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The conjectures of Artin–Tate and Birch–Swinnerton-Dyer
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Abstract. We provide two proofs that the conjecture of Artin–Tate for a fibered surface is equivalent
to the conjecture of Birch–Swinnerton-Dyer for the Jacobian of the generic fibre. As a byproduct,
we obtain a new proof of a theorem of Geisser relating the orders of the Brauer group and the
Tate–Shafarevich group.
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1. Introduction and statement of results

Let k = Fq be a finite field of characteristic p and let S be a smooth projective (geometrically connected)
curve over T = Spec k and let F = k(S) = Fq(S) be the function field of S . Let X be a smooth proper surface
over T with a flat proper morphism π : X→ S with smooth geometrically connected generic fiber X0 over
Spec F. The Jacobian J of X0 is an Abelian variety over F.

Our first main result is a proof of the following statement conjectured by Artin and Tate [Tat66, Conjec-
ture (d)]:

Theorem 1.1. The Artin–Tate conjecture for X is equivalent to the Birch–Swinnerton-Dyer conjecture for J .

Recall that these conjectures concern two (conjecturally finite) groups: the Tate–Shafarevich group X(J/F)
of J and the Brauer group Br(X) of X. A result of Artin–Grothendieck [Gor79, Theorem 2.3] [Gro68, §4] is
that X(J/F) is finite if and only if Br(X) is finite.

Our second main result is a new proof of a beautiful result (2.18) of Geisser [Gei20, Theorem 1.1] that relates
the conjectural finite orders of X(J/F) and Br(X); special cases of (2.18) are due to Milne–Gonzales-Aviles
[Mil81, GA03].

We actually provide two proofs of Theorem 1.1; while our first proof uses Geisser’s result (2.18), the second
(and very short) proof in §4, completely due to the third-named author, does not.

1.1. History

Artin and Tate regarded Theorem 1.1 as easier to prove as opposed to the other conjectures in [Tat66].
They proved Theorem 1.1 when π is smooth and has a section ([Tat66, p.427]) using the equality

(1.1) [X(J/F)] = [Br(X)]

between the orders of the groups X(J/F) and Br(X) which follows from Artin’s theorem [Tat66, Theorem
3.1], [Gor79, Theorem 2.3]: if π is generically smooth with connected fibers and admits a section, then
X(J/F) � Br(X). Gordon [Gor79, Theorem 6.1] used (1.1) to prove Theorem 1.1 when1 π is cohomologically
flat with a section (see [Gor79, Theorem 2.3]). Building on Gordon [Gor79], Liu–Lorenzini–Raynaud
[LLR04] proved several new cases of Theorem 1.1 by eliminating the condition of cohomological flatness
of π; their proof [LLR04, Theorem 4.3] proceeds by proving that Theorem 1.1 is equivalent to a precise
relation generalizing (1.1) between [Br(X)] and [X(J/F)] which in their case had been proved by Milne and
Gonzales-Aviles [Mil81, GA03].

1There is another proof (up to p-torsion) in this case due to Z. Yun [Yun15].
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As Liu–Lorenzini–Raynaud (and Milne) point out [LLR05, Theorem 2], Theorem 1.1 follows by combining
[Tat66, Gro68, Mil75, KT03]:

AT (X)
Artin–Tate–Milne
⇐=============⇒ Br(X) finite

Artin–Grothendieck
⇐===============⇒X(J/F) finite

Kato–Trihan
⇐=========⇒ BSD(J).

In 2018, Geisser pointed out that a slight correction is necessary in the relation [LLR04, Theorem 4.3]
between [Br(X)] and [X(J/F)]; Liu–Lorenzini–Raynaud [LLR18, Corrected Theorem 4.3] showed that
Theorem 1.1 holds if and only if this slightly corrected version holds. This precise relation (Theorem 2.11) was
then proved by Geisser [Gei20, Theorem 1.1] without using Theorem 1.1. Thus, combining [LLR18, Corrected
Theorem 4.3] and [Gei20, Theorem 1.1] gives the second known proof of Theorem 1.1. But this proof relies
heavily on the work of Gordon2 [Gor79] as can be seen from [LLR18, §3, (3.9)].

1.2. Our approach

Our first proof depends on [Gor79] only for the elementary result (2.9). As in [Gor79, LLR04, LLR18],
this proof also follows the strategy in [Tat66, §4]. We use the localization sequence to record a short
proof3 of the Tate–Shioda relation (Corollary 2.2). In turn, this gives a quick calculation (2.17) of the height
pairing ∆ar(NS(X)) on the Néron–Severi group of X. The same calculation in [Gor79, LLR18] requires a
detailed analysis of various subgroups of NS(X). A beautiful introduction to these results is [Ulm14]; see
[Lic83, Lic05, GS20] for Weil-étale analogues.

The second proof (§4) of Theorem 1.1 uses only (2.5) and the Weil-étale formulations of the two conjectures.
In this proof, we do not compare each term of the two special value formulas and entirely work in derived
categories.

Notations

Throughout, k = Fq is a finite field of characteristic p and T = Spec k; if k̄ is an algebraic closure of k, let
T̄ = Spec k̄. The function field of S is F = k(S). Let X be a smooth proper surface over T with a flat proper
morphism π : X→ S with smooth geometrically connected generic fiber X0 over Spec F. The Jacobian J of
X0 is an Abelian variety over F.

1.3. The Artin–Tate conjecture

Let k = Fq and F = k(S). For any scheme V of finite type over T , the zeta function ζ(V ,s) is defined as

ζ(V ,s) =
∏
v∈V

1
(1− q−sv )

;

the product is over all closed points v of V and qv is the size of the finite residue field k(v) of v. If V is
smooth proper (geometrically connected) of dimension d, then the zeta function ζ(V ,s) factorizes as

ζ(V ,s) =
P1(V ,q−s) · · ·P2d−1(V ,q−s)
P0(V ,q−s) · · ·P2d(V ,q−s)

, P0 = (1− q−s), P2d = (1− qd−s),

where Pi(V ,t) ∈Z[t] is the characteristic polynomial of Frobenius acting on the `-adic étale cohomology
H i(V ×T T̄ ,Q`) for any prime ` not dividing q; by Grothendieck and Deligne, Pj(V ,t) is independent of `.
One has the factorization [Tat66, (4.1)] (the second equality uses Poincaré duality)

(1.2) ζ(X,s) =
P1(X,q−s) · P3(X,q−s)

(1− q−s) · P2(X,q−s) · (1− q2−s)
=

P1(X,q−s) · P1(X,q1−s)
(1− q−s) · P2(X,q−s) · (1− q2−s)

.

