uovo, u1v1) : v1 P (ugvo, urv1)], [uo Pa (ugvo, 1 v1) = uy P (uovo, 1 v1)])

Fori=1,...,r, define

it ([ ur], [vo :v1]) +> ([t Tiz(uovo, uyvy) = uy Ty (ugvo, urvy)],
[voTi1 (uovo, urv1) : v1 Tin(uovo, 41 v1)])
and let
a: ([ug:u] [vo:v1]) r> ([vo: vil [ug 2 ur]).
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Then ai,---1; = . We take ¢; := q_llpiq and o := 17_10717. U

Lemma 8.8. Let 1: X — P! be a conic fibration from Theorem 1.7(6b) and let : X — SV be the
birational morphism blowing up py,...,p,. Let @: SPY > SVL' be the involution from Example 5.9 and let
© = aQ,--- @, be the decomposition into links @; of type II and an automorphism o € Auty (S¥Y', 1) from
Lemma 8.7. Then \V (17 Auty (X, 7)1 is generated by the element V(@) = WV (@,) + -+ + V(¢y).

Proof. Let A — P! be the image of the singular fibres of X. By Proposition 5.10(1-2), we have
Auty (X, 1) ~ Auty (X /7) x ((DIE’L/ x Z/2) n Aut (PL,A)),  Auty(X/m) ~ H x (" on)

where nH7~' < Auty (SYY' /). Moreover, any element of G := Dlé’L/ x Z/2 n Auty (P!, A) lifts to an
element of Auty (S, 7t), which lifts via 1/ to an element of Auty (X, 7). It follows from the definition of
W, that W(yGy~1), W(nHn~') and W(a) are trivial, and hence that W (1 Auty (X, 7)1 ~!) is generated by
(@) =W(pr) +- -+ W (). O

Proof of Proposition 1.7. Let G be an infinite algebraic subgroup of Biry (IP?). By Theorem 1.1, it is conjugate
by a birational map to a subgroup of Aut(X), where X is one of the surfaces listed in Theorem 1.1. We now
compute W (6 Auty (X)0~!) for some birational map 0: IP? --> X. For any birational morphism 77: X — Y
to a Mori fibre space Y /B, we have
W(0 Auty (X)0~1) =W (01~ 1)P (1 Auty (X)n =)W (10).

For the surfaces X from Theorem 1.1(I)-(5), there exists such a birational morphism # such that
W (5 Auty (X)) is trivial by Remark 8.3 and Lemma 8.4, and hence W (0 Auty (X)0~!) is trivial. Hence,
if W(G(k)) is not trivial then X is as in Theorem 11(6) and (1) follows.

Let X/IP! be a conic fibration from Theorem 1.1(6), which is the blow-up 17: X — Y of points py,...,p, €
Yand Y =F, n>2 or Y = SE¥. By Lemma 8.6 and Lemma 8.8 the image W (17 Auty (X)n~!) is
generated by the element W(¢,) + --- + W (¢, ), where @; is a link of type II between conic fibrations in
the respective class and whose base-point is of degree deg(p;). In particular, since each factor of the free
product is abelian, it follows that W (6 Aut, (X)0~!) is generated by W(¢,) + --- + ¥ (¢y).

By definition of W the image W(¢;) is non-trivial if and only if deg(p;) = 16. Therefore, if ¥(¢,) +
-+ + W(qy) is non-trivial, it is the element indexed by the iy,...,is such that deg(p; ) > 16 and we
infer that |{j € {1,...,r} | deg(p;) = deg(p;,)}| is odd for k = 1,...,s. This proves (2). In particular,
Y(G(k)) ~2Z/2Z. O
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