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G-fixed Hilbert schemes on K3 surfaces, modular forms, and
eta products

Jim Bryan and Ádám Gyenge

Abstract. Let X be a complex K3 surface with an effective action of a group G which preserves
the holomorphic symplectic form. Let

ZX,G(q) =
∞∑
n=0

e
(
Hilbn(X)G

)
qn−1

be the generating function for the Euler characteristics of the Hilbert schemes of G-invariant length
n subschemes. We show that its reciprocal, ZX,G(q)−1 is the Fourier expansion of a modular cusp
form of weight 1

2e(X/G) for the congruence subgroup Γ0(|G|). We give an explicit formula for
ZX,G in terms of the Dedekind eta function for all 82 possible (X,G). We extend our results to
various refinements of the Euler characteristic, namely the Elliptic genus, the χy genus, and the
motivic class. As a byproduct of our method, we prove a result which is of independent interest: it
establishes an eta product identity for a certain shifted theta function of the root lattice of a simply
laced root system.
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1. Introduction

Let X be a complex K3 surface with an effective action of a group G which preserves the holomorphic
symplectic form. Mukai showed that such G are precisely the subgroups of the Mathieu group M23 ⊂M24
such that the induced action on the set {1, . . . ,24} has at least five orbits [Muk88]. Xiao classified all possible
actions into 82 possible topological types of the quotient X/G [Xia96].

The G-fixed Hilbert scheme1 of X parameterizes G-invariant length n subschemes Z ⊂ X. It can be
identified with the G-fixed point locus in the Hilbert scheme of points:

Hilbn(X)G ⊂Hilbn(X).

We define the corresponding G-fixed partition function of X by

ZX,G(q) =
∞∑
n=0

e
(
Hilbn(X)G

)
qn−1

where e(−) is the topological Euler characteristic.
Throughout this paper we set

q = exp(2πiτ)

so that we may regard ZX,G as a function of τ ∈H where H is the upper half-plane.

1.1. The Main Results.

Our main result is the following:

Theorem 1.1. The function ZX,G(q)−1 is a modular cusp form
2 of weight 1

2e(X/G) for the congruence subgroup
Γ0(|G|).

1Some authors call this the G-equivariant Hilbert scheme or the G-invariant Hilbert scheme.
2By cusp form, we mean that the order of vanishing at q = 0 is at least 1. Modular forms of half integral weight transform with

respect to a multiplier system. We refer to [Köh11] for definitions.
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Our theorem specializes in the case where G is the trivial group to a famous result of Göttsche [Göt90].
The case where G is a cyclic group was proved in [BO18]. An analogous result for the case where X is an
Abelian surface acted on symplectically by a finite group G has been recently proven by Pietromonaco
[Pie20].

We give an explicit formula for ZX,G(q) in terms of the Dedekind eta function

η(τ) = q
1
24

∞∏
n=1

(1− qn)

as follows. Let p1, . . . ,pr be the singular points of X/G and let G1, . . . ,Gr be the corresponding stabilizer
subgroups of G. The singular points are necessarily of ADE type: they are locally given by C

2/Gi where
Gi ⊂ SU(2). Finite subgroups of SU(2) have an ADE classification and we let ∆1, . . . ,∆r denote the
corresponding ADE root systems.

For any finite subgroup G∆ ⊂ SU(2) with associated root system ∆ we define the local G∆-fixed partition
function by

Z∆(q) =
∞∑
n=0

e
(
Hilbn(C2)G∆

)
qn−

1
24 .

The main geometric result we prove is the following.

Theorem 1.2. The local partition function for ∆ of type An is given by

ZAn(q) =
1
η(τ)

and for type Dn and En by

Z∆(q) =
η2(2τ)η(4Eτ)

η(τ)η(2Eτ)η(2Fτ)η(2V τ)
where (E,F,V ) are given by:

(E,F,V ) =


(n− 2,2,n− 2),
(6,4,4),

(12,8,6),

(30,20,12),

if

∆ =Dn
∆ = E6
∆ = E7
∆ = E8

Remark 1.3. For ∆ of type Dn or En, the group H = G∆/{±1} ⊂ SO(3) is the symmetry group of a polyhedral
decomposition of S2 � P

1 into isomorphic regular spherical polygons. Then E, F, and V are the number
of edges, faces, and vertices of the polyhedron. The key idea in proving the above theorem is to show
that Hilb(C2)G∆ is deformation equivalent to Hilb(Y )H where Y = Tot(K

P
1) is the minimal resolution of

C
2/{±1} (see Section 3).

Using the work of Nakajima, we will also prove in Lemma 4.2 that

Z∆(q) =
θ∆(τ)
η(kτ)n+1

where

θ∆(τ) =
∑
m∈M∆

q
k
2 (m+ 1

k ζ|m+ 1
k ζ)

is a shifted theta function for M∆, the root lattice of ∆. Here n is the rank of the root system, k = |G∆|, and
ζ is dual to the longest root (see Section 4 and Equation (4.1) for details).

Theorem 1.2 then yields an eta product identity for the theta function θ∆(τ) reminiscent of the MacDonald
identities:
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Theorem 1.4. The shifted theta function θ∆(τ) defined above (cf. § 4 and Equation (4.1)) is given by an eta
product as follows:

θAn(τ) =
ηn+1((n+1)τ)

η(τ)
for ∆ of type An and

θ∆(τ) =
η2(2τ)ηn+2(4Eτ)

η(τ)η(2Eτ)η(2Fτ)η(2V τ)
for ∆ of type Dn or En, where E,F,V are as in Theorem 1.2.

Remark 1.5. Kac found that the Macdonald identities could be interpreted in terms of the character formula
for highest weight representations of Kac-Moody algebras (cf. [Kac94, § 10]). It would be very interesting to
find such an interpretation of the new identities in Theorem 1.4.

The 82 possible collections of ADE root systems ∆1, . . . ,∆r associated to (X,G) a K3 surface with a
symplectic G action, are given in Appendix A, Table 1. We let k = |G|, ki = |Gi |, and

a = e(X/G)− r = 24
k
−

r∑
i=1

1
ki
.

The global series ZX,G(q) can be expressed as a product of local contributions (and thus via Theorem 1.2
as an explicit eta product) by our next result:

Theorem 1.6. With the above notation we have

ZX,G(q) = η
−a(kτ)

r∏
i=1

Z∆i

(
kτ
ki

)
.

Theorem 1.1 then immediately follows from Theorem 4.1 and Theorem 1.6 using the formulas for the
weight and level of an eta product given in [Köh11, § 2.1].

In Appendix A, Table 1 we have listed explicitly the eta product of the modular form ZX,G(q)−1 for all 82
possible cases of (X,G).

1.2. Consequences of the Main Results.

Having obtained explicit eta product expressions for ZX,G(q) allows us to make several observational
corollaries:

Corollary 1.7. If G is a finite subgroup of an elliptic curve E, i.e. G is isomorphic to a product of one or two
cyclic groups, then ZX,G(q)−1 is a Hecke eigenform. In Table 1 these are the 13 cases having Xiao number in the set
{0,1,2,3,4,5,7,8,11,14,15,19,25}. Moreover, in each of these cases, the dimension of the Hecke eigenspace is
one.