2Known to have several inaccuracies; see [LLR18, §3.3].
3This is similar to the ideas of Hindry–Pacheco and Kahn in [Kah09, §§3.2-3.3].

https://www.jmilne.org/math/articles/1975a.html
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Let ρ(X) be the rank of the finitely generated Néron–Severi group NS(X). The intersection D ·E of divisors
D and E provides a symmetric non-degenerate bilinear pairing on NS(X); the height pairing 〈D,E〉ar
[LLR18, Remark 3.11] on NS(X) is related to the intersection pairing as follows:

NS(X)×NS(X)→Q(logq), D,E 7→ 〈D,E〉ar = (D ·E) logq.

Let A be the reduced identity component Picred,0X/k of the Picard scheme PicX/k of X. Let

(1.3) α(X) = χ(X,OX)− 1+dim(A).

We write [G] for the order of a finite group G.

Conjecture 1.2 (Artin–Tate [Tat66, Conjecture (C)]). The Brauer group Br(X) is finite, ords=1 P2(X,q−s) =
ρ(X), and the special value

P ∗2 (X,q
−1) := lim

s→1

P2(X,q−s)

(s − 1)ρ(X)

of P2(X,t) at t = 1/q (this corresponds to s = 1) satisfies

(1.4) P ∗2 (X,q
−1) = [Br(X)] ·∆ar(NS(X)) · q−α(X).

Here ∆ar(NS(X)) is the discriminant (see §1.4 ) of the height pairing on NS(X).

Remark. The discriminant ∆ar(NS(X)) of the height pairing on NS(X) is related to the discriminant
∆(NS(X)) of the intersection pairing as follows: ∆ar(NS(X)) = ∆(NS(X)) · (logq)ρ(X).

1.4. Discriminants

For more details on the basic notions recalled next, see [Yun15, §2.8] and [Blo87]. Let N be a finitely
generated Abelian group N and let ψ :N ×N → K be a symmetric bilinear form with values in any field K
of characteristic zero. If ψ :N/tor×N/tor→ K is non-degenerate, the discriminant ∆(N ) is defined as the
determinant of the matrix ψ(bi ,bj ) divided by (N :N ′)2 where N ′ is the subgroup of finite index generated
by a maximal linearly independent subset {bi} of N . Note that ∆(N ) is independent of the choice of the
subset {bi} and the subgroup N ′ and incorporates the order of the torsion subgroup of N . For us, K =Q or
Q(logq).

Given a short exact sequence 0→N ′→N →N ′′→ 0 which splits over Q as an orthogonal direct sum
N

Q
�N ′

Q
⊕N ′′

Q
with respect to a definite pairing ψ on N , one has the following standard relation

(1.5) ∆(N ) = ∆(N ′) ·∆(N ′′).

Given a map f : C→ C′ of Abelian groups with finite kernel and cokernel, the invariant z(f ) = [Ker(f )]
[Coker(f )]

[Tat66] extends to the derived category D of complexes in Abelian groups with bounded and finite homology:
given any such complex C•, the invariant

z(C•) =
∏
i

[Hi(C•)]
(−1)i

is an Euler characteristic; for any triangle K → L→M→ K[1] in D, the following relation holds

(1.6) z(K) · z(M) = z(L).

One recovers z(f ) viewing f : C→ C′ as a complex in degrees zero and one. For any pairing ψ :N ×N →Z,
the induced map N → RHom(N,Z) recovers ∆(N ) above:

∆(N ) = z(N → RHom(N,Z))−1.

�
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1.5. The Birch–Swinnerton-Dyer conjecture

For more details on the basic notions recalled next, see [GS20]. Let J be the Jacobian of X0. Recall that
the complete L-function [Ser70, Mil72], [GS20, §4] of J is defined as a product of local factors

(1.7) L(J, s) =
∏
v∈S

1
Lv(J,q

−s
v )
.

For any closed point v of S , the local factor Lv(J, t) is the characteristic polynomial of Frobenius on

(1.8) H1
ét(J ×F

sep
v ,Q`)

Iv ,

where Fv is the complete local field corresponding to v and Iv is the inertia group at v. By [GS20,
Proposition 4.1], Lv(J, t) has coefficients in Z and is independent of `, for any prime ` distinct from the
characteristic of k. Let X(J/F) be the Tate–Shafarevich group of J over Spec F and let r be the rank of the
finitely generated group J(F). Let ∆NT(J(F)) be the discriminant of the Néron–Tate pairing [Tat66, p. 419],
[KT03, §1.5] on J(F):

(1.9) J(F)× J(F)→Q(log q), (γ,κ) 7→ 〈γ,κ〉NT.

Let J → S be the Néron model of J ; for any closed point v ∈ S , define cv = [Φv(kv)] where Φv is the group
of connected components of Jv and put c(J) =

∏
v∈S cv ; this is a finite product as cv = 1 for all but finitely

many v. Let Lie J be the locally free sheaf on S defined by the Lie algebra of J . Recall the4

Conjecture 1.3 (Birch–Swinnerton-Dyer). The group X(J/F) is finite, ords=1L(J, s) = r, and the special value

L∗(J,1) := lim
s→1

L(J, s)
(s − 1)r

satisfies

(1.10) L∗(J,1) = [X(J/F)] ·∆NT(J(F)) · c(J) · qχ(S,Lie J ).

The proof of Theorem 1.1, i.e. the equivalence of Conjectures 1.2 and 1.3, naturally divides into four parts:

• Br(X) is finite if and only if X(J/F) is finite. This is known [Gro68, (4.41), Corollaire (4.4)].
• Comparison of χ(S,Lie J ) and α(X) given in (2.5). This is known [LLR04, p. 483]. For the
convenience of the reader, we recall it in §2.2.
• (Proposition 2.4) ords=1 P2(X,q−s) = ρ(X) if and only if ords=1L(J, s) = r .
• (§3) P ∗2 (X,1) satisfies (1.4) if and only if L∗(J,1) satisfies (1.10).

The first two parts are not difficult and we provide elementary proofs of the last two parts.

