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The fundamental group of quotients of products of some
topological spaces by a finite group — A generalization of a

theorem of Bauer–Catanese–Grunewald–Pignatelli

Rodolfo Aguilar Aguilar

Abstract. We provide a description of the fundamental group of the quotient of a product of
topological spaces Xi , each admitting a universal cover, by a finite group G, provided that there
is only a finite number of path-connected components in X

g
i for every g ∈ G. This generalizes

previous work of Bauer–Catanese–Grunewald–Pignatelli and Dedieu–Perroni.
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Le groupe fondamental de quotients de produits de certains espaces topologiques par un
groupe fini — Généralisation d’un théorème de Bauer–Catanese–Grunewald–Pignatelli

Résumé. Nous fournissons une description du groupe fondamental du quotient d’un produit
d’espaces topologiques Xi , chacun admettant un revêtement universel, par un groupe fini G,
pourvu qu’il n’existe qu’un nombre fini de composantes connexes par arcs dans X

g
i pour chaque

g ∈ G. Cela généralise des résultats antérieurs de Bauer–Catanese–Grunewald–Pignatelli et de
Dedieu–Perroni.
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1. Introduction

The fundamental group of a quotient of a Haussdorf space X by a finite group G acting freely can be
computed noticing that X→ X/G is a covering map, and then using the long exact sequence of homotopy
groups associated to a fibration. When X = X1 × · · · ×Xk and G acts on each Xi freely and diagonally on X,
the fundamental group of X1 × · · · ×Xk sits as a finite-index normal subgroup of π1(X/G).

In the case where each Xi is a projective smooth curve and the action of G is only faithful, the following
Theorem was shown in [BCGP12].

Theorem 1.1. [BCGP12, Theorems 0.10 and 4.1] Let C1, . . . ,Ck be smooth projective curves and let G be a finite
group acting faithfully by automorphisms on each of them. Consider the diagonal action of G on the product
C1×· · ·×Ck , then the fundamental group of (C1×· · ·×Ck)/G admits a normal finite index subgroupN isomorphic
to a product of fundamental groups of smooth projective curves.

It was later extended in [DP12] to the case when the action of G is non-necessarily faithful. There, they
quotient G to obtain a group acting faithfully, follow the subsequent arguments and then extend again to G.

Let us explain briefly the method of proof in [BCGP12]. First, they consider the orbifold surface groups
Ti of Ci/G, which are an extension of G by π1(Ci) and hence come with a surjective morphism to G (see
Subsection 2.2.1). They show that the fundamental group π1((C1 × · · · ×Ck)/G) is isomorphic to the quotient
of the fiber product H := T1 ×G · · · ×G Tk by the normal subgroup Tors(H) generated by the elements of
torsion.

The second part relies on the following proposition whose proof uses abstract group theoretic arguments.

Proposition 1.2. [DP12, Proposition 3.5] There exists a short exact sequence of groups

1→ E→H/TorsH→ T → 1

where E is finite and T is a group of finite index in a product of orbifold surfaces groups.

They finally use Proposition 1.2 and properties of the orbifold surface groups such as residually finiteness
and cohomological goodness to construct a subgroup of H/TorsH intersecting E trivially and satisfying
the required properties.

Here, a more geometric approach is used via fundamental groups of stacks or orbispaces [Noo05, Che01].
This theory permits to see X → [X/G] as a covering map under some conditions on X, where [X/G]
denotes the quotient stack, and a long exact sequence of homotopy groups is available. We will denote the
fundamental group of the stack [X/G] by π1([X/G]).

For i = 1, . . . , k, let Xi be a connected, locally path-connected and semi-locally simply connected
topological space with an action of a finite group G, consider the diagonal action of G in X := X1 × · · · ×Xk
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and denote by I the subgroup generated by the elements having a fixed point in every Xi for i = 1, . . . , k. We
can formulate now our first main Theorem.

Theorem 1.3. Let X,X1, . . . ,Xk and G as above. Suppose that the number of path connected components in the
fixed locus set X

g
i of an element g ∈ G is finite for every g ∈ G and i = 1, . . . , k. Then there exists a homomorphism

π1(X/G)→
k∏
i=1

π1 ([(Xi/I)
/
(G/I) ])

which has finite kernel and its image is a finite-index subgroup.

This can be seen as a generalization of Proposition 1.2 (Bauer–Catanese–Grunewald–Pignatelli) by the
remarks preceding the statement of the Proposition.

The action of G/I on Xi/I is induced by the action of G in Xi . Note that if k = 1 then G/I can be
seen to act freely on X1/I and π1([(X1/I)/(G/I)]) = π1((X1/I)/(G/I)) but (X1/I)/(G/I) � X1/G. The same
argument works if we make the product of the same topological space, which gives the following corollary.

Corollary 1.4. Let Xi = X1 for i = 2, . . . , k and G satisfy the hypothesis of the above theorem. Then the
homomorphism π1(X/G)→ π1(X1/G)k has finite kernel and its image is a finite-index subgroup.

An important case of Theorem 1.3 and Corollary 1.4 is when Xi is a smooth complex algebraic variety for
i = 1, . . . , k. Indeed, the fundamental group of a variety with quotient singularities is the fundamental group
of a smooth variety.

Our second main Theorem generalizes Theorem 1.1 (Bauer–Catanese–Grunewald–Pignatelli). It can be
stated without using the language of stacks or orbispaces.

Theorem 1.5. Let X,X1, . . .Xk and G satisfy the hypothesis of Theorem 1.3. Suppose that π1(X/G) is residually
finite. Then there exists a normal finite-index subgroup N Cπ1(X/G) isomorphic to a product:

N �
k∏
i=1

Hi .

with Hi Cπ1(Xi/I) normal finite-index subgroups.

