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Examples of surfaces with canonical map of degree 4

Carlos Rito

Abstract. We give two examples of surfaces with canonical map of degree 4 onto a canonical
surface.
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1. Introduction

Let S be a smooth minimal surface of general type with geometric genus pg ≥ 3. Denote by φ : Sd P
pg−1

the canonical map and let d := deg(φ). The following result of Beauville is well-known.

Theorem 1.1 ([Bea79]). If the canonical image Σ := φ(S) is a surface, then either:

(A) pg(Σ) = 0, or
(B) Σ is a canonical surface (i.e. it is the canonical image of a surface with birational canonical map), in

particular pg(Σ) = pg(S).

Moreover, in case (A) d ≤ 36 and in case (B) d ≤ 9.

The question of which pairs (d,pg ) can actually occur has been object of study for some authors. Several
examples were given for case (A), but case (B) is still mysterious. It is known that if d > 3, then pg ≤ 12, but
so far only the case (d,pg ) = (5,4) has been shown to exist (independently by Tan [Tan92] and by Pardini
[Par91b]). We refer the recent preprint by Mendes Lopes and Pardini [MLP21] for a more detailed account on
the subject. They leave some open problems, this note is motivated by their last question.

Question. For what pairs (d,pg ), with d > 3, are there examples of surfaces in case (B) of Theorem 1.1?

Here we give examples for the cases (d,pg ) = (4,5) and (4,7), with canonical images a 40-nodal complete
intersection surface in P

4 and a 48-nodal complete intersection surface in P
6, respectively (Beauville also

paid some attention to such nodal surfaces, see [Bea17]).
The strategy for the construction is the following. If X is a surface with nodes admitting a Galois covering

Y → X ramified over the nodes and with Galois group G, a group with a “big” number of subgroups, then
we have a “big” number of intermediate coverings of X. By computing the geometric genus pg of all involved
surfaces, we may hope to find some ρ :W → Z with pg(W ) = pg(Z), hence such that the canonical map of
W factors through ρ.

We work explicitely with the equations of a 40-nodal surface from [RRS19], all computations are imple-
mented with Magma [BCP97].

Notation

As usual the holomorphic Euler characteristic of a surface S is denoted by χ(S), the geometric genus
by pg(S), the irregularity by q(S), and a canonical divisor by KS . A (−m)-curve is a curve isomorphic to
P
1 with self-intersection −m. A node of S is an ordinary double point of S. We say that a set of nodes

of S is 2-divisible if the sum
∑
Ai of the corresponding (−2)-curves in the smooth minimal model of S is

2-divisible in the Picard group.
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2. (Z/2)r-coverings

The following result is taken from [Cat08, Proposition 7.6]. See also [Par91a].

Proposition 2.1. A normal finite G � (Z/2)r -covering π : Y → X of a smooth variety X is completely determined
by the datum of

(1) reduced effective divisors Dσ , for all σ ∈ G, with no common components;
(2) divisor linear equivalence classes Lχ1

, . . . ,Lχr , for χ1, . . . ,χr a basis of the group of characters G
∨, such that

2Lχi ≡
∑

χi (σ )=1

Dσ

(with additive notation for the characters ).
Conversely, given (1) and (2), one obtains a normal scheme Y with a finite G � (Z/2)r -covering Y → X, with

branch curves the divisors Dσ .

The scheme Y is irreducible if {σ |Dσ > 0} generates G. We have a splitting

π∗OY =
⊕
χ∈G∨

L−1χ .

From now on, we assume that X and Y are surfaces. If each Dσ is smooth and
∑
Dσ has simple normal

crossings, then Y is smooth and its invariants are

χ(OY ) = 2rχ(OX) +
1
2

∑
χ∈G∨∗

(
L2χ +KX ·Lχ

)
,

pg(Y ) = pg(X) +
∑
χ∈G∨∗

h0(X,OX(KX +Lχ)).
(2.1)

Let Rσ be the support of π∗(Dσ ). The Hurwitz formula gives

KY ≡ π∗(KX) +
∑
σ∈G∗

Rσ .

Now assume that the Dσ are disjoint (−2)-curves. Then the Rσ are disjoint (−1)-curves, the canonical
map of Y factors through the covering Y → X if and only if pg(Y ) = pg(X), and one has a commutative
diagram

Y Y ′

X X ′

where Y → Y ′ is the contraction of the (−1)-curves Rσ , the surface X ′ has nodes corresponding to the
(−2)-curves of X, and Y ′ → X ′ is a (Z/2)r-covering ramified on those nodes. In this case Equation (2.1)
becomes

(2.2) χ(OY ) = 2r (χ(OX)−m/8)

where m is the number of nodes of X ′ .

