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Moduli spaces of stable sheaves over quasi-polarized surfaces,
and the relative Strange Duality morphism

Svetlana Makarova

Abstract. The main result of the present paper is a construction of relative moduli spaces of stable
sheaves over the stack of quasi-polarized projective surfaces. For this, we use the theory of good
moduli spaces, whose study was initiated by Alper. As a corollary, we extend the relative Strange
Duality morphism to the moduli space of quasi-polarized K3 surfaces.
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Espaces des modules de faisceaux stables sur les surfaces quasi polarisées et le morphisme
de dualité étrange relatif

Résumé. Le résultat principal du présent article est une construction des espaces de modules
relatifs des faisceaux stables au-dessus du champ des surfaces quasi polarisées. Pour cela, nous
utilisons la théorie des bons espaces de modules, dont l’étude a été initiée par Alper. Comme
corollaire, nous étendons le morphisme de dualité étrange relatif à l’espace de modules des surfaces
K3 quasi polarisées.
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1. Introduction

The work on the present paper started with an attempt to strengthen the results on Strange Duality on
K3 surfaces, and is largely motivated by the approach of Marian and Oprea [MO14b]. Strange Duality is a
conjectural duality between global sections of two natural line bundles on moduli spaces of stable sheaves.
It originated as a representation theoretic observation about pairs of affine Lie algebras, and then was
reformulated geometrically over the moduli of bundles over curves [DT94], [Bea95]. In our paper, we develop
the geometric approach to Strange Duality over surfaces in the spirit of Marian and Oprea. They proved
the Strange Duality conjecture for Hilbert schemes of points on surfaces, moduli of sheaves on elliptic K3
surfaces with a section [MO14b]; and cases for abelian surfaces [MO14a], including a joint work [BMOY17].
The latter used birational isomorphisms of moduli spaces of stable sheaves with Hilbert schemes of points
on the same K3 surface, following Bridgeland [Bri98], to reduce the question to the known case of Hilbert
schemes. Further, Marian and Oprea use this result to conclude the Strange Duality isomorphism for a
generic K3 surface in the moduli space of polarized K3 surfaces of degree at least four [MO14b] (the idea
first appeared in their earlier paper [MO13]), for a pair of vectors whose determinants are equal to the
polarization.

In order to make this argument work for K3 surfaces of degree two, we have to construct moduli spaces of
stable sheaves over the stack of quasipolarized K3 surfaces, without assuming that the quasi-polarization (a
choice of a big and nef line bundle) is ample. This is needed because elliptic K3 surfaces of degree two are
not polarized, so the original approach of Marian and Oprea needs modification. The question of whether
the Strange Duality construction can be extended from the polarized locus to the whole moduli stack of
quasi-polarized K3 surfaces was left open in [MO14b]. Stepping away from the ample locus requires that we
retrace classical results in moduli theory: we prove openness of the stable locus, show that relative moduli
spaces exist, and use the theory of good moduli spaces to derive gluing and descent results. This notion was
introduced by Jarod Alper [Alp13], and further developed by Alper, Hall, Halpern-Leistner, Heinloth and
Rydh in numerous works; the most important for the present paper will be a recent remarkable result giving
a criterion for when a stack has a good moduli space [AHLH19]. This part of our work culminates in the
following result, which we consider the main contribution of the paper:

Theorem 1.1 (Theorems 2.15 and 2.20). Let K be the moduli stack of quasi-polarized projective surfaces, and let
X be the universal surface with the universal quasi-polarization H. Fix a Chern character v over X . Assume that,
pointwise over K, slope stability is equivalent to slope semistability for sheaves in class v. Then the stack of stable
sheaves Q→K of K-theory class v is algebraic. Further, there exists a relative good moduli space Q→M. The
stackM→K is fiberwise (i.e. over each closed point of K) the moduli scheme of stable sheaves of class v with
respect to the restriction of the universal quasi-polarization.

Then we apply the developed theory to construct the Strange Duality morphism: this requires knowing
that we have a good morphism toM from the moduli stack which possesses a universal family of stable
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sheaves. Along the way, we use the Descent Lemma (Lemma 2.12), where we show that quasi-coherent
sheaves descend along good morphisms.

Theorem 1.2 (Equation (3.1)). The Strange Duality morphism exists for a pair of orthogonal K-theory vectors on
the universal K3 surface X →K. It is defined up to a twist by a line bundle.

Remark 1.3. We attempted to use the Marian-Oprea trick (from their paper [MO14b]) to extend the generic
Strange Duality isomorphism to degree two. Employing the relative moduli space construction from the
present paper, it works as follows: working with an elliptic K3 surface (which in degree two lies in the
quasi-polarized locus), use a Fourier-Mukai functor to establish a birational isomorphism of a pair of Hilbert
schemes with a pair of moduli spaces of higher-rank sheaves, and using functoriality, identify the theta
divisors on the two spaces; this proves the Strange Duality over the elliptic locus; by continuity, the Strange
Duality morphism would be an isomorphism on a dense open substack. For this to work, one needs to find
a pair of orthogonal vectors of rank at least three and a suitable Fourier-Mukai kernel to get to a pair of
vectors of rank one whose sum of determinants is big and nef. The author could not find such vectors for
the following choices of kernel: the ideal sheaf of the diagonal on the fibered square of the K3 surface, and
a universal sheaf classifying rank d + 1, degree d stable fiber sheaves. The author is working on a more
explicit description of other possible Fourier-Mukai kernels.

Outline of the paper. We start with constructing relative moduli spaces in Section 2. We first show that
the stack of stable sheaves with respect to the universal quasi-polarization is algebraic. Then we recall some
theory of good moduli spaces, and prove Descent Lemma (Lemma 2.12) for good morphisms. Finally, we
construct the relative space of stable sheaves locally over schematic charts of K, and then glue the resulting
spaces using their universal properties. Then, we apply the developed theory to the Strange Duality. In
Section 3, we start with generalizing Marian-Oprea’s construction of the theta line bundles, and use it to
extend the Strange Duality morphism to the quasi-polarized locus.