As a corollary, following closely the arguments used in [BCGP12], we show that for smooth curves
C1, . . . ,Ck the group π1((C1 × · · · ×Ck)/G) is residually finite. Hence, we have that Theorem 1.1 (Bauer–
Catanese–Grunewald–Pignatelli, Dedieu–Perroni) is valid in the case when the curve is non-necessarily
compact.

Corollary 1.6. Let C1, . . . ,Ck be smooth algebraic curves and let G be a finite group acting on each of them. Then
there exists a normal subgroup N Cπ1((C1 × · · · ×Ck)/G) of finite index, isomorphic to a product Π1 × · · · ×Πk ,
where Πj is either the fundamental group of a smooth projective curve or a free group of finite rank.

The paper is organized as follows: in Section 2 preliminary results are given. Then the first main Theorem
is proved in Section 3 and the proof of the second main Theorem together with some applications are given
in Section 4.

2. Preliminaries

2.1. Properties of fundamental group of topological stacks

Let X be a connected, semi-locally simply connected and locally path-connected topological space and G
a finite group acting continuously on it.
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2.1.1. Fiber homotopy exact sequence. There exists a homotopy theory for stacks and the existence of
the long exact sequence of homotopy, see [Noo14], is more general than what follows, however we only need
the following case: consider the topological stack X = [X/G], a point x ∈ X and denote by x̄ ∈ X the image
of x. We have an associated fibration G→ X→X and a long exact sequence of homotopy groups,

· · · → πn+1(X , x̄)→ πn(G,Id)→ πn(X,x)→ πn(X , x̄)→ πn−1(G, Id)→ ·· ·

the map πn(G,Id)→ πn(X,x) is induced by the orbit G · x ↪→ X.

2.1.2. Action on the universal cover. The hypothesis made on X ensures that there exists an universal
cover X̃ and moreover, if we let X = [X/G] as in §2.1.1, we have an action of π1(X , x̄) on X̃ (see §3.2.1). We
will use several times the following lemma in what follows.

Lemma 2.1. Consider the action of π1(X , x̄) in X̃, let y ∈ X̃ and denote by Iy the isotropy group of the action.
Then there exists a monomorphism Iy → G.

Proof. By §2.1.1 we obtain a short exact sequence

1→ π1(X,x)→ π1(X , x̄)→ G→ 1,

as the action of π1(X,x) on X̃ is free, we obtain that the restriction of π1(X , x̄)→ G to Iy is injective. �

2.2. Product of topological spaces

2.2.1. Fundamental group of the quotient of a product. For i = 1, . . . , k let Xi as in §2.1 be a connected,
semi-locally simply connected and locally path-connected topological space and G a finite group acting on
each of them.

By §2.1.1 we have k exact sequences

(2.1) 1→ π1(Xi ,xi)→ π1(Xi , x̄i)
ϕi→ (G, Id)→ 1

where Xi = [Xi/G], xi ∈ Xi and its image in Xi is denoted by x̄i .
Denote by H := π1(X1,x1)×G · · · ×G πk(Xk ,xk). The exact sequences in (2.1) can be assembled as follows

(2.2) 1→ π1(X1 × · · · ×Xk ,x)→H→ G→ 1

with x = (x1, . . . ,xk). The geometric nature of H is shown in the following lemma.

Lemma 2.2. Let G act diagonally on X = X1 × · · · ×Xk . Consider the stack X = [X/G] then π1(X , x̄) �H.

Proof. We have natural projection maps X → Xi for i = 1, . . . , k, which together with the morphisms
ϕi : π1(Xi , x̄i)→ G and the universal property of the fiber product give us a morphism π1(X , x̄)→H. By
the exact sequence of a fibration §2.1.1 applied to the action of G to X1 × · · · ×Xk and by (2.2) we obtain

1 π1(X1 × · · · ×Xk ,x) π1(X , x̄) G 1

1 π1(X1 × · · · ×Xk ,x) H G 1

id id

which implies the result. �

Lemma 2.3. Let X,Xi and G be as above. Then

π1(X/G, [x]) � π1(X , x̄)/N � π1(X , x̄)/I

where N is the normal subgroup generated by the image of the inertia groups Ix and I is the subgroup generated by
the elements of π1(X ) having fixed points in the universal cover of X1 × · · · ×Xk .
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Proof. By [Noo08, Theorem 8.3(i)] we have that π1(X/G, [x]) � π1(X , x̄)/N . The group π1(X , x̄) acts on
X̃ � X̃1 × · · · × X̃k the universal cover of X1 × · · · ×Xk in such a way that [(X̃1 × . . .× X̃k)/π1(X , x̄)] � X . As
G is finite, by Lemma 2.1 any stabilizer Ix for the action of π1(X ) on X̃ is finite, therefore it has the slice
property and by [Noo08, Theorem 9.1] we obtain that π1(X/G, [x]) � π1(X , x̄)/I .

�

3. The fundamental group of the product of topological spaces

3.1. Constructing the homomorphism

3.1.1. Finite index of the group in the product. Let Iy denote the isotropy at the point y in X̃ for
the action of π1(X , x̄). By Lemma 2.1 the map π1(X , x̄)→ G restricted to Iy is injective, therefore we can
identify Iy with a subgroup of G. When we do such identification we will denote it by I ′y < G.

Now as π1(X , x̄) � π1(X1, x̄1)×G · · ·×Gπ1(Xk , x̄k), if y = (y1, . . . , yk) we define Ii < π1(Xi , x̄i) as the image
of Iy via the morphism π1(X , x̄)→ π1(Xi , x̄i).

Lemma 3.1. We have that Iy � Ii for all i = 1, . . . , k and Iy = I1 ×I ′y · · · ×I ′y Ik .