We remark that in these cases, we may form a Calabi-Yau threefold called a CHL model by taking the free
group quotient

(X ×E)/G
Then the partition function ZX,G(q) gives the Donaldson-Thomas invariants of (X ×E)/G in curve classes
which have degree zero over X/G (cf. [BO18]).

Remark 1.8. Hecke eigenforms of weight 3 arise in the arithmetic of K3 surfaces: if X is a K3 surface defined
over Q and has ρ(X) = rkNS(X) = 20, then there is a weight 3 Hecke eigenform

fX(q) =
∞∑
n=1

anq
n
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such that for almost all primes p, ap is the trace of the p-th Frobenius morphism acting on H2(X)/NS(X).
There are four cases where ZX,G(q)−1 is a weight three Hecke eigenform and they correspond to the cases
where G is Z7, Z8, Z2 ×Z6, or Z4 ×Z4 (numbered 8, 14, 19, 25 on Table 1). If X admits a symplectic G
action for one of these four groups, then we may take X to be defined over Q, have ρ(X) = 20, and then
remarkably

ZX,G(q)
−1 = fX(q).

Indeed, in each of these cases, we may take X to be elliptically fibered over P
1 and have G as its group

of sections (thus giving rise to the symplectic G action). Moreover, X is then the universal curve over the
modular curve parameterizing (E,G), an elliptic curve E with a subgroup G ⊂ E. We thank Shuai Wang and
Noam Elkies for noticing and elucidating this phenomenon.

For any eta product expression of a modular form, one may easily compute the order of vanishing (or
pole) at any of the cusps [Köh11, Corollary 2.2]. Performing this computation on the 82 cases yields the
following:

Corollary 1.9. The modular form ZX,G(q)−1 always vanishes with order 1 at the cusps i∞ and 0. Moreover,
ZX,G(q)−1 is holomorphic at all cusps except for the two cases with Xiao number 38 or 69, which have poles at the
cusps 1/2 and 1/8 respectively. These are precisely the cases where X/G has two singularities of type E6.

Remark 1.10. The integers e
(
Hilbn(X)G

)
should have enumerative significance: they can be interpreted as

virtual counts of G-invariant curves, whose quotient is rational, in a complete linear series of dimension n
on X. This generalizes the famous Yau-Zaslow formula [YZ96] in the case where G is the trivial group. The
precise nature between the virtual count and the actual count is expected to be subtle for the case of general
G. This has been recently explored in [Zha19] and also in the case of G acting on an Abelian surface in
[Pie20].

1.3. Refinements of the Euler Characteristic.

We can extend our results to various refinements of the Euler characteristic, namely the elliptic genus, the
χy genus, and the motivic class. These refinements all stem from the next result which we prove in Section 5.
Let

Zbir
X,G(q) =

∞∑
n=0

[Hilbn(X)G]bir q
n−1

be a formal series whose coefficients we regard as birational equivalence classes of projective hyperkahler
manifolds. Such equivalence classes form a semi-ring under disjoint union and Cartesian product.

Theorem 1.11. Let Y be the minimal resolution of X/G, then

Zbir
X,G(q) = Z

bir
Y (qk) ·ZX,G(q) ·∆(kτ)

where k = |G|, ∆(τ) = η(τ)24, and we have suppressed the trivial group from the notation in the series Zbir
Y (qk).

A famous theorem of Huybrechts [Huy99, Theorem 4.6] asserts that birational projective hyperkahler man-
ifolds are deformation equivalent. Moreover, combining Huybrechts’ theorem with [NS17, Proposition 3.21] it
follows that birational projective hyperkahler manifolds are equal in K0(VarC), the Grothendieck group of
varieties.

Thus we may specialize the series Zbir
X,G(q) to Elliptic genus, motivic class, and χy genus since these are

all well defined on birational equivalence classes of projective hyperkahler manifolds. These specializations
are all well known for the series Zbir

Y and hence we easily get the following corollaries.
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Corollary 1.12. Let Q = exp(2πiσ ), q = exp(2πiτ), y = exp(2πiz), and let

ZEll
X,G(Q,q,y) =

∞∑
n=0

Ellq,y
(
Hilbn(X)G

)
Qn−1

where Ellq,y(−) is elliptic genus. Then

ZEll
X,G(Q,q,y) =

φ10,1(τ,z)
χ10(kσ ,τ,z)

·ZX,G(q) ·∆(kτ)

where φ10,1(q,y) is the unique Jacobi cusp form of weight 10 and index 1 and χ10(σ,τ,z) is Igusa’s genus 2 Siegel
cusp form of weight 10.

We refer the reader to [Pie18, § 5, § 6, and Equation 6.9.8] for definitions of Ellq,y , φ10,1, χ10, and the
formula for the elliptic genera of Hilbn(Y ).

A further specialization of particular interest is the (normalized) χy genus. Let

χ−y(M) = y−
1
2 dimM χ−y(M)

= y−
1
2 dimM

∑
p,q

(−1)p+qyq dimHp,q(M)

and we note that χ−y(M) = Ellq,y(M)|q=0.

Corollary 1.13. Let

ZχX,G(q,y) =
∞∑
n=0

χ−y
(
Hilbn(X)G

)
qn−1.

Then

ZχX,G(q,y) = y
−1(1− y)2

ZX,G(q)

φ−2,1(qk , y)
where φ−2,1 is the unique weak Jacobi form of weight −2 and index 1. In particular,

y−1(1− y)2ZχX,G(q,y)
−1 =

φ−2,1(qk , y)
ZX,G(q)

is a Jacobi form of index 1 and weight

1
2
e(X/G)− 2 = 10− 1

2

r∑
i=1

rank∆i

for the congruence subgroup Γ1(k).

We note that for G cyclic, the series ZX,G(q)/φ−2,1(qk , y) is the leading coefficient in the expansion of the
Donaldson-Thomas partition function of (X ×E)/G in the variable tracking the curve class in X (see [BO18,
Theorem 0.1]).

We also get a formula for the motivic classes of the G-fixed Hilbert schemes:

Corollary 1.14. Let

ZK0
X,G(q) =

∞∑
n=0

[Hilbn(X)G]K0
qn−1

where [Hilbn(X)G]K0
∈ K0(VarC) denotes the motivic class of the G-fixed Hilbert scheme. Then

ZK0
X,G(q) = q

−1 ·
∞∏
m=1

(
1−Lm−1qkm

)−[Y ]
·ZX,G(q) ·∆(kτ)

where L = [A1
C
] ∈ K0(VarC).
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We refer the reader to [GZLMH04] for the meaning of [Y ] in the exponent and the formula for the motivic
class of Hilbn(Y ). The above series has further specializations giving formulas for the Hodge polynomials
and Poincare polynomials of the G-fixed Hilbert schemes.