Conventions. We work over an algebraically closed field of characteristic zero. We write (−)∨ for the
derived dual of a sheaf and −⊗− for the derived tensor product. Given a morphism of schemes f : X→ Y ,
we denote by f∗ and f

∗ the derived functors of pushforward and pullback, respectively. When we want to
work with the classical functors instead of derived, we write L0f ∗ for the nonderived pullback and R0f∗ for
nonderived pushforward. Note however that we distinguish between Hom and RHom (because Hom makes
sense in the derived category on its own).

For the moduli theory of sheaves, whenever we say stability, we mean slope stability with respect to
a chosen quasi-polarization. We generally need a way to fix a numerical characteristic of the sheaves in
question in order to obtain any finiteness results. So, for a stack X , we use zeroth algebraic K-theory K0X
and zeroth topological K-theory Kt

0X (defined by Blanc [Bla16] for C-stacks, and by Blanc, Robalo, Toën,
Vezzosi [BRTV18] in greater generality). For a complex variety X, we can also define oriented topological
K-theory Kor

0 X by fixing the determinant of a topological K-theory vector. We will call a vector v in any
K-theory K∗0X a fixed numerical characteristic, or K-theory class. When we need to be specific, we will add
adjectives algebraic, topological or oriented topological to refer to the corresponding variants of K-theory.

Let A•X denote the Chow ring of a smooth projective variety X. It is well-known that there is a function
called Chern character ch : DbX → A•X, from objects of the derived category to the Chow ring, that
factors as a ring homomorphism through the Grothendieck group: ch : K0X→ A•X. Note that the Euler
pairing descends to each of the K-groups by taking representative complexes E and F and computing Euler
characteristic of their derived tensor product:

χ(E ⊗F) def= χ (RΓ (E ⊗F)) .

We don’t use Chern classes a lot, and instead we prefer to write a K-theory vector v in terms of components
of its Chern character: ch0v = rkv, ch1v = c1v, ch2v =

1
2 (c1v)

2 − c2v, etc.
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2. Relative moduli spaces of stable sheaves with respect to a
quasi-polarization

Let K be a stack of quasi-polarized projective surfaces that admits a universal family u : X → K with
universal quasi-polarization H. It means that we want Hom(T ,K) to classify families on a scheme T given
by pullbacks of X and H to T . Fix a K-theory class v over X →K.

For the main application, K will be the moduli stack of quasi-polarized K3 surfaces and u : X →K will
be the universal quasi-polarized K3 surface with quasi-polarization H. Our aim is to define the relative

moduli space of slope stable sheavesM def= Mv →K.
Our idea is to start with the moduli functor M̃ of all flat families of sheaves of fixed K-theory class.

Usually properness of support is assumed, but in our case it is an automatic condition due to the projectivity
assumption. It is known that this functor is representable by an Artin stack, see for example a very general
result of Lieblich ([Lie06], the main theorem). Then we will prove that the subfunctor Q ⊂ M̃ of stable
sheaves is open, hence also is an Artin stack. This is well-known when quasi-polarization is ample, but we
will need additional technical arguments in order to generalize it to the non-polarized locus of K3 surfaces.
In the next step, we observe that Q admits a “good moduli space morphism” onto a relative moduli space,
which will be denoted byM =Mv . For this, we use the result of existence of good moduli spaces by Alper,
Heinloth and Halpern-Leistner [AHLH19]. Note that the fiber of M is a scheme over each K3 surface
[X] ∈ K, but globallyM is still a stack.

Pointwise it is well-known thatM is a scheme for the polarized case. However, to our knowledge, the
case of non-ample quasi-polarization, and a construction of a good moduli space morphism are new results.
They are summarized in the main theorem of this section:

Theorem (cf. Theorem 2.20). Let K be a stack of quasi-polarized surfaces that admits the universal surface X
with the universal quasi-polarization H. Fix a K-theory class v over X . Assume that, pointwise over K, stability is
equivalent to semistability for sheaves in class v. Then there exists a stackM→K which is fiberwise (i.e. over
each closed point of K) the moduli scheme of stable sheaves of class v with respect to the restriction of the universal
quasi-polarization.

2.1. Constructibility and generization

We start with proving that the subfunctor Q ⊂ M̃ is constructible and preserved by generization. Then,
by a topological lemma, we will be able to conclude that it is an open subfunctor.

Recall that a stack is a contravariant (quasi-)functor Schop→Gpd from the category of schemes Schop
to the 2-category of groupoids Gpd which satisfies a “level two” sheaf condition.
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Definition 2.1. Consider a moduli problem F : Schop → Gpd and a subfunctor G ⊂ F . We say that G
is a constructible subfunctor of F if, for any family X ∈ F (B̃) parametrized by the scheme B̃, the locus

B
def=

{
b ∈ B̃ | Xb ∈ G(b)

}
is a constructible subset of B̃.

Lemma 2.2. Fix a Chern character v over X . Assume that pointwise on K, stability with respect to H is
equivalent to semistability. Then the moduli subfunctor Q ⊂ M̃ of stable sheaves is a constructible subfunctor.

Proof. We will be checking constructibility by taking families of Q and M̃ parametrized by an arbitrary
scheme B̃. Note that this condition can be checked on an open cover, so by possibly taking affine opens in B̃,
we can assume that B̃ is quasi-compact and quasi-separated.

Further, we can reduce the question to a Noetherian base by using Noetherian approximation by
Thomason–Trobaugh [TT90] as follows. By [TT90, Theorem C.9], a quasi-compact and quasi-separated
scheme B̃ over a ground field admits an approximation by Noetherian schemes Ci ; moreover, the bonding
maps of the system are all affine:

B̃ = limCi .

