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1. Introduction

In the paper [KU19], we gave a method, the so-called gluing method, for constructing a family of K3
surfaces, that is, we constructed such a K3 surface by holomorphically gluing two open complex surfaces
obtained as the complements of tubular neighborhoods of elliptic curves embedded in blow-ups of the
projective planes at nine points. The family has complex dimension 19 and each K3 surface of the family
admits compact Levi-flat hypersurfaces. In this paper, we will show that there are projective K3 surfaces
among the family. One of the main results is given as follows:

Theorem 1.1. There exists a deformation 1c: X — B of projective K3 surfaces over an 18 dimensional complex
manifold B with injective Kodaira-Spencer map such that each fiber X, := 70 (b) admits a holomorphic immersion
Fy: C — X, with the property that the Euclidean closure of the image Fy,(C) in X, is a compact real analytic
hypersurface C® -diffeomorphic to a real 3-dimensional torus S' x S x S' which is Levi-flat. Especially, F,(C) is
Zariski dense in X;, whereas it is not Euclidean dense. Moreover, Xy, is non-Kummer for almost every b € B in the
sense of the Lebesgue measure.

In the construction of K3 surfaces given in the paper [KU19], we prepare two surfaces S* and S~
obtained from the blow-ups of the projective plane IP? at nine points {p1,-..,p5} with smooth elliptic curves
C* €|Kg!|. Here we assume that (S*, C*) satisfy the following two conditions:

(a) there exists an isomorphism g: C* — C~ such that g*N_ = N,, where N, := N¢:/5+ are the normal
bundles of C* in S*, and
(b) the normal bundles N, € Pic®(C*) satisfy the Diophantine condition (see Definition 2.2).

Then Arnold’s theorem [Arn77] guarantees that there exist analytically linearizable neighborhoods W* C S* of
C* in §*, namely, W* are tubular neighborhoods of C* in S§* which are biholomorphic to neighborhoods of
the zero sections in N,. In other words, there exist a pair (p,q) € R? that satisfies the Diophantine condition
(see Definition 2.1) and a positive real number R > 1 such that W* are expressed as

(L1) W*={(z* w*) e C||w*| <R}/ ~,,
where ~, are the equivalence relations generated by
(z5,wF) ~, (25 +1, exp(£p - 2nV-1)-w*) ~, (z5 + 7, exp(£q -2 V-1) - w*)

with 7 € H:= {tr € C|Imt > 0} (here note that C* = C~ via g). From now on, we fix (p, g), (S*,C*), g, and
isomorphisms (L.1).
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In the present paper, we take an appropriate £ € C and consider gg := {5 o g, where (¢ : C~ = C/(1,7) O
is the translation induced from C >z z+ & € C. Note that gEN_ =~ N, remains true since N, € Pic®(C*).
For each s € A:={s € C||[s| < 1} with s # 0, we define open submanifolds M7 of S* by

M = 55\ {[(z%,w¥)] e W* | |w*| < VisI/R},
which contain

v = {25 w)] € WH VISR < [w*| < VisIR}
as neighborhoods of boundaries of M, and a biholomorphism f;: V;t — V" by

£z w)) = [(ge (%), s/w)].
Then by identifying V" and V via the biholomorphic map f;, we can patch M; and M; to define a
compact complex surface X;. In the paper [KU19], we showed that X; is a K3 surface and that the nowhere
vanishing holomorphic 2-form o5 on X satisfies
dz Adw
w

GslVS =cC-

for some ¢ € C*, where V; C X; is the open submanifold corresponding to V;" = V" and (z,w) are the
coordinates induced from (z*, w™).
For each &, these K3 surfaces X; with s € A\ {0} are the fibers of a proper holomorphic map

X - A

from a smooth complex manifold X'(= X'(£)) such that

— each fiber over s € A\ {0} coincides with the K3 surface X,

— the fiber X, over 0 € A is a compact complex variety with normal crossing singularities whose
irreducible components are S* and S~ and whose singular part is the one obtained by identifying C*
and C~ via g¢, and thus

— X — Ais a type II degeneration of K3 surfaces (see Section 4.1).

We notice that V; C X; is biholomorphic to a topologically trivial annulus bundle over the elliptic curve

C:= C" = C~, and hence homotopic to S}, x Sk X S%,, where S} and S/ls are circles in V; such that S} x 5}3

is a C* section of the bundle, and S%, is a circle in a fiber of the bundle which generates the fundamental
group. Then we define the 2-cycles Ayg, Agy, Ayq by

Aap =8y xSp  Apy=SpxS), and A, =5 xS,

In addition to the 2-cycles Ayp, Agy, Ay, each K3 surface X admits a marking, which gives 22 generators
of the second homology group H,(X;,Z) denoted by

(12) Aapr Apyr Ayar Bas Bg, By, Cly, Cos, -0, Crgy Czgr Chyy Cosp o Crgy Cizge

In §5, we will give the definitions of these generators.

Now let L* be holomorphic line bundles on S* with (L* - C*) = (L™ - C™). Assume that there exists £ € C
such that g¢ (L7[c-) = L*|c+. Note that such a & always exists when (L*-C) = (L™ C7) = 0. We fix such a
& € C, and consider the deformation family X' — A.

Theorem 1.2. Under the above setting, we have the following.

