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Abstract. Bielliptic and quasi-bielliptic surfaces form one of the four classes of minimal smooth
projective surfaces of Kodaira dimension 0. In this article, we determine the automorphism group
schemes of these surfaces over algebraically closed fields of arbitrary characteristic, generalizing
work of Bennett and Miranda over the complex numbers; we also find some cases that are missing
from the classification of automorphism groups of bielliptic surfaces in characteristic 0.
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1. Introduction

We are working over an algebraically closed field k of characteristic p ≥ 0. Bielliptic and quasi-bielliptic
surfaces form one of the four types of minimal smooth projective surfaces of Kodaira dimension 0. Each
bielliptic surface X is a quotient π : E ×C→ (E ×C)/G = X, where E and C are elliptic curves and G ⊆ E
is a finite subgroup scheme of E that acts faithfully on C via α : G→ AutC . Moreover, the image of α is not
entirely contained in the group of translations C. This latter condition guarantees that X is not an Abelian
surface. All possible combinations of E,C,G and α have been determined: if p = 0 by Bagnera and de
Franchis in [BdF10], and if p , 0 by Bombieri and Mumford in [BM77].

Similarly, quasi-bielliptic surfaces, which exist if and only if p ∈ {2,3}, are obtained by replacing C by a
cuspidal plane cubic curve and by imposing on α the condition that the cusp of C is not a fixed point of the
group scheme α(G). As in the bielliptic case, it is possible to determine all combinations of E,C,G and α.
We refer the reader to [BM76], but note that not all cases listed there actually occur (see Remark 5.12 and
Remark 5.13).

Bielliptic and quasi-bielliptic surfaces come with two natural fibrations: one of them is the Albanese
map fE : X → E/G =: E′ , which is quasi-elliptic if X is quasi-bielliptic, and elliptic if X is bielliptic. All
closed fibers of fE are isomorphic to C, since this holds after pulling back along the faithfully flat morphism
E→ E/G. The second fibration fC : X→ C/α(G) =: C′ � P1 is always elliptic, but has multiple fibers.

The purpose of this article is to determine the automorphism group scheme AutX of X. If p = 0, this
has been carried out by Bennett and Miranda in [BM90]. By Proposition 3.1, the actions of the centralizers
CAutE (G) and CAutC (α(G)) on the first and second factor of E × C, respectively, descend to X and we
consider them as subgroup schemes of AutX via these actions. Then, the following theorem is the key result
of this article.

Theorem 1.1. Let X = (E ×C)/G be a bielliptic or quasi-bielliptic surface. Then, there is a short exact sequence of
group schemes

1→ (CAutE (G)×CAutC (α(G)))/G
π∗→ AutX →M→ 1,

where G is embedded via id×α and M is a finite and étale group scheme. In particular, AutX is of finite type.

We refer the reader to Theorem 4.3 for a refined statement including a description of the group schemes
AutX/E′ and AutX/C′ of automorphisms of X over E′ and over C′ , respectively. While the part of AutX
coming from the centralizers is straightforward to calculate and understand, the part M is more elusive. In
particular, we note that M can be non-trivial even in characteristic 0, contrary to what is claimed in [BM90,
Section 2]. Even though we do not see an a priori reason for this, M always comes from automorphisms
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of E ×C. Then, a posteriori, Theorem 4.3 (6) gives a complete description of M (see Remark 4.5). By
Proposition 3.1 and Lemma 4.2 (3), we have the following corollary of our analysis.

Corollary 1.2. Let X = (E ×C)/G be a bielliptic or quasi-bielliptic surface. Then,

AutX �NAutE×AutC (G)/G,

where NAutE×AutC (G) is the normalizer of G in AutE ×AutC .

By Corollary 4.7, we have E � (Aut◦X)red and (Aut◦X)red is normal in AutX , so we can write the quotient
AutX /E as an extension of M by (CAutE (G)/E) × (CAutC (α(G))/α(G)). These group schemes can be
calculated explicitly and this will be carried out in Section 5. In the following Tables 1, 2, and 3, the groups
Sn,An, and D2n are the symmetric, alternating, and dihedral group (of order 2n), respectively, and M2 is the
p-torsion subscheme of a supersingular elliptic curve. The stars and daggers in Table 1 will be explained in
Remark 1.4.

Corollary 1.3. Let X = (E ×C)/G be a bielliptic or quasi-bielliptic surface. Then, depending on the group scheme
G and the j-invariants j(E) and j(C), the group schemes CAutE (G)/E, CAutC (α(G))/α(G) andM are as in Table
1, 2, and 3.

G j(E) CAutE (G)/E j(C) CAutC (α(G))/α(G) M p

Z/2Z
a) any
b) 1728∗

a) Z/2Z
b) Z/4Z

i) , 0,1728
ii) 1728
iii) 0

i) (Z/2Z)2

ii) D8
iii) A4

{1} , 2,3

(Z/2Z)2
a) any
b) 1728†

Z/2Z
i) any
ii) 1728∗

i) Z/2Z
ii) (Z/2Z)2

a) {1}
b) Z/2Z

, 2,3

Z/3Z
a) any
b) 0∗

a) {1}
b) Z/3Z

0 S3 {1} , 2,3

(Z/3Z)2
a) any
b) 0†

{1} 0 {1} a) {1}
b) Z/3Z

, 2,3

Z/4Z any {1} 1728 Z/2Z {1} , 2
Z/4Z×Z/2Z any {1} 1728 {1} {1} , 2

Z/6Z any {1} 0 {1} {1} , 2,3

Z/2Z
a) , 0
b) 0

a) Z/2Z
b) Z/4Z

i) , 0
ii) 0

i) (Z/2Z)2

ii) (Z/2Z)2 o S3
{1} 3

(Z/2Z)2
a) , 0
b) 0

Z/2Z
i) , 0
ii) 0

i) Z/2Z
ii) (Z/2Z)2

a) {1}
b) Z/2Z

3

Z/3Z , 0 {1} 0 α3 oZ/2Z Z/2Z 3
Z/6Z , 0 {1} 0 {1} Z/2Z 3

Z/2Z , 0 Z/2Z
i) , 0
ii) 0

i) µ2 ×Z/2Z
ii) M2 oA4

{1} 2

µ2 ×Z/2Z , 0 Z/2Z , 0 Z/2Z {1} 2

Z/3Z
a) , 0
b) 0

a) {1}
b) Z/3Z

0 S3 {1} 2

(Z/3Z)2
a) , 0
b) 0

{1} 0 {1} a) {1}
b) Z/3Z

2

Z/4Z , 0 {1} 0 α2 Z/2Z 2
Z/6Z , 0 {1} 0 {1} {1} 2

Table 1. Automorphism group schemes of bielliptic surfaces
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G j(E) CAutE (G)/E CAutC (α(G))/α(G) M p

µ3 , 0 {1} S3 {1} 3
µ3 ×Z/2Z , 0 {1} {1} {1} 3
µ3 ×Z/3Z , 0 {1} {1} {1} 3

α3 0 Z/3Z α3 oZ/2Z Z/4Z 3
α3 ×Z/2Z 0 {1} {1} Z/4Z 3

Table 2. Automorphism group schemes of quasi-bielliptic surfaces in characteristic 3

G j(E) CAutE (G)/E λ CAutC (α(G))/α(G) M p

µ2 , 0 Z/2Z
i) , 0
ii) 0

i) (Z/2Z)2

ii) A4

i) {1}
ii) {1} 2

µ2 ×Z/3Z , 0 {1} − {1} {1} 2
µ2 ×Z/2Z , 0 Z/2Z any Z/2Z {1} 2

µ4 , 0 {1} − Z/2Z {1} 2
µ4 ×Z/2Z , 0 {1} − {1} {1} 2

α2 0 Q8
i) 1
ii) 0

i) α2
2 oZ/2Z

ii) (α4 oα4)oZ/3Z
i) {1}
ii) Z/3Z

2

α2 ×Z/3Z 0 {1} − {1} Z/3Z 2
M2 0 Z/2Z , 0 α2 ×Z/2Z (Z/2Z)2 2

Table 3. Automorphism group schemes of quasi-bielliptic surfaces in characteristic 2

Remark 1.4. Let us explain the meaning of the stars and daggers in Table 1. We denote by O ∈ E the neutral
element with respect to the group law on E:

• Stars: If p , 2,3 and j(E) = 1728, then every automorphism hE of (E,O) of order 4 fixes a unique
cyclic subgroup of E of order 2. Similarly, if p , 2,3 and j(E) = 0, then every automorphism hE of
(E,O) of order 3 fixes a unique cyclic subgroup of E of order 3. A star after a j-invariant in Table 1
denotes that the translation subgroup of G or α(G) coincides with this cyclic subgroup. By Lemma
5.1, this implies that hE is in the corresponding centralizer. We note that such special 2 and 3-torsion
points do not exist if p = 2,3, because (E,O) has more automorphisms in these characteristics.
• Daggers: A dagger after j(E) denotes that the special 2 or 3-torsion points described above maps to
a translation in α(G). In these cases, the automorphism (hE ,hC), where hE is an automorphism of
order 4 or 3 of (E,O) and hC is translation by a suitable 4 or 3-torsion point, respectively, normalizes
the G-action on E ×C and hence descends to X. Since (hE ,hC) does not centralize the G-action, it
induces a non-trivial element of M . See the proof of Proposition 5.5 for a precise description of the
automorphism (hE ,hC) in these cases.