Acknowledgements

This paper would not exist without the inspiration provided by [FS21, Gor79, LLR18, Gei20, Yun15] in
terms of both mathematical ideas and clear exposition. We thank Professors Liu, Lorenzini and K. Sato for
their valuable comments on an earlier draft. We heartily thank the referee for a valuable and detailed report.

2. Preparations

2.1. Elementary identities and known results

The Néron–Severi group NS(X) is the group of k-points of the group scheme NSX/k = π0(PicX/k) of
connected components of the Picard scheme PicX/k of X. Let A = Picred,0X/k . The Leray spectral sequence for

4By [GS20, Corollary 4.5], this is equivalent to the formulation in [Tat66].
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the morphism X→ Spec k and the étale sheaf Gm provides the first exact sequences [BLR90, Proposition 4,
p. 204] below:

0 −→ Pic(k) −→ Pic(X) −→ PicX/k(k) −→ Br(k) and 0 −→ Pic0X/k −→ PicX/k −→ π0(PicX/k) −→ 0.

Since Br(k) = 0, H1
ét(Spec k,Pic

0
X/k) =H

1
ét(Spec k,Pic

red,0
X/k ) and H1

ét(Spec k,A) = 0 (Lang’s theorem [Tat66,
p. 209]), this provides

(2.1) PicX/k(k) = Pic(X) and NS(X) = NSX/k(k) =
Pic(X)
A(k)

.

Let P be the identity component of the Picard scheme PicS/k of S . Let B be the cokernel of the natural
injective map π∗ : P → A. So one has short exact sequences (using Lang’s theorem [Tat66, p. 209] for the
last sequence)

(2.2) A = Picred,0X/k , P = Pic0S/k , 0 −→ P −→ A −→ B −→ 0, and 0 −→ P (k) −→ A(k) −→ B(k) −→ 0.

It is known that [Tat66, p. 428]

(2.3) P1(S,q
−s) = P1(P ,q

−s), P1(X,q
−s) = P1(A,q

−s), and P1(A,q
−s) = P1(P ,q

−s) · P1(B,q−s).

For any Abelian variety G of dimension d over k = Fq, it is well known that [Tat66, p. 429, top line] (or
[Gor79, 6.1.3])

(2.4) P1(G,1) = [G(k)] and P1(G,q
−1) = [G(k)]q−d .

2.2. Comparison of χ(S,Lie J ) and α(X)

It is known [LLR04, p. 483] that

(2.5) χ(S,Lie J )−dim(B) = −α(X).

We include their proof here for the convenience of the reader. A special case of this is due to Gordon [Gor79,
Proposition 6.5]. The Leray spectral sequence for π and OX provides H0(S,OS ) �H0(X,OX),

0→H1(S,OS )→H1(X,OX)→H0(S,R1π∗OX)→ 0, H2(X,OX) �H1(S,R1π∗OX).

This proves χ(X,OX) = χ(S,OS )−χ(S,R1π∗OX). Recall that J is the Néron model of the Jacobian J of X0.
As the kernel and cokernel of the natural map5 φ : R1π∗OX → Lie J are torsion sheaves on S of the same
length [LLR04, Theorem 4.2], we have [LLR04, p. 483]

(2.6) χ(S,R1π∗OX) = χ(S,Lie J ).

Thus,

α(X)
(1.3)
= χ(X,OX)− 1+dim(A) = χ(S,OS )−χ(S,R1π∗OX)− 1+dim(A)

= 1−dim(P )−χ(S,Lie J )− 1+dim(A) = −χ(S,Lie J ) + dim(A)−dim(P )

(2.2)
= −χ(S,Lie J ) + dim(B).

2.3. The Tate–Shioda relation about the Néron–Severi group

The structure of NS(X) depends on the singular fibers of the morphism π : X→ S .

5The map φ is obtained by the composition of the maps R1π∗OX → Lie P [LLR04, Proposition 1.3 (b)] and Lie P → LieQ
[LLR04, Theorem 3.1] with Q

∼−→J [LLR04, Facts 3.7 (a)]; it uses the fact that X is regular, π : X→ S is proper flat, and π∗OX = OS .
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2.3.1. Singular fibers. Let Z = {v ∈ S | π−1(v) = Xv is not smooth}. For any v ∈ S, let Gv be the set of
irreducible components Γi of Xv , let mv be the cardinality of Gv , and m :=

∑
v∈Z(mv −1); for any i ∈ Gv , let

ri be the number of irreducible components of Γi × k(v). Let Rv be the quotient

(2.7) Rv =
Z
Gv

Z

of the free Abelian group generated by the irreducible components of Xv by the subgroup generated by the
cycle associated with Xv = π−1(v). If v < Z, then Rv is trivial.

Let U = S − Z; the map XU = π−1(U ) → U is smooth. For any finite Z ′ ⊂ S with Z ⊂ Z ′ , we
consider U ′ = S − Z ′ and XU ′ = X − π−1(U ′). The following proposition provides a description of

NS(X)
(2.1)
� Pic(X)/A(k).

Proposition 2.1.

(i) The natural maps π∗ : Pic(S)→ Pic(X) and π∗ : Pic(U ′)→ Pic(XU ′ ) are injective.
(ii) There is an exact sequence

(2.8) 0 −→ ⊕
v∈Z

Rv −→
Pic(X)
π∗Pic(S)

−→ Pic(X0) −→ 0.

Proof. (i) From the Leray spectral sequence for π : X→ S and the étale sheaf Gm on X, we get the exact
sequence

0 −→H1
et(S,π∗Gm) −→H1

et(X,Gm) −→H0(S,R1π∗Gm) −→ Br(S).

Now X0 being geometrically connected and smooth over F implies [Mil81, Remark 1.7a] that π∗Gm is the
sheaf Gm on S . This provides the injectivity of the first map. The same argument with U ′ in place of S
provides the injectivity of the second.

(ii) The class group Cl(Y ) and the Picard group Pic(Y ) are isomorphic for regular schemes Y such as S
and X. The localization sequences for XU ′ ⊂ X and U ′ ⊂ S can be combined as

0 Γ (S,Gm) Γ (U ′ ,Gm) ⊕
v∈Z ′

Z Pic(S) Pic(U ′) 0

0 Γ (X,Gm) Γ (XU ′ ,Gm) ⊕
v∈Z ′

Z
Gv Pic(X) Pic(XU ′ ) 0.