(i) For any s € A, the line bundles L™|yr and L™ |y glue to define a holomorphic line bundle Ly = L™ Vv L~
on X. Moreover there exists a holomorphic line bundle L — X such that L|x_= L for each s € A.
(i) If L* are ample, then there exists €q > 0 such that L is ample for any s € A with 0 <|s| < &.
(iii) Let L be a holomorphic line bundle on X, for some s € A\ {O}. Then the following are equivalent.
(a) There exist line bundles L* on S* with (L* - C*)=(L"-C~) such that L=L" Vv L.
(b) There exists a line bundle L — X such that L = L|x .
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(©) (L'Aﬁy) =(L 'Aya) =0.

In our arguments it is important to describe the line bundles on V¥ and on W*, which is given in
Section 3 after preliminary studies in Section 2. Then we will prove the main theorems in Section 4.
Moreover, we will determine the Chern class c¢q(Lg) of the line bundle L, in terms of the marking (1.2) in
Section 5.
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2. Preliminaries

2.1. Neighborhoods of elliptic curves
First we give the following definition.

Definition 2.1. Let (p,q) € R? be a pair of real numbers.

(1) (p,q) is called a torsion pair if (p,q) € Q. Otherwise, (p,q) is called a non-torsion pair.
(2) (p,q) is said to satisfy the Diophantine condition if there exist a > 0 and A > 0 such that

n(p+q\/—_1)—(,u+v\/:)l >A-n¢

min
WVEZ

for any n € Z.

Of course, if (p, q) satisfies the Diophantine condition, then (p,g) is a non-torsion pair.

Let X be a complex manifold. Denote by Pic(X) the Picard group of X, the group of isomorphism classes
of holomorphic line bundles on X, and by Pic(X) the subgroup of Pic(X) consisting of (isomorphism
classes of) topologically trivial line bundles. Note that L € Pic(X) is topologically trivial if and only if L
satisfies ¢1(L) = 0 € H?(X,Z), where c¢;(L) stands for the first Chern class of L € Pic(X). If X = C is a
smooth elliptic curve, then any topologically trivial line bundle L € Pic®(C) admits a structure of unitary flat
line bundle (see [Ued83]). In particular, the monodromy of L € Pic’(C) along any loop in C is expressed as
a complex number with modulus 1.

Definition 2.2. For T € H, let C = C/(1, t) be a smooth elliptic curve, and let @ and f be the loops in C
corresponding to the line segments [0,1] and [0, 7], respectively. Then a topologically trivial line bundle
L € Pic’(C) on C is said to satisfy the Diophantine condition if so does the pair (p,q) € IR?, where (p,q) is
defined from L, that is, exp(p - 2tV-1) and exp(q - 2tV—1) are the monodromies of L along the loops a
and f, respectively.

Now, assume Cj = C/(1,7) C IP? is a smooth elliptic curve embedded in the projective plane IP2.
Let Z := {py,...,po} C Cy be nine points on Cy, and S := Bl;IP? be the blow-up of IP?> at Z with the
strict transform C of Cy. In this case, the normal bundle N¢/5 € Pic(C) of C in S is isomorphic to
Op2(3)lc, ® Oc,(=p1 —++-—p9) € Pic%(Cy) = Pic®(C), and the pair (p,q) € R? defined from L = N¢/g (see
Definition 2.2) is given by

9
9po - ij =g-p-t mod (L,7)
j=1

where p is an inflection point of Cy. Moreover, if N¢/g € Pic(C) satisfies the Diophantine condition, then
Arnold’s theorem [Arn77] guarantees that there exists a analytically linearizable neighborhood of C in S,
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namely, a tubular neighborhood of C in S which is biholomorphic to a neighborhood of the zero section in
Nc/s. In other words, there exists a neighborhood of C in S biholomorphic to

2.1) W={(zw) e C? ||w| <R}/ ~

for some R > 1, where ~ is the equivalence relation generated by

(2.2) (zzw) ~ (z+1, exp(p-2mV-1)-w) ~ (z+ 1, exp(q-2mV-1) w

With the neighborhood W at hand, we can construct a family of K3 surfaces as mentioned in the introduction.

Remark 2.3. For a given wy € C with 0 < |wy| <R, let F: C - W C S be a holomorphic map defined
by F(z) = [(z,wg)]. Since (p,q) satisfies the Diophantine condition, the Euclidean closure of F(C) in S
coincides with {[(z,w)] | |w| = |[wy|} € W, which is a real analytic hypersurface C*-diffeomorphic to a real
3-dimensional torus $! x $! x $!. The maps F; in Theorem 1.1 can be constructed in this manner.

2.2. Holomorphic line bundles on toroidal groups

The neighborhood W given in (2.1) is closely related to the toroidal group. For T € IH and a non-torsion
pair (p,q) € R?, we consider

) o . ~ o 1 T
U=Urpg:=Cy/A with A=Acpgi= <( 1 )( p )( q )>

It is seen that U becomes a toroidal group (see e.g. [AKOI]). On the toroidal group U, an important class of
line bundles is the theta line bundles, given as follows. Let

H:(% ZZ)GMZ(C)

be a Hermitian matrix satisfying the condition

(2.3) ImHAMp)eZ (ALueA),

where H(x,y) = 'xHY for x,y € C?, and let p: A — U(1) be a semi-character of Im H, that is, it satisfies
p(A+u)=p(A)p( exp( \/_ImH/\y) (AL peA).