1.4. Structure of paper.

In Section 2 we express the global partition function in terms of the local partition functions and deduce
Theorem 1.6. In Section 3 we prove our main geometric result Theorem 1.2 which gives the eta product
expression of the local partition functions. In Section 4 we express the local partition functions in terms of
certain theta functions and thus prove our Theorem 1.4 which gives us the new theta function identities. In
Section 5 we obtain the enhanced result of Theorem 1.11 on the partition function birational equivalence
class of the G-fixed Hilbert schemes. Appendix 5 contains a proof of a root theoretic identity we need and
Appendix A contains a table listing the modular form Z−1X,G in all 82 topological types of symplectic actions
on a K3 surface.

Acknowledgements.

The authors warmly thank Jenny Bryan, Noam Elkies, Federico Amadio Guidi, Georg Oberdieck, Ken
Ono, Stephen Pietromonaco, Balázs Szendrői, Shuai Wang, and Alex Weekes for helpful comments and/or
technical help. We would also like to thank the anonymous referee for helping us to fix and greatly simplify
the proof of Proposition 3.1.

2. The global partition function

As in the introduction, let X be a K3 surface with a symplectic action of a finite group G. Recall that
p1, . . . ,pr ∈ X/G are the singular points of X/G with corresponding stabilizer subgroups Gi ⊂ G of order ki
and ADE type ∆i . Let {x1i , . . . ,x

k/ki
i } be the orbit of G in X corresponding to the point pi (recall that k = |G|).

We may stratify Hilb(X)G according to the orbit types of subscheme as follows.
Let Z ⊂ X be a G-invariant subscheme of length nk whose support lies on free orbits. Then Z determines

and is determined by a length n subscheme of

(X/G)o = X/G \ {p1, . . . ,pr},

i.e. a point in Hilbn((X/G)o).
On the other hand, suppose Z ⊂ X is a G-invariant subscheme of length nk

ki
supported on the orbit

{x1i , . . . ,x
k/ki
i }. Then Z determines and is determined by the length n component of Z supported on a

formal neighborhood of one of the points, say x1i . Choosing a Gi-equivariant isomorphism of the formal
neighborhood of x1i in X with the formal neighborhood of the origin in C

2, we see that Z determines and
is determined by a point in Hilbn0(C

2)Gi , where Hilbn0(C
2) ⊂ Hilbn(C2) is the punctual Hilbert scheme

parameterizing subschemes supported on a formal neighborhood of the origin in C
2.

By decomposing an arbitrary G-invariant subscheme into components of the above types, we
obtain a stratification of Hilb(X)G into strata which are given by products of Hilb((X/G)o) and
Hilb0(C2)G1 , . . . ,Hilb0(C2)Gr . Then using the fact that Euler characteristic is additive under stratifications
and multiplicative under products, we arrive at the following equation of generating functions:

(2.1)
∞∑
n=0

e
(
Hilbn(X)G

)
qn =

 ∞∑
n=0

e (Hilbn((X/G)o)) qkn
 · r∏

i=1

 ∞∑
n=0

e
(
Hilbn0(C

2)Gi
)
q
nk
ki

 .



8 J. Bryan and Á. Gyenge8 J. Bryan and Á. Gyenge

As in the introduction, let a = e(X/G)− r = e ((X/G)o). Then by Göttsche’s formula [Göt90],

∞∑
n=0

e
(
Hilbn((X/G)0

)
qkn =

∞∏
m=1

(1− qkm)−a = q
ak
24 · η(kτ)−a.

We also note that e
(
Hilbn0(C

2)Gi
)
= e

(
Hilbn(C2)Gi

)
since the natural C∗ action on both Hilbn0(C

2)Gi

and Hilbn(C2)Gi have the same fixed points. Thus we may write

∞∑
n=0

e
(
Hilbn0(C

2)Gi
)
q
nk
ki =

∞∑
n=0

e
(
Hilbn(C2)Gi

)
q
nk
ki = q

k
24ki ·Z∆i

(
kτ
ki

)
.

Multiplying Equation (2.1) by q−1 and substituting the above formulas, we find that

ZX,G(q) = q
−1+ ak

24+
∑ k

24ki · η(kτ)−a ·
r∏
i=1

Z∆i

(
kτ
ki

)
.

>From the following Euler characteristic calculation, we see that the exponent of q in the above equation
is zero:

24 = e(X) = e
(
X −∪ri=1{x

1
i , . . . ,x

k/ki
i }

)
+

r∑
i=1

k
ki

= k · e ((X/G)o) +
r∑
i=1

k
ki

= k · a+
r∑
i=1

k
ki

This completes the proof of Theorem 1.6. �

3. The local partition function

Recall that the local partition function is defined by

Z∆(q) =
∞∑
n=0

e
(
Hilbn(C2)G∆

)
qn−

1
24

where G∆ ⊂ SU(2) is the finite subgroup corresponding to the ADE root system ∆. In this section, we prove
Theorem 1.2 which provides an explicit formula for Z∆(q) in terms of the Dedekind eta function. We regard
this as the main geometric result of this paper.

3.1. Proof of Theorem 1.2 in the An case.

We wish to prove

ZAn(q) =
1
η(τ)

which is equivalent to the statement

∞∑
m=0

e
(
Hilbm(C2)Z/(n+1)

)
qm =

∞∏
m=1

(1− qm)−1.

The action of Z/(n + 1) on C
2 commutes with the action of C∗ ×C∗ on C

2 and consequently, the Euler
characteristics on the left hand side may be computed by counting the C

∗ ×C∗-fixed subschemes, namely
those given by monomial ideals. Such subschemes of length m have a well known bijection with integer
partitions of m, whose generating function is given by the right hand side. �
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3.2. Proof of Theorem 1.2 in the Dn and En cases.

Our proof of Theorem 1.2 in the Dn and En cases uses a trick exploiting the fact that the Hilbert schemes
of the stack X = [C2/{±1}] and the Hilbert schemes of the space Y = Tot(K

P
1) can both be realized as

moduli spaces of quiver representations of the A1 Nakajima quiver variety.
Let G ⊂ SU(2) be a subgroup where the corresponding root system ∆ is of D or E type. Then {±1} ⊂ G

and let H ⊂ SO(3) be the quotient

H = G/{±1}.
The induced action of H on P

1 � S2 is by rotations. Indeed, H is the symmetry group of a regular
polyhedral decomposition of S2 which is given by the platonic solids in the En case and the decomposition
into two hemispherical (n− 2)-gons in the Dn case. H is generated by rotations of order p, q, r, obtained
by rotating about the center of an edge, a face, or a vertex respectively. The group H has the following
presentation:

H = {〈a,b,c〉 : ap = bq = cr = abc = 1}.
Let M = |H | be the order of H and let E,F,V be the number of edges, faces, and vertices respectively.

Then

M = pE = qF = rV

and since the stabilizer of an edge is always of order 2 we have p = 2 and so M = 2E. Then since
F +V −E = 2 we find

E +F +V = 2+M

We summarize this information below:
Type H M (p,q,r) (E,F,V )

Dn dihedral 2n− 2 (2,n− 2,2) (n− 1,2,n− 1)
E6 tetrahedral 12 (2,3,3) (6,4,4)
E7 octahedral 24 (2,3,4) (12,8,6)
E8 icosohedral 60 (2,3,5) (30,20,12)

Now let X be the quotient stack

X = [C2/{±1}]
and let

Y � Tot(K
P

1)

be the minimal resolution of the singular space X =C
2/{±1}.