∼ ∼

Here Γ (X,Gm) =H
0
et(X,Gm) =H

0
Zar(X,Gm). The induced exact sequence on the cokernels of the vertical

maps is

0 −→ ⊕
v∈Z ′

Rv −→
Pic(X)
π∗Pic(S)

−→ Pic(XU ′ )
π∗Pic(U ′)

−→ 0.

In particular, we get this sequence for Z and U . By assumption, Xv is geometrically irreducible for any
v < Z ; so Rv = 0 for any v < Z . So this means that, for any U ′ = S −Z ′ contained in U , the induced maps

Pic(XU )
π∗Pic(U )

−→ Pic(XU ′ )
π∗Pic(U ′)

are isomorphisms. Taking the limit over Z ′ gives us the exact sequence in the proposition. �

Corollary 2.2.

(i) The Tate–Shioda relation [Tat66, (4.5)] ρ(X) = 2+ r +m holds.
(ii) One has an exact sequence

0 −→ B(k) −→ Pic(X)
π∗Pic(S)

−→ NS(X)
π∗NS(S)

−→ 0.
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Proof. (i) Since r is the rank of J(F), the rank of Pic(X0) is r +1. Since Pic(S) has rank one, A(k) is finite
and m =

∑
v∈Z(mv − 1), this follows from (2.1) and (2.8).

(ii) This follows from the diagram

0 P (k) A(k) B(k) 0

0 Pic(S) Pic(X) Pic(X)
π∗Pic(S) 0

0 NS(S) NS(X) NS(X)
π∗NS(S) 0.

π∗

π∗

π∗

�

2.4. Relating the order of vanishing at s = 1 of P2(X,q−s) and L(J, s)

By6 [Gor79, Proposition 3.3], one has

(2.9) ζ(Xv , s) =
P1(Xv ,q−sv )

(1− q−sv ) · P2(Xv ,q−sv )
, and P2(Xv ,q

−s
v ) =

{
(1− q1−sv ), for v < Z∏
i∈Gv (1− (qv)

ri (1−s)), for v ∈ Z

}
,

see §2.3.1 for notation. Using

Q2(s) =
∏
v∈Z

P2(Xv ,q−s)

(1− q1−sv )
, ζ(S,s) =

P1(S,q−s)
(1− q−s) · (1− q1−s)

, and Q1(s) =
∏
v∈S

P1(Xv ,q
−s
v ),

we can rewrite

ζ(X,s) =
∏
v∈S

ζ(Xv , s) =
1

Q2(s)
·
∏
v∈S

P1(Xv ,q−sv )

(1− q−sv ) · (1− q1−sv )
=
ζ(S,s) · ζ(S,s − 1) ·Q1(s)

Q2(s)
.

The precise relation between P2(X,q−s) and L(J, s) is given by (2.11).

Proposition 2.3. One has ords=1Q2(s) =m and

(2.10) Q∗2(1) = lim
s→1

Q2(s)
(s − 1)m

=
∏
v∈Z

(logqv)(mv−1) ·
∏
i∈Gv

ri

,
(2.11)

P2(X,q−s)
(1− q1−s)2

= P1(B,q
−s) · P1(B,q1−s) ·L(J, s) ·Q2(s).

Proof. Observe that (2.10) is elementary: for any positive integer r, one has

lim
s→1

(1− qr(1−s)v )
(s − 1)

= lim
s→1

(1− qr(1−s)v )

(1− q1−sv )
·
(1− q1−sv )
(s − 1)

= lim
s→1

(1 + q1−sv + · · ·+ q(r−1)(1−s)v ) · logqv = r · logqv .

For each v ∈ Z, this shows that

lim
s→1

P2(Xv ,q−s)
(s − 1)mv

= (logqv)
mv ·

∏
i∈Gv

ri .

Therefore, we obtain that

lim
s→1

Q2(s)
(s − 1)m

=
∏
v∈Z

lim
s→1

P2(Xv ,q−s)
(1−q1−sv )

(s − 1)mv−1
=

∏
v∈Z

lim
s→1

P2(Xv ,q−s)
(s−1)mv

(1−q1−sv )
s−1

=
∏
v∈Z

(
(logqv)mv ·

∏
i∈Gv ri .

logqv

)
.

6This proposition, first stated on Page 176 of [Gor79], has a typo in the formula for P2 which is corrected in its restatement on
Page 193. We only need the part about P2 (and this is elementary).
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We now prove (2.11). Simplifying the identity

P1(X,q−s) · P1(X,q1−s)
(1− q−s) · P2(X,q−s) · (1− q2−s)

= ζ(X,s) =
P1(S,q−s)

(1− q−s) · (1− q1−s)
·

P1(S,q1−s)
(1− q1−s) · (1− q2−s)

· Q1(s)
Q2(s)

from (1.2) using (2.3), one obtains

P1(B,q−s) · P1(B,q1−s)
P2(X,q−s)

=
1

(1− q1−s)
· 1
(1− q1−s)

· Q1(s)
Q2(s)

.

On reordering, this becomes

P2(X,q−s)
(1− q1−s)2

=
P1(B,q−s) · P1(B,q1−s) ·Q2(s)

Q1(s)
.

Let T`J be the `-adic Tate module of the Jacobian J of X. For any v ∈ S , the Kummer sequence on X and J
provides a Gal(Fsepv /Fv)-equivariant isomorphism

H1
ét(X ×S F

sep
v ,Z`(1))

∼−→ T`J
∼←−H1

ét(J ×F F
sep
v ,Z`(1)),

as J is a self-dual Abelian variety: this provides the isomorphisms

H1
ét(J ×F F

sep
v ,Q`) �H

1
ét(X ×S F

sep
v ,Q`), H1

ét(J ×F F
sep
v ,Q`)

Iv �H1
ét(X ×S F

sep
v ,Q`)

Iv .

From [Del80, Théorème 3.6.1, pp.213–214] (the arithmetic case is in [Blo87, Lemma 1.2]), we obtain an
isomorphism

H1
ét(Xv ×k(v) k(v),Q`)

∼−→H1
ét(X ×S F

sep
v ,Q`)

Iv .

The definition of Lv(J, t) in (1.8) now implies that P1(Xv ,q−sv ) = Lv(J,q−sv ) and hence Q1(s) ·L(J, s) = 1. �

Proposition 2.4.