Then we define the holomorphic function a) = aE\H'p) : (E(ZZ ")

a,(x):= p(A)exp (tH(x,A) + (1/2)H(A, X)), A€A, x="(z,1)eC>

— C by

From (2.3), the function a)(x) satisfies the cocycle condition
ayu(x) =ay(x+play(x), ApeA, xe C?,
and hence
L =Ly, :=(CcxC*)/A
with
A (Cx) = (ay(x)-C,x+ ), A€A, CeCp, xeC?

defines a line bundle on U, which is called a theta line bundle on U. In our setting, note that A, € IR for any
f(A1,A;) € A. Hence a nowhere vanishing holomorphic function 8 : C*> — C*, given by

B(z,1) = exp(-mcn?/2),
satisfies

o x) = plr+ Ny ()BT (1eAxeC?)  with Ho=(

Sl IR
o
T —
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which means that Ly , is holomorphically isomorphic to Ly, ,. Hereafter, we assume ¢ = 0 and put

(2.4) H :( % s )GMZ(C).

On the line bundle Ly, there is a natural metric h = hy, given by
T2, = exp(~rH (x, 0)IC[,

which is well-defined because

o (x) - Clp oy 1 = laa(x)1? - exp(=1cH (x + A, x + D))[C[?
exp(Re(2meH (x, A) + TH(A, 1)) -exp(-mH (x + A, x + 1))|C|?
exp(mtH(x, A)+ tH (A x)+ wH (A, 1))
-exp(—mH (x,x) — tH(x, A) - H (A, x) — TH (A, )|

= exp(-nH (x,x))IC]* = [C[} -
In particular, the curvature form of hy is given by
@y, := —ddloghy =1+ (adz A dZ + bdz A d7j + bdy A dZ)

with x = !(z,77) € C?, and c1(ly,p) = [\/:®hH/2T(]- Moreover the following result holds (see [AKO1]).

Proposition 2.4. Assume that (p,q) satisfies the Diophantine condition. Then any line bundle L on U (p,q) is
holomorphically isomorphic to Ly , for some (H, p).

2.3. Deformations of K3 surfaces and Picard numbers

The following results are taught by Dr. Takeru Fukuoka.

Proposition 2.5. Let P: X — T be a deformation family of K3 surfaces. Assume that the Kodaira-Spencer map
pxsp: It — RYP,Ty,7 is injective. Then, for almost every t € T, it holds that p(X,;) < 20 —dim(T), where
X, := P7Y(t) and p(X;) is the Picard number of X,.

Proof- Take a base point 0 € T and denote by L :=Il;;9 the K3 lattice H?(Xo,Z). Fix a marking
R?P,Cy = (L¢)1, where Lg := L®C. Consider the map V,: T — IP(L¢) defined by t > V; := HO(Xt,KXt)l
for each t € T, where we are regarding IP(L¢) as the set of hyperplanes of L¢. It follows from Torelli’s
theorem that the map V, is a locally closed embedding of T into IP(L¢). Therefore Image V, is a locally
closed subvariety of P(L¢) of dimension dim(T). Define r: IP(Lg) — Z by r(V) := rank(L N V). Note
that r(V;) = rank(H?(X;, Z) N (H"}(X;,C) ® H*?(X;,C))) = p(X;) + 1 holds for each t € T. Therefore the
set {t € T |p(X;) <21 —dim(T)} can be rewritten as V, ! ((Image V,) \{V € P(L¢) | r(V) > 22 —dim(T)}).
By Lemma 2.6 below, {V € P(L¢) | (V) > 22 —-dim(T)} is a countable union of (dim(T) — 1)-dimensional
linear subspaces of IP(L¢). O

Lemma 2.6. Let r: IP(Lg) — Z be as in the proof of Proposition 2.5. Then F,,:={V € P(L¢) | r(V)>n} isa
countable union of (21 — n)-dimensional linear subspaces of P(L¢) for eachn=0,1,2,...,21.

Proof- Set A :={M C L|M : sub module, rank M =n}. For M € A and W € P(Lc/Mc), it clearly holds
that pX/}(W) € F,,, where M¢ :=M®C and py;: Lc — L¢/Mc is the natural projection. Conversely, for
each V € F,, and a sublattice M C V of rank #n, we have V = px/fl(W) by defining W := V/M¢ € P(Lc/Mg).
Therefore we obtain the description

Fu= | {pst (W) | W e P(Le/M)}.
MeA

As A is countable and the map pX/Il(—): P(Le/Mg)3> W - pX/Il(W) € F, CIP(L¢) is a linear embedding for
each M, the lemma follows. ]
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3. Line bundles on W and V

For 7 € H, let C = C,/(1,7) be a complex torus, and for a non-torsion pair (p,q) € R* and 0 < 7 < R < oo,

let W=WR  be defined in (2.1) and V = V'R be defined by
©(p.4) ©(p.4)

,R
V= V;](p’q) = {(z,w) eC?|r<|w|< R}/ ~,

where ~ is given by (2.2). We notice that V is isomorphic to an open submanifold of the toroidal group

U ="Ug g = (C, xC,)/A, namely,
UD(C,x{-logR < 2nImn < -logr})/A 3[(z,1)] s [(z, exp(2n\/—_117))] ev

with Uy (p,4) = V (p ay ,and W is obtained from V" ( by adding the complex torus C. Let w: W — C be
the natural projection, given by 7([(z, w)]) = [z], and denote 1|y : V — C by t: V — C for simplicity.