3. Construction

Let X40 be the surface in P
4 given by the equations

(3.1)
5
(
x2 + y2 + z2 +w2 + t2

)
− 7(x+ y + z+w+ t)2 = 0

4
(
x4 + y4 + z4 +w4 + t4 + h4

)
−
(
x2 + y2 + z2 +w2 + t2 + h2

)2
= 0
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where
h := −(x+ y + z+w+ t).

It is the canonical model of a surface with invariants pg = 5, q = 0 and K2 = 8. The above quartic I is
classically known as the Igusa quartic; its singular set is the union of 15 lines. The quadric meets these lines
transversally, and is tangent to I at 10 smooth points, thus the singular set of X40 is the union of 40 nodes
N1, . . . ,N40 (for more details see [RRS19]).

Let X̃40 be the smooth minimal model of X40 and denote by Ai the (−2)-curves in X̃40 corresponding to
the nodes Ni , i = 1, . . . ,40. Let a,b,c be the canonical generators of the group (Z/2)3 and, for i, j,k ∈Z/2,
let χijk denote the character which takes the value i, j,k on a,b,c, respectively. We show in Section 4.1 that
one can write

A1 + · · ·+A40 =Da +Db +Dc +Dabc +Dbc +Dac +Dab
where each of Da,Db,Dc,Dabc is a sum of 4 (−2)-curves, each of Dbc,Dac,Dab is a sum of 8 (−2)-curves,
and such that there exist divisors L100,L010,L001 satisfying:

(3.2)

Da +Dabc +Dac +Dab ≡ 2L100
Db +Dabc +Dbc +Dab ≡ 2L010
Dc +Dabc +Dbc +Dac ≡ 2L001.

It follows from Proposition 2.1 that these data define a (Z/2)3-covering π : Ỹ → X̃40 branched on the
(−2)-curves Ai , equivalently a (Z/2)3-covering ψ : Y → X40 branched on the nodes of X40 (the surface
Y is minimal because X40 is minimal and ψ is étale in codimension 1). In particular there exist divisors
L111,L110,L101,L011 such that:

(3.3)

Da +Db +Dc +Dabc ≡ 2L111
Da +Db +Dbc +Dac ≡ 2L110
Da +Dc +Dbc +Dab ≡ 2L101
Db +Dc +Dac +Dab ≡ 2L011.

One has
2Lijk ≡

∑
χijk(σ )=1

Dσ .

Since ψ is ramified only on nodes, we have KY ≡ ψ∗(KX40
) and then K2

Y = 8K2
X40

= 64. We show in
Section 4.1 that

h0
(
X̃40,OX̃40

(
KX̃40

+L111
))

= 2

and
h0

(
X̃40,OX̃40

(
KX̃40

+Lijk
))

= 0 for ijk , 111,

thus
pg(Y ) = pg(X40) + 2+ 0+ · · ·+0 = 7.

We get from (2.2) that χ(Y ) = 8(6− 5) = 8, thus q(Y ) = 0.
The covering ψ factors as

Y Y32 Y48

X16 X32 X40

with Y48 and X16 given by the quotients by the groups 〈ab,ac〉 and 〈c〉, respectively (the subscript n means
a surface with singular set the union of n nodes). All these surfaces are regular because q(Y ) = 0.

It follows from (2.2) that χ(X16) = 4(6− 36/8) = 6, thus pg(X16) = pg(X40) = 5, and we conclude that

the (Z/2)2-covering X16→ X40 is the canonical map of X16.
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Analogously, pg(Y ) = pg(Y48) = 7 and we claim that

the (Z/2)2-covering Y → Y48 is the canonical map of Y .