Proof. For γ = (γ1, . . . ,γk) ∈ Iy note that γi ∈ π1(Xi , x̄i) fixes yi ∈ X̃i , otherwise γ can not fix a point
in X̃. As above, the restriction of π1(Xi , x̄i)→ G to Iyi is injective and as Ii ⊂ Iyi we have that γi , βi
for γ,β ∈ Iy ⊂ π1(X1, x̄1) ×G · · · ×G π1(Xk , x̄k) with γ , β. Therefore we can construct an inverse to the
projection. The result follows. �

Note that we obtain that Ii < Iyi , but in general Iyi can be bigger. Let us define the homomorphism
Iy →

∏
Iyi given by decomposing an element in its components. By Lemma 3.1 it is injective. Denote by N

the subgroup in π1(X , x̄) generated by all the Iy and by N ′i the subgroup in π1(Xi , x̄i) generated by Ii .

Lemma 3.2. The subgroup N ′i is normal in π1(Xi , x̄i).

Proof. Let γi ∈ N ′i and ti ∈ π1(Xi , x̄i). We can write γi = γi1 · · ·γij with each γil ∈ Iil coming from

γl = (γ1l , . . . ,γil , . . . ,γkl ) ∈ Iyl ⊂ π1(X , x̄) and the point yl = (y1l , . . . , yil , . . . , ykl ) ∈ X̃ for l = 1, . . . , j . As
every π1(Xj , x̄j ) → G is surjective, for j = 1, . . . , i − 1, i + 1, . . . , k, there exists tj ∈ π1(Xj , x̄j ) such that
t = (t1, . . . , tk) ∈ π1(X , x̄).

As t ·γl · t−1 ∈ Ityl it follows that tiγil t
−1
i ∈N

′
i and therefore

tiγit
−1
i = (tiγi1t

−1
i ) · ti · · · t−1i · (tiγij t

−1
i ) ∈N ′i .

�

Proposition 3.3. There is an homomorphism

π1(X/G, [x])→
k∏
i=1

π1(Xi , x̄i)/N ′i

such that the image has finite index.

Proof. By Lemma 2.2 we have that π1(X , x̄) � π1(X1, x̄1)×G · · · ×G π1(Xk , x̄k). Therefore there is an injective
homomorphism π1(X , x̄)→

∏
π1(Xi , x̄i). By Lemma 3.2 we obtain the exact sequence

(3.1) 1→
k∏
i=1

N ′i →
k∏
i=1

π1(Xi , x̄i)→
k∏
i=1

π1(Xi , x̄i)/N ′i → 1,
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and together with Lemma 2.3 we obtain a commutative diagram

(3.2)

1 1

1 N
∏k
i=1N

′
i

1 π1(X , x̄)
∏k
i=1π1(Xi , x̄i)

π1(X/G, [x])
∏k
i=1π1(Xi , x̄i)/N ′i

1 1.

This diagram provides a homomorphism

π1(X/G, [x])→
k∏
i=1

π1(Xi , x̄i)/N ′i

and shows that it is well defined. We can not complete (3.2) to a commutative diagram of groups with short
exact sequence in the rows because usually π1(X , x̄) is not normal in

∏k
i=1π1(Xi , x̄i). It will be normal, for

example, if G is abelian.
As G is finite we obtain that π1(X , x̄) has finite index in

∏k
i=1π1(Xi , x̄i). In fact the upper-bound k∏

i=1

π1(Xi , x̄i) : π1(X , x̄)

 ≤ |G|k−1
can be seen as follows. For each surjection ϕi : π1(Xi , x̄i)→ G consider a lift Gi ⊂ π1(Xi , x̄i) of G with
|Gi | = |G|. In

∏k
i=1Gi , let us consider the equivalence relation

(g1, . . . , gk) ∼ (g ′1, . . . , g
′
k)⇔ (ϕ1(g1), . . . ,ϕk(gk)) = (gϕ1(g

′
1), . . . , gϕk(g

′
k)) with g ∈ G.

It is easily seen that the quotient
(∏k

i=1Gi
)
/ ∼� (G × · · · ×G)/∆G is a set of representatives of left cosets

(
∏k
i=1π1(Xi), x̄i)/π1(X , x̄). By considering as coset representatives in

∏k
i=1π1(Xi , x̄i)/N ′i the image of∏k

i=1Gi and using the diagram (3.2) we have that π1(X/G, [x]) has finite index in
∏k
i=1π1(Xi , x̄i)/N ′i . �

3.2. The homomorphism has finite kernel

3.2.1. The subgroup N ′i is finitely normally generated. Let X be a connected, semi-locally simply
connected and locally path connected topological space. Let G be a discrete finite group acting on X, x ∈ X
and denote by x̄ ∈ X = [X/G] the image of the point x and by p : X→ [X/G] the quotient map.

Let us briefly recall the description of π1(X , x̄) as given in [Che01]. It can be defined as π0(Ω(X , x̄))
where Ω(X , x̄) denote the space loop of X pointed at the constant loop of value x̄. Every loop is given
locally as a map from an open subset of S1 to a given uniformization of an open subset of Xtop and plus
some gluing conditions. In our case of a global quotient, a more explicit description of Ω(X , x̄) can be given
as follows.

Let P (X,x) consist of paths in X starting at x. As a subspace of Λ(X), the free loop space of X, it inherits
a structure of a topological space. By considering the constant loop x of value x ∈ X, we obtain (P (X,x),x)
a pointed topological space. Define P (X,G,x) as the subspace of P (X,x) ×G consisting of the elements
(γ,g) satisfying γ(1) = g ·γ(0) = g · x. As a topological space it is pointed at (x,1G)
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Lemma 3.4. [Che01, Lemma 3.4.2] There exists a natural homeomorphism between the pointed topological spaces
(Ω(X , x̄),x) and (P (X,G,x), (x,1G)).