Lemma 3.1. Assume that (p,q) satisfies the Diophantine condition. Then for any L € Pic®(W), the equality
L =1*(L|c) holds.

Proof. As the topologically trivial bundle L satisfies c;(L) = 0, L can be represented by some a € H' (W, Oy)

from the exact sequence H'(W,Oy) — Pic(W) A, H?(W,Z). Hence it is enough to show that 7c*(a|¢) =
Put a = {(Wjy, fix)}, where Wi = W; N Wy and W; = n_l(Uj) = U; x A with a Stein open covering {U;}
of C. Moreover fjj can be expressed on W; as a convergent power series

fi(zpw) = Y fienl(z)) - wl,
n=0

where (zj,w;) are coordinates on W; which come from (z,w). Then it is enough to show that there are
holomorphic functions g;: W; — C such that

l(ij;Ek)} = 5{(Wj1gj)} = {(ij: —gj +gk)],

where
fik(zjpwj) = f(zj,w Zf]kn

Note that there exists a multiplicative 1-cocycle {t;;} with ¢;; € U( ) representing N¢,y such that wy = ty;-w;
for any j,k. Since { Ujkr fikn } eH! ({U 1, C/W) and N¢,/ is non-torsion, the 0-equation

—8jn Tt t]'_kn 8k = f}'k,n

has a unique solution g; ,: U; — C for each n > 0. Furthermore the power series

(31) ]1 w] Zg] n

converges. Indeed, Ueda’s lemma (see [Ued83, Lemma 4]) says that there exists a constant K > 0 depending
only on C and {Uj} such that for any flat line bundle E over C and for any 0-cochain {hj} eCl ({Uj},O(E)),
the inequality

.- i <o)

holds, where I is the holomorphically trivial line bundle on C, d(Ic,E) is the Euclidean distance of
Pic’(C) = C/(1, ), which clearly is an invariant distance, and

H H maxzs{ﬂh | and ”5{hj}| -

rr}’?{xzeslejr?Uk|hjk(z)| with {h]k} 6{h}
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In our setting, since N,y satisfies the Diophantine condition, there exist A > 0 and a > 0 such that
d(Ic,N¢y) = A-n~® holds for any n > 1. Cauchy’s inequality shows that for any £ € (0, R), there exists
M > 0 such that |f]k al | < M/{" for any n > 1 and z; € U; N Ug. Hence we have

91z < e max sup [flz)| < o= T
HC’ ) ]’k ZjEUjﬂUk “n g A g

which means that the power series (3.1) indeed converges because ¢ € (0, R) is chosen arbitrarily. Therefore
we have 77*(a|c) = @ in HY (W, Oy ). O

Remark 3.2. The following can be proved in a similar manner by replacing a Taylor power series with a
Laurent power one: for any L € Pic’(V), there exists an F € Pic’(C) such that L = 7*F, which is proved in
[AKO]] for the case where V = U is a toroidal group. Conversely, [AKO1] also proves the statement that if a
pair (p,q) does not satisfy the Diophantine condition, then there exists an L € Pic’(U) such that L # 1c*F for
any F € Pic%(C).

Proposition 3.3. Assume that (p,q) satisfies the Diophantine condition. Then L = 10*(L|c) holds for any
L € Pic(W). In particular, the restriction map Pic(W) — Pic(C) is an isomorphism.

Proof. As C is a deformation retract of W, the restriction map H*(W,Z) — H?(C,Z) is an isomorphism.
Hence we have ¢;(L®7t*(L7!|¢)) = 0 and L& e*(L™!|¢) is topologically trivial. Since (L®7*(L™!|¢))|c is a
trivial bundle on C, one has L = 7t*(L|¢) by Lemma 3.1. O

Now let us recall the three 2-cycles
Aap=SpxS),  Ag, =SpxS), and A, =5,xS,
on V, where, for a base point [(0,wg)] € V, S} Sllg,Sl are circles given by the images of
e i,:[0,1]3am [(a,exp(ap 2mV-1)w, ] eV,

e ig: [0,1]3 8 [(ﬁr,exp(/}q . 2n\/:)w0)] ev,

o iy [0,1]3y 5 [(0,exp(y - 2mV=-T)wy)| € V,
respectively. Here, the orientations of A,p,Ag,, A, o are defined by da AdB, dB Ady, da Ady, respectively.
Lemma 3.4. For a Hermitian matrix H given in (2.4) satisfying condition (2.3) and a semi-character p of ImH,
we have

(1) (Lu,p-Aqp) =ImH(xg,x4) =a-Im7+p-Im(bt)—q-Imb,
2) (Ly,p-Apy) =ImH(x,,xg) = -Im(b7),

3 (LH,p Ayq) =ImH(x),x,) = -Im b,
where xo, :="'(1,p), x5 :="(7,q), and x,, :=*(0,1).