These cases seem to be missing from [BM90], since they were not listed in [BM90, Table 1.1], which is why
[BM90, Table 3.2] differs from our Table 1.

Remark 1.5. In the quasi-bielliptic case in characteristic 2, the action of G on E ×C sometimes depends on
a parameter λ ∈ k and so does AutX . For an explicit description of λ, see Section 5.2.2. The parameter λ
should be thought of as a replacement for the j-invariant of the curve C.

Recall that the space H0(X,TX) is the tangent space of AutX at the identity. Since E � (Aut◦X)red, AutX
is smooth if and only if h0(X,TX) = 1. A careful inspection of Tables 1, 2, and 3, and of the orders of the
canonical bundle ωX determined in [BM77] and [BM76] shows the following.
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Corollary 1.6. Let X be a bielliptic or quasi-bielliptic surface. Then, the following hold:

(1) h0(X,TX) ≤ 3.
(2) If X is bielliptic or p , 2, then h0(X,TX) ≤ 2.
(3) h0(X,TX) = 1 if and only if ωX � OX if and only if AutX is smooth.
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2. Notation and generalities on automorphism group schemes

Let π : Y → X be a morphism of proper varieties over an algebraically closed field k. There are several
k-group schemes of automorphisms associated to π. We follow the notation of [Bri18, Section 2.4], which we
recall for the convenience of the reader. Throughout, T is an arbitrary k-scheme.

• The automorphism group scheme AutX of X is the k-group scheme whose group of T -valued points
AutX(T ) := Aut(X×kT ) is the group of automorphisms of XT := X×kT over T . By [MO68, Theorem
(3.7)], AutX is a group scheme locally of finite type over k. The identity component of AutX is
denoted by Aut◦X .
• The automorphism group scheme Autπ of the morphism π is the k-group scheme such that Autπ(T )
consists of pairs (g,h) ∈ AutY (T )×AutX(T ) making the diagram

YT
g
//

πT
��

YT

πT
��

XT
h // XT

commutative. In particular, Autπ(−) is a closed subfunctor of AutY (−)×AutX(−), hence Autπ is
representable by a group scheme locally of finite type over k.
• The group scheme Autπ comes with projections to AutY and AutX . If π is faithfully flat, then the
first projection Autπ → AutY is a closed immersion and we will use this to consider Autπ as a
subgroup scheme of AutY . We denote the second projection by π∗ : Autπ→ AutX .
• The automorphism group scheme AutY /X of Y over X is the k-group scheme whose group of T -valued
points AutY /X(T ) consists of automorphisms g ∈ AutY (T ) such that πT ◦g = πT . By definition, there
is an exact sequence realizing AutY /X as a subgroup scheme of Autπ:

(1) 1→ AutY /X → Autπ
π∗→ AutX

• Given a closed subgroup scheme G ⊆ AutY , the normalizer NAutY (G) of G in AutY is the k-group
scheme whose group of T -valued points is

NAutY (G)(T ) = {h ∈ AutY (T ) | hT ′ ◦ g ◦ (hT ′ )
−1 ∈ G(T ′) for all T ′→ T and g ∈ G(T ′)}.

The centralizer CAutY (G) of G in AutY is the group scheme whose T -valued points satisfy the
stronger condition hT ′ ◦ g ◦ (hT ′ )−1 = g instead. By [ABD+66, Exposé VIB, Proposition 6.2 (iv)], both
NAutY (G) and CAutY (G) are closed subgroup schemes of AutY .
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Caution 2.1. The notation AutY /X is also a standard notation for the group functor on the category of
X-schemes that associates to an X-scheme Z the automorphism group of Y ×X Z over Z . Since these relative
automorphism group functors do not occur in this article, we decided to use the notation introduced above
instead of more cumbersome, albeit more precise, notation such as AutY /X/k .

3. Automorphism group schemes of quotients

In this section, we study Sequence (1) in the case where π : Y → X is a finite quotient.

Proposition 3.1. If G is a finite group scheme acting freely on a proper variety Y such that the geometric quotient
π : Y → Y /G =: X exists as a scheme, then we have AutY /X = G and Autπ =NAutY (G) as subgroup schemes of
AutY . In particular, Sequence (1) becomes

1→ G→NAutY (G)
π∗→ AutX .

Proof. First, we show that AutY /X = G. By [Bri11, Lemma 4.1], there is a G-equivariant isomorphism
AutY /X � Hom(Y ,G), where the T -valued points of the latter are Hom(Y × T ,G) and G is embedded as
G =Hom(Speck,G). Since Y is a proper variety and taking global sections commutes with flat base change,
we have H0(Y × T ,OY×T ) = k ⊗k H0(T ,OT ) =H0(T ,OT ) for every affine k-scheme T . As G is affine, this
implies Hom(Y × T ,G) = Hom(T ,G) = G(T ), which is what we had to show.

Next, we show Autπ =NAutY (G). For this, let h ∈ AutY (T ) be an automorphism of YT . Then, h ∈ Autπ(T )
if and only if there is h′ ∈ AutX(T ) such that the following diagram commutes

YT
h //

πT
��

YT

πT
��

XT
h′ // XT .

Comparing degrees, it is easy to check that the geometric quotient of YT by the induced free action of G
coincides with πT , so the morphism π : Y → X is a universal geometric quotient of Y , hence also a universal
categorical quotient by [MFK94, Proposition 0.1]. Therefore, the automorphism h′ exists if and only if πT ◦h
is G-invariant, that is, if and only if for every T -scheme T ′ we have πT ′ ◦hT ′ ◦g = πT ′ ◦hT ′ for all g ∈ G(T ′).
This is equivalent to hT ′ ◦ g ◦ h−1T ′ ∈ AutY /X(T

′) = G(T ′) for all g ∈ G(T ′), which is precisely the condition
that h ∈NAutY (G). �

Example 3.2. Contrary to the situation for abstract groups, Proposition 3.1 typically fails if Y is a non-proper
variety or the action of G is not free. Indeed, consider any infinitesimal subgroup scheme G ⊆ PGL2 of
length p. The k-linear Frobenius F : Y := P1→ P

1 =: X is the geometric quotient for the action of G on
P
1 and AutY /X = PGL2[F] is the kernel of Frobenius on PGL2. Moreover, we have AutF = PGL2. Thus,

AutY /X and AutF are strictly bigger than G and NPGL2
(G) even though F is a G-torsor over an open

subscheme of X.

Even though Example 3.2 shows that Proposition 3.1 fails for non-free actions on curves, we can at least
describe the k-rational points in Sequence (1) if the quotient is smooth.

Proposition 3.3. Let G be a finite group scheme acting faithfully on a proper integral curve D with geometric
quotient ϕ :D→D ′ :=D/G. Assume that D ′ is smooth. Then, we have

AutD/D ′ (k) = G(k) and Autϕ(k) =NAut(D)(G(k)).

Proof. We can consider the four groups as subgroups of the group Autk(k(D)) of k-linear field automorphisms
of k(D) via the injective restriction map Aut(D) ↪→ Autk(k(D)). We have a tower of field extensions
k(D ′) ⊆ k(D)G(k) ⊆ k(D), where k(D ′) ⊆ k(D)G(k) is purely inseparable and k(D)G(k) ⊆ k(D) is a Galois
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extension with Galois group G(k). An elementary calculation shows that NAutk(k(D))(G(k)) is the subgroup

of Autk(k(D)) of automorphisms preserving k(D)G(k). Since D ′ is a curve, we have k(D ′) = (k(D)G(k))p
n

for some n ≥ 0, so an automorphism of k(D) preserves k(D)G(k) if and only if it preserves k(D ′). Hence,
NAutk(k(D))(G(k)) is also the group of automorphisms of k(D) preserving k(D ′). On the other hand, since
D ′ is smooth and proper, Autϕ(k) consists precisely of those automorphisms of D which, when restricted
to k(D), preserve k(D ′). Hence, we have NAut(D)(G(k)) = NAutk(k(D))(G(k)) ∩ Aut(D) = Autϕ(k), and
AutD/D ′ (k) = Autk(D ′)(k(D))∩Aut(D) = G(k), which is what we had to show. �

4. Proof of Theorem 1.1

Throughout this section, E and C are integral curves of arithmetic genus 1, and we assume that E is
smooth and C is either smooth or has a single cusp as singularity. We choose a point O ∈ E and consider E
as an elliptic curve with identity element O. We fix a finite subgroup scheme G ⊆ E, and a monomorphism
α : G→ AutC such that α(G) is not contained in the group of translations of C if C is smooth, and not
contained in the stabilizer of the cusp if C is singular. In particular, the actions of G on E (via translations)
and C (via α) give rise to a product action of G on E ×C and we set X := (E ×C)/G with quotient map
π : E ×C→ X. We have the following commutative diagram with two cartesian squares:

E ×C
π

''

πC
��

πE // X ×E′ E //

��
�

E

��
X ×C′ C //

��
�

X
fE

//

fC
��

E/G =: E′

C // C/α(G) =: C′ .