Both Q and M̃ evaluated at B̃ parametrize certain sheaves over X
def= X ×

K
B̃, which, being a family of K3

surfaces, is a scheme. By [Stacks, Lemma 01ZM], we can choose a Noetherian Xi and Xi → Ci for sufficiently
large i such that X � B̃ ×

Ci
Xi . So, possibly taking a subset of the indexing set, we can assume that Xi is

chosen for all i. Then by a simple category theory fact, we have X � limXi . By [Stacks, Lemmas 0B8W
and 05LY], a flat sheaf on X is a pullback of some flat sheaf on a finite step Xi . Therefore, we can study a
particular flat family parametrized by a finite step Ci , which means that without loss of generality, we can
assume that B̃ is Noetherian.

Finally, note that both constructibility and stability can be checked on closed points, so it is enough to
check the condition for reduced Noetherian bases.

Let F be a family of sheaves parametrized by a reduced Noetherian base B̃, that is F ∈ CohX is a coherent
sheaf over a family of quasi-polarized K3 surfaces X→ B̃ of Chern class v and flat over B̃. We want to show

that the locus B
def=

{
b ∈ B̃ | Fb is stable

}
is constructible.

To that end, denote by H the quasi-polarization of X → B̃. We will use Noetherian induction on the
base: we will stratify B̃ with locally closed disjoint subsets Bi , and prove that B∩Bi is open in each Bi . The
Noetherian property will be used to prove that the set {Bi} of the strata is finite.

Note that the locus B0, where the quasi-polarization HXb is ample, is open. It is a standard result that
semistability is open in flat families [HL10, Proposition 2.3.1]; with our assumption that semistability implies
stability, we then obtain that the stable locus B0 ∩B is open in B0.

Consider the strictly quasi-polarized locus B̃ \B0 (i.e. where the quasi-polarization is not ample) and pick
an irreducible component B1 with the generic point η. The surface Xη is projective, so we can pick an ample
line bundle Lη over Xη . Note that B1 and the restriction XB1

are integral schemes, hence the sheaf of total
quotient rings of OX is the constant sheaf K with fiber equal to the field of fractions of the generic point
κ ∈ Xη ⊂ X, and so every line bundle on Xη comes from a Cartier divisor. Let’s say that Lη � OXη (Dη) for

Dη ∈H0
(
Xη ,K

×
Xη
/O×Xη

)
. We can extend this divisor to a Cartier divisor D over some open subset U ′ of X.

Let us for a moment denote by f the morphism X→ B. We now argue that U ′ can be extended to an
open set of the form f −1(U ) for some U ⊂ B. The morphism f is a flat family of projective surfaces, so by
[Stacks, Lemma 01UA], it is open. So the set U = f (U ′) ⊂ B is open. Since every fiber is proper, one can
note that every regular function is constant along a fixed fiber. Therefore, if the section corresponding to D
is defined at one point of a fiber, it is defined over the whole fiber. So Dη can be extended to a divisor on
f −1(U ), and we get an extension of Lη to L over XU .

Note further that being ample is an open condition, so we may assume, after possibly shrinking U , that
L is relatively ample. Now we will show that we can pick a small enough ε ∈ R+ such that stability with
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respect to HU + εL is equivalent to stability with respect to HU for every point in U . The argument for
local finiteness of the walls [HL10, Lemma 4.C.2] (the result is summarized in 2.17) can be extended to a
neighborhood, and on each of those, we pick ε as above; then by quasi-compactness of the base U we can
pick the minimum of the ε’s for every open neighborhood. Now we have a polarization over XU and can
deduce openness of the locus where FU is stable on a fiber with respect to the ample HU + εL. This locus is
exactly B∩U ⊂ B1.

At this point, we want to redefine B1 to be U , and pass to consideration of the closed subset B̃ \ (B0tB1)
of B̃. The choice of the subsequent Bi ’s is done in the same fashion.

By the Noetherian assumption, there are only finitely many Bi ’s, and for each of those, the subset B∩Bi
is open inside Bi . Since Bi is locally closed inside B̃, we get that B is equal to the finite disjoint union of
locally closed subsets B∩Bi ⊂ B̃, hence constructible. �

Definition 2.3. Consider a moduli problem F : Sch→ Gpd and a subfunctor G ⊂ F . We say that G is
closed under generization if, for any family X ∈ F (SpecR) parametrized by the spectrum of a valuation ring
R such that the fiber of X over the closed point belongs to the subfunctor G, the generic fiber is also in G.

Lemma 2.4. Fix a Chern character v over X . Then the moduli subfunctor Q ⊂ M̃ of stable sheaves is preserved
under generization.

Proof. Assume that F is a flat family over X parametrized by SpecR, where R is a valuation ring with
fraction field K and residue field k. Assume further that F is stable when restricted to the closed fiber Xk .
We want to prove that its restriction FK to the open fiber is also stable.

To that end, pick a proper quotient sheaf FK → GK → 0.
We consider slope stability with respect to a quasi-polarization H which may not be ample. The function

P (n) def= P HKGK
(n) def= χ(XK ,GK ⊗Hn

K ) is not usually called Hilbert polynomial for just big and nef line bundles,
so we will call it a quasi-Hilbert polynomial. Note that this function is still a polynomial, because the
standard argument still applies.

Since the Quot scheme QuotF,PX/R is proper, we can extend the quotient FK → GK → 0 to a flat quotient
F → G → 0 over X, by the existence part of the valuative criterion. Recall that the slope is a rational
function of some coefficients of the quasi-Hilbert polynomial, therefore it is constant in flat families, so
µHK (GK ) = µHk (Gk) < µHk (Fk) = µHK (FK ). And so we can conclude stability of FK . �

2.2. Technicalities to prove openness

In this part, we will briefly remind a topology result that connects the properties of being constructible
and open following Stacks Project [Stacks].

Definition 2.5 ([Stacks, Definition 004X]). A topological space X is called sober if every irreducible closed
subset has a unique generic point.

Lemma 2.6 ([Stacks, Lemma 0542]). Let X be a Noetherian sober topological space. Let E ⊂ X be a subset of X.
If E is constructible and stable under generization, then E is open.