Remark 3.5. When (X , x̄) is a pointed topological stack there exists (B[R⇒ X],x′) a pointed topological
space, where B[R⇒ X] is the classifying space of the topological groupoïd [R⇒ X], such that we can take
π1(X , x̄) := π1(B[R⇒ X],x′). In the case of a global quotient X = [X/G] it happens that B[R⇒ X] equals
the Borel construction X ×G EG, see [Noo12].

Now, the construction of Chen also gives a natural isomorphism between π1(X , x̄) and π1(X ×G EG,x′)
[Che01, Theorem 3.4.1] linking both definitions.

There exists a canonical projection (P (X,G,x), (x,1G))→ (G,1G) given by sending (γ,g) to g . This map
can be seen to be a fibration [Che01, Lemma 3.4.3] having as fiber at 1G the space loop Ω(X,x) via the
embedding Ω(X,x) ↪→ P (X,G,x) where γ maps to (γ,1G).

With this description at hand, suppose there is y ∈ X such that it is fixed by an element g , that is, y ∈ Xg .
Denote by γy a path starting at x and finishing at y, then γy(gγ−1y ) ∈ P (X,G,x), where gγ−1y denotes the
action of g applied to each point of the path.

Lemma 3.6. Let Iy < G denote the inertia (stabilizer) of the action of G at y ∈ X. Every homotopy class of a path
[γy] ∈ π1(X,x,y) induces an injective morphism Iy → π1(X ,x).

Proof. As G is discrete g 7→ γg(gγ−1g ) is continuous, with g ∈ Iy . Then by taking the functor π0 we got
a morphism of groups π0(Iy) → π0(P (X,G,x)) = π1(X , x̄). Finally, by composing with the projection
(π0(P (X,G,x),x))→ π0((G,1G)) we obtain that different points under π0(Iy)→ π1(X , x̄)→ π0(G) have
different images, thus the morphism in injective. �

Lemma 3.7. Let Y ∈ π0(Xg ), y1, y2 ∈ Y and let γy1 ,γy2 be paths starting at x ∈ X and finishing at y1 and y2
respectively, then γy1(gγ

−1
y1 ) is a conjugate of γy2(gγ

−1
y2 ) in π1(X , x̄) by elements of π1(X,x).

Proof. There exists a path β ⊂ Y connecting y1 and y2, therefore γy1β(gβ
−1γ−1y1 ) ∈ P (X,G,x) but as gβ = β

passing to π0(P (X,G,x),x) it equals [γy1(gγ
−1
y1 )].

Now consider the path γy2 . Note that θ := γy1βγ
−1
y2 ∈Ω(X,x). There exists a continuous map

# : P (X,G,x)× P (X,G,x)→ P (X,G,x)

which induces the multiplication in the fundamental group (see [Che01, Section 3.1]). The element
θ#(γy2(gγ

−1
y2 )#θ

−1) can be seen to be θ(γy2 · (g(θ · γy2)
−1)) ∈ P (X,G,x). By passing to the group

π1(X , x̄) = π0(P (X,G,x),x) we have that [θ][γy2(gγ
−1
y2 )][θ

−1] = [γy1(gγ
−1
y1 )]. �

Recall that given (X,x) as above, we have a pointed universal cover map p : (X̃, x̃)→ (X,x) where x̃
represents the constant loop of value x. Every element in γ ∈ π1(X) corresponds to a point in p−1(x). So
given a pointed map pγ : (X̃,γ)→ (X,x) it induces a deck transformation of X̃ in the following way: given

y ∈ X̃ take a path αy ⊂ X̃ starting at γ and finishing at y. Consider the unique lift ˜pγ (αy) ⊂ X̃ starting at x

and assign to y the point ˜pγ (αy)(1). It can be seen to be a well-defined map (see [Hat00]).
Now, by the description given above of π1(X , x̄), any γ ∈ π1(X , x̄) such that ϕ(γ) = g (recall that

ϕ : π1(X , x̄)→ G) have as a representative an element in P (X,G,x) which we still denote by γ . So γ
starts at x and finishes at gx. Denote by π̃ : (X̃, x̃) → (X , x̄) the universal cover morphism, note that
π̃γ : (X̃,γ)→ (X , x̄) is also a cover morphism. By [Che01, Theorem 4.1.6] we obtain a deck transformation
in the following way: given y ∈ X̃ take a path αy ⊂ X̃ starting at γ and ending at y. Using the notation of
the precedent paragraph, the path pγ (αy) starts at gx. Then the path g−1pγ (αy) starts at x so we can lift it

to ˜g−1pγ (αy) in (X̃, x̃), the end point of this lift is then defined as the image of y. It is shown that it is a well
defined map and does not depend on the path chosen.
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Lemma 3.8. Let y ∈ X be fixed by g ∈ G, consider a path γy connecting x and y. Consider the action of
π1(X , x̄) on X̃ given by deck transformations Deck(X̃,X ), then the element γy(gγ−1y ) ∈ π1(X , x̄) fixes a point in
X̃. Moreover, any element of π1(X , x̄) fixing a point in X̃ is of this form.

Proof. As the endpoint of γy(gγ−1y ) is gx we have a pointed covering morphism

π̃γy (gγ−1y ) : (X̃,γy(gγ
−1
y ))→ (X , x̄)

and we can consider gγy as a path in X̃ connecting γy(gγ−1y ) and γy as follows: let us define f (t) =
γ(gγ−1y ) · (gγy |t) where gγy |t(t′) := gγy(t′/t) denote the path starting at gx and finishing at gγy(t) in time
t for t , 0 and being the constant path with value gx if t = 0. We project then f (t) to X and obtain gγy
which starts at gx and finishes at ȳ. By the discussion before the lemma, we obtain that it lifts to γy in
(X̃, x̃), as g fixes y we obtain that the point γy ∈ X̃ is fixed by the induced deck transformation.