Since G acts freely on E, the map πE induces isomorphisms on the fibers of E ×C→ E and X ×E′ E→ E

and thus, as both maps are flat, the morphism πE is an isomorphism. The following lemma shows that the
automorphism group scheme of X is controlled by the fibrations fE and fC .

Lemma 4.1. There is a unique action of AutX on C′ and on E′ such that both fE : X→ E′ and fC : X→ C′

are AutX -equivariant. In particular, there are exact sequences

1→ AutX/E′ → AutX
(fE)∗→ AutE′

and

1→ AutX/C′ → AutX
(fC )∗→ AutC′ .

Proof. The Aut◦X-action on X descends to both E′ and C′ by Blanchard’s Lemma [BSU13, Proposition 4.2.1].
Since fE and fC are the only fibrations of X and E′ � C′ � P1, it is also clear that the action of the abstract
group Aut(X) descends to E′ and C′ . By [Bri18, Lemma 2.20 (ii)], this is enough to prove that the whole
AutX-action descends uniquely to the two curves E′ and C′ .

With respect to the AutX-actions of the previous paragraph, we have AutX = AutfC = AutfE , hence the
short exact sequences in the statement of the lemma are special cases of Sequence (1). �

The idea for the proof of Theorem 1.1 is to use the isomorphism πE to lift group scheme actions from
X to E × C. By Proposition 3.1, the automorphisms of X that come from E × C are induced by the
normalizer NAutE×C (G). Therefore, before proving Theorem 1.1, we study NAutE×C (G). For the following
lemma, note that there is a natural inclusion AutE ×AutC ↪→ AutE×C given by letting AutE and AutC act
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on the first and second factor, respectively. In particular, we can consider CAutE (G) ×CAutC (α(G)) and
NAutE (G)×NAutC (α(G)) as subgroup schemes of AutE×C .

Lemma 4.2. The normalizer NAutE×C (G) of G in AutE×C satisfies the following properties:

(1) NAutE×C (G) ⊇ CAutE (G)×CAutC (α(G)).
(2) N ◦AutE×C (G) = C

◦
AutE

(G)×C◦AutC (α(G)).
(3) NAutE×C (G)(T ) = {(hE ,hC) ∈NAutE (G)(T )×NAutC (α(G))(T ) | αT ◦ adhE = adhC ◦αT }, where adhE

and adhC denote conjugation by hE and hC , respectively.
(4) The quotient maps C→ C′ and E→ E′ are NAutE×C (G)-equivariant.

Proof. Claim (1) is clear.
For Claim (2), the inclusion N ◦AutE×C (G) ⊇ C

◦
AutE

(G)×C◦AutC (α(G)) follows from Claim (1) and we have to
show the other inclusion. By [BSU13, Corollary 4.2.7], we have Aut◦E×C = Aut◦E ×Aut

◦
C . In particular, being

connected, N ◦AutE×C (G) is contained in Aut◦E ×Aut
◦
C . Hence, it suffices to show that N ◦AutE×C (G) centralizes

G on the first factor of E × C. Since G ⊆ Aut◦E is a subgroup scheme of the connected commutative
group scheme Aut◦E , we have Aut◦E ⊆ C

◦
AutE

(G) ⊆N ◦AutE (G) ⊆ Aut◦E , so N
◦
AutE

(G) centralizes G. Therefore,
N ◦AutE×C (G) centralizes G as well.

Claim (3) holds for N ◦AutE×C (G) by Claim (2), so it suffices to prove the statement for T = Spec k. Let
h ∈NAutE×C (G)(k). Since h normalizes G, it descends to X by Proposition 3.1. The induced automorphism
of X preserves both fC and fE , because they are the only fibrations of X and E′ has genus 1, while C′ � P1.
Since the projections E ×C→ E and E ×C→ C coincide with the Stein factorizations of fE ◦π and fC ◦π,
respectively, both projections are preserved by h. Hence, h ∈ Aut(E)×Aut(C). An automorphism of this
form normalizes the G-action on E ×C if and only if it normalizes the G-action on both factors and the
automorphisms of G induced by the two conjugations are identified via α. This proves Claim (3).

Claim (4) follows from the NAutE×C (G)-equivariance of π,fE , and fC , since the two projections E ×C→ E
and E ×C→ C are faithfully flat. �

Recall that, by Proposition 3.1, the action of NAutE×C (G) on E ×C descends to X and we denote the
corresponding homomorphism by π∗ :NAutE×C (G)→ AutX . After these preparations, we are ready to prove
the following refined version of Theorem 1.1.

Theorem 4.3 (cf. Theorem 1.1). Let X = (E ×C)/G be a bielliptic or quasi-bielliptic surface. Then:

(1) AutX/C′ = π∗(CAutE (G)× (CAutC (α(G))∩AutC/C′ )).
(2) If G is étale, then AutX/C′ � CAutE (G).
(3) AutX/E′ = π∗((CAutE (G)∩AutE/E′ )×CAutC (α(G))).
(4) AutX/E′ � CAutC (α(G)).
(5) There is a short exact sequence of group schemes

1→ (CAutE (G)×CAutC (α(G)))/G
π∗→ AutX →M→ 1,

where G is embedded via id × α, M is finite and étale, and M(k) is a subquotient of the groups
AutE′ (k)/((fE)∗CAutE (G)(k)) and NAut(C)(α(G)(k))/(CAutC (α(G))(k)).

(6) If every element of M(k) can be represented by an automorphism of X that lifts to E ×C, then

M(k) �
{(hE ,hC) ∈NAutE (G)×NAutC (α(G)) | α ◦ adhE = adhC ◦α}

CAutE (G)(k)×CAutC (α(G))(k)
.

This always holds if X is bielliptic.

Proof. For Claim (1), we first show that the AutX/C′ -action lifts to E ×C. For this, choose a general point
c ∈ C and let c′ ∈ C′ be its image in C′ , so that π restricted to E × {c} yields an identification of E with the
fiber F of fC over c′ . Via this identification, the morphism (fE)|F : F→ E′ is identified with the quotient map
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E→ E/G = E′ . By Lemma 4.1, the action of AutX/C′ on X descends to an action on E′ , and we can use the
restriction homomorphism AutX/C′ → AutF and the identification of F with E to get a compatible action of
AutX/C′ on E. Using the isomorphism πE : E ×C→ X ×E′ E, we thus obtain an action of AutX/C′ on E ×C
that lifts the action of AutX/C′ on X. Hence, AutX/C′ is in the image of π∗ and it remains to describe its
preimage.

By Lemma 4.2 (4), a subgroup scheme H ⊆ NAutE×C (G) ⊆ AutE ×AutC maps to AutX/C′ via π∗ if and
only if it maps to AutC/C′ under the second projection. To prove Claim (1), we have to show that such an
H in fact centralizes G. By Lemma 4.2 (2) this holds for H◦, so we have to prove that H(k) centralizes
α(G). Observe that H(k) is mapped to AutC/C′ (k) under the second projection and AutC/C′ (k) = α(G)(k)
by Proposition 3.3. This, and the fact that G is abelian, implies that H(k) centralizes α(G). Now, Lemma
4.2 (3), shows that H(k) centralizes the G-action on E ×C.

For Claim (2), it suffices to show that CAutC (α(G))∩AutC/C′ = α(G), since there is an isomorphism
(CAutE (G)×α(G))/G � CAutE (G). This holds if G is étale, for then AutC/C′ is the constant group scheme
associated to α(G) by Proposition 3.3.