Corollary 2.7. Let X be a Noetherian scheme and E ⊂ X a constructible subset which is preserved by generization.
Then E is open in X.

Proof. We observe that the topological space of a Noetherian scheme is Noetherian sober. Then we apply
Lemma 2.6. �

2.3. Good morphisms

In this subsection we remind the definition of a good morphism, as introduced by Alper. Our plan is to first
prove that Q – the stack of stable flat sheaves of a fixed K-theory class – admits a good moduli space when
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pulled back to a scheme; for this, we will heavily cite the work of Alper, Heinloth and Halpern-Leistner on
existence of good moduli spaces [AHLH19]. Then we show that these glue to a “relative good moduli space”
Q→M.

Definition 2.8. We now recall Alper’s [Alp13] definition of good morphisms.

(i) Let X and Y be two Artin stacks with a quasi-compact morphism f : X → Y . We call f a
good morphism if R0f∗ : QCohX → QCohY is exact and the natural map OY → R0f∗OX is an
isomorphism.

(ii) If in the previous definition Y = Y is an algebraic space, then f : X → Y is called a good moduli space.

Remark 2.9. We adopt a shorter terminology “good morphism”, while Alper calls that a “good moduli space
morphism”. Our choice is motivated by the belief that the notion of a good morphism is more fundamental
than its application to moduli theory. One argument in support of this point of view is that good morphisms
satisfy descent (for purely formal reasons), as we show now in Lemma 2.12. We shall use the lemma later.

Let us recall a fundamental result about universality of good moduli spaces.

Definition 2.10. Given a morphism of stacks ν :Q→N , denote the natural projections by νi :Q ×
N
Q→Q

and νij : Q ×
N
Q ×
N
Q → Q ×

N
Q. We define the objects of the category of descent data QCoh(ν : Q → N )

as tuples (F, ι), with F ∈ QCoh(Q) and an isomorphism ι : ν∗1F → ν∗2F subject to the cocycle condition
ν∗13ι = ν

∗
23ι ◦ ν

∗
12ι. Morphisms are those morphisms of quasi-coherent sheaves which commute with ι.

Definition 2.11. We say that QCoh satisfies descent along a morphism ν : Q→N if the functor given by
L0ν∗ : QCohN →QCoh(ν :Q→N ) is an equivalence of categories.

Lemma 2.12 (Descent Lemma). quasi-coherent sheaves satisfy descent along good morphisms.

Proof. Take a good morphism ν :Q→N . We will argue that the functor L0ν∗ : QCohN →QCoh(Q→N )
establishes an equivalence. Note that we have a right adjoint functor R0ν∗ : QCohQ→N . In the setup of
having two adjoint functors, it is enough to prove that L0ν∗ is fully faithful and the exact R0ν∗ “detects zero
objects” in QCoh(Q→N ). At a glance, it is not obvious that R0ν∗ should be a quasi-inverse, but being a
good moduli space morphism (term introduced by Alper in his thesis paper [Alp13]) is a strong condition, so
it will follow from the proof.

First we will prove that L0ν∗ is fully faithful. So consider the moprhism

L0ν∗ : HomN (F,G)→HomQ
(
L0ν∗F,L0ν∗G

)
.

Note that by adjunction, the right hand side is isomorphic to:

HomQ
(
L0ν∗F,L0ν∗G

)
= HomN

(
F,R0ν∗(OQ ⊗L0ν∗G)

)
.

Further, Alper proved projection formula that is applicable in this setting, see his Proposition 4.5 together
with Remark 4.4 in his paper [Alp13], so we in fact can simplify the right hand side and get a morphism:

L0ν∗ : HomN (F,G)→HomN
(
F,R0ν∗(OQ)⊗G

)
.

But since by assuption we have R0ν∗(OQ) � ON , we get that R0ν∗ induces an isomorphism on Hom-spaces,
as desired. In particular, it follows that R0ν∗L0ν∗ is isomorphic to the identity functor.

Now we prove that R0ν∗ “detects zero objects”. Let (G,ι) ∈QCoh(Q→N ) and assume that R0ν∗G = 0.
If q1 and q2 are two projections Q×

N
Q→Q, then the gluing data ι is a fixed isomorphism ι : L0q∗1G→ L0q∗2G.

Now we would like to apply Alper’s base change formula for good moduli space morphisms (see Lemma 4.7(iii)
together with Remark 4.4 in [Alp13]) to R0q1∗ι to get an isomorphism:

G � R0q1∗L
0q∗1G � R0q1∗L

0q∗2G � L0ν∗R0ν∗G = 0.
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To conclude that L0ν∗ establishes an equivalence, we can formally observe that it is essentially surjective.
Indeed, take some object F ∈QCoh(Q→N ) and consider the natural morphism:

L0ν∗R0ν∗F→ F.

Now we can complete the sequence by kernel and cokernel and apply R0ν∗F, which is exact, to the resulting
sequence. From the above results, the middle morphism is an isomorphism, and since R0ν∗F detects zero
objects, we conclude that both kernel and cokernel vanish. Therefore we conclude that L0ν∗R0ν∗F � F and
thus lies in the essential image of L0ν∗. �

Returning to our situation, assume that we consider a pullback of Q→K to any Noetherian affine scheme
K →K, so we get an Artin stack over a Noetherian base QK → K that parametrizes flat sheaves with a fixed

K-theory class over the family of quasi-polarized surfaces X
def= X ×

K
K → K .

Theorem 2.13 ([Alp13, Theorem 6.6]). Suppose X is a locally Noetherian Artin stack and f : X → Y a good
moduli space. Then f is universal for maps to algebraic spaces, i.e. for any algebraic space Z , the following natural
map of sets is a bijection:

f ∗ : Hom (Y ,Z)→Hom(X ,Z) .

Lemma 2.14. Take a Noetherian scheme K with a morphism K →K. Then the morphism QK → K admits a
good moduli space.