Proof. We will only prove the assertion (1) as the other cases can be treated in the same manner. Note that
the class ¢1(Lp,,) can be represented as

T_l -(adz AdZ+bdz A d7] + bdn A dZ),

where w = exp(# - 2tV—1). By the definition of A, g, put z=a + 7 and 17 = pa + gp. Since p,q,a, € R,
we have

jagdzndz=d(a+TB)Ad(a+TB)=(T—-1)da Adp=-2V-1Imtda AdB,



A gluing construction of projective K3 surfaces 9

where j,5: Agg — V is the embedding induced by i, and ig. In a similar manner, one has

j;ﬁdz/\ A =—-(pt—q)da Adp, j;ﬁdﬂ ANdz=(pt—q)da Ndp,
and hence
jap(bdz Adij +bdy AdZ) = -2V-1Im (b(pt - q)) da A dB,
Therefore we have
(Ly,p-Aap) = f (almt+Im(b(pt —q)))da Adp = almt +Im(b(pT — q)).
[0,1]x[0,1]
O

Proposition 3.5. Let L € Pic(V) be a holomorphic line bundle on V. Assume that (p,q) satisfies the Diophantine
condition. Then the following are equivalent.

(1) There exists a holomorphic line bundle G € Pic(W) on W such that L = Gly,.

2 (L 'Aﬁy) = (L'Aya) =0.

(3) The equality b = 0 holds, where b is the (1,2)-element of the Hermitian matrix H € M;(C) as (2.4)
satisfying the condition (2.3) and L = Ly, for a semi-character p of Im H, whose existence is assured by
Proposition 2.4.

Note that the Diophantine assumption on the pair (p, q) in this proposition can be dropped if one assumes
that L = Ly , for some Hermitian matrix H € M,(C) satisfying condition (2.3) and p is a semi-character of
ImH.

Proof. The equivalence (2) < (3) follows from Lemma 3.4 and (1) = (2) holds since the circle S}, is

contractible in W. The implication (3) = (1) follows since the factor af\H’p)(z, 1) depends only on z and
thus L is expressed as L = t*(L) for some L € Pic(C). O

4. Proofs of main theorems

4.1. Proof of Theorem 1.2 (i)

It follows from Proposition 3.3 and the assumption gz (L7|¢-) = L*|c+ that the restrictions L*|yz of L*|py+
are isomorphic via the biholomorphic map f; : V;" — V. Thus, (M:,L+|MS+) and (MS_,L_|M;) are glued
together to yield a holomorphic line bundle Ly = L* V L™ on X.

In order to describe the holomorphic line bundle £ — & on & via the isomorphisms (1.1), we define

manifolds M* and V by

M* = (SFxA)\ {([(zi,wi)],s) EWExA] |wi| < \/ER}
and

V= {(z+,w+,w_) eC?| ’w+| <R, |[w7|<R, |w+w_| < 1}/ ~,
where ~ is the equivalence relation generated by
(zhwhw)~(z"+1, P2Vt e_p'2"ﬁ~w_) ~(z"+7, e 2mV=T ) e’q'2nﬁ~w_).

Then M* and V are glued together to yield the deformation family X via injective holomorphic maps
fi : M*DV* -V, where

VE = {([(zi,wi)],s) e WExA|4/sIR < |wi| < R} cM*

and

fe(lwh)]s) =[5 wh,s/w)], £ ([ w)]s) = [(gg ' (27),s/w™,w7)]
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The restriction of X — A on M¥ is the natural projection M* — A, while that on V is given by
[(z",w",w™)] > w" - w™. Moreover, it should be noted that there are natural projections ¢, : M* — S*
and ¢ : V — C* given by ¢([(z*,w*,w™)]) = [z7]. Then a holomorphic line bundle £ — X" is defined by
the pullbacks ¢ (L*) on M* and ¢*(L*|c+) on V. We notice that the line bundle £ — X is well-defined
since the line bundles f;¢*(L*|c+) and f_*(p*(gz(L_|C7)) are the same as the restrictions L]+ and L|y-
respectively, by virtue of Proposition 3.3 and the assumption gg(L™|c-) = L|c-. O

4.2. Idea of proof of Theorem 1.2 (i)

Let X = X, be a K3 surface obtained by gluing M* = M} and M~ = M, and L* be an ample line bundle
on S*. In order to show Theorem 1.2 (ii), we will construct a C®-Hermitian metric on L:=L; = L* VL~
with positive curvature in the following manner for fixed 0 <R; <R, < R:

Step 1: Construct a C*°-Hermitian metric &, on L* such that:
— h, can be glued to define a C*°-Hermitian metric h on L (if 0 < [s] < &),
— the Chern curvature of h, is semi-positive: ‘/j®h+ >0,
— V=1©y, > 0 holds on S$*\ {lw*| < Ry}, and
— V-1, (d/dz*,3/dz*) > 0 holds on S*.
Step 2: Construct a C*® function {* on S$*\ C* such that:
— 1* can be glued to define a C* function ¢ on X,
— * is psh on M*\ {R, < |w*| < R}: \/jaa_l,l)ﬂMi\{RzgquR} >0,
— *|w=+ depends only on |w*|, and
— V-109y*(3/dw*, 3/dw*) > 0 holds on {jw*| < Ry}.
Step 3: For0<cx 1, h-e=¥ is a desired metric on L with positive Chern curvature \/:@hﬂt\/jaa_lp > 0.