For Claim (3), we only have to show that the AutX/E′ -action lifts to E ×C, because the description of the
preimage of AutX/E′ under π∗ works as in the proof of Claim (1). Since AutX/E′ acts trivially on E′ , we can
use the trivial action of AutX/E′ on E to define an action of AutX/E′ on X ×E′ E lifting the action of AutX/E′
on X. Using the isomorphism πE : E ×C→ X ×E′ E, we thus obtain the desired lifting.

For Claim (4), we use that the G-action on E is free. By Proposition 3.1 this implies that AutE/E′ = G.
Hence, Claim (3) shows that AutX/E′ = π∗(G ×CAutC (α(G)) � CAutC (α(G)).

Next, let us prove Claim (5). By Proposition 3.1, the image of CAutE (G) × CAutC (α(G)) under π∗ is
isomorphic to (CAutE (G) × CAutC (α(G)))/G. By Claim (1) and Claim (3), this image coincides with the
subgroup scheme of AutX generated by the two normal subgroup schemes AutX/C′ and AutX/E′ , hence
it is itself normal. In particular, the quotient M and the exact sequence in Claim (3) exist. It remains to
describe M .

First, consider the exact sequence

(2) 1→ CAutC (α(G))→ AutX
(fE)∗→ AutE′

from Lemma 4.1, where we used Claim (4) to describe the kernel of (fE)∗. The homomorphism (fE)∗ identifies
the group scheme M with a subgroup scheme of AutE′ /((fE)∗CAutE (G)). We can choose the image O′ ∈ E′
of O ∈ E as the neutral element of a group law on E′ . Then, we have AutE′ � E′ oAutE′ ,O′ for the finite
and étale stabilizer AutE′ ,O′ of O′ . Using the translation action, we can consider E as a subgroup scheme
of AutE ×AutC . In fact, we have E ⊆ CAutE (G), since G ⊆ E and E is commutative. By Lemma 4.2 (4), the
induced action on E′ coincides with the translation action of E′ on itself. Hence, E′ ⊆ (fE)∗CAutE (G). In
particular, M is a subquotient of AutE′ ,O′ and hence it is finite and étale.

Let H := (fE)−1∗ (AutE′ ,O′ ) ⊆ AutX and let F be the fiber of fE over O′ . Then, the restriction of π to
{O} ×C gives an identification of C with F such that the quotient map ϕ : C→ C/α(G) = C′ is identified
with (fC)|F : F→ C′ . In the following, we use this identification to write C instead of F and ϕ instead of
(fC)|F . Since AutE′ ,O′ fixes O′ , the action of H on X preserves C and the morphism ϕ is H-equivariant,
since fC is AutX-equivariant by Lemma 4.1. In other words, the H-action on C factors through Autϕ . By
Claim (1), the kernel of this action is contained in (CAutE (G)×CAutC (α(G)))/G, hence M is a subquotient
of Autϕ/CAutC (α(G)). Now, it suffices to observe that Autϕ(k) = NAut(C)(α(G)(k)), which follows from
Proposition 3.3.

Finally, for Claim (6), the description of M follows immediately from Lemma 4.2 (3) and Proposition 3.1.
By the previous paragraph, we can lift every element of M(k) to an automorphism g ∈ Aut(X) mapping
under (fC)∗ to the image of Autϕ(k)→ AutC′ (k). In particular, g lifts to an automorphism h′ of X ×C′ C.
Since πC : E ×C → E ×C′ C is birational, we obtain a birational automorphism h of E ×C. Now, if X is
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bielliptic, then E ×C is smooth, minimal, and non-ruled hence h extends to a biregular automorphism of
E ×C lifting g . �

Remark 4.4. We remark that if G is not étale, then the group NAut(C)(α(G)(k)) will usually be bigger
than NAutC (α(G))(k). Only later it will turn out that M is in fact a subquotient of the smaller group
NAutC (α(G))(k)/CAutC (α(G))(k) in every case.

Remark 4.5. In the case-by-case analysis of quasi-bielliptic surfaces in Section 5.2, we will show that the
assumptions of Theorem 4.3 (6) are also satisfied for all quasi-bielliptic surfaces, hence the description of M
also holds for these surfaces.

Remark 4.6. It will follow from the calculations of Section 5 that Theorem 4.3 (2) holds for all bielliptic
surfaces. Indeed, the situation where X is bielliptic and G is not étale only occurs if p = 2 and G = µ2×Z/2Z
and in this case explicit calculations show that CAutC (α(G))∩AutC/C′ = α(G), hence the existence of an
isomorphism AutX/C′ � CAutE (G) follows from Theorem 4.3 (1). In particular, for bielliptic surfaces, we
always have AutX/C′ ∩AutX/E′ = π∗(G ×α(G)) � G.

If X is quasi-bielliptic, then it is not true in general that AutX/C′ � CAutE (G). Indeed, for example if
p = 3 and G = α3, then C→ C′ is purely inseparable of degree 3, hence AutC/C′ = AutC[F]. Calculations
(see Section 5.2.1, Case (d)) show that CAutC (α3)

◦ � α2
3 and CAutE (G) � E oZ/3Z. Hence, by Theorem 4.3

(1), AutX/C′ is non-reduced while CAutE (G) is reduced, so they cannot be isomorphic. In particular, for
quasi-bielliptic surfaces, AutX/C′ ∩AutX/E′ can be larger than G.

We end this section with a description of (Aut◦X)red. We are thankful to the editors for sharing an
observation that allowed us to avoid forward references to Section 5 in the proof of the following proposition.

Corollary 4.7. We have E � (Aut◦X)red and (Aut
◦
X)red is normal in AutX .

Proof. Since X is not birationally ruled, [Pop16, Theorem 1] implies that (Aut◦X)red does not contain a
connected linear algebraic group, hence, by [BSU13, Theorem 1.1.1], (Aut◦X)red is an Abelian variety. Then,
by [BSU13, Proposition 2.2.1], the stabilizers of the (Aut◦X)red-action on X are finite. Since X is not an
Abelian surface, the (Aut◦X)red-action on X cannot be transitive, hence (Aut◦X)red is either trivial or an
elliptic curve. Now, by Theorem 4.3, the action of E on the first factor of E ×C descends to a faithful action
of E on X. This yields a monomorphism, and hence an isomorphism, of elliptic curves E→ (Aut◦X)red. To
see that (Aut◦X)red is normal in AutX , let (Aut

◦
X)ant be the largest anti-affine subgroup scheme of Aut◦X

(see [BSU13, Chapter 5]). By [BSU13, Lemma 5.1.1], (Aut◦X)ant is smooth and connected, and it contains
(Aut◦X)red, since the latter is anti-affine. Hence, (Aut◦X)red = (Aut◦X)ant. By [BSU13, Theorem 1.2.1, Remark
1.2.2], (Aut◦X)ant = (Aut◦X)red is normal in Aut◦X , hence also normal in AutX . This finishes the proof. �

5. Computing centralizers and normalizers

First, recall that if D is an integral curve of arithmetic genus pa(D) = 1 with smooth locus Dsm and with
a chosen point O ∈ Dsm, then there is a decomposition AutD = Dsm oAutD,O, where the group scheme
AutD,O of automorphisms fixing O acts on the group scheme Dsm of translations ts by points s ∈ Dsm
via g ◦ ts ◦ g−1 = tg(s). This is because AutD,O acts on Dsm via group scheme automorphisms, see [Sil09,
Theorem 4.8] and [BM76, Proposition 6]. We use the letter D here, since, using the terminology of Section 4,
the following Lemma 5.1 applies to both D = E and D = C.

Lemma 5.1. Let D be an integral curve with pa(D) = 1 and with a chosen point O ∈ Dsm. Let G1 ⊆ AutD,O
and G2 ⊆Dsm be subgroup schemes. Then, the following are equivalent:

(1) G2 normalizes G1.
(2) G1 and G2 commute.
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(3) G2 ⊆DG1 .

Proof. Note that if T is a k-scheme, g ∈ G1(T ), and ts ∈ G2(T ), then we have

(3) ts ◦ g ◦ t−s = ts−g(s) ◦ g.

In particular, if s = g(s) for all ts ∈ G2(T ), then G1 and G2 commute, hence (3)⇒ (2). The implication
(2) ⇒ (1) is clear, hence it remains to prove (1) ⇒ (3): if G2 normalizes G1, then Equation (3) shows
that ts−g(s)(OT ′ ) = OT ′ for all T -schemes T ′ and ts ∈ G2(T ). This is only possible if s = g(s), hence
G2(T ) ⊆DG1(T ). �

5.1. Bielliptic surfaces

We use the notation of Section 4 and Lemma 5.1, but assume that D is smooth. In each of the cases
p , 2,3, p = 3 and p = 2, we will recall the structure of the subgroup scheme AutD,O ⊆ AutD . Moreover, for
every commutative subgroup H ⊆ AutD,O, we list the fixed locus DH and, if AutD,O is non-commutative,
also the centralizer and normalizer of H in Lemma 5.2, Lemma 5.6, and Lemma 5.9. All of this is well-known
and elementary to check, and we refer the reader to [Sil09, Section III.10 and Appendix A] for details.
Together with Lemma 5.1, it will be straightforward to calculate the groups CAutE (G) and CAutC (α(G)) of
Theorem 1.1 and produce Table 1. We will leave the details to the reader, but we will explain how the
calculations work in Example 5.3. Using Theorem 4.3 (6), we calculate M in every case. The results of the
calculations of this section are summarized in Table 1. To simplify notation, we define

N :=NAut(C)(α(G)(k))/(CAutC (α(G))(k)).