Proof. We want to apply the criterion for existence of good moduli spaces (Theorem A in [AHLH19]), and so
we check that the conditions in the criterion are verified.

By [AHLH19, Example 7.1], this stack QK coincides with the moduli functor given by [AHLH19, Defini-
tion 7.8]. Therefore by [AHLH19, Lemma 7.16], this stack is Θ-reductive (cf. Definition 3.10 in [AHLH19]).
The stabilizer groups of the stack Q are all Gm by stability of sheaves, hence connected and reductive. So
Q is locally linearly reductive (cf. Definition 2.1 in [AHLH19]), and by [AHLH19, Proposition 3.56] it has
unpunctured inertia (cf. Definition 3.53 in [AHLH19]). By [Stacks, Lemmas 0DPW and 0DPX], the stack QK
is of finite presentation and with affine diagonal.

So we can apply Theorem A of [AHLH19] to conclude that QK admits a good moduli space νK :QK →MK ,
and the morphism νK is universal for maps to an algebraic space by Theorem 2.13 ([Alp13, Theorem 6.6]). �

We now want to show that the good moduli spaces MK → K “glue” to a relative good moduli space
M→K, that is there exists a good moduli space morphism ν : Q →M such that M→K is a relative
algebraic space.

Theorem 2.15. There exists a relative good moduli spaceM→K such thatM is an algebraic stack; for each
scheme K →K, the pullbackMK is isomorphic to MK ; and there exists a morphism ν :Q→M which is good.

Proof. Since the moduli stack of quasi-polarized K3 surfaces K is an Artin stack, we can choose a smooth
surjection K →K from a scheme K . This morphism is representable by algebraic spaces, so the fibered

product K ′
def= K ×K K is an algebraic space; and the projection morphisms k1, k2 : K ′⇒ K are still smooth,

being pullbacks of a smooth morphism. The spaces K and K ′ naturally assemble into a smooth groupoid
of algebraic spaces [Stacks, Lemma 04T4], and the quotient groupoid is isomorphic to the original stack
K � [K/K ′] [Stacks, Lemma 04T5], so we have obtained a groupoid presentation of K.

By Lemma 2.14, there exists a good moduli space QK →MK . Since good moduli spaces are universal for
morphisms to algebraic spaces (Theorem 2.13, [Alp13, Theorem 6.6]), we also obtain the unique canonical
morphism u :MK → K .

We now want to produce an algebraic space P so that P ⇒MK becomes a smooth groupoid which would
then yield a quotient stack. To that end, study the pullback

P
def= K ′ ×

ki ,K
MK = (K ×

K
K) ×

ki ,K
MK = K ×

K
MK .
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The object P does not depend (up to isomorphism) on the projection ki we choose, but the two projections
induce two smooth morphisms p1,p2 : P ⇒MK , where pi = ki × 1MK

. Further, the rest of the structure
maps for P ⇒MK — composition, identity, inverse as in [Stacks, §0230] — are obtained from the groupoid
K ′⇒ K by pullback and yield the structure of a groupoid in algebraic spaces for P ⇒MK [Stacks, 044B].

Now, it is known that the quotient stack of a smooth groupoid is algebraic [Stacks, Theorem 04TK], so we

putM def= [MK /P ] to get the relative good moduli space. Since we had a morphism of groupoids[
P ⇒MK

]
→

[
K ′⇒ K

]
,

we also obtain a morphism of the quotient stacksM→K [Stacks, Lemma 046Q].
To argue that we have a canonical morphism ν :Q→M, we will construct a morphism from a groupoid

associated to Q to the groupoid P ⇒MK . Pick a smooth cover by a scheme Q→QK – it induces a smooth
cover Q→Q. Denote by v :Q→MK the composition of the cover with QK →MK . Put Q

′ =Q×QQ, then
we get a groupoid presentation q1,q2 :Q′⇒Q of Q. Let us summarize the notation in the diagram:

Q′
q1,q2-

- Q - QK
q
- Q

P
? p1,p2-- MK

v

? p
-

�

g

M

ν

?

K ′
? k1, k2-

- K

u

?
- K
?

Since K ′ = K ×K K , the two morphisms uvqi : Q′ ⇒ K define a canonical morphism w : Q′ → K ′ .
Then the pair of morphisms (w,vqi) for any i = 1,2 define a canonical morphism to the fibered product
Q′→ K ′ ×KMK = P , and we then have a morphism of groupoids[

Q′⇒Q
]
→

[
P ⇒MK

]
which induces a morphism of the quotient stacks ν :Q→M.

We can now check that ν is good. First, let us study R0ν∗OQ. By descent, it is isomorphic to OM if and
only if its pullback L0p∗R0ν∗OM is isomorphic to OMK

. But p is smooth, hence flat, so by base change
[Hal14, Corollary 1.4.(2)], and using that g is a good moduli space, we have:

L0p∗R0ν∗OM = R0q∗L
0q∗OM � OMK

.

Using base change again, we can check that ν∗ is exact, so ν is good. �

Remark 2.16. The property of being a good moduli space is preserved under arbitrary base change [Alp13],
therefore, for a closed point [X] ∈ K, the spacesM[X] and M[X] are isomorphic, soM[X] is a good moduli
space of the stack of stable sheaves over the surface X.

2.4. The good morphism is fiberwise a scheme

We will briefly summarize several results about change of polarization from the book by Huybrechts and
Lehn [HL10, §4.3]. Then we will apply these results to our situation to show that for a closed point [X] ∈ K,
the fiberM[X] is a scheme.

Fact 2.17 (cf. [HL10, Lemma 4.C.2 and Theorem 4.C.3]). Let X be a smooth projective surface over an
algebraically closed field of characteristic zero. For a fixed Chern character v on X, there is a locally finite
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hyperplane arrangement (the hyperplanes are called walls) in the numerical group Num
R
X satisfying the following

property: if a big and nef divisor H ∈ Num
R
X is not on a wall and rkv is coprime with c1(v) ·H , then a

torsion-free sheaf of Chern character v is H-stable iff it is H-semistable.