In our construction, h, - e~%" is a C*-Hermitian metric on L*| s+\c+ with positive Chern curvature such
that h, - e¥" ~ (log|lw*|)? as w* — 0. Moreover, w* := V=10 +cV-19d9¢* € ¢, (Li|5t\ci) gives a
complete Kéhler metric on S* \ C*, and on a neighborhood {|wi| < \/EOR} of C*, the form w™ is expressed
as

i} r(L*-C*) . NCldwt Adwt
w |{|wi|<\/%R}:T' V-1dz= Adz™ + 2c- |wi|2 .

4.3. Proof of Theorem 1.2 (i)

Let S be the blow-up of IP? at nine points, and C C S be an elliptic curve in |KS_1| such that N¢/g € PiCO(C)
satisfies the Diophantine condition. Then Arnold’s theorem says that there is an analytically linearizable
neighborhood W C S of C. By shrinking W if necessary, we may assume that W is isomorphic to Wg(p,q)
for some R > 0, T € H and (p,q) € R? satisfying the Diophantine condition, and let 77 : W — C be the
projection given in Section 3.

Let L € Pic(S) be an ample line bundle, which implies that there exists n € IN such that L" ® [-C] is very
ample, and let g1, 9,..., gy be a basis of H’(S,L" ® [~C]), which are regarded as sections of L" with zeros
along C. Then the singular Hermitian metric /1; on L is defined by

<<§x77>hL,x = £ T where &,1 €L],.
(Ig1 () +[g2(0) + -+ +Ign (%))

The metric hy has a pole along C and its restriction hy|s\c induces a C*-metric on S\ C with positive
curvature form V-10y, [s\¢ > 0. Moreover let i be a C*-metric on L|yy satisfying V-10;, . = bV-1dzAdz
for b:=m(L-C)/Imt > 0.
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Fix 0 < R; < Ry < R. Then we define a metric /1 on L by

ol RegularizedMax(th,e . n*hel) on W o

hil on S\ W
where ¢ > 0 and RegularizedMax: R? — R is the regularized maximum function (see [Deml2, Chapter I,
Lemma 5.18]). Note that, by choosing € > 0 sufficiently small, one may assume that # = h; holds on

{{(zzw)] € W| Ry <|w|}, which ensures the smoothness of #. Then V-10; > 0, since the local weight
function ¢ of h satisfies

@ = RegularizedMax(¢;, pc —loge),
where @) and @ are the local weight functions of h; and h¢, respectively. By the construction of h, there
exists a positive constant &, such that 1 = ¢! - 7t*h¢ holds on {|w| < \/%R} By shrinking ¢ if necessary,

we may assume 1/€gR < R;. For s € A with [s| < &g, let A = A;: R,y — IR be a C*®-function satisfying the
conditions

() = (log(#2/1s))” i£0<t <Ry,
A(t) = constant if t >R,
and i = ¢;: S\ C — R be the C*®-function defined by

_JAMwl) Yp=(zw)eW\C
¢(p)'_{A(R) VpeW.

It is easy to see that 8§¢ = 0 outside {|w| < R} and 951# =2-dw Adw/|w* on {0 < |w| < Ry). Finally, we
choose ¢ > 0 so that

V=16, +cV-199y > 0
on the compact subset {R; < |w| < R}. Here note that such a ¢ > 0 exists since V-10y, is strictly positive

on {Ry <|w|<R}cS\C.
We consider the metric i-e™¥ on S\ C. Our assumption on ¢ > 0 says that

V1600 = V=10, + V=199 > 0

outside {|{w| < R,}. Moreover, h-e~¥ has positive curvature also on {0 < |w| < R,}, since it holds

— V-ldw A dw
V—].@hL.e’“/’ > V_]-@hL >0, '_1®£’L7‘(”hc'€7flp =b —1dZ/\Z+C# >0
w

and
(h-e %)~ = RegularizedMax((hL e (e mhe e—ap)—l)

on {0 < |w| < R,} (see [Deml12, Chapter I, Lemma 5.18(e)]). Therefore the curvature of /- e~¥ is positive on
S\C.

Now we consider two pairs (S*,C*) of surfaces S* and curves C* C S* given in the introduction,
which admit analytically linearizable neighborhoods W* C §* of C*, and assume that W* are regarded as
subspaces {[(z*,w*)] | [w*| < R} of toroidal groups. Moreover let L* be ample line bundles with (L*-C*) =
(L7-C7) and g¢ : C* — C™ be an isomorphism with g¢ (L7|c-) = L*|c+. In what follows we abuse the
notation to denote gg simply by g. Then the above argument shows that there exist C*-metrics .. - e Y

on §*\ C* such that V=10, -+ >0 o0n S*\ C* and

2

+12
hy=¢e ' mihe, ¢ w) = (log |u|/S|| )
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on {O <|w*| < VIs|R (< y/eoR < Rl)}. As our K3 surface Xj is given by gluing two surfaces
M = 5*\ {[w*] < Visl/R}