5.1.1. Characteristic p , 2,3. By Bombieri and Mumford [BM77, p.37], the group schemes G leading to
bielliptic surfaces X = (E ×C)/G are the seven groups

Z/2Z,Z/3Z,Z/4Z,Z/6Z, (Z/2Z)2, (Z/3Z)3,Z/4Z×Z/2Z.

The translation subgroup of α(G) is trivial in the first four of these cases, and isomorphic to the group
Z/2Z,Z/3Z, or Z/2Z in the other three cases, respectively.

Lemma 5.2. The non-trivial commutative subgroup schemes H of AutD,O and their fixed loci DH are as in
Table 4.

j(D) AutD,O H DH

, 0,1728 Z/2Z Z/2Z (Z/2Z)2

1728 Z/4Z
Z/2Z
Z/4Z

(Z/2Z)2

Z/2Z

0 Z/6Z
Z/2Z
Z/3Z
Z/6Z

(Z/2Z)2

Z/3Z
{1}

Table 4. AutD,O and its subgroups in characteristic , 2,3

Example 5.3. We explain how to calculate the centralizers in the case where the group is G =Z/2Z.
For the calculation of CAutE (G), recall that translations in E always commute with G. Next, by Lemma

5.1, an automorphism hE ∈ AutE,O commutes with G precisely if G ⊆ EhE . Now, we apply Lemma 5.2: if
j(E) , 1728, or j(E) = 1728 and G does not coincide with the fixed locus of an automorphism hE of order
4 in AutE,O, then CAutE (G)/E � Z/2Z. This is Case a) in the first row of Table 1. If j(E) = 1728 and



12 G. Martin12 G. Martin

G = EhE , then CAutE (G)/E �Z/4Z. This is Case b) in the first row of Table 1 and it seems to be missing
from [BM90, Table 3.2], see also Remark 1.4.

For the calculation of CAutC (α(G)), we apply Lemma 5.1 to find the subgroup of translations of C
that commute with α(G). By Lemma 5.2, this group is isomorphic to (Z/2Z)2. Next, by Lemma 5.2,
the group α(G) is in the center of AutC,O, so CAutC (α(G)) � (Z/2Z)2 oAutC,O. Now, if j(E) , 0,1728,
then CAutC (α(G))/α(G) � (Z/2Z)2, if j(E) = 1728, then CAutC (α(G))/α(G) � D8, and if j(E) = 0, then
CAutC (α(G))/α(G) � A4. These are the Cases i), ii), and iii) in the first row of Table 1.

Similarly, one can calculate the centralizers of G and α(G) for all seven possibilities of G. They are listed
in Table 1. As for the group N , we have the following:

Lemma 5.4. The group N is as in Table 5.

G Z/2Z Z/3Z Z/4Z Z/6Z (Z/2Z)2 (Z/3Z)2 Z/4Z×Z/2Z
N {1} {1} {1} {1} Z/2Z S3 Z/2Z

Table 5. The group N in characteristic , 2,3

Proof. If α(G) does not contain translations, then NAutC (α(G)) = CAutC (α(G)) by Lemma 5.1 and because
AutC,O is abelian. Hence, N is trivial in these cases.

If G = (Z/2Z)2, then conjugation by NAutC (α(G)) fixes the unique non-trivial 2-torsion point c in α(G).
By Lemma 5.2 and Lemma 5.1, this implies |N | | 2. The non-trivial element of N is induced by a 4-torsion
point c′ of C with 2c′ = c.

If G = (Z/3Z)2, then conjugation by NAutC (α(G)) preserves the subgroup 〈c〉 ⊆ α(G) generated by a
non-trivial 3-torsion point c in α(G). Thus, the action of NAutC (α(G)) descends to C

′′ := C/〈c〉. There, it
maps to the normalizer in AutC′′ of a subgroup G′′ ⊆ AutC′′ ,O′′ of order 3, where O′′ is the image of O.
By Lemma 5.1 and Table 4, the normalizer of G′′ is isomorphic to Z/3ZoZ/6Z, where G′′ sits inside the
second factor. Thus, N is isomorphic to a subgroup of S3. One can check that the involution in AutC,O and
a 3-torsion point not contained in 〈c〉 induce non-trivial elements of N , hence N � S3.

Finally, if G = Z/4Z ×Z/2Z, then, again, conjugation by NAutC (α(G)) fixes the unique non-trivial
2-torsion point c in α(G). In this case, however, the involution in α(G)∩AutC,O is the unique element
in α(G) which is divisible by 2, hence it is also fixed by NAutC (α(G)). Thus, by Lemma 5.1, a translation
can be in NAutC (α(G)) only if it is a translation by a 2-torsion point. The non-trivial 2-torsion point that
commutes with α(G) is already contained in α(G), hence N �Z/2Z is generated by one of the other two
non-trivial 2-torsion points. �

Proposition 5.5. The cases where M is non-trivial are precisely the following:

(1) G = (Z/2Z)2, j(E) = 1728, and the fixed points GhE of the automorphism hE of order 4 in AutE,O act
as translations on C. In this case, M =Z/2Z.

(2) G = (Z/3Z)2, j(E) = 0, and the fixed points GhE of the automorphism hE of order 3 in AutE,O act as
translations on C. In this case, M =Z/3Z.

Proof. Assume that M is non-trivial. By Theorem 4.3 (5) and Table 5, this can only happen if G ∈
{(Z/2Z)2, (Z/3Z)2,Z/4Z×Z/2Z}.

Assume G = (Z/2Z)2. By Theorem 4.3 (5) and Table 5, we have |M | | 2. If j(E) , 1728, then
AutE′ /((fE)∗CAutE (G)) has odd order, hence M = {1} by Theorem 4.3 (5). If j(E) = 1728, we use
Theorem 4.3 (6): by our description of the centralizers and normalizers, both NAutE (G)/CAutE (G) and
NAutC (α(G))/CAutC (α(G)) are isomorphic to Z/2Z and every non-trivial element of M(k) can be repre-
sented by h = (hE ,hC), where hE ∈ AutE,O is of order 4 and hC is translation by a non-trivial 4-torsion
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point such that h2C ∈ α(G). By Lemma 5.1 and Table 4, we have α ◦ adhE = adhC ◦α if and only if the fixed
point of hE maps via α to the unique translation in α(G). This is Case (1).

Next, assume G = (Z/3Z)2. Let h = (hE ,hC) be an automorphism of E ×C lifting a non-trivial element
of M(k). By our description of CAutE (G) and N , we may assume that hC is either the involution in AutC,O
or translation by a 3-torsion point c′ < α(G), and that hE ∈ AutE,O. If hE is an involution, then adhE fixes
only the identity in G, while adhC has more fixed points on α(G). Hence, by Theorem 4.3 (6), h does not
normalize the G-action on E ×C in this case, a contradiction to Proposition 3.1. Thus, we may further
assume that j(E) = 0 and hE has order 3. Then, we may assume that hC is translation by c′ . By Lemma 5.1
and Table 4, we have α ◦ adhE = adhC ◦α if and only if the fixed points of hE on E map to translations in
α(G). This is Case (2).

Finally, assume G =Z/4Z×Z/2Z. Assume M is non-trivial and, using Theorem 4.3 (6), let h = (hE ,hC)
be an automorphism mapping to a non-trivial element in M(k). We may assume that hE ∈ AutE,O is the
involution and hC is a translation by one of the 2-torsion points not contained in α(G). Observe that
adhE maps elements of order 4 in G to their inverses while adhC maps the automorphism σ of order 4 in
α(G)∩AutC,O to σ ◦tc, where c is the non-trivial 2-torsion point in α(G). Hence, we have α◦adhE , adhC ◦α.
This contradiction shows that M = {1} in this case. �

5.1.2. Characteristic p = 3. By Bombieri and Mumford [BM77, p.37], the groups G leading to bielliptic
surfaces X = (E ×C)/G are the six groups

Z/2Z,Z/3Z,Z/4Z,Z/6Z, (Z/2Z)2,Z/4Z×Z/2Z.