Lemma 2.18. Fix a Chern character v over X . Assume that semistable sheaves of class v are stable. Then for any
quasi-polarized surface [X,H] ∈ K, the restrictionM[X] is a scheme.

Proof. This is well-known in the case when the quasi-polarization is ample and follows from Remark 2.16
and the assumption that semistability is equivalent to stability. So we will reduce the general case [X,H]
with H big and nef to the ample case by considering a small ample shift.

For a big and nef H (which may lie on a wall – it wouldn’t pose problems), we can find an ample divisor
H1 ∈Num

R
X such that the semiopen line segment (H,H1] does not intersect any walls – this follows from

the fact that the hyperplane arrangement is locally finite (Fact 2.17). From the assumption that c1(v) is
indivisible and the same Fact 2.17 it also follows that stability with respect to any Hε ∈ (H,H1] is equivalent
to semistability, and in addition, we assumed equivalence of H-stability and H-semistability. We now want
to prove that in this setup, a sheaf F is H-stable iff it is H1-stable.

Assume that it is H-stable, but not H1-stable. Fix an H1-destabilizing subsheaf F1 ⊂ F and let us define

δ
def= c1(F1)

rkF1
− c1(F)

rkF . Note that pairing with δ is a linear function on Num
R
X and H ·δ < 0 from H-stability of

F, while H1 · δ > 0 from H1-instability. Hence there exists some Hε ∈ (H,H1) such that Hε · δ = 0 proving
that F is strictly semistable with respect to Hε and with destabilizig subsheaf F1. But this contradicts our
setup where stability is equivalent to semistability.

The proof that H1-stability implies H-stability is analogous. �

Remark 2.19. It is interesting to note that under the assumptions of the above lemma, the resulting moduli
space with respect to quasi-polarization does not depend on the small ample shift, even if the two ample
shifts are separated by a wall. The latter may happen when H happens to be on a wall.

2.5. Proof of the main theorem

Now we can combine the above results and prove the following theorem.

Theorem 2.20. Let K be a stack of quasi-polarized surfaces that admits the universal family X with the universal
quasi-polarization H. Fix a Chern character v over X . Assume that, pointwise over K, stability is equivalent to
semistability for sheaves in class v. Then there exists a stackM→K which is fiberwise (i.e. over each closed point
of K) the moduli scheme of stable sheaves of class v with respect to the restriction of the universal quasi-polarization.

Proof. We have proved in Lemmas 2.2 and 2.4 that Q is constructible in M̃ and preserved by generization.
Therefore, by Lemma 2.7, the subfunctor Q ⊂ M̃ is open, and since M̃ is an Artin stack, then Q is also an
Artin stack. By Theorem 2.15, there exists a good moduli space morphism ν :Q→M such that fiberwise
we get good moduli spaces. By Lemma 2.18, the familyM→K is fiberwise a scheme. �

3. The Strange Duality morphism

3.1. Defining theta line bundles

Let K be the moduli stack of quasi-polarized K3 surfaces. Let X →K be the universal quasi-polarized

K3 surface, so it will also be the moduli stack of pointed quasi-polarized K3 surfaces. Then Y def= X ×K X is
the universal pointed quasi-polarized K3 surface.

For a fixed Chern character v, letMv →K be the stack of stable sheaves with Chern character v which is
pointwise a scheme, as constructed in Theorem 2.15 and Theorem 2.20. SoMv is a stack, but over each
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point of K, the fiber is a scheme – the moduli scheme of stable sheaves with respect to the quasi-polarization
at this point of the moduli space.

Consider Nv
def= Mv ×K X – it will be the relative moduli space over the stack of pointed K3 surfaces.

Unfortunately, there is no universal family over Nv , so we need to work with the stack Q→Nv , which is the
moduli stack of stable sheaves before we “forget” the Gm-automorphisms of the sheaves. We can construct it
analogously to Theorem 2.15 or pull back the Q from Q→K along X →K. Then we have the universal

family E ∈ Coh
(
Y ×
K
Y ×
X
Q
)
of stable sheaves.

Consider the following Cartesian square. We will use it to define a line bundle on Q and, with Lemma 2.12,
argue that it descends to Nv , so that we can later use this universal theta line bundle to construct the Strange
Duality morphism in families.

Y �
q

Y ×
X
Q

X
?
� Nv � Q

p

?

Taking an algebraic K-theory class w on Y , we can use Fourier-Mukai transform and define uniquely up
to an isomorphism a line bundle

L
def= detp∗(E ⊗ q∗w)

on Q. Further, assuming that w is orthogonal to v, we can argue that this line bundle L descends along
Q→Nv , as described in Lemma 3.2. We will need the following preliminary result.

Lemma 3.1. Let B be a locally Noetherian scheme and π : E → B be a Gm-bundle over B, i.e. there is a line
bundle L on B such that E = SpecB

(⊕
n∈ZL

⊗n
)
. Let F and G be two indecomposable complexes of coherent

sheaves on B and assume that π∗F � π∗G. Then there exists k ∈Z such that F � G⊗Lk .

Proof. Since coherent sheaves on a relative spectrum of a sheaf of algebras A =
⊕

n∈ZL
⊗n correspond to

quasi-coherent sheaves on the base B that are finitely generated A-modules, we can view the isomorphism
π∗F � π∗G as an isomorphism of complexes of quasi-coherent sheaves on B:⊕

n∈Z
L⊗n ⊗F �

⊕
n∈Z
L⊗n ⊗G.

Consider the direct summand F = L⊗0 ⊗F of the left hand side of the isomorphism.

F ⊂
⊕
n∈Z
L⊗n ⊗F �−→

⊕
n∈Z
L⊗n ⊗G.