Consider the exact sequence

1→ π1(X,x)→ π1(X , x̄)
ϕ
→ G→ 1,

let γ ∈ π1(X , x̄) and z ∈ X̃ such that γ fixes z. Let p : (X̃, x̃)→ (X,x) be the projection, as it is ϕ-invariant
we have that ϕ(γ)p(z) = p(z). Then by considering the path in X corresponding to z, we can construct
an element zϕ(γ)z−1, which fixes z ∈ X̃. As in the isotropy ϕ is injective by Lemma 2.1, we have that
zϕ(γ)z−1 = γ . �

Proposition 3.9. Suppose that there are only a finite number of elements in π0(Xg ) for each g ∈ G, then there
exists a finite set L ⊂ π1(X , x̄) consisting of elements having fixed points in X̃ such that if γ ∈ π1(X , x̄) fixes a
point in X̃ then it is conjugate to an element of L by elements in π1(X,x).

Proof. By Lemma 3.7 for every element in Y ∈ π0(Xg ) it suffices to fix an element γy(gγ−1y ) with y ∈ Y . For
every g ∈ G and every element in π0(Xg ) we pick such an element. We define L as the set consisting of
such elements. By Lemma 3.8 every such element fixes a point in X̃ and any other fixing a point will be
conjugate of the element in L corresponding to its connected component. �

3.2.2. Proof that the homomorphism has finite kernel. Let us return to the case of k-topological
spaces X1, . . . ,Xk and let G be a finite group acting on each one of them on the left as in 2.2.1. Proposition
3.9 gives us k subsets L(Xi) ⊂ π1(Xi , x̄i) whose elements correspond to the element of π0(X

g
i ) with g ∈ G.

Now consider the subsets Li ⊂ L(Xi) consisting of elements corresponding to π0(X
g
i ) where g fixes a point

in Xi for i = 1, . . . , k.
Recall that N < π1(X , x̄) (with X = [(X1×· · ·×Xk)/G]) is the subgroup generated by the inertia subgroups

Iy given by the action of π1(X , x̄) in X̃ and N ′i < π1(Xi , x̄i) is the image of the i-projection of N . The
following lemma is immediate from Proposition 3.9

Lemma 3.10. We have that N ′i =
〈
γi liγ

−1
i | li ∈ Li ,γi ∈ π1(Xi ,xi)

〉
in π1(Xi , x̄i) for i = 1, . . . , k.

Definition 3.11. Let us define

Ci = Ci(π1(Xi),Li) :=
〈〈
γi liγ

−1
i l−1i | γi ∈ π1(Xi ,xi), li ∈ Li

〉〉
π1(Xi ,x̄i )

,

to be the normal subgroup generated by the commutators of elements in π1(Xi ,xi) and in Li . Denote by
Ti := π1(Xi , x̄i)/Ci and by L̂i the image of Li in Ti .

Lemma 3.12. It happens that Ci < N
′
i and moreover we can consider Ci as a subgroup of N via {e} × · · · ×Ci ×

. . .× {e} and C1 × · · · ×Ck < N .
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Proof. Let li ∈ Li and γi ∈ π1(Xi ,xi), the elements of Li were chosen such that there exists lj ∈ Lj and y ∈ X̃
such that l = (l1, . . . , li , . . . , lk) ∈ Iy < N . We have that γ ′i = (e, . . . ,γi , . . . , e) ∈ π1(X , x̄) and as N is normal in
π1(X , x̄) we have that γ ′i lγ

′−1
i ∈N , so

γ ′i lγ
′−1
i l−1 = (e, . . . ,γi liγ

−1
i l−1i , · · · , e) ∈N

This element projects to [γi , li] ∈ Ci . Finally given βi ∈ π1(Xi , x̄i), as every ϕj is surjective, there exists
βj ∈ π1(Xj , x̄j ) such that ϕi(βi) = ϕj(βj ), so β = (β1, . . . ,βk) ∈ π1(X , x̄) and every conjugate of [γi , li] can
be seen as an element of N .

Finally, by considering the product of the identification of the elements in Cj we have C1×· · ·×Ck < N . �

Before stating the next lemma recall that N < N ′1 ×G · · · ×GN
′
k .

Lemma 3.13. The subgroup Ci has finite index in N
′
i , in particular C1×· · ·×Ck has finite index in N ′1×· · ·×N

′
k

hence also in N .

Proof. First note that by Lemma 3.10 and by definition of Ti we have

N ′i /Ci = 〈〈Li〉〉π1(X,x) /Ci � 〈〈L̂i〉〉Ri = 〈L̂i〉,

with Ri the image of π1(Xi ,xi) in Ti .
Moreover as ϕ(Ci) = {e} we have that Ci < kerϕ � π1(Xi ,xi). As π1(Xi ,xi) has finite index in π1(Xi , x̄i),

it follows that Ri has finite index in Ti , which implies that Ri ∩ 〈L̂i〉 has finite index in 〈L̂i〉. Note that 〈L̂i〉
is generated by a finite number of torsion elements and that by construction Ri ∩ 〈L̂i〉 is a central group
in 〈L̂i〉. As any group generated by a finite number of torsion elements and such that the center has finite
index is finite (see [BCGP12, Lemma 4.6]) the result follows. �

Theorem 3.14. The homomorphism π1(X/G, [x])→
∏k
i=1π1(Xi , x̄i)/N ′i has finite kernel.