via the map (z*, w*) — (z7,w™) = (g(z"),s/w"), it follows from Proposition 3.3 that 1, can be glued together
and become a global C*-Hermitian metric on Ly = L* vV L. Moreover, on {\/H/R <|w*|< \/HR}, we have
2
p*(z*,w) = (log[w*|*/[s|)” and
2\2 +12\2
- +i):1 |s/w*| —(_1 [w| (ot ot
o (o) 22 )= (106 og | = w)

which means that 1)* can be glued together and become a global C*-function 1 on X;. Therefore h, - e Y

yield a C*°-metric on X; with positive definite curvature form. U

4.4. Proof of Theorem 1.2 (iii)

The equivalence (a) <= (c) follows from Proposition 3.5, and the implications (a) = (b) follows from
Theorem 1.2 (i). In what follows we show (b) = (c). Take a line bundle £ — A" as in (b) and consider the
function h: A — Z defined by

h(t) = (£|M,+ . AﬁV)’
where we are regarding Ag,, as a cycle of M. As M* — A is a submersion, & is continuous. Thus / is a
constant function. Therefore, in order to show that (L- Ag,,)(= h(s)) is equal to zero, it is sufficient to show
that 1(0) = 0, which follows from Proposition 3.5 since L| Mm; coincides with the restriction of the line bundle
(Llx,)ls+ to M. The equation (L-A,s) =0 can be shown in the same manner. O

4.5. Proof of Theorem 1.1

Our construction of K3 surfaces has 19 complex dimensional degrees of freedom if we allow the variation
of & [KU19]. Indeed, for a fixed pair (p,q) € R? satisfying the Diophantine condition, we have the following
parameters:

(I) 1 parameter 7 € IH determining the elliptic curve C* = C~,
(I) 16 parameters {p7,...,pg} determining the centers of the blow-ups 7* (here p$ and pg are fixed
from the conditions (a) and (b) in the introduction),
(IIT) 1 parameter & € C determining the isomorphism gz : C* — C~, and
(IV) 1 parameter s € A\ {0} determining the gluing function f;: V;t — V.
Note that there always exist ample line bundles L* — S* with (L*-C*) = (L™-C™). If such ample line bundles
L* are fixed, then & is determined uniquely up to modulo (1, 7) from the condition 85 (L7|c-) = L*|c+, and
depends holomorphically on the parameters given in (I) and (II) (see also the relation (5.5)). Moreover, for
any s € A\ {0} with sufficiently small |s| < 1, the K3 surface X; admits an ample line bundle L, = L* VL™ by
Theorem 1.2 (i7). Hence we have an 18 dimensional family of projective K3 surfaces, whose Kodaira-Spencer
map is injective by [KU19, Theorem 1.1]. Moreover it follows from [KU19] that there exists a holomorphic
immersion Fj: C — X; mentioned in Theorem 1.1 (see also Remark 2.3). Finally among the family, almost
every fiber is a non-Kummer K3 surface since if follows from Proposition 2.5 that almost every fiber X has
the Picard number p(X;) < 2. O

5. Calculation of the Chern class c;(L)

Let S* be surfaces obtained from the blow-ups 7w* : S* — IP? of the projective plane IP? at nine points

{p1,-.., P} with smooth elliptic curves C* € |K§i1 . In our assumption (S*, C*) satisfy Conditions (a) and (b)

given in the introduction. Moreover let L* be holomorphic line bundles on S*. In this section, we compute
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the Chern class c¢;(L) in the lattice H?(X,Z) = H,(X,Z), where X is a K3 surface given by the gluing
construction and L = L™ V L™ is the line bundle on X (see the introduction).
First we notice that the second homology group of S* is expressed as

H,(S*,Z) = H*(S*,Z) = Pic(S*) = (H*, Ef, ..., EZ),

where E7 is (the class of) the exceptional divisor in S* which is the preimage of p} for v=1,2,...,9, and
+

* is (the class of) the preimage of a line in IP? by the blow-up 7*: S* — P2, In the homology group
H,(S*,Z), the elliptic curve C* is expressed as

9
£ _ 1_2 +
C*=3H Ej.
j=1

We also notice that the points pf,...,p;—' lie in the elliptic curve Cg := w*(C*). Then fix isomorphisms
Cy=Cy=C/L,T)

and also fix an inflection point p; so that

9
9, — Zp;—' =+u mod (1,7),
j=1

where p := q—p-7 and the points p;-—' €C(j=0,...,9) are regarded as complex numbers (see Subsection 2.1).

By choosing the complex number corresponding to the point pg appropriately, we may assume that

9
(5.) Wi-) pE=+p
j=1

actually holds. In what follows we assume that g(p;) = p, by changing g if necessary. For j =k € {0, 1,..., 9},
let I‘ﬁ( C C* be the lift of an arc in Cj connecting p])-—r and p;f.