For this it suffices to show that Y48 is a canonical surface.
Since the canonical system of Y48 contains the pullback of the canonical system of X40 and since

pg(Y48) > pg(X40), the canonical map of Y48 must be birational. But we can be more precise. We follow
Beauville [Bea17] and show that Y48 can be embedded in P

6 as a complete intersection of 4 quadrics in the
following way. The linear system L of quadrics through the branch locus of the covering Y48 → X40 (16
nodes) is of dimension 2. Using computer algebra it is not difficult to show that L contains quadrics B,C,D
such that the surface X40 is given by Q = 0, B2 −CD = 0, where Q is the quadric from (3.1) (we write the
quadrics as general elements of L, thus depending on some parameters; then we obtain a variety on these
parameters by imposing that the hypersurfaces Q = 0 and B2 −CD = 0 are tangent at the 24 nodes of X40
which are disjoint from the 16 nodes of B2 −CD = 0; finally we compute points in this variety).

Then Y48 is given in P
6(x,y,z,w, t,u,v) by equations

u2 −C = v2 −D = uv −B =Q = 0.

We give these equations in Section 4.2 and verify that Y48 is as stated.
Let us explain how we find 2-divisible sets of nodes in X40. The surface X40 contains 40 tropes, which are

hyperplane sections Hi = 2Ti with Ti ⊂ X40 a reduced curve through 12 nodes of X40, and smooth at these
points. Thus in X̃40 the pullback of such a trope can be written as

H̃i = 2T̂i +
∑
j∈J
Aj , with #J = 12.

Thus for each pair of tropes the sum of nodes contained in their union and not contained in their intersection
is 2-divisible.

Using these 2-divisibilities, the strategy for finding configurations as in (3.2) is simple: we have used a
computer algorithm to list and check possibilities.

4. Computations

The computations below are implemented with Magma V2.26-5.

4.1. The covering Y → X40

We start by defining the surface X40 and its singular set.

K:=Rationals();
R<r>:=PolynomialRing(K);
K<r>:=ext<K|r^2 + 15>;
P<x,y,z,w,t>:=ProjectiveSpace(K,4);
h:=-x-y-z-w-t;
Q:=5*(x^2+y^2+z^2+w^2+t^2)-7*(x+y+z+w+t)^2;
I:=4*(x^4+y^4+z^4+w^4+t^4+h^4)-(x^2+y^2+z^2+w^2+t^2+h^2)^2;
X40:=Surface(P,[Q,I]);
SX40:=SingularSubscheme(X40);

The partition of the 40 nodes:

Da:={P![3,3,-2,-2,3],P![4,-r+1,r-5,-r+1,4],
P![-r+1,4,r-5,-r+1,4],P![r+1,r+1,-r-5,4,4]};

Db:={P![2,-3,-3,-3,2],P![4,r+1,r+1,-r-5,4],
P![-r-5,r-5,r-5,-r-5,10],P![r-5,-r+1,-r+1,4,4]};
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Dc:={P![-3,-3,2,-3,2],P![-r+1,-r+1,r-5,4,4],
P![r-5,r-5,-r-5,-r-5,10],P![r+1,r+1,4,-r-5,4]};

Dabc:={P![-2,3,3,-2,3],P![-r-5,r+1,r+1,4,4],
P![r-5,4,-r+1,-r+1,4],P![r-5,-r+1,4,-r+1,4]};

Dbc:={P![-2,-2,3,3,3],P![3,-2,-2,3,3],
P![4,-r-5,r+1,r+1,4],P![4,-r+1,-r+1,r-5,4],
P![4,r+1,-r-5,r+1,4],P![-r-5,r+1,4,r+1,4],
P![-r+1,-r+1,4,r-5,4],P![r+1,-r-5,4,r+1,4]};

Dac:={P![-3,2,-3,-3,2],P![3,-2,3,-2,3],
P![4,r-5,-r+1,-r+1,4],P![-r+1,r-5,4,-r+1,4],
P![-r+1,r-5,-r+1,4,4],P![r-5,-r-5,r-5,-r-5,10],
P![r+1,4,r+1,-r-5,4],P![r+1,-r-5,r+1,4,4]};

Dab:={P![-3,-3,-3,2,2],P![-2,3,-2,3,3],
P![-r-5,4,r+1,r+1,4],P![-r+1,4,-r+1,r-5,4],
P![-r-5,-r-5,r-5,r-5,10],P![-r-5,r-5,-r-5,r-5,10],
P![r-5,-r-5,-r-5,r-5,10],P![r+1,4,-r-5,r+1,4]};

Verification that these are in fact the nodes:

&join[Da,Db,Dc,Dabc,Dbc,Dac,Dab] eq SingularPoints(X40);
HasSingularPointsOverExtension(X40) eq false;