Proof. By composing the quotient map
∏k
i=1π1(Xi , x̄i)→

∏k
i=1π1(Xi , x̄i)/N ′i with the inclusion π1(X , x̄)→∏k

i=1π1(Xi , x̄i) we obtain π1(X , x̄)→
∏k
i=1π1(Xi , x̄i)/N ′i with kernel (N ′1 × · · · ×N

′
k)∩ π1(X , x̄) = N ′1 ×G

· · · ×GN ′k by the description of π1(X , x̄) as fiber product. We put this as a row in the following commutative
diagram together with a vertical column given by Lemma 2.3 and complete to

(3.3)

1 1

N N

1 N ′1 ×G · · · ×GN
′
k π1(X , x̄)

∏k
i=1π1(Xi , x̄i)/N ′i

1 N ′1 ×G · · · ×GN
′
k/N π1(X/G, [x])

∏k
i=1π1(Xi , x̄i)/N ′i

1 1

id

id

By Lemma 3.13 both N ′1 ×G · · · ×GN
′
k/C1 × · · · ×Ck and N/C1 × · · · ×Ck are finite hence

N ′1 ×G · · · ×GN
′
k/C1 × · · · ×Ck

N/C1 × · · · ×Ck
�N ′1 ×G · · · ×GN

′
k/N

is finite.
�
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3.2.3. Geometric interpretation of the groups π1(Xi , x̄i)/N ′i . Let us denote by I , the subgroup of G
generated by the elements having a fixed point in every Xi for i = 1, . . . , k. Note that I is a normal subgroup.

Let x′i denote the class of xi in X/I and x̄
′
i the image of x′i in [(Xi/I)/(G/I)].

Proposition 3.15. There is an isomorphism

π1(Xi , x̄i)/N ′i
∼−→ π1([(Xi/I)

/
(G/I) ], x̄′i).

Proof. Observe that the action of G on Xi descends to an action of G/I on Xi/I and therefore we can
define [(Xi/I)

/
(G/I) ]. Recall by the previous subsection 3.2.1 that π1(Xi , x̄i) can be identified with the set

of path-components of P (Xi ,G,x). Therefore an element [γ] ∈ π1(Xi , x̄i) can be represented by a path γ
in Xi starting at xi and finishing at gxi for some g ∈ G. Denote by pi : Xi → Xi/I the quotient map. By
considering pi(γ), we obtain a morphism between π1(Xi , x̄i) and π1([(Xi/I/G/I)], x̄′i).

It is immediate to see that the paths coming from the inertia of I in Xi , that is, the elements of the form
γy(gγ−1y ) with g ∈ I and y ∈ Xgi , are sent to the trivial element in π1(Xi/I ,x′i).

Now consider γ ∈ ker
(
π(Xi , x̄i)→ π1([(Xi/I)/ (G/I)], x̄′i)

)
. Then γ is represented by a path in Xi , which

we still denote by γ , starting at xi and finishing at gxi with g ∈ G. Note that moreover g ∈ I , otherwise by
the projection π1([Xi/I

/
G/I ], x̄′i)→ G the element would be sent to a non-zero element. Hence the image

of γ lies in π1(Xi/I ,x′i) and it is trivial. By the exact sequence

1 −→N[Xi /I] −→ π1([Xi/I], x̄i) −→ π1(X/I,x
′
i)→ 1

and noticing that N[Xi /I] =N
′
i we have that γ ∈N ′i which proves the result. �

4. Applications

4.1. Product of the same topological space

Now let us describe a case where N ′i equals the whole subgroup Ni generated by the elements having a
fixed point in the universal cover.

Corollary 4.1. Let Xi = X1 for i = 2, . . . , k and G finite acting on X1. Then the morphism

π1 ((X1 × · · · ×X1)/G, [x]) −→
k∏
i=1

π1(X1/G, [xi])

has finite kernel.

Proof. We only have to show that N ′1 = N1 and then we obtain the result by applying Theorem 3.14. By
construction we have that N ′1 ⊂ N1. Let us show the inverse inclusion. Take γ1 ∈ N1, then we can write
γ1 = γ11 · · ·γ1l such that there exists y1j ∈ X̃1 satisfying γ1j ∈ Iy1j for j = 1, . . . , l. As X̃ = X̃1 × · · · × X̃k by
taking yj = (y1j , . . . , y1j ) ∈ X̃ we have that γ j = (γ1j , . . . ,γ1j ) ∈ Iyj and therefore γ = γ1 · · ·γ l ∈ N and the
image of γ in N1 equals γ1. �

Another proof using Proposition 3.15 can be obtained as follows: the action of G/I is free in X1/I and
since X1/G � (X1/I)

/
(G/I) we have π1 ([(X1/I)

/
(G/I) ]) � π1(X1/G).

4.2. Second Main Theorem

Theorem 4.2. Let X1, . . . ,Xk admit a universal cover and let G be a finite group acting on each of them such
that

∣∣∣π0(X
g
i )

∣∣∣ < +∞ for every g ∈ G and i = 1, . . . , k. Denote X = X1 × · · · ×Xk and consider the diagonal
action of G on it. Suppose π1(X/G, [x]) is residually finite, then π1(X/G, [x]) has a normal finite-index subgroup
N �H1 × · · · ×Hk isomorphic to a product of normal finite index subgroups subgroups Hi Cπ1(Xi/I , [xi]).
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Proof. By Theorem 1.3 we get a morphism Θ : π1(X/G, [x])→
∏k
i=1π1([Xi/I/G/I]) having finite kernel E.

As π1(X/G, [x]) is residually finite we can construct a finite-index normal subgroup Γ Cπ1(X/G, [x]) such
that Γ ∩E = {e}.