(i) ords=1 P2(X,q−s) = ρ(X) if and only if ords=1L(J, s) = r .
(ii) One has

(2.12) P ∗2 (X,
1
q
) = P1(B,q

−1) · P1(B,1) ·L∗(J,1) ·Q∗2(1) · (log q)
2 (2.4)

=
[B(k)]2

qdim(B)
·L∗(J,1) ·Q∗2(1) · (log q)

2.

Proof. As P1(B,q−s) · P1(B,q1−s) does not vanish at s = 1 by (2.4), it follows from (2.11) that

ords=1 P2(X,q
−s)− 2 = ords=1L(J, s) + ords=1Q2(s).

Corollary 2.2 says ρ(X) = r +m+2; (i) follows as ords=1Q2(s) =m.
For (ii), use (2.4) and (2.11). �

2.5. Pairings on NS(X)

Our next task is to compute ∆(NS(X)).

Definition 2.5.

(i) Let Pic0(X0) be the kernel of the degree map deg : Pic(X0)→Z; the order δ of its cokernel is, by
definition, the index of X0 over F.

(ii) Let α be the order of the cokernel of the natural map Pic0(X0) ↪→ J(F).
(iii) Let H (horizontal divisor on X) be the Zariski closure in X of a divisor d on X0, rational over F, of

degree δ.
(iv) The (vertical) divisor V on X is π−1(s) for a divisor s of degree one on S . Such a divisor s exists as k

is a finite field and so the index of the curve S over k is one. Writing s =
∑
aivi as a sum of closed

points vi on S gives V =
∑
aiπ
−1(vi). Note that V generates π∗NS(S) ⊂NS(X).
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Remark. The definitions show that the intersections of the divisor classes H and V in NS(X) are given by

(2.13) H ·V = δ = V ·H and V ·V = 0.

Also, since π : X → S is a flat map between smooth schemes, the map π∗ : CH(S)→ CH(X) on Chow
groups is compatible with intersection of cycles. Since V = π∗(s) and the intersection s · s = 0 in CH(S), one
has V ·V = 0.

Let NS(X)0 = (π∗NS(S))⊥; as V generates π∗NS(S), we see that NS(X)0 is the subgroup of divisor
classes Y such that Y ·Xv = 0 for any fiber π−1(v) = Xv of π; let Pic(X)0 be the inverse image of NS(X)0
under the projection Pic(X)→NS(X) � Pic(X)

A(k) .

Lemma 2.6. NS(X)0 is the subgroup of NS(X) generated by divisor classes whose restriction to X0 is trivial.

Proof. We need to show that NS(X)0 is equal to K := Ker(NS(X)→ NS(X0)). If D is a vertical divisor
(π(D) ⊂ S is finite), then D is clearly in K ; by [Liu02, §9.1, Proposition 1.21], D is in NS(X)0.

If D has no vertical components, then D ·V = deg(D0). To see this, clearly we may assume D is reduced
and irreducible (integral) and so flat over S . So OD is locally free over OS of constant degree n since S is
connected. But then deg(D0) is equal to n as is the integer D ·V . �

Lemma 2.7. Let us denote

R = ⊕
v∈Z

Rv and E = B(k)∩R ⊂ Pic(X)0
π∗Pic(S)

.

One has the exact sequences

0 −→ R −→ Pic(X)0
π∗Pic(S)

−→ Pic0(X0) −→ 0, and

0 −→ R
E
−→ NS(X)0

π∗NS(S)
−→ Pic0(X0)

B(k)/E
−→ 0.(2.14)

Proof. Lemma 2.6 shows that R ⊂ Pic(X)0
π∗Pic(S) . As A(k) is the kernel of the map Pic(X)→NS(X), it follows that

A(k) ⊂ Pic(X)0. Thus, B(k) is a subgroup of Pic(X)0
π∗Pic(S) .

The first exact sequence follows from Lemma 2.6; the second one follows from Corollary 2.2 (ii). �

Lemma 2.8. One has the equality

∆ar

(
NS(X)0
π∗NS(S)

)
= [B(k)]2 ·α2 ·∆NT(J(F)) ·

∏
v∈Z

∆ar(Rv).

Proof. The exact sequence (2.14) splits orthogonally over Q: for any divisor γ representing an element of
Pic(X0), consider its Zariski closure γ̄ in X. Since the intersection pairing on Rv is negative-definite [Liu02,
§9.1, Theorem 1.23], the linear map Rv →Z defined by β 7→ β · γ̄ is represented by a unique element

ψv(γ) ∈ Rv ⊗Q ⊂
NS(X)0
π∗NS(S)

⊗Q.

Thus, the element
γ̃ := γ̄ −

∑
v∈Z

ψv(γ)

is good in the sense of [Gor79, §5, p. 185]: by construction, the divisor γ̃ on X intersects every irreducible
component of every fiber of π with multiplicity zero. Fix γ,κ ∈ Pic0(X0): viewing them as elements of J(F),
one computes their Neron–Tate pairing (1.9); also, one can compute the height pairing of γ̃ and κ̃ in NS(X).
These two are related by the identity [Tat66, p. 429] [LLR18, Remark 3.11]

〈γ,κ〉NT = −〈γ̃ , κ̃〉ar = −(γ̃ · κ̃) · logq.
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This says that

(2.15) ∆ar

(
Pic0(X0)

)
= ∆NT

(
Pic0(X0)

)
.

The map

Pic0(X0)⊗Q→
NS(X)0
π∗NS(S)

⊗Q, γ 7→ γ̃

provides an orthogonal splitting of (2.14) (over Q). So

∆ar

(
NS(X)0
π∗NS(S)

)
(1.5)
= ∆ar

(
Pic0(X0)
B(k)/E

)
·∆ar

(R
E

)
=
[B(k)]2

e2
·∆ar

(
Pic0(X0)

)
· e2∆ar(R)

(2.15)
= [B(k)]2 ·∆NT

(
Pic0(X0)

)
·∆ar(R)

where e = [E] as the size of E. As

(2.16) ∆NT(Pic
0(X0)) = α

2 ·∆NT(J(F)) and∆ar(R) =
∏
v∈Z

∆ar(Rv),

this proves the lemma. �

With Lemma 2.8 at hand we are almost ready to compute ∆ar(NS(X)). As the intersection pairing on
NS(X) is not definite (Hodge index theorem), we cannot apply (1.5). Instead, we use a variant of a lemma of
Z. Yun [Yun15].