The quotient stack [P1/H] has three stacky points with stabilizers of order p,q,r, and consequently the
stack quotient [Y /H] has three orbifold points locally of the form [C2/Za] for a ∈ {p,q,r}.

We observe that

[C2/G] � [X/H]

and consequently

Hilbn(C2)G �Hilbn(X)H .

The scheme Hilbn(X) decomposes into components Hilbm0,m1(X) with n =m0+m1 where the corresponding
{±1} invariant subschemes Z ⊂ C

2 have the property that as a {±1}-representation, H0(OZ ) has m0 copies
of the trivial representation and m1 copies of the non-trivial representation.

Proposition 3.1. Hilbm0,m1(X)H is deformation equivalent to and hence diffeomorphic to Hilbm0−(m0−m1)2(Y )H .
In particular

e
(
Hilbm0,m1(X)H

)
= e

(
Hilbm0−(m0−m1)2(Y )H

)
.
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Proof. It is known that both Hilbm0,m1(X) and Hilbn(Y ) can be realised as moduli spaces of quiver
representations of the A1 Nakajima quiver variety with dimension vectors (m0,m1) and (n,n) respectively
and framing vector (1,0) for both (see [CGGS21, Proposition 5.2] and [Kuz07]). By the dimension formula
for quiver varieties [Nak94, Equation (2.6)] (see also Equation (5.2)), dimHilbm0,m1(X) = 2n where n =
m0 − (m1 −m0)2. Consequently, both Hilbm0,m1(X) and Hilbn(Y ) are crepant projective resolutions of
Symn(C2/{±1}). By [BC20, Corollary 1.3], any two projective crepant resolutions of Symn(C2/{±1}) can
be realized as moduli spaces of quiver representations with the same dimension and framing vectors
(namely (n,n) and (1,0)) but with different stability conditions. Then by Nakajima [Nak94, Corollary 4.2],
Hilbm0,m1(X) is deformation equivalent to, and hence diffeomorphic to Hilbm0−(m1−m0)2(Y ). Moreover, as H
acts symplectically on both resolutions, the hyperkähler reduction providing the deformation equivalence in
the proof of [Nak94, Corollary 4.2] can be performed H-equivariantly to obtain a deformation equivalence
between the H-fixed points of the two resolutions. �

Let

j =m1 −m0, n =m0 − (m0 −m1)
2 so that m0 +m1 = 2n+ j +2j2.

We then can compute:

q
1
24Z∆(q) =

∞∑
m0,m1=0

e
(
Hilbm0,m1(X)H

)
qm0+m1 =

∑
j∈Z

∞∑
n=0

e
(
Hilbn(Y )H

)
q2n+j+2j

2
.

The following identity follows easily from the Jacobi triple product formula:∑
j∈Z

q2j
2+j+ 1

8 =
η2(2τ)
η(τ)

.

Substituting this into the previous equation multiplied by q
1
8 we find

q
1
6Z∆(q) =

η2(2τ)
η(τ)

·
∞∑
n=0

e
(
Hilbn(Y )H

)
q2n.

We can now compute the summation factor in the above equation by the same method we used to
compute the global series in Section 2. Here we use the fact that the singularities of Y /H are all of type
A and we have already proven our formula for the local series in the An case. Indeed, the quotient [Y /H]
has three stacky points with stabilizers Zp, Zq, and Zr and the complement of those points (Y /H)o has
Euler characteristic −1. Proceeding then by the same argument we used in Section 2 to get Equation (2.1),
we obtain

∞∑
n=0

e
(
Hilbn(Y )H

)
q2n =

 ∞∑
n=0

e (Hilbn ((Y /H)o))q2Mn
 · ∏

a∈{p,q,r}

 ∞∑
n=0

e
(
Hilbn0(C

2)Za
)
q

2Mn
a


=
∞∏
m=1

(
1− q2Mn

)(
1− q

2Mn
p

)(
1− q

2Mn
q

)(
1− q 2Mn

r

)
=
∞∏
m=1

(
1− q4En

)
(1− q2En) (1− q2Fn) (1− q2Vn)

= q
1
24 (−2E+2F+2V ) ·

η(4Eτ)
η(2Eτ)η(2Fτ)η(2V τ)

=
q

1
6 η(4Eτ)

η(2Eτ)η(2Fτ)η(2V τ)
.
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Substituting into the previous equation and cancelling the factors of q
1
6 , we have thus proved

Z∆(q) =
η2(2τ)
η(τ)

·
η(4Eτ)

η(2Eτ)η(2Fτ)η(2V τ)
,

which completes the proof of Theorem 1.2 in the general case. �

4. The local partition function as a theta function via Nakajima

The local partition functions Z∆(q) considered in this paper are obtained from a specialization of the
partition functions of the stack [C2/G∆]. Using the work of Nakajima [Nak02], the partition function of the
Euler characteristics of the Hilbert scheme of points on the stack quotient [C2/G∆] was computed explicitly
in [GNS18] in terms of the root data of ∆. We use this to express Z∆(q) in terms of θ∆(τ), a shifted theta
function for the root lattice of ∆. As a byproduct we obtain an eta product formula for the associated shifted
theta function (Theorem 1.4).

A zero-dimensional substack Z ⊂ [C2/G∆] may be regarded as a G∆ invariant, zero-dimensional sub-
scheme of C2. Consequently, we may identify the Hilbert scheme of points on the stack [C2/G∆] with the
G∆ fixed locus of the Hilbert scheme of points on C

2:

Hilb
(
[C2/G∆]

)
= Hilb(C2)G∆ .

This Hilbert scheme has components indexed by representations ρ of G∆ as follows

Hilbρ
(
[C2/G∆]

)
=

{
Z ⊂C

2, Z is G∆ invariant and H0(OZ ) � ρ
}
.

Let {ρ0, . . . ,ρn} be the irreducible representations of G∆ where ρ0 is the trivial representation. We note
that n is also the rank of ∆. We define

Z[C2/G∆](q0, . . . , qn) =
∞∑

m0,...,mn=0

e
(
Hilbm0ρ0+···+mnρn([C2/G∆])

)
qm0
0 · · ·q

mn
n .

Recall that our local partition function Z∆(q) is defined by

Z∆(q) =
∞∑
n=0

e
(
Hilbn(C2)G∆

)
qn−

1
24 .

We then readily see that

Z∆(q) = q
−1
24 ·Z[C2/G∆](q0, . . . , qn)|qi=qdi

where
di = dimρi .

The following formula is given explicitly in [GNS18, Theorem 1.3], but its content is already present in the
work of Nakajima [Nak02]:

Theorem 4.1. Let C∆ be the Cartan matrix of the root system ∆, then

Z[C2/G∆](q0, . . . , qn) =
∞∏
m=1

(1−Qm)−n−1 ·
∑
m∈Zn

qm1
1 · · ·q

mn
n ·Q

1
2m

t·C∆·m

where Q = qd00 q
d1
1 · · ·q

dn
n .