Viewing F as a subobject of the right hand side, we get a decomposition of F into direct summands
F ∩L⊗n ⊗G; by assumption, a nontrivial decomposition cannot happen, so there is only one index k for
which F ∩ L⊗k ⊗G , 0, and therefore the morphism from F factors through L⊗k ⊗G. Using a similar
argument for L⊗k ⊗G, we can deduce that in fact F is identified with L⊗k ⊗G by the isomorphism of
pullbacks. �

Lemma 3.2. Take two orthogonal algebraic K-theory classes v and w on the universal pointed K3 surface Y .
As before, E ∈ Coh

(
Y ×
X
Q
)
is the universal family. Define L

def
= detp∗(E ⊗ q∗w) on Q. Then the line bundle L

descends to Nv .

Proof. We will proceed as follows: first, we prove that the rank of p∗(E⊗q∗w) is zero using orthogonality of v
and w, then we recall that there exists a “descent datum” for E which does not satisfy the cocycle condition,
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and we use it to construct descent datum for L, and finally we argue that the descent datum for L satisfies
the cocycle condition with the use of the first observation about rank.
Step 1: rank equals zero. Now we want to use orthogonality of v and w to prove that rkp∗(E ⊗ q∗w) = 0.

For that, let us consider the restriction of this sheaf to a point ι : {∗} → Q, so that

rkp∗(E ⊗ q∗w) = rk ι∗p∗(E ⊗ q∗w) = χ (ι∗p∗(E ⊗ q∗w)) .

Let X denote the K3 surface that corresponds to the chosen point ι in Q, then we have the following pullback
diagram:

Y �
q
Y ×
X
Q �

κ
X

X
?
� Q

p

?
�

ι
{∗}

γ

?

Now we can compute the rank. Note that we use base change formula in the first line and orthogonality
of v and w in the second line:

rkp∗(E ⊗ q∗w) = χ (ι∗p∗(E ⊗ q∗w)) = χ (γ∗κ∗(E ⊗ q∗w)) = χ (κ∗E ⊗ (qκ)∗w) = 0.

Step 2: “descent data” for p∗(E ⊗ q∗w) and L. Let a : A→Q be a smooth atlas. Then its composition νa
with ν :Q→Nv is a smooth atlas for Nv , since formal smoothness can be verified by a lifting property and
finite presentation is automatic. Introduce projection morphisms q1, q2, r1, r2, summarized in the diagram
below, where B = A×

Q
A and C = A ×

Nv
A:

Q �
a

A �
qi B

Nv

ν

?
�

νa
A

=

?
�

ri C

π

?
�

rij
C ×
A
C

We let r12, r23, r13 be projection and composition morphisms from C ×
A
C to C that determine the structure

of a groupoid. Since fibers of ν are BGm, we get, by the magic square diagram, that π is a Gm-fibration
given by some line bundle T . We know that the complex p∗(E⊗q∗w) on Q corresponds to a complex F on A
that has a gluing isomorphism q∗1F→ q∗2F on B. Since qi = riπ and by Lemma 3.1, if F was indecomposable,
we would get an isomorphism ψ : r∗1F→ r∗2F ⊗ T ⊗k for some integer k. The complex F is not necessarily
indecomposable, so we wish to apply Lemma 3.1 to each summand. However, since p∗(E⊗q∗w) is a complex
of sheaves on a stack with BGm stabilizers, we can calculate the weight of the Gm-action on the fibers which
would determine the corresponding twist, and we will conclude that the twist is the same for each summand
of F. Similar to Step 1, let ι : BGm→Q be an embedding of a point with its stabilizer, then we have the
following commutative diagram:

Y �
q
Y ×
X
Q �

κ
X ×BGm

X
?
� Q

p

?
�

ι
BGm

γ

?
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Then consider the restriction along ι, where EX and wX denote the restrictions of E and w to X:

ι∗p∗(E ⊗ q∗w) = γ∗ (EX ⊗wX) .

We can see that Gm acts on wX trivially and on EX by tautological scaling, so the resulting action on the
cohomology of EX ⊗wX is also tautological scaling with weight one. Therefore, we have an isomorphism

ψ : r∗1F→ r∗2F ⊗ T .

Since q∗1F→ q∗2F satisfies the cocycle condition, we get that the following composition, denoted by 1⊗ f ,
is an isomorphism:

1⊗ f = (r∗13ψ)
−1 ◦ r∗23ψ ◦ r

∗
12ψ : r∗13r

∗
1F ⊗ T → r∗13r

∗
1F ⊗ T

⊗2.

Step 3: cocycle condition for ϕ
def
= detψ. Let us first write ϕ, remembering from Step 1 that rank is zero:

ϕ : detr∗1F→ detr∗2F ⊗ T
rkF = det r∗2F.

So we have a “descent datum” for detF, and now we verify that the cocycle condition holds:

(r∗13ϕ)
−1 ◦ r∗23ϕ ◦ r

∗
12ϕ = det(1⊗ f ) = 1⊗ f rkF = 1.

So L satisfies the cocycle condition and hence descends to Nv . �

Recall thatMv →K is the relative moduli scheme of stable sheaves over the stack of quasi-polarized
K3 surfaces, while Nv =Mv ×K

X →X is the same over pointed quasi-polarized surfaces, so every fiber of

Nv →Mv is naturally the underlying surface. Let Lw now denote the line bundle on Nv constructed in
Lemma 3.2. We now want to argue that Lw, possibly up to a twist by the quasi-polarization, is isomorphic to
the pullback along Nv →Mv of some line bundle onMv .

Lemma 3.3 (Marian-Oprea [MO14b]). Pick two orthogonal K-theory vectors:

v = rvO + dvH+ avOσ ,

w = rwO + dwH+ awOσ
in the algebraic K-theory K0Y , where we recall that Y is the universal pointed K3 surface with the universal
quasi-polarization H, and we use σ to denote the class of the natural section X → Y . Let L be the line bundle
that we descended from det q∗ip∗(E ⊗ q

∗w) on Q to Nv . Then the restriction of L to a fiber X of Nv →Mv is
isomorphic to a power of the quasi-polarization Hn =Hn|X , and n is independent of the choice of a fiber.