The translation subgroup of α(G) is trivial in the first four of these cases, and isomorphic to Z/2Z in the
other two cases.

Lemma 5.6. The non-trivial commutative subgroup schemes H of AutD,O, their fixed loci DH , centralizers
CAutD,O (H) and normalizers NAutD,O(H) are as in Table 6.

j(D) AutD,O H DH CAutD,O (H) NAutD,O(H)

, 0 Z/2Z Z/2Z (Z/2Z)2 Z/2Z Z/2Z

0 Z/3ZoZ/4Z

Z/2Z
Z/3Z
Z/4Z
Z/6Z

(Z/2Z)2

α3
Z/2Z
{1}

Z/3ZoZ/4Z
Z/6Z
Z/4Z
Z/6Z

Z/3ZoZ/4Z
Z/3ZoZ/4Z

Z/4Z
Z/3ZoZ/4Z

Table 6. AutD,O and its subgroups in characteristic 3

As in characteristic , 2,3, it is straightforward to calculate the centralizers of G and α(G) and they are
listed in Table 1.

Lemma 5.7. The group N is as in Table 7.

G Z/2Z Z/3Z Z/4Z Z/6Z (Z/2Z)2 Z/4Z×Z/2Z
N {1} Z/2Z {1} Z/2Z Z/2Z Z/2Z

Table 7. The group N in characteristic 3
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Proof. If α(G) does not contain translations, then a translation in AutC normalizes α(G) if and only if it
centralizes α(G) by Lemma 5.1. Thus, in these cases, N can be read off from the last two columns of Table
6. The proof of the two remaining cases is the same as for Lemma 5.4. �

Proposition 5.8. The cases where M is non-trivial are precisely the following:

(1) G = (Z/2Z)2 and j(E) = 0. In this case, M �Z/2Z.
(2) G ∈ {Z/3Z,Z/6Z}. In these cases, M �Z/2Z.

Proof. By Theorem 4.3 (5) and Table 7, we may assume G ∈ {Z/3Z,Z/6Z, (Z/2Z)2,Z/4Z ×Z/2Z}. For
G ∈ {(Z/2Z)2,Z/4Z×Z/2Z}, the proof is essentially the same as in Proposition 5.5. The only difference is
that every non-trivial 2-torsion point of E is fixed by some automorphism of order 4 in AutE,O, so we do
not have an extra condition as in Proposition 5.5.

For G ∈ {Z/3Z,Z/6Z}, it suffices to find a non-trivial element in M . By Lemma 5.6, there is an element
hC ∈ NAutC,O (α(G)) of order 4 such that adhC swaps the two generators of α(G). The inversion hE on E
induces the same action on G. By Theorem 4.3 (6), this shows M �Z/2Z. �

5.1.3. Characteristic p = 2. By Bombieri and Mumford [BM77, p.37], the group schemes G leading to
bielliptic surfaces X = (E ×C)/G are the six group schemes

Z/2Z,Z/3Z,Z/4Z,Z/6Z,µ2 ×Z/2Z, (Z/3Z)2.

The translation subgroup scheme of α(G) is trivial in the first four of these cases, and isomorphic to µ2 and
Z/3Z, respectively, in the other two cases.

Lemma 5.9. The non-trivial commutative subgroup schemes H of AutD,O, their fixed loci DH , centralizers
CAutD,O (H) and normalizers NAutD,O(H) are as in Table 8.

j(D) AutD,O H DH CAutD,O (H) NAutD,O(H)

, 0 Z/2Z Z/2Z µ2 ×Z/2Z Z/2Z Z/2Z

0 Q8 oZ/3Z

Z/2Z
Z/3Z
Z/4Z
Z/6Z

M2
Z/3Z
α2
{1}

Q8 oZ/3Z
Z/6Z
Z/4Z
Z/6Z

Q8 oZ/3Z
Z/6Z
Q8
Z/6Z

Table 8. AutD,O and its subgroups in characteristic 2

As before, it is straightforward to calculate the centralizers of G and α(G) and they are listed in Table 1.

Lemma 5.10. The group N is as in Table 9.

G Z/2Z Z/3Z Z/4Z Z/6Z µ2 ×Z/2Z (Z/3Z)2

N {1} {1} Z/2Z {1} {1} S3

Table 9. The group N in characteristic 2

Proof. If α(G) does not contain translations, then a translation in AutC normalizes α(G) if and only if it
centralizes α(G) by Lemma 5.1. Thus, in these cases, N can be read off from the last two columns of Table 8.
For G = (Z/3Z)2, the proof is the same as for Lemma 5.4. Finally, if G = µ2 ×Z/2Z, then NAut(C)(α(G)(k))
is generated by α(G)(k) and the unique non-trivial 2-torsion point in C(k) by the same argument as in the
proof of Lemma 5.1. Translation by this 2-torsion point commutes with α(G), hence N is trivial. �
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Proposition 5.11. The cases where M is non-trivial are precisely the following:

(1) G = (Z/3Z)2 and j(E) = 0. In this case, M =Z/3Z.
(2) G =Z/4Z. In this case, M =Z/2Z.

Proof. By Theorem 4.3 (5) and Table 9, we may assume G ∈ {(Z/3Z)2,Z/4Z}. The proof for G = (Z/3Z)2

is the same as in Proposition 5.5 with the only difference that every non-trivial 3-torsion point in E is fixed
by some automorphism of order 3, so we do not have an extra condition as in Proposition 5.5.

If G = Z/4Z, consider the automorphism h = (hE ,hC) of E ×C where hC ∈ NAutC,O(α(G)) is of order
4 and not contained in α(G) and hE is the inversion involution on E. By Lemma 4.2 (3), h normalizes
the G-action on E × C and, by Proposition 3.1, induces a non-trivial element of M . Hence, we have
M �Z/2Z. �

5.2. Quasi-bielliptic surfaces

In the case of quasi-bielliptic surfaces, E is still smooth, so the group CAutE (G)/E can be calculated using
the results of the previous section. We will thus focus on the calculation of CAutC (α(G))/α(G) and M . We
identify the smooth locus of C with A1 = Speck[t] and use the description of automorphisms of A1 coming
from C given in [BM76, Proposition 6].

5.2.1. Characteristic p = 3. By [BM76, Proposition 6] the T -valued automorphisms of A1 coming from
C are of the form

(4) t 7→ bt + c+ dt3

with b ∈ Gm(T ), c,d ∈ Ga(T ) and d3 = 0. By [BM76, p. 214], the subgroup schemes α(G) leading to
quasi-bielliptic surfaces are the following:

(a) µ3: t 7→ at + (1− a)t3 with a3 = 1
(b) µ3 ×Z/2Z : µ3 as in (a) and t 7→ ±t.
(c) µ3 ×Z/3Z : µ3 as in (a) and t 7→ t + i with i3 = i
(d) α3 : t 7→ t + at3 with a3 = 0
(e) α3 ×Z/2Z : α3 as in (d) and t 7→ ±t

Remark 5.12. As noted in [Lan79, p.489], Case (f) of [BM76, p. 214] does not exist, because the group
scheme given there is isomorphic to α9 and thus not a subscheme of an elliptic curve.

Now, let us calculate CAutC (α(G)) and M for the surfaces in Case (a),...,(e). To this end, we take a
k-scheme T and arbitrary elements g ∈ α(G)(T ) as in the above list and h ∈ AutC(T ) as in (4). One can
check that the inverse of h is given by

t 7→ b−1t + b−4(c3d − b3c)− b−4dt3

(a) We calculate
h ◦ g ◦ h−1 : t 7→ at + (1− a)b−1(c3 − c) + (1− a)(b2 − b−1d)t3.

Thus, h normalizes α(G) if and only if it centralizes α(G) if and only if c3 = c and b3 = d + b. Taking
the cube of the second equation, we obtain b6 = 1. Thus, the centralizer of α(G) is the group scheme of
maps

t 7→ bt + i + (b3 − b)t3 with b6 = 1 and i3 = i.

This group scheme is isomorphic to µ3 × S3. Therefore, we have CAutC (α(G))/α(G) � S3.
To calculate M, first note that |M | | 2, since E and E′ are ordinary, M is a subquotient of

AutE′ /((fE)∗CAutE (G)) by Theorem 4.3 (5), and Aut◦E′ ⊆ ((fE)∗CAutE (G)). If M is non-trivial, then
it can be represented by an automorphism g ∈ Aut(X) that induces the inversion involution on E′ .
This involution can be lifted to E, hence g lifts to an automorphism of E ×C. However, by the above
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calculations there is no element of Aut(C) that acts as an inversion on α(G). So, Theorem 4.3 (6) shows
that M is trivial.