We note that under the specialization qi = qdi ,

Q = qd
2
0+···+d2n = qk

where k = |G| is the order of the group G.
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We then obtain

Z∆(q) = q
−1
24 ·

∞∏
m=1

(1− qkm)−n−1 ·
∑
m∈Zn

qm
t·d · q

k
2m

t·C∆·m

where d = (d1, . . . ,dn).
Let M∆ be the root lattice of ∆ which we identify with Z

n via the basis given by α1, . . . ,αn, the simple
positive roots of ∆. Under this identification, the standard Weyl invariant bilinear form is given by

(u|v) = u t ·C∆ · v

and d is identified with the longest root. We define

ζ = C−1∆ ·d

so that

m t ·d =m t ·C∆ ·ζ = (m|ζ).
We may then write

Z∆(q) = q
−1
24 ·

∞∏
m=1

(1− qkm)−n−1 ·
∑
m∈M∆

q(m|ζ)+
k
2 (m|m)

= qA ·

q k
24

∞∏
m=1

(1− qkm)

−n−1 · ∑
m∈M∆

q
k
2 (m+ 1

k ζ|m+ 1
k ζ)

= qA · η(kτ)−n−1 ·θ∆(τ)

where

A =
−1
24

+
k(n+1)

24
− 1
2k

(ζ|ζ)

and θ∆(τ) is the shifted theta function:

(4.1) θ∆(τ) =
∑
m∈M∆

q
k
2 (m+ 1

k ζ|m+ 1
k ζ)

where as throughout this paper we have identified q = exp(2πiτ).
In Appendix 5, we will prove the following formula which for ∆ = An coincides with the “strange formula”

of Freudenthal and de Vries [FdV69]:
k(n+1)− 1

24
=
(ζ|ζ)
2k

.

It follows that A = 0 and we obtain the following:

Lemma 4.2. The local series Z∆(q) is given by

Z∆(q) =
θ∆(τ)
η(kτ)n+1

.

5. Proof of Theorem 1.11

Let Z = [X/G] be the quotient stack of X by G and let Y → X/G be the minimal resolution. The Hilbert
scheme of zero dimensional substacks of Z is naturally identified with the G-fixed Hilbert scheme of X:

Hilb(Z) �Hilb(X)G.

We emphasize that Hilb(Z) is itself a scheme, not just a stack, as the objects it parameterizes (substacks
V ⊂ Z) do not have automorphisms (see [OS03] or [BCY12, § 2.3]). Components of Hilb(Z) are indexed
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by the numerical K-theory class of OZ for Z ⊂ Z. The K-theory class of OZ can be written in a basis for
K-theory as follows:

[OZ ] = n[Op] +
r∑
i=1

n(i)∑
j=1

mj(i)[Opi ⊗ ρj(i)]

where p ∈ Z is a generic point and p1, . . . ,pr ∈ Z are the orbifold points. The local group of Z at pi is
G∆(i) ⊂ SU(2) and has corresponding root system ∆(i) of rank n(i), and has irreducible representations
ρ0(i),ρ1(i), . . . ,ρn(i)(i) where ρ0(i) is the trivial representation. We note that we do not need to include
[Opi ⊗ ρ0(i)] in our basis for K-theory because of the following relation in K-theory which holds for all i:

(5.1) [Op] = [Opi ⊗ ρreg(i)]

where ρreg(i) is the regular representation of G∆(i).

We abbreviate the data
{
mj(i)

}
appearing in the K-theory class above by the symbol m and we denote by

Hilbn,m(Z) ⊂Hilb(Z)

the corresponding component. Let

Dm =
r∑
i=1

n(i)∑
j=1

mj(i)Ej(i)

where E1(i), . . . ,En(i)(i) are the exceptional curves over pi . We can organize the data m =
{
mj(i)

}
into

m(i) ∈M∆(i), i.e. the vectors in the root lattice of ∆(i) having components m1(i), . . . ,mn(i)(i). Under this
identification

D2
m = −

r∑
i=1

(m(i)|m(i))∆(i)

since the intersection form of the exceptional curves over pi is the negative of the corresponding Cartan
matrix C∆(i).

Proposition 5.1. Hilbn,m(Z) is birational to Hilbn+
1
2D

2
m(Y ).

To prove this we will first need the following lemma.
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Lemma 5.2.

(1) Let ∆ be a rank n ADE root system, let M∆ be the corresponding root lattice, and let G∆ ⊂ SU(2) the
corresponding finite subgroup. To any element m ∈M∆ there is a unique rigid

3 substack Zm ⊂ [C2/G∆]
with K-theory class

1
2
(m|m)[Op] +

n∑
j=1

mj [O0 ⊗ ρj ]

where p ∈ [C2/G] is a generic point.
(2) For every datum m there is a unique rigid substack Zm ⊂ Z with K-theory class

r∑
i=1

12(m(i)|m(i))∆(i)[Op] +
n(i)∑
j=1

mj(i)[Opi ⊗ ρj(i)]


= −

D2
m

2
[Op] +

r∑
j=1

n(i)∑
j=1

mj(i)[Opi ⊗ ρj(i)]

where p ∈ Z is a generic point.

Proof. Part (2) is implied by Part (1) since we can take the union of the rigid subschemes supported at the
orbifold points p1, . . . ,pr ∈ Z. So we need only prove the local case.

To prove Part (1) we need to show that component of Hilb([C2/G∆]) corresponding to substacks with
K-theory class

1
2
(m|m)[Op] +

n∑
j=1

mj [O0 ⊗ ρj ]

is a single isolated point. This component corresponds to the coefficient of

Q
1
2 (m|m) · qm1

1 · · ·q
mn
n

in Theorem 4.1. It follows immediately from the formula in Theorem 4.1 that this coefficient is 1, and thus to
prove this component is a single point, we need only prove that it has dimension 0.

By Equation (5.1), we have

1
2
(m|m)[Op] +

n∑
j=1

mj [O0 ⊗ ρj ] =
1
2
(m|m)[O0 ⊗ ρ0] +

n∑
j=1

(1
2
(m|m)dj +mj

)
[O0 ⊗ ρj ]

and so the component in question is

Hilbv0ρ0+···+vnρn([C2/G∆])

where

v = (v0,v1, . . . , vn) =
(1
2
(m|m),

1
2
(m|m)d1 +m1, . . . ,

1
2
(m|m)dn +mn

)
.

We define

δ = (1,d1, . . . ,dn) and µ = (0,m1, . . . ,mn)

so that our v of interest may be written

v =
1
2
(m|m)δ+µ.

Nakajima has shown [Nak02, § 2] that

Hilbv0ρ0+···+vnρn([C2/G∆]) =M(v,w)

3By definition, a substack Z is rigid if it corresponds to an isolated point in the Hilbert scheme.
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where w = (1,0, . . . ,0) and M(v,w) is the Nakajima quiver variety associated to the affine Dynkin diagram
of ∆ with framing vector w and dimension vector v. By [Nak94, Equation (2.6)] we have

(5.2) dimM(v,w) = 2v ·w − 〈v,v〉 = 2v0 − 〈v,v〉 = (m|m)− 〈v,v〉

where 〈·, ·〉 is the inner product given by the Cartan matrix associated to the affine Dynkin diagram.
We also have 〈

µ,µ
〉
= (m|m), 〈δ,δ〉 = 0, and

〈
µ,δ

〉
= 0.