2.5.1. A lemma of Yun. Given a non-degenerate symmetric bilinear pairing Λ×Λ→ Z on a finitely
generated Abelian group Λ, an isotropic subgroup Γ , a subgroup Γ ′ containing Γ and with finite index in Γ⊥,
let Λ0 =

Γ ′

Γ
. We recall from §1.4 that ∆(Λ) = z(D)−1 where D := Λ→ RHom(Λ,Z) and ∆(Λ0) = z(D0)

−1

where D0 := Λ0 → RHom(Λ0,Z). Let ∆ be the discriminant of the induced non-degenerate pairing
Γ × Λ

Γ ′ →Z:

∆ =
1
z(C)

=
1

z(C′)
, C := Γ → RHom

(
Λ

Γ ′
,Z

)
, and C′ :=

Λ

Γ ′
→ RHom(Γ ,Z).

Lemma 2.9 (cf. [Yun15, Lemma 2.12]). One has ∆(Λ) = ∆(Λ0) ·∆2.

Proof. Applying (1.6) to the maps of triangles

Γ Λ Λ
Γ

Γ [1]

RHom
(
Λ
Γ ′ ,Z

)
RHom(Λ,Z) RHom(Γ ′ ,Z) RHom

(
Λ
Γ ′ ,Z

)
[1]

and
Γ ′

Γ
Λ
Γ

Λ
Γ ′

Γ ′

Γ
[1]

RHom
(
Γ ′

Γ
,Z

)
RHom(Γ ′ ,Z) RHom(Γ ,Z) RHom

(
Γ ′

Γ
,Z

)
[1]

shows that z(D) · z(C)−1 = z(D0) · z(C′). �

We can finally compute ∆ar(NS(X)).

Proposition 2.10. The following relations hold

∆ar(NS(X)) = δ2 ·∆ar

(
NS(X)0
π∗NS(S)

)
· (logq)2 and ∆(NS(X)) = δ2 ·∆

(
NS(X)0
π∗NS(S)

)
.
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Proof. Let Z � Γ = π∗NS(S) ⊂NS(X) =Λ with Γ ′ = NS(X)0 and Λ0 =
NS(X)0
π∗NS(S) . Lemma 2.6 implies that

Λ

Γ ′
=

NS(X)
NS(X)0

�Z and C = Γ → Hom

(
NS(X)
NS(X)0

,Z

)
,

with C as in Lemma 2.9. Now (2.13) shows that π∗NS(S) is isotropic and ∆ = δ. The result follows from
Lemma 2.9. �

Combining the previous proposition with Lemma 2.8 provides the identity

(2.17) ∆ar(NS(X)) = δ2 · [B(k)]2 ·α2 ·∆NT(J(F)) ·
∏
v∈Z

∆ar(Rv) · (logq)2.

For v ∈ S , we put δv and δ′v for the (local) index and period of X ×Fv over the local field Fv .

Theorem 2.11. [Gei20, Theorem 1.1] Assume that Br(X) is finite. The following equality holds:

(2.18) [Br(X)]α2δ2 = [X(J/F)]
∏
v∈S

δ′vδv .

Remark 2.12. Note that for v ∈ U , one has δv = 1 = δ′v [LLR18, p. 603], [FS21, (74)] (for δv = 1), [Gro68,
Proposition (4.1) (a)] (δ′v divides δv ); the basic reason is that if v ∈U , then Xv has a rational divisor of degree
one as k(v) is finite; this divisor lifts to a rational divisor of degree one on X × Fv by smoothness of Xv .
Also, cv = 1 [BLR90, Theorem 1, §9.5 p. 264]. So c(J) :=

∏
v∈S cv satisfies

(2.19) c(J) =
∏
v∈Z

cv .

Lemma 2.13. One has

(2.20) c(J) ·Q∗2(1) =
∏
v∈Z

δv · δ′v ·∆ar(Rv).

Proof. By a result of Flach and Siebel [FS21, Lemma 17] (using Raynaud’s theorem [Gor79, Theorem 5.2] in
[BL99]), one has

∆ar(Rv) =
cv

δv · δ′v
· (logqv)mv−1 ·

∏
i∈Gv

ri .

So we find that∏
v∈Z

δv · δ′v ·∆ar(Rv) =
∏
v∈Z

cv · (logqv)mv−1 ·
∏
i∈Gv

ri

 =∏
v∈Z

cv ·
∏
v∈Z

(logqv)mv−1 ·
∏
i∈Gv

ri


(2.19)
= c(J) ·

∏
v∈Z

(logqv)mv−1 ·
∏
i∈Gv

ri

 (2.10)
= c(J) ·Q∗2(1).

�

3. First proof of Theorem 1.1

Proof of Theorem 1.1. By (2.17) and (2.20), we have

∆ar(NS(X)) =
α2 δ2∏
v∈Z δv · δ′v

·∆NT(J(F)) · c(J) · [B(k)]2 ·Q∗2(1) · (logq)
2.

From Theorem 2.11, we have

[Br(X)] ·∆ar(NS(X)) = [X(J/F)] ·∆NT(J(F)) · c(J) · [B(k)]2 ·Q∗2(1) · (logq)
2.
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Further with (2.5), we obtain

[Br(X)] ·∆ar(NS(X)) · q−α(X) = [X(J/F)] ·∆NT(J(F)) · c(J) · qχ(S,Lie J ) . [B(k)]2 ·Q∗2(1) · q
−dim(B) · (logq)2.

On the other hand, recall (2.12)

P ∗2 (X,
1
q
) = L∗(J,1) · [B(k)]2 ·Q∗2(1) · q

−dim(B) · (logq)2.

The ratio of the previous two equalities gives

P ∗2 (X,
1
q )

[Br(X)] ·∆ar(NS(X)) · q−α(X)
=

L∗(J,1)
[X(J/F)] ·∆NT(J(F)) · c(J) · qχ(S,Lie J )

.

This equality implies Theorem 1.1. �

4. Second proof of Theorem 1.1

We will give another more direct proof of Theorem 1.1 using Weil-étale cohomology. We refer the reader
to [Lic05, Gei04, GS20] for basics about Weil-étale cohomology over finite fields. Throughout this section,
we assume that Br(X) (and hence X(J/F)) is finite.