Some of the tropes of X40 :

tropes:=[
6*x + (-r - 9)*y + (r - 9)*z + (r - 9)*w + (-r - 9)*t,
16*x + (-r - 9)*y + 16*z + (3*r + 11)*w + (3*r + 11)*t,
16*x + (r - 9)*y + 16*z + (-3*r + 11)*w + (-3*r + 11)*t,
6*x + (r - 9)*y + (-r - 9)*z + (r - 9)*w + (-r - 9)*t,
16*x + (3*r + 11)*y + 16*z + (3*r + 11)*w + (-r - 9)*t,
16*x + (-3*r + 11)*y + (-3*r + 11)*z + (r - 9)*w + 16*t,
x + y + w,
16*x + (r - 9)*y + (-3*r + 11)*z + (-3*r + 11)*w + 16*t,
x + z + w

];

The reduced subscheme of these tropes:

red:=[ReducedSubscheme(Scheme(X40,q)):q in tropes];
&and[Degree(q) eq 4:q in red];

They are smooth at the nodes of X40:

&and[Dimension(SingularSubscheme(q) meet SX40) eq -1:q in red];

Two 2-divisible disjoint sets of 20 nodes, which confirm that the 40 nodes are 2-divisible:

s1:=Points(Scheme(SX40,tropes[1]*tropes[2])) diff
Points(Scheme(SX40,[tropes[1],tropes[2]]));

s2:=Points(Scheme(SX40,tropes[6]*tropes[7])) diff
Points(Scheme(SX40,[tropes[6],tropes[7]]));

&and[#s1 eq 20,#s2 eq 20,#(s1 join s2) eq 40];

We compute three 2-divisible sets of 24 nodes:

Sets:=[];
for q in [[2,5],[1,4],[3,8]] do
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pts:=Points(Scheme(SX40,tropes[q[1]]*tropes[q[2]])) diff
Points(Scheme(SX40,[tropes[q[1]],tropes[q[2]]]));

Append(~Sets,SingularPoints(X40) diff pts);
end for;

and use these sets to check the divisibilities in (3.2):

Da join Dabc join Dac join Dab eq Sets[1];
Db join Dabc join Dbc join Dab eq Sets[2];
Dc join Dabc join Dbc join Dac eq Sets[3];

Now we show that
h0

(
X̃40,OX̃40

(
KX̃40

+L111
))

= 2.

Let N1, . . . ,N16 be the nodes in Da +Db +Dc +Dabc and A1, . . . ,A16 be the corresponding (−2)-curves. Let
H1,H2 be the tropes whose pullback to X̃40 is

H̃1 + H̃2 = 2T̂1 +2T̂2 +
16∑
i=1

Ai +2
20∑
i=17

Ai ,

with A17, . . . ,A20 ∈ H̃1 ∩ H̃2. Then
16∑
i=1

Ai ≡ 2L111, with KX̃40
+L111 ≡ 2H̃ − T̂1 − T̂2 −

20∑
i=17

Ai .

We compute below that the system of quadrics through the curves T1,T2 ⊂ P
4 is generated by 2 elements,

modulo the quadric Q. For i = 17, . . .20, the fact
(
2H̃ − T̂1 − T̂2

)
·Ai < 0 implies that Ai is contained in the

base component of the linear system
∣∣∣2H̃ − T̂1 − T̂2∣∣∣ . This gives h0 (X̃40,OX̃40

(
KX̃40

+L111
))

= 2.

T1:=ReducedSubscheme(Scheme(X40,tropes[2]));
T2:=ReducedSubscheme(Scheme(X40,tropes[9]));
pts:=Points(SX40 meet (T1 join T2)) diff

Points(SX40 meet T1 meet T2);
pts eq (Da join Db join Dc join Dabc);
L:=LinearSystem(LinearSystem(P,2),T1 join T2);
#Sections(LinearSystemTrace(L,X40)) eq 2;

Let us show that
h0

(
X̃40,OX̃40

(
KX̃40

+Lijk
))

= 0

for ijk , 111. Suppose the opposite. Let A1, . . . ,A24 be the corresponding (−2)-curves. Then there is a

curve E ∈
∣∣∣KX̃40

+Lijk
∣∣∣ , and E ·Ai = −1 implies that the linear system

∣∣∣∣KX̃40
+Lijk −

∑24
j=1Aj

∣∣∣∣ = ∣∣∣KX̃40
−Lijk

∣∣∣
is nonempty. Therefore

∣∣∣∣2KX̃40
−
∑24
j=1Aj

∣∣∣∣ is nonempty, which implies that there is at least one quadric in P
4

through the corresponding nodes N1, . . . ,N24 (modulo the quadric Q). We show below that this does not
happen.