The morphism Θ|Γ : Γ →
∏k
i=1π1([(Xi/I)

/
(G/I) ], x̄′i) is therefore injective and moreover as the subgroup

Θ(π1(X/G)) <
∏k
i=1π1([(Xi/I)

/
(G/I) ], x̄′i) has finite index it follows that Θ(Γ ) <

∏k
i=1π1([(Xi/I)

/
(G/I) ], x̄′i)

has finite index.
For every i = 1, . . . , k, we have π1(Xi/I , [xi]) < π1([(Xi/I)

/
(G/I) ], x̄′i) as a normal finite-index subgroup.

Define the subgroup
Θ(Γ )i :=Θ(Γ )∩ ({e1} × · · · ×π1(Xi/I , [xi])× · · · × {ek})

where ek ∈ π1(Xj /I , [xj ]) is the identity element. As Θ(Γ )i has finite index in π1(Xi/I , [xi]), there exists
a normal subgroup of finite index Hi of π1([(Xi/I)

/
(G/I) ]) contained in Θ(Γ )i . Set H := H1 × · · · ×Hk ,

then H CΘ(Γ ) and it is a finite-index normal subgroup of
∏k
i=1π1([(Xi/I)

/
(G/I) ], x̄′ i). The subgroup

N :=Θ−1(H)∩ Γ satisfies the stated properties. �

4.2.1. Case of smooth curves.

Corollary 4.3. Let C1, . . . ,Ck be smooth algebraic curves and let G be a finite group acting on each Ci . Denote
C = C1 × · · · ×Ck . Consider C = [C/G] with G acting diagonally on C. Then π1(C/G) has a normal subgroup
N of finite index isomorphic to Π1 × · · · ×Πk where Πi is either a surface group or a finitely generated free group
for i = 1, . . . , k.

By Theorem 1.3 we have a morphism π1(C/G)→
∏k
i=1π1([Ci/I

/
G/I ]) with finite kernel, however if

the action of G/I is not faithful on Ci/I then π1([(Ci/I)
/
(G/I) ]) is not necessarily an orbifold surface

group. This can be overcome as follows: let Ki := ker(G/I → AutCi/I) and Hi := (G/I)/Ki . Denote by
Ci := [(Ci/I)/G/I] and by C′i := [(Ci/I)/Hi], we have a canonical morphism Ci →C′i .

Lemma 4.4. The induced homomorphism qi : π1(Ci)→ π1(C′i) is surjective and has finite kernel.

Proof. By choosing a point xi ∈ Ci and denoting by x̄i its image in both Ci and C′i we obtain a fibration
[pt/K,pt] ↪→ (Ci , x̄i)→ (C′i , x̄i). By taking the long homotopy exact sequence

. . .→ π2(C′i , x̄i)→ π1(pt/K,pt)→ π1(Ci , x̄i)→ π1(C′i , x̄i)→ 1,

as there is an isomorphism between π1(pt/K,pt) and π0(K,1K ), the result follows. �

So by composing, we obtain a morphism Θ : π1(C/G)→
∏k
i=1π1(Ci)→

∏k
i=1π1(C′i), this allows us to

prove the following lemma, which together with Theorem 4.2 will imply Corollary 4.3.

Lemma 4.5. The group π1(C/G) is residually finite.

Proof. First note that, as π1(C′i) is an orbifold surface group, it is in particular residually finite. Now, it
follows that Θ(π1(C/G)) is residually finite as it is a finite-index subgroup of a direct product of residually
finite groups.

We need another property of these groups to continue. Let H be a group and let Ĥ be its profinite
completion. A group H is called good if for each k ≥ 0 and for each finite H-module M the natural
homomorphism

Hk(Ĥ,M)→Hk(H,M)

is an isomorphism. In [GJZZ08, Lemmas 3.2 and 3.4, Proposition 3.6] it is shown that a finite-index subgroup
of a good group is good, the product of good groups is good and that π1(C) for C an algebraic orbifold
curve is good. We obtain therefore that Θ(π1(C/G)) is good.

Finally, [GJZZ08, Proposition 6.1] asserts that if T is a residually finite good group and ϕ :H → T is a
surjective homomorphism with finite kernel then H is residually finite. Applying this to Θ′ : π1(C/G)→
Θ(π1(C/G)) we obtain the result. �
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4.3. Partial compactifications of arrangement of lines

The original motivation of this work was to study the partial compactifications of the complement of an
arrangement of lines in P

2
C
which is the topic of my Ph.D. thesis. In [Agu19] a general method for computing

a presentation of the fundamental group was given and some examples studied. A family of arrangements
related to the studied in op. cit. is available for any n ∈N, however this will require a treatment one by one.
The results obtained here can be used to study some of these partial compactifications in family.

4.3.1. Partial compactification of the complement of an arrangement of lines. Consider the projec-
tive plane P

2
C
with homogeneous coordinates (z1 : z2 : z3).

Let A =
∑k
i=1Li be a divisor in P

2 such that the irreducible components Li are copies of P1 (lines).
Then the singular set SingA of A consists only of points. Consider π : BlSingA P

2→ P
2 the blow up of

the projective plane at the points SingA . The divisor π∗A =
∑k+|SingA |
i=1 Di has as irreducible components

copies of P1, with D1, . . . ,Dk being the strict transform of L1, . . . ,Lk respectively and Dk+1, . . . ,Dk+|SingA |
being the exceptional divisors. Take a subset J ⊂ {1,2, . . . , k + |SingA |}. The surface BlSingA P

2 \ (∪j∈JDj )
is called a partial compactification of P

2 \ (∪Li). We are interested in how the fundamental group changes
when we partially compactify the complement of such an arrangement A ⊂ P

2.