4.1. Setup

Let C ∈Db(Tét) be an object of the bounded derived category of sheaves of Abelian groups on the small
étale site Tét. Let D ∈Db(FDVectk) be an object of the bounded derived category of finite-dimensional vector
spaces over k. Assume that the Weil-étale cohomology H ∗W (T ,C) is finitely generated and the cohomology
sheaf H ∗(C ⊗LZ/lZ) is finite in all degrees for all prime numbers l - q. Let e : H i

W (T ,C)→H i+1
W (T ,C) be

the map defined by cup product with the arithmetic Frobenius ∈H1
W (T ,Z). It defines a complex

· · · e−→H i
W (T ,C)

e−→H i+1
W (T ,C)

e−→ ·· ·

with finite cohomology. Set C
Ql

= R lim←−−n(C ⊗
L
Z/lnZ)⊗

Zl
Ql , whose cohomologies are finite-dimensional

vector spaces over Ql (by the finiteness of H ∗(C ⊗L Z/lZ)) equipped with an action of the geometric
Frobenius ϕ of k. Define

Z(C,t) =
∏
i

det(1−ϕt |H i(C
Ql
))(−1)

i+1
,

ρ(C) =
∑
j

(−1)j+1 · j · rankH j
W (T ,C),

χW (C) = χ(H ∗W (T ,C), e), and

χ(D) =
∑
j

(−1)j dimH j(D).

Assume that Z(C,t) ∈Q(t) and is independent of l. Define Q(C,D) ∈Q×>0 × (1− t)Z to be the leading term
of the (1− t)-adic expansion of the function

±Z(C,t)(1− t)
ρ(C)

χW (C)qχ(D)

(the sign is the one that makes the coefficient positive). It is the defect of a zeta value formula of the form

lim
t→1

Z(C,t)(1− t)ρ(C) = ±χW (C)qχ(D).
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We mention Q(C,D) only when H ∗W (T ,C) is finitely generated, H ∗(C ⊗LZ/lZ) is finite and Z(C,t) ∈Q(t)
is independent of l. These conditions are satisfied for the cases of interest below. We have

Q(C[1],D[1]) =Q(C,D)−1.

If (C,D), (C′ ,D ′) and (C′′ ,D ′′) are pairs as above, and C→ C′→ C′′→ C[1] and D→D ′→D ′′→D[1]
are distinguished triangles, then Q(C′ ,D ′) =Q(C,D)Q(C′′ ,D ′′).

4.2. Special cases

We give two special cases of the above constructions. First, let πX : Xét→ Tét be the structure morphism.
Let P �2 (X,1)(1− t)ρ(X)

′
be the leading term of the (1− t)-adic expansion of P2(X,t/q).

Proposition 4.1. Let (C,D) = (RπX,∗Gm[−1],RΓ (X,OX)). Then H ∗(C⊗LZ/lZ) is finite, H ∗W (T ,C) is finitely
generated, Z(C,q−s) = ζ(X,s+1) and

Q(C,D)−1 =
P �2 (X,1) · (1− t)ρ(X)

′−ρ(X)

[Br(X)] ·∆(NS(X)) · q−α(X)
.

In particular, the statement Q(C,D) = 1 is equivalent to Conjecture 1.2.

Proof. We have H ∗W (T ,C) �H ∗W (X,Gm[−1]) �H ∗W (X,Z(1)). The finiteness assumption on Br(X) implies
the Tate conjecture for divisors on X and hence the finite generation of H ∗W (X,Z(1)) by [Gei04, Theorems 8.4
and 9.3]. The object C ⊗L Z/lZ � RπX,∗Z/lZ(1) ∈ Db(Tét) is constructible and hence its cohomologies
are finite. We have H i(C

Ql
) � RiπX,∗Ql(1), which is the vector space H i

ét(X ×k k̄,Ql(1)) equipped with the
natural Frobenius action. It follows that Z(C,q−s) = ζ(X,s+1).

We calculate Q(C,D)−1. By (1.2), (2.3) and (2.4), the leading term of the (1− t)-adic expansion of Z(C,t)
is

(4.1) − [A(k)]2

P �2 (X,1) · (q − 1)2 · qdimA−1 · (1− t)ρ(X)′
.

By [Gei04, Theorems 7.5 and 9.1], we have

χW (C) =
∏
i

[H i
W (X,Z(1))tor]

(−1)i ·R−1,

where R is the determinant of the pairing

H2
W (X,Z(1))×H2

W (X,Z(1))
∪−→H4

W (X,Z(2)) −→H4
ét(X ×k k̄,Z(2)) � CH2(X ×k k̄)

deg
−→Z.

We have Hn
W (X,Z(1)) = 0 for n > 5 by [Gei04, Theorem 7.3] and for n < 1 obviously. Also

H1
W (X,Z(1)) � k×, H2

W (X,Z(1)) � Pic(X), and H3
W (X,Z(1))tor � Br(X)

by [Gei04, Proposition 7.4 (c) and (d)]. By [Gei18, Remark 3.3], the group H i
W (X,Z(1))tor is Pontryagin dual

to H6−i
W (X,Z(1))tor for any i. The above pairing defining R can be identified with the intersection pairing

Pic(X)×Pic(X)→Z. Thus, with (2.1), we have

(4.2) χW (C) =
[A(k)]2

[Br(X)] ·∆(NS(X)) · (q − 1)2
.

Since the rank of H i
W (X,Z(1)) is ρ(X) for i = 2,3 and zero otherwise by [Gei04, Proposition 7.4 (c) and (d)],

we have

(4.3) ρ(C) = ρ(X).

Combining (1.3), (4.1), (4.2) and (4.3), we get the desired formula for Q(C,D)−1. �



The conjectures of Artin–Tate and Birch–Swinnerton-Dyer 15The conjectures of Artin–Tate and Birch–Swinnerton-Dyer 15

Next, let πS : Sét → Tét be the structure morphism. Let L�(J,1)(1 − q−s)r ′ be the leading term of the
(1−q−s)-adic expansion of L(J, s+1). Let ∆(J(F)) be the discriminant of the pairing (γ,κ) 7→ 〈γ,κ〉NT/ logq
on J(F).

Proposition 4.2. Let (C,D) = (RπS,∗J [−1],RΓ (S,Lie J )). Then H ∗(C ⊗L Z/lZ) is finite, H ∗W (T ,C) is
finitely generated, Z(C,q−s) = L(J, s+1) and

Q(C,D) =
L�(J,1) · (1− t)r ′−r

[X(J/F)] ·∆(J(F)) · c(J) · qχ(S,Lie J )
.

In particular, the statement Q(C,D) = 1 is equivalent to Conjecture 1.3.