Sets:=[
Da join Dabc join Dac join Dab,
Db join Dabc join Dbc join Dab,
Dc join Dabc join Dbc join Dac,
Da join Db join Dbc join Dac,
Da join Dc join Dbc join Dab,
Db join Dc join Dac join Dab
];
for q in Sets do
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L:=LinearSystem(LinearSystem(P,2),[P!x:x in q]);
#Sections(LinearSystemTrace(L,X40)) eq 0;

end for;

4.2. The surface Y48

Here we give the equations of Y48 as a complete intersection of 4 quadrics in P
6. We start by defining P

6

over a certain number field.

K:=Rationals(); R<x>:=PolynomialRing(K);
K<r,m>:=ext<K|x^2 + 15,x^2 - 95/42*x + 2855/2646>;
R<n>:=PolynomialRing(K);
K<n>:=ext<K|
n^2 + 443889677/206391214080000*r - 46942774543/619173642240000>;
P6<x,y,z,w,t,u,v>:=ProjectiveSpace(K,6);

The three quadrics B,C,D :

B:=(675/4802*r+334125/33614)*n*x*z+(-389475/67228*r+3266325/67228)*n*x*w+
(34425/9604*r+451575/67228)*n*y*w+(-389475/67228*r+3266325/67228)*n*z*w+
(-62100/16807*r+348300/16807)*n*w^2+(239625/33614*r+1541025/33614)*n*x*t
+(-8100/2401*r+137700/16807)*n*y*t+(239625/33614*r+1541025/33614)*n*z*t
+(6075/9604*r+3007125/67228)*n*w*t+(71550/16807*r+319950/16807)*n*t^2;

C:=x*y+1/154*(126*m-181)*y^2+1/42*(-42*m+95)*x*z+y*z+(1/1540*(14*m-25)*r
+1/924*(-798*m+1997))*x*w+(1/420*(42*m-65)*r+1/308*(-294*m+767))*y*w
+(1/1540*(14*m-25)*r+1/924*(-798*m+1997))*z*w+(1/385*(-119*m+185)*r
+1/462*(-168*m+311))*w^2+(1/1540*(-14*m+25)*r+1/924*(-798*m+
1997))*x*t+(1/420*(-42*m+65)*r+1/308*(-294*m+767))*y*t+(1/1540*(-14*m
+25)*r+1/924*(-798*m+1997))*z*t+1/154*(126*m-71)*w*t+(1/385*(119*m-
185)*r+1/462*(-168*m+311))*t^2;

D:=x*y+1/77*(-63*m+52)*y^2+m*x*z+y*z+(1/2310*(-21*m+10)*r+1/154*(133*m+
32))*x*w+(1/70*(-7*m+5)*r+1/154*(147*m+51))*y*w+(1/2310*(-21*m+
10)*r+1/154*(133*m+32))*z*w+(1/2310*(714*m-505)*r+1/154*(56*m-
23))*w^2+(1/2310*(21*m-10)*r+1/154*(133*m+32))*x*t+(1/70*(7*m-5)*r
+1/154*(147*m+51))*y*t+(1/2310*(21*m-10)*r+1/154*(133*m+32))*z*t+
1/77*(-63*m+107)*w*t+(1/2310*(-714*m+505)*r+1/154*(56*m-23))*t^2;

We obtain alternative equations for X40:

F:=B^2-C*D;
Q:=5*(x^2+y^2+z^2+w^2+t^2)-7*(x+y+z+w+t)^2;
X:=Scheme(P6,[F,Q,u,v]);
h:=-x-y-z-w-t;
I:=4*(x^4+y^4+z^4+w^4+t^4+h^4)-(x^2+y^2+z^2+w^2+t^2+h^2)^2;
X40:=Scheme(P6,[Q,I,u,v]);
X eq X40;

And finally the equations of Y48 in P
6:

Y48:=Surface(P6,[u^2-C,v^2-D,u*v-B,Q]);
SY48:=SingularSubscheme(Y48);
Dimension(SY48) eq 0;
Degree(SY48) eq 48;
Degree(ReducedSubscheme(SY48)) eq 48;
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