Proof. See the discussion above Equation (4.1) on Page 2080 of the paper “On Verlinde sheaves and strange
duality” by Marian and Oprea [MO14b]. �

This lemma shows that Lw and a tensor power of the polarization Hn are fiberwise isomorphic, and
therefore the twist Lw ⊗H−n of the determinant line bundle Lw on Nv comes as a pullback fromMv . Let
us denote a suitable line bundle onMv by Θw.

Definition 3.4. Pick two orthogonal algebraic K-theory classes v and w over Y = X ×
K
X . There exists

a line bundle Θw on Mv whose pullback to Nv =Mv ×K
X is isomorphic, up to a twist by the universal

quasi-polarization, to the determinant line bundle Lw. This line bundle Θw is called a theta line bundle.

3.2. Constructing the Strange Duality morphism

Recall that our aim is to extend the definition of the Strange Duality morphism to the relative case.
Pointwise, the morphism is expected to establish a duality between two vector spaces of global sections.
The relative version of cohomology is the derived pushforward functor, therefore we will work with the
pushforwards of the theta line bundles.
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Assumptions. Recall that K stands for the moduli stack of quasi-polarized K3 surfaces and X → K
denotes the universal K3 surface with quasi-polarization H. Let v and w in K0X be two poinwise orthogonal
numerical characteristics, that is χ(v ⊗w) = 0 on each K3 surface in the family. Assume that pointwise on
K, semistable sheaves of classes v and w are stable. By the results of the previous section, this ensures that
we have relative moduli spaces πv :Mv →K and πw :Mw →K with the theta line bundles Θw onMv

and Θv onMw. Let π :Mv ×K
Mw→K denote the natural projection.

Definition 3.5. The pushforwards W
def= πv∗Θw and V

def= πw∗Θv are known as the Verlinde complexes.

Definition 3.6. Define the Brill-Noether locus Θ of jumping zeroth cohomology onMv ×K
Mw as follows:

Θ
def=

{
(X,E,F) | RΓ 0(X,E ⊗F) , 0

}
.

One naturally expects Θ to be a divisor or coincide with the whole locusMv(X)×Mw(X) over each
point [X] ∈ K. The locus in K where Θ is not a divisor is of codimension at least two if the complement is
not empty.

Lemma 3.7 (cf. [MO14b, Remark 4.2]). There exists a line bundle T on K so that we have an isomorphism on
Mv ×K

Mw:

π∗T ⊗O(Θ) �Θw �Θv .

We can pushforward the isomorphism to K. After using projection formula twice as well as flat base
change isomorphism, we get the following:

T ⊗π∗O(Θ) � π∗ (Θw �Θv) �W ⊗V .

The section of O(Θ) corresponds to a section π∗O(Θ), so by local triviality of T , it corresponds locally
to a morphism W∨→ V . We will denote this morphism by D and call it the Strange Duality morphism,
remembering that it is only defined up to the twist T :

(3.1) D :W∨→ V .

References

[AHLH19] J. Alper, D. Halpern-Leistner, and J. Heinloth, Existence of moduli spaces for algebraic stacks,
preprint arXiv:1812.01128v3 (2019).

[Alp13] J. Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6,
2349–2402.

[Bea95] A. Beauville, Vector bundles on curves and generalized theta functions: recent results and open problems,
in: Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), Math. Sci. Res. Inst. Publ.,
vol. 28, Cambridge Univ. Press, Cambridge, 1995, pp. 17–33.

[Bla16] A. Blanc, Topological K-theory of complex noncommutative spaces, Compos. Math. 152 (2016), 489–
555.

[BRTV18] A. Blanc, M. Robalo, B. Toën, and G. Vezzosi, Motivic realizations of singularity categories and
vanishing cycles, J. Éc. polytech. Math. 5 (2018), 651–747.

[BMOY17] B. Bolognese, A. Marian, D. Oprea, and K. Yoshioka, On the strange duality conjecture for abelian
surfaces II, J. Algebraic Geom. 26 (2017), no. 3, 475–511.

[Bri98] T. Bridgeland, Fourier-Mukai transforms for elliptic surfaces, J. Reine Angew. Math. 498 (1998),
115–133.

https://arxiv.org/abs/1812.01128v3


Moduli spaces of stable sheaves and the relative Strange Duality morphism 15Moduli spaces of stable sheaves and the relative Strange Duality morphism 15

[DT94] R. Donagi and L. W. Tu, Theta functions for SL(n) versus GL(n), Math. Res. Lett. 1 (1994), no. 3,
345–357.

[Hal14] J. Hall, Cohomology and base change for algebraic stacks, Math. Z. 278 (2014), no. 1-2, 401–429.

[HL10] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, 2nd ed., Cambridge
Mathematical Library, Cambridge University Press, Cambridge, 2010.

[Lie06] M. Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006), no. 1, 175–206.

[MO13] A. Marian and D. Oprea, Generic strange duality for K3 surfaces (with an appendix by K. Yoshioka),
Duke Math. J. 162 (2013), no. 8, 1463–1501.

[MO14a] , On the strange duality conjecture for abelian surfaces, J. Eur. Math. Soc. ( JEMS) 16 (2014),
no. 6, 1221–1252.

[MO14b] , On Verlinde Sheaves and Strange Duality over Elliptic Noether-Lefschetz Divisors, Ann. Inst.
Fourier 64 (2014), no. 5, 2067–2086.

[TT90] R. W. Thomason and T. Trobaugh, Higher Algebraic K-theory of Schemes and of Derived Categories,
in: The Grothendieck Festschrift, Vol. III, Prog. Math. 88, 1990, pp. 247–435.

[Stacks] The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu.

https://stacks.math.columbia.edu

	1 Introduction
	2 Relative moduli spaces of stable sheaves with respect to a quasi-polarization
	3 The Strange Duality morphism
	References