Proof. We have H ∗W (T ,C) �H ∗−1W (S,J ). The finiteness assumption ofX(J/F) implies the finite generation of
H ∗W (S,J ) by [GS20, Proposition 6.4]. We have C⊗LZ/lZ � RπS,∗(J ⊗LZ/lZ)[−1]. By the paragraph before
the proof of [GS20, Proposition 9.2] and the first displayed equation in the proof of [GS20, Proposition 9.2],
we know that J ⊗L Z/lZ ∈ Db(Sét) is constructible. Hence H ∗(C ⊗L Z/lZ) is finite. We also have
H i(C

Ql
) � RiπS,∗Vl(J ) (where Vl denotes the l-adic Tate modules tensored with Ql ), which is the vector

space H i
ét(S ×k k̄,Vl(J )) equipped with the natural Frobenius action. Hence we have Z(C,q−s) = L(J, s+1)

by [Sch82, Satz 1]. We have

χW (C) = [X(J/F)] ·∆(J(F)) · c(J)

by [GS20, Proposition 8.3]. By [GS20, Proposition 7.1], the rank of H i
W (S,J ) is r for i = 0,1 and zero

otherwise. Hence ρ(C) = −r . The formula for Q(C,D) follows. �

4.3. Comparison

Now Theorem 1.1 follows from the following

Proposition 4.3. One has

Q(RπX,∗Gm[−1],RΓ (X,OX))−1 =Q(RπS,∗J [−1],RΓ (S,Lie J )).

Proof. We have Riπ∗Gm = 0 over Sét for all i ≥ 2 by [Gro68, Corollaire (3.2)]. Hence we have a distinguished
triangle

RπS,∗Gm −→ RπX,∗Gm −→ RπS,∗PicX/S [−1] −→ RπS,∗Gm[1]

in D(Tét).7 Similarly, we have a distinguished triangle

RΓ (S,OS ) −→ RΓ (X,OX) −→ RΓ (S,R1π∗OX)[−1] −→ RΓ (S,OS )[1].

We have Q(RπS,∗Gm[−1],RΓ (S,OS )) = 1 by the class number formula ([Gei04, Theorems 9.1 and 9.3], or
[Lic05, Theorems 5.4 and 7.4] and the functional equation). Therefore

(4.4) Q(RπX,∗Gm[−1],RΓ (X,OX))−1 =Q(RπS,∗PicX/S [−1],RΓ (S,R1π∗OX)).

For a closed point v ∈ S , let ιv : Speck(v) ↪→ S be the inclusion. For any i ∈ Gv , let k(v)i be the algebraic
closure of k(v) in the function field of Γi . Let ιv,i : Speck(v)i → S be the natural morphism. Set

E =
⊕
v∈Z

⊕
i∈Gv

ιv,i,∗Z

ιv,∗Z
.

Let j : SpecF ↪→ S be the inclusion. Then we have a natural exact sequence

0 −→ E −→ PicX/S −→ j∗PicX0/F −→ 0

7Here PicX/S = R1π∗Gm is only an étale sheaf. The fppf sheaf denoted by the same symbol is not an algebraic space in general.
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over Sét by [Gro68, Equations (4.10 bis) and (4.21)] (where the assumption [Gro68, Equation (4.13)] is satisfied
since k(v) is finite and hence perfect for all closed v ∈ S). Therefore we have a distinguished triangle

RπS,∗E −→ RπS,∗PicX/S −→ RπS,∗j∗PicX0/F −→ RπS,∗E[1].

Since E is skyscraper, we have Q(RπS,∗E,0) = 1 by [GS21, Theorem 3.1] (Step 3 of the proof is sufficient).
Therefore

(4.5) Q(RπS,∗PicX/S [−1],RΓ (S,R1π∗OX)) =Q(RπS,∗j∗PicX0/F[−1],RΓ (S,R
1π∗OX)).

Applying j∗ to the exact sequence

0 −→ J −→ PicX0/F −→Z −→ 0

over SpecFét, we obtain an exact sequence

0 −→ J −→ j∗PicX0/F −→Z

over Sét. Let I be the image of the last morphism, so that we have an exact sequence

0 −→ J −→ j∗PicX0/F −→ I −→ 0.

Then we have distinguished triangles

RπS,∗J −→ RπS,∗j∗PicX0/F −→ RπS,∗I −→ RπS,∗J [1], and

RπS,∗I −→ RπS,∗Z −→ RπS,∗(Z/I) −→ RπS,∗I[1].

We have Q(RπS,∗Z,0) = 1 again by the class number formula ([Gei04, Theorems 9.1 and 9.2] or [Lic05,
Theorem 7.4]). Since Z/I is skyscraper with finite stalks, we have Q(RπS,∗(Z/I),0) = 1 by [GS21, Theorem 3.1]
(Step 2 of the proof is sufficient). Therefore

(4.6) Q(RπS,∗j∗PicX0/F[−1],RΓ (S,R
1π∗OX)) =Q(RπS,∗J [−1],RΓ (S,R1π∗OX)).

The complexes RΓ (S,R1π∗OX) and RΓ (S,Lie J ) have the same Euler characteristic by (2.15). Hence

(4.7) Q(RπS,∗J [−1],RΓ (S,R1π∗OX)) =Q(RπS,∗J [−1],RΓ (S,Lie J )).

Combining (4.4)—(4.7), we get the desired equality. �

4.4. A new proof of Geisser’s formula

The above proposition, combined with the results of the previous sections, also gives a new proof of
Theorem 2.11 as follows.

Proof of Theorem 2.11. By Proposition 4.3, we have

P �2 (X,1)

[Br(X)] ·∆(NS(X)) · q−α(X)
=

L�(J,1)
[X(J/F)] ·∆(J(F)) · c(J) · qχ(S,Lie J )

.

By (2.12), we have

P �2 (X,1) = L
�(J,1) · q−dimB · [B(k)]2 ·Q�2(1),

where Q�2(1) is the leading coefficient of the (1− q−s)-adic expansion of Q2(s+1). By (2.17) and (2.20), we
have

∆(NS(X)) =
α2δ2∏
v∈Z δ

′
vδv
·∆(J(F)) · c(J) · [B(k)]2 ·Q�2(1).

By (2.5), we have

q−α(X) = qχ(S,Lie J ) · q−dimB.

Taking a suitable alternating product of these four equalities, we obtain (2.18). �
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