4.3.2. Examples. The subvariety of P2

Ceva(n) := {(z1 : z2 : z3) | (zn1 − z
n
2)(z

n
1 − z

n
3)(z

n
2 − z

n
3) = 0}

can be seen as the union of the closure of the three singular fibers of the rational map f : P2 d P
1 given by

(z1 : z2 : z3) 7→ ((zn1 − z
n
2) : (z

n
2 − z

n
3)). The map f is not defined in a subset S = {p1, . . . ,pn2} ⊂ SingCeva(n)

consisting of n2 points where A1 := {zn1 − z
n
2 = 0} =

∑n
i=1Li intersects A2 := {zn1 − z

n
3 = 0} =

∑2n
i=n+1Li . It

actually happens that S ⊂A3 := {zn2 −z
n
3 = 0} =

∑3n
i=2n+1Li and S consists of points where 3 lines of Ceva(n)

meet. We have another 3 points pn2+i in Sing(Ceva(n)) which correspond to each singular point of Ai for
i = 1,2,3 and hence of multiplicity n.

The rational map f extends to a morphism f̃ : BlSingCeva(n)P2→ P
1 having as generic fiber the Fermat

curve of degree n defined as F(n) := {zn1 + z
n
2 + z

n
3 = 0} ⊂ P

2. Therefore f̃ is an isotrivial fibration.
Denote by µ(n) the group of nth roots of unity. By taking 3 copies of it we define H(n) := µ1(n)⊕µ2(n)⊕

µ3(n)/
〈
µ1µ2µ3 = 1

〉
where µi ∈ µi(n). It acts on F(n) via (z1 : z2 : z3) 7→ (µ1z1 : µ2z2 : µ3z3). The proof of

the following theorem will appear elsewhere.

Theorem 4.6. Consider the diagonal action of H(n) in F(n) × F(n). Denote by S the minimal resolution of
F(n)×F(n)/H(n).

(1) The fibration S→ (F(n)×F(n))/H(n)→ F(n)/H(n) � P
1 is isomorphic to f̃ .

(2) Every singular point in F(n)×F(n)/H(n) corresponds to the contraction of the strict transform Di of some
line Li ∈ Ceva(n).

(3) The contraction of the n lines corresponding to Ai lie in the line Ei which is the exceptional divisor
corresponding to the unique singular point in Ai .

(4) Ei is mapped to a point via F(n)×F(n)/H(n)→ P
1.

The Fermat curve F(n) of degree n can be seen as a branched covering of P1 of degree n2 via the
morphism in P

2 given by F(n) 3 (z1 : z2 : z3)→ (zn1 : zn2 : zn3) ∈ {w0 +w1 +w2 = 0} which branches at the
points (1 : −1 : 0), (1 : 0 : −1), (0 : 1 : −1). Over each branching point there are n points, we denote by
X1, . . . ,Xn for those over (1 : −1 : 0), by Y1, . . . ,Yn over (1 : 0 : −1) and Z1, . . . ,Zn over (1 : −1 : 0).

Recall that for S→ S ′ be a resolution of singularities of S ′ , if S ′ has only quotient singularities, by [Kol93,
Theorem 7.8.1] we have that π1(S)→ π1(S ′) is an isomorphism.
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Example 4.7. Consider the surface S1 :=
(
F(n)× (F(n) \ {X1, . . . ,Xn})

)
/H(n). The subgroup I generated

by the elements of H(n) having fixed points both in F(n) and in F(n) \ {X1, . . . ,Xn}) equals H(n). As
F(n)/H(n) � P

1, F(n) \ {X1, . . . ,Xn})/H(n) �C and by Theorem 1.3 the morphism

π1(S1)→ π1(P
1)×π1(C)

has finite kernel, it follows that π1(S1) is finite.
The minimal resolution of singularities S ′1→ S1 can be identified with the following partial compactifica-

tion of Ceva(n). Consider

J := {1, . . . ,n,3n+n3 +1} ⊂ {1, . . . ,3n+n2 +3}

then following the construction given in §4.3.1 we have that

BlSingCeva(n)P
2 \ {∪j∈JDj} � S ′1.

That is, from the surface BlSingCeva(n)P2 we remove only the strict transform of A1 and the exceptional
divisor coming from the singular point of A1. This can be identified with a singular fiber or f̃ .

Example 4.8. Consider now S2 := (F(n) × F(n) \ {Xi ,Yi})/H(n). In this case the subgroup I , defined as
in the previous paragraph, is isomorphic to µ(n). As F(n)/µ(n) � P

1, F(n) \ {Xi ,Yi})/µ(n) � C
∗ and by

Theorem 1.3 the morphism
π1(S2)→ π1([P

1/µ(n)])×π1([C
∗/µ(n)])

has finite kernel and the image is a finite-index subgroup.
By Theorem 4.2 and Corollary 4.3, we have that ZCπ1(S2) has finite index. As in Example 4.7 the

minimal resolution of singularities S ′2→ S2 can be identified with BlSingCeva(n)P2 minus two singular fibers
of f̃ .

Example 4.9. If we consider S3 := (F(n) × F(n) \ {Xi ,Yi ,Zi})/H(n) it can be identified with BlSingA P
2

minus the three singular fibers of f̃ . As H(n) acts freely in F(n)×F(n) \ {Xi ,Yi ,Zi}, the long exact sequence
of homotopy associated to the covering map F(n)×F(n) \ {Xi ,Yi ,Zi} → S3 yields

1 −→ π1(F(n))×π1(F(n) \ {Xi ,Yi ,Zi}) −→ π1(S3) −→H(n)→ 1.

Remark 4.10. We can remove points also in the first component F(n) of the product. However, we can not get
more partial compactifications of Ceva(n) in this way. This can be shown by drawing the dual graph of the
divisor π∗Ceva(n) and noticing that the lines obtained by removing points does not satisfy the intersection
pattern of the graph.
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