Now we give the definitions of the generators (1.2) (see also [KU19]). The 2-cycles Ayp, Agy, A, 4 are
already defined in the introduction. In order to define the 2-cycle B, for e € {a, §, v}, we first notice that
MG are simply connected. Thus, there exist topological discs Df C M¥ such that dD} = +S! hold, where
S c V,, which are given in the introduction, are regarded as 1-cycles of V;* ¢ MZ. Then B, is defined by
B, = DJ Ug1 (=Dy), that is, the patch of D and —D; through S!l. In order to define the 2-cycles CZ, we
prepare the tube Tﬁ( given by Tﬁ( :=prg! (Iﬁ;) C {|wi| = \/H}, where

pr,: {[(zi,wi)] e W*| |wi| = \/E} 3 [(z5,wF)] — [z5] e C*

+
v, v+

) of +E¥ and FE;,, given by connecting them through the tube T;—tv ‘1

is a natural projection. Then for v = 1,...,7, the 2-cycle C
(+EX)#(FEZ

v+1
manner, the 2-cycle Cg is defined by the connected sum

| is defined by the connected sum
In a similar

Cirg := (FH™)#(xEg)#(+E7 )#(£Eg)
of FH*, iE'g, iE%, iEgF given by connecting them through the tubes T0i6, T(;—}, T(;—'g. In particular, Cy is
represented as
Ci, =+(Ef —E3), ..., Cog = +(E5 —Eg), Cgrg = £(-H* + EZ + E; + E3)
in Hy(S*,Z). It should be noted that C7 lies in M. Moreover, H,(S*,Z) admits an orthogonal decomposi-
tion
H)(S*,C)=(C*, Eg)®C*
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with respect to the intersection product, where C* is given by C* := (Cliz, C;—'S,...,C;—'g, C§78>’ and any

element g* € Hy(S*,C) = H,(S*,Z)® C admits an expression

9 8 9
6:2) 0 =asH* =) giEr = (3q5- ) ar)ot+(3a5 - ) af)ES + a¥le-
j=1 j=1 j=1

Next let us consider a K3 surface X = X, given by the gluing construction. It is seen (¢f. [KU19]) that the
second homology group of X is given by the orthogonal decomposition

Hy(X,Z) =T1319 =(Aap,B)) ®(Apy, Ba) ® (A, 0, B ®CT ®C".
with respect to the intersection product. Here note that
(Aaﬁ 'Aaﬁ) = (A/S)/ 'Aﬂy) = (Aya 'Aya) =0,
(B;/ ) By) =(Bs-Ba) = (Bﬂ 'Bﬁ) =-2,
(Aaﬁ ) By) = (Aﬁy "By) = (Aya 'Bﬁ) =1
The K3 surface X admits a nowhere vanishing holomorphic 2-form o, which is expressed as
a:(2y+caAuﬁ+yBV+xAﬂy+TBa+yA7a+Bﬁ+§:ffo+§:f:C:

in H,(X,C) by multiplying a constant to o if necessary, where x = x(s) and y = y(s) are constants and c is

i = J dz*
I

with I;” € C~ being the lift of an arc in C; connecting pg and g¢(pg). Hence, one has

given by

(53) =Py —p3) s €75 = £(p7 —P§), Cozg = (=3P +P§ +P7 +Pg), and ¢y = ge(pg) —py

if one selects the arcs appropriately.
Proposition 5.1. The Chern class c;(L) in H*(X,Z) = Hy(X,Z) is expressed as
c1(L) = (2b +ng +ng)Aqp +bB, + L7+ + L7|c-,
where b := (L*-C*) = (L™ -C) and ng := (L* - Eg).
Proof. We put
C1(L) = BppAap + by By + T3, Ay, + byBo +TyqAyg + bgBg + Z’ctc,* + Z’cjc;.

First the coefficients €7 are determined from L*|¢- since the cycles C in X are also regarded as the ones in
Mg C §*. Next it follows from Theorem 1.2 (iii) that (L-Ag,) = (L-A, ) = 0, which implies that b, = bg = 0.
Moreover, the cycle A,y may be regarded as C* in S*, which means that (L-A,p) = (L* - C*) = b and thus
b,=b

y=b.

Finally we will determine the coefficients a,. To this end, we put

9
p*:=3pEH* - Zp].iEji € Hy(S%,C).

=1

Then Condition (5.1) shows that (p* - C*) = £y and the relation (5.3) means that o|cs = £p*|e+. Thus it
follows from Equation (5.2) that

8 9
(5.4) p*= [9p§ - Zp]i]ci + [9p3’ - Zp;—']Eg +p*les = (2p+pd)C* £ pEg £ 0lc-.
j=1 j=1
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Moreover, by the condition gg (L”|¢-) = L*|c+, we may assume that £ € C is given by

1
(5.5) &= E((P_'L_)—(P+ -L")).
Thus we have
1
(5.6) ¢y =8(p5) =Py = (p5 + &) =py = 5 ((p7-L7) = (p™- L) +(p5 — py).
Equation (5.4) shows that
(57) (oles - L) = £(p* - L*) = (up5)(C* - L¥) = p(Ey - L) = +(p™ - L*)Fbpg — bu—ngp,

and Equations (5.6) and (5.7) show that
0=(0.-L) = (((2p+ c5)Aap + pBy) - (@apAap + bBy)) + ((xApy + TBg) -Gy Apg, )
+((vAya +Bp) Byahya)+ (0les L)+ (0le- - L7)
= (Mg + Tapy +Tya ) + by + (0lor - L) + (0lo- - L7) = (g + Tapy + Ty ) — (2b + 1§ + 1)t

Since ﬁ\aﬁ,h\ﬁyﬁ\ya, b, ng, g € Z and (1,7, u) are independent over Q by the Diophantine condition for the
pair (p,q), we have a,3 = 2b + ng +ng and ag,, =a,,, = 0. O
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