(b) Since µ3 is the identity component of µ3 ×Z/2Z, the normalizer of µ3 ×Z/2Z in AutC is contained
in the normalizer of µ3 in AutC . By Case (a), the latter is isomorphic to µ3 × S3. Thus, NAutC (α(G))
equals the normalizer of µ3×Z/2Z in µ3×S3, hence NAutC (α(G)) = CAutC (α(G)) = α(G). By the same
argument as in (a), we also have M = {1}.

(c) Similar to case (b), we obtain that CAutC (α(G))/α(G) = {1} and M = {1}.

(d) We calculate
h ◦ g ◦ h−1 : t 7→ t + ab−1c3 + ab2t3.

Thus, h normalizes α(G) if and only if c3 = 0, and it centralizes α(G) if and only if additionally b2 = 1
holds. Thus, CAutC (α(G)) is a semi-direct product α2

3oZ/2Z and NAutC (α(G)) is a semi-direct product
(α3)2 oGm. In particular, we have CAutC (α(G))/α(G) � α3 oZ/2Z.

Next, we calculate M . Using Lemma 5.1 and Lemma 5.6, one can check that CAutE (G)/E �Z/3Z.
Thus, there is an isomorphism AutE′ /((fE)∗CAutE (G)) � AutE′ ,O/(Z/3Z) � Z/4Z, where we use the
structure of AutE′ ,O recalled in Lemma 5.6. So, by Theorem 4.3 (5), M is a subquotient of Z/4Z.

Choose any automorphism hE ∈ AutE,O of order 4. Since α3 ⊆ E is the kernel of Frobenius,
it is preserved by hE . Moreover, by Lemma 5.1 and Lemma 5.6, the centralizer of α3 in AutE,O
has order 3, so conjugation by hE induces an automorphism of α3 of order 4. By the calculations
of the first paragraph, we have a surjection NAutC (α(G)) → Autα(G) � Gm, hence we can find an
hC ∈ NAutC (α(G))(k) such that h = (hE ,hC) ∈ NAutE×AutC (G)(k) by Lemma 4.2 (3). By Proposition 3.1,
h descends to an automorphism of X that induces an element of order 4 in M . Therefore, we have
M �Z/4Z.

(e) Let g : t 7→ −t. Then,
h ◦ g ◦ h−1 : t 7→ −t + b−1c − b−4c3d.

Since α3 is the identity component of α3 ×Z/2Z, we can use the results of (d) to deduce that h
normalizes α(G) if and only if c = 0 and it centralizes α(G) if and only if additionally b2 = 1. Thus,
we get CAutC (α(G)) � α3 ×Z/2Z and the normalizer of α(G) is NAutC (α(G)) � α3 oGm. In particular,
CAutC (α(G))/α(G) = {1}.

Since the automorphism g generates the group α(G)(k), the calculation of the previous paragraph
also shows that NAut(C)(α(G)(k)) = Gm(k). Thus, M is isomorphic to a subquotient of Gm(k) by
Theorem 4.3 (5) and, in particular, the order of M is prime to 3. By the same theorem, M is also a
subquotient of AutE′ /((fE)∗CAutE (G)), which is isomorphic to Z/3ZoZ/4Z since CAutE (G) � E in the
current case. Hence, M is a subquotient of Z/4Z. Using the same construction as in (d), one can show
that M �Z/4Z.

5.2.2. Characteristic p = 2. By [BM76, Proposition 6] the T -valued automorphisms of A1 coming from
C are of the form

(5) t 7→ bt + c+ dt2 + et4

with b ∈ Gm(T ), c,d,e ∈ Ga(T ) and d4 = e2 = 0. The subgroup schemes α(G) leading to quasi-bielliptic
surfaces are the following, where λ ∈ k:

(a) µ2: t 7→ at +λ(a+1)t2 + (a+1)t4 with a2 = 1.
(b) µ2 ×Z/3Z : µ2 as in (a) with λ = 0 and t 7→ωt, where ω3 = 1.
(c) µ2 ×Z/2Z : µ2 as in (a) and t 7→ t + ζ, where ζ is a fixed root of x3 +λx+1.
(d) µ4 : t 7→ at + (a+ a2)t2 + (1+ a2)t4 with a4 = 1
(e) µ4 ×Z/2Z : µ4 as in (d) and t 7→ t +1.
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(f) α2 : t 7→ t +λat2 + at4 with a2 = 0, and with λ ∈ {0,1}.
(g) α2 ×Z/3Z : α2 as in (f) with λ = 0 and Z/3Z as in (b)
(h) M2 : t 7→ t + a+λa2t2 + a2t4 with a4 = 0, and with λ , 0.

Remark 5.13. In [BM76, p. 214], Bombieri and Mumford do not give restrictions on the parameter λ ∈ k
in Case (f). However, all the α2-actions with λ , 0 described by them are conjugate, so we may assume
λ ∈ {0,1}. For more details, we refer the reader to the discussion of Case (f) below.

Remark 5.14. To see that the group scheme in Case (h) is indeed M2, denote the transformation in Case (h)
associated to zi with z

4
i = 0 by tzi . Observe that tz1 ◦ tz2 = tz1+z2+λz21z22 . So, if G = Spec k[z]/z4 is the group

scheme in Case (h), then its co-multiplication is given by

z 7→ z1 ⊗ 1+1⊗ z2 +λz21 ⊗ z
2
2.

Consider the supersingular elliptic curve E with affine Weierstrass equation y2+λy = x3 and set z = x/y,w =
1/y, so that the equation becomes z3 = w+λw2. Then, the 2-torsion subscheme M2 of E is the subscheme
given by z4 = w2 = 0, and thus w = z3. By [Sil09, p.120] the co-multiplication on k[z]/z4 induced by the
group structure on E is precisely the one described above. Hence, we have G =M2.

For later use, we note that by [Sil09, Appendix A, Proposition 1.2], the group of automorphisms of E
preserving w = z = 0 is given by the substitutions x 7→ b2x + c2, y 7→ y + b2cx + d with b3 = 1, c4 +λc = 0
and d2 +λd + c6 = 0. In particular, they act on k[z]/z4 as

z 7→ b2x+ c2

y + b2cx+ d
=

b2z+ c2w
1+ b2cz+ dw

= (b2z+ c2z3)(1 + b2cz+ dz3)3 = b2z+ bcz2.

In particular, if we think of the substitutions in Case (h) above as defining a homomorphism of group

schemes E ⊇ M2
α→ AutC , then precomposing α with adhE where hE ∈ AutE,O is as described in the

previous paragraph, then α ◦ adhE corresponds to M2 acting on C as

t 7→ t + (b2a+ bca2) + bλa2t2 + ba2t4.

Now, we are prepared to calculate CAutC (αC) and M in Cases (a),...,(h). As in characteristic 3, we take a
k-scheme T and arbitrary elements g ∈ α(G)(T ) as in the above list and h ∈ AutC(T ) as in (5). One can
check that the inverse of h is given by

t 7→ b−1t + b−7(b6c+ b2c4e+ b4c2d + c4d3) + b−3dt2 + b−7(d3 + b2e)t4.

(a) We calculate

h ◦ g ◦ h−1 : t 7→ at + (a+1)b−1(c+λc2 + c4) + (a+1)(b−1d +λb)t2

+(a+1)(b−1e+λb−1d2 + b3)t4.

Thus, h normalizes α(G) if and only if it centralizes α(G) if and only if

c4 +λc2 + c = 0,

d = λ(b2 + b), and(6)

e = b4 + b+λ3(b4 + b2).(7)

If λ , 0, the fourth power of (6) yields b4 = 1, while the square of (7) yields b6 = 1, so we have b2 = 1.
Hence, in this case CAutC (α(G)) is the group scheme of maps

t 7→ bt + c+λ(1 + b)t2 + (1+ b)t4 with b2 = 1 and c4 +λc2 + c = 0,

which is isomorphic to (Z/2Z)2 × µ2 since c4 + λc2 + c has 4 distinct roots. Therefore, we have
CAutC (α(G))/α(G) � (Z/2Z)2.
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If λ = 0, then d = 0, and the square of (7) yields b6 = 1. Thus, the centralizer of α(G) is the group
scheme of maps

t 7→ bt + c+ (b+ b4)t4 with b6 = 1 and c4 = c,

which is isomorphic to A4 ×µ2. We deduce that CAutC (α(G))/α(G) � A4.
In both cases λ , 0 and λ = 0, note that AutE′ = (fE)∗CAutE (G), so M = {1} follows immediately

from Theorem 4.3 (5).