The first follows directly from our definitions, and the later two are well known properties of the vector δ.
Using the above we compute the dimension of the Hilbert scheme of interest:

dimM(v,w) = (m|m)−
〈1
2
(m|m)δ+µ,

1
2
(m|m)δ+µ

〉
= (m|m)− 1

4
(m|m)〈δ,δ〉 − (m|m)〈µ,δ〉 − 〈µ,µ〉

= 0.

We thus can conclude that Hilbv0ρ0+···+vnρn([C2/G∆]) =M(v,w) is a single point which finishes the proof of
the lemma. �

Proof of Proposition 5.1. Let U = Z \ {p1, . . . ,pr} be the Zariski open part with trivial stabilizers. Let V ⊂ Y
be the complement of the exceptional divisors. Let furthermore Zm ⊂ Z be the rigid substack corresponding
to the K-theory datum m provided by Lemma 5.2. The Zariski open substack of Hilbn,m(Z) parameterizing
substacks of Z of the form P ∪ Zm where P is a colength n + 1

2D
2
m subscheme of U is isomorphic to

Hilbn+
1
2D

2
m(U ). This is because Zm was rigid and it had the K-theory class

−1
2
D2
m[Op] +

n∑
j=1

mj(i)[Opi ⊗ ρj(i)].

On the other hand, the Zariski open subset of Hilbn+
1
2D

2
m(Y ) parameterizing subschemes supported on V ⊂ Y

is isomorphic to Hilbn+
1
2D

2
m(V ). Finally, Hilbn+

1
2D

2
m(U ) � Hilbn+

1
2D

2
m(V ) since U and V are canonically

isomorphic. �

With Proposition 5.1, we can now prove Theorem 1.11. Using the identification

Hilb(X)G �Hilb(Z)
and identifying discrete parameters we get

Zbir
X,G(q) =

∞∑
a=0

[
Hilba(X)G

]
bir
qa−1 =

∑
n,m

[
Hilbn,m(Z)

]
bir q

D(n,m)−1

where (recalling that dj(i) = dimρj(i)),

D(n,m) = kn+
r∑
i=1

k
ki

n(i)∑
j=1

mj(i)dj(i).

Let

d = n+
1
2
D2
m = n− 1

2

r∑
i=1

(m(i)|m(i))∆(i) .

Then

Zbir
X,G(q) =

∑
d=0

[
Hilbd(Y )

]
bir

r∏
i=1

∑
m(i)∈M∆(i)

qD(n,m)−1
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with

D(n,m)− 1 = −1+ k

d + 1
2

r∑
i=1

(m(i)|m(i))∆(i)

+ r∑
i=1

k
ki

n(i)∑
j=1

mj(i)dj(i)

= kd − 1+ k
2

r∑
i=1

{
(m(i)|m(i))∆(i) +

2
ki

(m(i)|ζ(i))∆(i)

}
where ζ(i) ∈M∆(i) ⊗Q is as in Section 4.

Completing the square and using the formula

1

k2i
(ζ(i)|ζ(i))∆(i) =

2
ki

(
ki(n(i) + 1)− 1

24

)
,

which follows from Lemma A.1, we get

D(n,m)− 1 = kd − 1−
r∑
i=1

k
ki

(
ki(n(i) + 1)− 1

24

)
+
k
2

r∑
i=1

(
m(i) +

1
ki
ζ(i)

∣∣∣∣m(i) +
1
ki
ζ(i)

)
∆(i)

.

It then follows that

Zbir
X,G(q) = q

A
∞∑
d=0

[
Hilbd(Y )

]
bir
qkd−k

r∏
i=1

∑
m(i)∈M∆(i)

q
k
2

(
m(i)+ 1

ki
ζ(i)

∣∣∣∣m(i)+ 1
ki
ζ(i)

)
∆(i)

where

A = k − 1− k
24

r∑
i=1

(
n(i) + 1− 1

ki

)
.

Since

24 = e(Y ) = e (X/G − {p1, . . . ,pr}) +
r∑
i=1

(n(i) + 1) =
1
k

24− r∑
i=1

k
ki

+ r∑
i=1

(n(i) + 1)

=
24
k

+
r∑
i=1

(
n(i) + 1− 1

ki

)
,

we see that A = 0.
Thus we have

Zbir
X,G(q) = Z

bir
Y (qk)

r∏
i=1

θ∆(i)

(
kτ
ki

)
= Zbir

Y (qk)
r∏
i=1

Z∆(i)

(
kτ
ki

)
η(kτ)n(i)+1 = Zbir

Y (qk) · η(kτ)B ·ZX,G(q)

where we used Theorem 1.4, Theorem 1.6, and we set

B =
24
k

+
r∑
i=1

(
n(i) + 1− 1

ki

)
.

The previous equation which showed that A = 0 also shows that B = 24. Then since ∆(τ) = η(τ)24, we see
that Theorem 1.11 follows. �
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Appendix A. Another Strange Formula

We recall the notation from Section 4. Let ∆ be an ADE root system of rank n. Let α1, . . .αn be a system
of positive simple roots and let

d =
n∑
i=1

diαi

be the largest root. Let (·|·) be the Weyl invariant bilinear form with (αi |αi) = 2 and let ζ be the dual vector
to d in the sense that

(A.1)
n∑
i=1

(ζ|αi)αi = d.

Let

(A.2) k = 1+
n∑
i=1

d2i = 1+ (ζ|d).

The identity of the following lemma coincides with Freudenthal and de Vries’s “strange formula” when ∆
is An.

Lemma A.1. Let k, n, and ζ be as above. Then,

k(n+1)− 1
24

=
(ζ|ζ)
2k

.

Proof.
The case of ∆ = An.— For any ADE root system we have (ρ|α) = 1 for all positive roots where

ρ = 1
2
∑
α∈R+ α is half the sum of the positive roots. Since for An, di = 1, it follows from Equation (A.1) that

ζ = ρ, and it follows from Equation (A.2) that k = n+1 = h is the Coxeter number. The lemma is then

(n+1)2 − 1
24

=
(ρ|ρ)
2h

.

Since the Lie algebra associated to An, namely sln+1, has dimension (n+1)2−1 and the Killing form satisfies
κ(·, ·) = 1

2h (·|·), the lemma may be rewritten as

dimsln+1

24
= κ(ρ,ρ)

which is Freudenthal and de Vries’s “Strange Formula” [FdV69, § 47.11].

The case of ∆ = Dn.— Let e1, . . . , en be the standard orthonormal basis of Rn. Then the collection
{±ei ± ej , i < j} is a Dn root system and we may take

αi =

ei − ei+1,en−1 + en,
if

i = 1, . . . ,n− 1
i = n

as a system of simple positive roots. Then the fundamental weights ωi , which are defined by the condition
(ωi |αj ) = δij , are given by [Kna96, Appendix C]

ωi =


e1 + · · ·+ ei ,
1
2 (e1 + · · ·+ en−1 − en),
1
2 (e1 + · · ·+ en−1 + en),

if
i ≤ n− 2
i = n− 1
i = n.