(b) Since µ2 is the identity component of the group scheme Z/3Z×µ2, it suffices to calculate the normalizer
of Z/3Z × µ2 in A4 × µ2, which is equal to its centralizer and both are equal to Z/3Z × µ2. In
particular, CAutC (α(G))/α(G) = {1}. To see that M = {1}, one can use the same arguments as in Case
(a) in characteristic 3 to show that the action of M lifts to E ×C. Since NAutC (α(G)) = CAutC (α(G)),
Theorem 4.3 (6) shows that M is trivial.

(c) We take the centralizer of Z/2Z×µ2 in (Z/2Z)2 ×µ2 if λ , 0 and in A4 ×µ2 if λ = 0. Both are equal
to the normalizer and also equal to (Z/2Z)2 × µ2. Thus, CAutC (α(G))/α(G) �Z/2Z. As in Case (a),
we have M = {1}.

(d) We calculate

h ◦ g ◦ h−1 : t 7−→ at + (a+1)b−1
(
c+ ac2 + (a+1)(b−2c2d + b−2c4d + c4)

)
+ (a+ a2)(b−1d + b)t2

+(a+1)
(
b−1e+ ab−1d2 + (a+1)(b−3d3 + bd + b3)

)
t4.

Thus, h normalizes α(G) if and only if it centralizes α(G). For h to centralize the subgroup scheme
where a2 = 1, we obtain the conditions

c+ c2 = 0,

d = b2 + b, and

e = b4 + b2.

Since d4 = 0, this implies b4 = 1. Plugging these conditions back into the equation for h ◦ g ◦ h−1, it
turns out that the subgroup scheme of transformations satisfying these conditions centralizes all of α(G).
Therefore, the centralizer CAutC (α(G)) is given by the group scheme of maps

t 7→ bt + c+ (b+ b2)t2 + (1+ b2)t4 with b4 = 1 and c ∈ {0,1},

which is isomorphic to µ4 ×Z/2Z. Therefore, CAutC (α(G))/α(G) �Z/2Z. By the same argument as in
Case (b), we have M = {1}.

(e) Since µ4 is the identity component of µ4 ×Z/2Z, we can use the computations of (d) to imme-
diately conclude that centralizer and normalizer of α(G) are both equal to µ4 ×Z/2Z and thus
CAutC (α(G))/α(G) = {1}. Also, M = {1} follows by the same argument as in Case (b).

(f) We calculate

h ◦ g ◦ h−1 : t 7→ t + ab−1(λc2 + c4) +λabt2 + a(λb−1d2 + b3)t4.

This shows that all the α2-actions with λ , 0 are conjugate to the one with λ = 1 by conjugating with
the map t 7→

√
λt. Hence, we may assume λ ∈ {0,1}.

Suppose λ = 1. Then, h normalizes α(G) if and only if it satisfies the conditions

c2 + c4 = 0, and

d2 = b4 + b2.(8)
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Squaring (8), we get b4 = 1. We also note that h centralizes α(G) if and only if additionally b = 1.
Therefore, the normalizer of α(G) is the group scheme of maps

t 7→ bt + c+ dt2 + et4 with b4 = 1, c4 = c2,d2 = b4 + b2, and e2 = 0,

which is isomorphic to a semi-direct product (α3
2oZ/2Z)oµ4 and the centralizer of α(G) is isomorphic

to a semi-direct product α3
2 oZ/2Z. Hence, we have CAutC (α(G))/α(G) � α

2
2 oZ/2Z. To calculate

M, note that AutE′ /((fE)∗CAutE (G)) � Z/3Z, so |M | | 3 by Theorem 4.3 (5). Since E → E′ is purely
inseparable we can lift the M-action from E′ to E and hence to E ×C, where it normalizes G. Since
NAutC (α(G))/CAutC (α(G))(k) � µ4(k) is trivial, this shows that M = {1}.

If λ = 0, then h normalizes α(G) if and only if c4 = 0 and it centralizes α(G) if and only if additionally
b3 = 1. Thus, the normalizer of α(G) is the group scheme of maps

t 7→ bt + c+ dt2 + et4 with c4 = d4 = e2 = 0,

which is isomorphic to (α4 oA)oGm and the centralizer is isomorphic to (α4 oA)oZ/3Z, where A is
a non-split extension of α4 by α2 = α(G). Thus, we have CAutC (α(G))/α(G) � (α4 oα4)oZ/3Z.

Finally, let us explain how to compute M in the case λ = 0. As in the case λ = 1, we have |M | | 3.
Choose an element hE ∈ AutE,O of order 3. Since α(G) = α2 is the kernel of Frobenius on E, it is
preserved by hE . By Lemma 5.1 and Lemma 5.9, conjugation by hE induces an automorphism of
α2 of order 3. On the other hand, the conjugation action of NAutC (α(G)) on α2 factors through
NAutC (α(G))/CAutC (α(G)). By the calculations of the previous paragraph and since Autα2

� Gm, we
can find an automorphism hC ∈NAutC (α(G)) of order 9 such that α ◦ adhE = adhC ◦α. By Lemma 4.2
(3), h = (hE ,hC) normalizes the G-action on E ×C. By Proposition 3.1, h descends to X and induces a
non-trivial element of M . Hence, we have M �Z/3Z.

(g) Let g : t 7→ωt, where ω2 +ω = 1. Then,

h ◦ g ◦ h−1 : t 7→ωt +ω2b−1(c+ b−4c4e+ω2b−2c2d + b−6c4d3) + b−1dt2 + b−3d3t4.

Thus, h normalizes Z/3Z if and only if it centralizes Z/3Z if and only if

d = 0, and

c4e+ b4c = 0.

Putting this together with the conditions obtained in (f), we deduce that the normalizer of α(G) is the
group scheme of maps

t 7→ bt + et4 with e2 = 0,

which is isomorphic to α2 oGm. Moreover, we see that CAutC (α(G)) = α(G).
Since the automorphism g generates the group α(G)(k), the calculation of the previous paragraph

also shows that NAut(C)(α(G)(k)) = Gm(k). Thus, M is a subquotient of Gm(k) by Theorem 4.3 (5)
and, in particular, the order of M is prime to 2. By the same theorem, M is also a subquotient of
AutE′ /((fE)∗CAutE (G)), which is isomorphic to Q8 oZ/3Z since CAutE (G) � E in the current case.
Hence, M is a subquotient of Z/3Z. Using the same construction as in (f), one can show that
M =Z/3Z.

(h) We compute

h ◦ g ◦ h−1 : t 7→ t + ab−1(1 + a(λc2 + c4 + b−2d)) +λa2bt2 + a2(λb−1d2 + b3)t4.

This means that h normalizes α(G) if and only if it satisfies

b3 = 1, and

λd2 = b+ b2.(9)
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In fact, since d4 = 0, we can square (9) to deduce b = 1, and since λ , 0, we get d2 = 0. Now, h
centralizes α(G) if and only if additionally

d = c4 +λc2.(10)

Squaring (10), we obtain c8+λ2c4 = 0. Hence, the centralizer CAutC (α(G)) of α(G) is the group scheme
of maps

t 7→ t + c+ (c4 +λc2)t2 + et4 with e2 = 0 and c8 +λ2c4 = 0,

which is isomorphic to (M2 ×α2)oZ/2Z, and the normalizer of α(G) is the group scheme of maps

t 7→ t + c+ dt2 + et4 with d2 = e2 = 0,

which is isomorphic to Ga oα
2
2 . In particular, we have CAutC (α(G))/α(G) � α2 ×Z/2Z.

To calculate M, note first that M is a subquotient of AutE′ /((fE)∗CAutE (G)) � A4 by Theorem 4.3
(5). Since E→ E′ is purely inseparable, we can lift the action of AutX to E ×C, where it normalizes
the G-action. By the previous paragraph, we have NAutC (α(G))/CAutC (α(G)) �Ga and therefore M is
isomorphic to a subquotient of (Z/2Z)2, again by Theorem 4.3 (5). We may assume that E is given
by the equation y2 +λy = x3. Choose c,d ∈ k such that c3 = λ and d2 +λd +λ2 = 0 and let hE,c,d be
the corresponding automorphism of E as in Remark 5.14. Then, by the calculations of the previous
paragraph and by Remark 5.14, αT ◦ adhE,c,d = adhC,c′ ◦αT , where hC,c′ is a substitution hC,c′ : t 7→ t + c′

with c′4 + λc′2 = c. Therefore the automorphisms (hE,c,d ,hC,c′ ) of E × C descend to X. The three
different values of c yield three distinct non-trivial elements of M, so M � (Z/2Z)2.

This finishes the calculation of the groups CAutE (G)/E,CAutC (α(G))/α(G),M, and thus also of the full
automorphism group schemes for all bielliptic and quasi-bielliptic surfaces in all characteristics. The results
are summarized in Table 1, Table 2 and Table 3.
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