Then since

di =

12 if
i = 1,n− 1,n,
i = 2, . . . ,n− 2,
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we have

ζ =ω1 +2ω2 +2ω3 + · · ·+2ωn−2 +ωn−1 +ωn = 2(n− 2)e1 +
n−2∑
i=2

(2(n− 1− i) + 1) ei + en−1

and so

(ζ|ζ) = 4(n− 2)2 +1+
n−2∑
i=2

(2(n− 1− i) + 1)2 =
4
3
n3 − 4n2 − 1

3
n+6.

Finally since k = 1+
∑n
i=1di = 4(n− 2) the lemma becomes

4(n− 2)(n+1)− 1
24

=
4
3n

3 − 4n2 − 1
3n+6

8(n− 2)
which is readily verified.

The case of ∆ = E6,E7,E8.— These three individual cases are easily checked one by one. �

Apppendix B. Table of eta products

The following table provides the list of the modular forms Z−1X,G, expressed as eta products, for each of
the 82 possible symplectic actions of a group G on a K3 surface X. Our numbering matches Xiao’s [Xia96]
whose table we refer to for a description of each group.

# |G| Singularities of X/G The modular form Z−1X,G Weight

0 1 η (τ)24 12

1 2 8A1 η (2τ)8η (τ)8 8

2 3 6A2 η (3τ)6η (τ)6 6

3 4 12A1 η (2τ)12 6

4 4 2A1 +4A3 η (4τ)4η (2τ)2η (τ)4 5

5 5 4A4 η (5τ)4η (τ)4 4

6 6 8A1 +3A2
η(3τ)8η(2τ)3

η(6τ) 5

7 6 2A1 +2A2 +2A5 η (6τ)2η (3τ)2η (2τ)2η (τ)2 4

8 7 3A6 η (7τ)3η (τ)3 3

9 8 14A1
η(4τ)14

η(8τ)4
5

10 8 9A1 +2A3
η(4τ)9η(2τ)2

η(8τ)2
9/2

11 8 4A1 +4A3 η (4τ)4η (2τ)4 4

12 8 3A3 +2D4
η(τ)2η(4τ)6

η(2τ) 7/2

13 8 A1 +4D4
η(4τ)13η(τ)4

η(8τ)2η(2τ)8
7/2

14 8 A1 +A3 +2A7 η (8τ)2η (4τ)η (2τ)η (τ)2 3

15 9 8A2 η (3τ)8 4
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16 10 8A1 +2A4
η(5τ)8η(2τ)2

η(10τ)2
4

17 12 4A1 +6A2
η(6τ)4η(4τ)6

η(12τ)2
4

18 12 9A1 +A2 +A5
η(6τ)9η(4τ)η(2τ)

η(12τ)3
4

19 12 3A1 +3A5 η (6τ)3η (2τ)3 3

20 12 A2 +2A3 +2D5
η(4τ)3η(3τ)2η(τ)2η(6τ)4

η(12τ)η(2τ)4
3

21 16 15A1
η(8τ)15

η(16τ)6
9/2

22 16 10A1 +2A3
η(8τ)10η(4τ)2

η(16τ)4
4

23 16 5A1 +4A3
η(8τ)5η(4τ)4

η(16τ)2
7/2

24 16 6A1 +A3 +2D4
η(8τ)12η(2τ)2

η(16τ)4η(4τ)3
7/2

25 16 6A3 η (4τ)6 3

26 16 4A1 +A3 +A7 +D4
η(8τ)7η(2τ)2

η(16τ)2η(4τ)
3

27 16 2A1 +4D4
η(8τ)14η(2τ)4

η(4τ)8η(16τ)4
3

28 16 2A1 +A3 +2A7 η (8τ)2η (4τ)η (2τ)2 5/2

29 16 A3 +D4 +2D6
η(4τ)η(8τ)7η(τ)2

η(16τ)2η(2τ)3
5/2

30 18 8A1 +4A2
η(9τ)8η(6τ)4

η(18τ)4
4

31 18 2A1 +3A2 +2A5
η(9τ)2η(6τ)3η(3τ)2

η(18τ) 3

32 20 2A1 +4A3 +A4
η(10τ)2η(5τ)4η(4τ)

η(20τ) 3

33 21 6A2 +A6
η(7τ)6η(3τ)
η(21τ) 3

34 24 5A1 +3A2 +2A3
η(12τ)5η(8τ)3η(6τ)2

η(24τ)3
7/2

35 24 4A1 +2A2 +2A5
η(12τ)4η(8τ)2η(4τ)2

η(24τ)2
3

36 24 5A1 +A3 +A5 +D5
η(12τ)7η(6τ)η(2τ)η(8τ)

η(24τ)3η(4τ)
3

37 24 2A2 +A5 +D4 +E6
η(8τ)4η(4τ)η(3τ)η(12τ)4η(τ)

η(6τ)2η(24τ)2η(2τ)2
5/2

38 24 2A2 +A3 +2E6
η(8τ)6η(6τ)η(τ)2η(12τ)2

η(2τ)4η(24τ)2
5/2

39 32 8A1 +3A3
η(16τ)8η(8τ)3

η(32τ)4
7/2

40 32 9A1 +2D4
η(16τ)15η(4τ)2

η(32τ)6η(8τ)4
7/2

41 32 3A1 +5A3
η(16τ)3η(8τ)5

η(32τ)2
3

42 32 4A1 +2A3 +2D4
η(16τ)10η(4τ)2

η(32τ)4η(8τ)2
3

43 32 5A1 +2A7
η(16τ)5η(4τ)2

η(32τ)2
5/2

44 32 2A1 +2A3 +A7 +D4
η(16τ)5η(4τ)2

η(32τ)2
5/2
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45 32 3A1 +D4 +2D6
η(16τ)10η(2τ)2

η(32τ)4η(4τ)3
5/2

46 36 2A1 +2A2 +4A3
η(18τ)2η(12τ)2η(9τ)4

η(36τ)2
3

47 36 A1 +6A2 +A5
η(18τ)η(12τ)6η(6τ)

η(36τ)2
3

48 36 6A1 +A2 +2A5
η(18τ)6η(12τ)η(6τ)2

η(36τ)3
3

49 48 5A1 +6A2
η(24τ)5η(16τ)6

η(48τ)4
7/2

50 48 6A2 +2A3
η(16τ)6η(12τ)2

η(48τ)2
3

51 48 5A1 +A2 +2A3 +A5
η(24τ)5η(16τ)η(12τ)2η(8τ)

η(48τ)3
3

52 48 4A1 +3A5
η(24τ)4η(8τ)3

η(48τ)2
5/2

53 48 A1 +A2 +2A3 +2D5
η(24τ)5η(16τ)3η(12τ)2η(4τ)2

η(48τ)3η(8τ)4
5/2

54 48 4A1 +A2 +A7 +E6
η(24τ)5η(16τ)3η(6τ)η(2τ)

η(48τ)3η(4τ)2
5/2

55 60 4A1 +3A2 +2A4
η(30τ)4η(20τ)3η(12τ)2

η(60τ)3
3

56 64 5A1 +3A3 +D4
η(32τ)8η(16τ)η(8τ)

η(64τ)4
3

57 64 6A1 +3D4
η(32τ)15η(8τ)3

η(64τ)6η(16τ)6
3

58 64 3A1 +3A3 +A7
η(32τ)3η(16τ)3η(8τ)

η(64τ)2
5/2

59 64 5A3 +D4
η(32τ)3η(16τ)3η(8τ)

η(64τ)2
5/2

60 64 4A1 +A3 +2D6
η(32τ)8η(16τ)3η(4τ)2

η(64τ)4η(8τ)4
5/2

61 72 4A1 +3A2 +A3 +D5
η(36τ)6η(24τ)4η(18τ)η(6τ)

η(72τ)4η(12τ)2
3

62 72 3A1 +2A3 +2A5
η(36τ)3η(18τ)2η(12τ)2

η(72τ)2
5/2

63 72 A2 +3A3 +2D4
η(24τ)η(9τ)2η(36τ)6

η(72τ)3η(18τ)
5/2

64 80 3A1 +4A4
η(40τ)3η(16τ)4

η(80τ)2
5/2

65 96 3A1 +3A2 +3A3
η(48τ)3η(32τ)3η(24τ)3

η(96τ)3
3

66 96 2A1 +2A2 +A3 +2A5
η(48τ)2η(32τ)2η(24τ)η(16τ)2

η(96τ)2
5/2

67 96 2A1 +3A2 +A7 +D4
η(48τ)5η(32τ)3η(12τ)2

η(96τ)3η(24τ)2
5/2

68 96 3A1 +2A3 +A5 +D5
η(48τ)5η(24τ)2η(8τ)η(32τ)

η(96τ)3η(16τ)
5/2

69 96 3A1 +2A2 +2E6
η(48τ)5η(32τ)6η(4τ)2

η(96τ)4η(8τ)4
5/2

70 120 2A1 +A2 +2A3 +A4 +A5
η(60τ)2η(40τ)η(30τ)2η(24τ)η(20τ)

η(120τ)2
5/2

71 128 3A1 +2A3 +D4 +D6
η(64τ)8η(32τ)η(8τ)
η(128τ)4η(16τ)

5/2

72 144 A1 +4A2 +2A5
η(72τ)η(48τ)4η(24τ)2

η(144τ)2
5/2

73 160 2A1 +3A3 +2A4
η(80τ)2η(40τ)3η(32τ)2

η(160τ)2
5/2
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74 168 A1 +3A2 +2A3 +A6
η(84τ)η(56τ)3η(42τ)2η(24τ)

η(168τ)2
5/2

75 192 2A1 +6A2 +D4
η(96τ)5η(64τ)6η(24τ)
η(192τ)4η(48τ)2

3

76 192 2A1 +A2 +2A3 +A5 +D4
η(96τ)5η(64τ)η(32τ)η(24τ)

η(192τ)3
5/2

77 192 2A1 +A2 +3A3 +E6
η(96τ)3η(64τ)3η(48τ)3η(8τ)

η(192τ)3η(16τ)2
5/2

78 288 2A1 +2A2 +A3 +2D5
η(144τ)6η(96τ)4η(72τ)η(24τ)2

η(288τ)4η(48τ)4
5/2

79 360 A1 +2A2 +2A3 +2A4
η(180τ)η(120τ)2η(90τ)2η(72τ)2

η(360τ)2
5/2

80 384 A1 +3A2 +2A3 +D6
η(192τ)3η(128τ)3η(96τ)3η(24τ)

η(384τ)3η(48τ)2
5/2

81 960 A1 +3A2 +2A4 +D4
η(480τ)4η(320τ)3η(192τ)2η(120τ)

η(960τ)3η(240τ)2
5/2

Table 1. Table of the modular forms Z−1X,G for all symplectic G actions.
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[GNS18] Á. Gyenge, A. Némethi, and B. Szendrői, Euler characteristics of Hilbert schemes of points on
simple surface singularities, Eur. J. Math. 4 (2018), no. 2, 439–524.

[Göt90] L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math.
Ann. 286 (1990), no. 1, 193–207.

[GZLMH04] S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, A power structure over the Grothendieck
ring of varieties, Math. Res. Lett. 11 (2004), no. 1, 49–57.

[Huy99] D. Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math. 135 (1999), no. 1,
63–113.

[Kac94] V. G. Kac, Infinite-dimensional Lie algebras, vol. 44, Cambridge University Press, 1994.

[Kna96] A. W. Knapp, Lie groups beyond an introduction, Birkhäuser Boston Inc., Boston, MA, 1996.

[Köh11] G. Köhler, Eta products and theta series identities, Springer Science & Business Media, 2011.

[Kuz07] A. Kuznetsov, Quiver varieties and Hilbert schemes, Mosc. Math. J. 7 (2007), no. 4, 673–697.

[Muk88] S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math. 94
(1988), no. 1, 183–221.

https://arxiv.org/abs/1811.06102


22 J. Bryan and Á. Gyenge22 J. Bryan and Á. Gyenge

[Nak94] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J.
76 (1994), no. 2, 365–416.

[Nak02] , Geometric construction of representations of affine algebras, Proceedings of the Interna-
tional Congress of Mathematicians (Beijing, 2002), vol. 1, IMU, Higher Ed, 2002, pp. 423–438.

[NS17] J. Nicaise and E. Shinder, The Motivic Nearby Fiber And Degeneration Of Stable Rationality,
preprint arXiv:1708.02790 (2017).

[OS03] M. Olsson and J. Starr, Quot functors for Deligne-Mumford stacks, Comm. Algebra 31 (2003),
no. 8, 4069–4096.

[Pie18] S. Pietromonaco, An introduction to modern enumerative geometry with applications to the banana
manifold, Master thesis, University of British Columbia, 2018. Available from arXiv:1905.07085.

[Pie20] S. Pietromonaco, G-invariant Hilbert Schemes on Abelian Surfaces and Enumerative Geometry of
the Orbifold Kummer Surface, preprint arXiv:2011.14020 (2020).

[Xia96] G. Xiao, Galois covers between K3 surfaces, Ann. Inst. Fourier 46 (1996), no. 1, 73–88.

[YZ96] S.-T. Yau and E. Zaslow, BPS states, string duality, and nodal curves on K3, Nuclear Physics B
471 (1996), no. 3, 503–512.

[Zha19] S. Zhan, Counting Rational Curves On K3 Surfaces With Finite Group Actions, preprint
arXiv:1907.03330 (2019).

https://arxiv.org/abs/1708.02790
https://arxiv.org/abs/1905.07085
https://arxiv.org/abs/2011.14020
https://arxiv.org/abs/1907.03330

	1 Introduction
	2 The global partition function
	3 The local partition function
	4 The local partition function as a theta function via Nakajima
	5 Proof of Theorem 1.11
	Appendix A. Another Strange Formula
	Appendix B. Table of eta products
	References

